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Abstract

Simple model of electron cloud is developed in the paper to explain e-cloud insta-

bility of bunched proton beam in the Fermilab Recycler [1]. The cloud is presented

as an immobile snake in strong vertical magnetic field. The instability is treated

as an amplification of the bunch injection errors from the batch head to its tail.

Nonlinearity of the e-cloud field is taken into account. Results of calculations are

compared with experimental data demonstrating good correlation.

PACS numbers: 29.27.Bd

I. INTRODUCTION

Fast transverse instability of proton beam in the Fermilab Recycler has been observed and

reported recently [1]. Convincing arguments are adduced that the instability is caused by

electron clouds. However, a detailed theoretical analysis is not performed in the quoted work.

Development of theoretical model which is capable to explain these data in a consistent way

is the aim of this note.

II. ELECTRON CLOUD MODEL

Transverse cross sections of e-cloud in the Recycler are represented in Fig. A1 of the

Appendix. The figures are copied from Ref. [1] where they have been obtained by computer

simulation with POSINST code [2].

∗Electronic address: balbekov@fnal.gov

FERMILAB-FN-1001-APC

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



2

The main conclusion follows from these pictures that the e-cloud density almost does not

depend on vertical coordinate y, especially inside the proton beam which is sketched as the

red circle. This feature of e-cloud in strong magnetic field is confirmed in other papers (see

e.g. [3]) and is in a consent with following simple explanation.

Transverse motion of electrons inside a proton bunch in the presence of vertical magnetic

field B is described by the equations

ẍe + ω2
Bxe = −ω2

e(xe − Xp), ÿe = −ω2
e(ye − Yp) (1)

with the coefficients

ω2
B =

(

eB

mec

)2

, ω2
e =

2πe2ρp

me
(2)

The simplest model of proton beam as a rod of constant density ρp centered in the point

(Xp, Yp) is used here. However, it will be shown soon that it is an assumption of a little

importance.

The proton beam in the Recycler can oscillate with betatron frequency ωp. Therefore

relations of amplitudes following from Eq. (1) are

xe

Xp
=

ω2
e

ω2
B + ω2

e − ω2
p

,
ye

Yp
=

ω2
e

ω2
e − ω2

p

(3)

The parameters taken for the following numerical estimations are: B = 0.145 T, ρp =

1.3×1015/m3. Angular velocity of protons in the Recycler can be used as a convenient unit:

Ω = 2π×89.8 kGz = 0.564×106/s. Then ωB = ΩQB , ωe = ΩQe where QB ≃ 45000, Qe ≃

2500. Because the proton beam tune is Q ≃ 24.4, the amplitude ratios are:

xe

Xp
=

Q2
e

Q2
B + Q2

e − Q2
≃ 0.003,

xe

Xp
=

Q2
e

Q2
e − Q2

≃ 1.0001 (4)

It means that the movement of electrons is awfully obstructed in horizontal direction due to

magnetic field. As for vertical direction, each electron follows the protons bunch when it is

located inside it, and moves “free” between the bunches. In such a manner it can reach the

pipe walls where it can drive out secondary electrons which can be trapped by next bunch,

etc. As a result, each primary electron creates a vertical e-stream composed of secondary

electrons. The stream density depends on time but it keeps a fixed position in (x-z) plane

coinciding with position of the proton which was begetting the primary electron. A host of

the streams forms a stationary e-cloud which transverse cross-section is presented in Fig. A1.
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FIG. 1: Top view of e-cloud. Each proton bunch in the picture generates an immovable e-snake.

The snakes coincide each other if their parent bunches have the same injection conditions, and

differ otherwise (#2). Local density of each snake depends on time.

The cloud top view is sketched in Fig. 1 where several proton bunches are shown, each

oscillating horizontally due to injection errors. The bunches create snake-like immovable e-

traces as they are drafted in the picture. The traces of several bunches coincide if they have

been injected with the same errors, or differ from each other if the errors differ (bunch #2

in Fig. 1). According to the model, electron density at distance s from the cloud beginning

can be represented in the form

ρe(x, s, t) = e

∫ s

0

w(τ) ρ̄
(

x − X(s, t − τ)
)

λ(s′) ds′, τ =
s − s′

v
(5)

where ρ̄(x) is steady state (w/o coherent oscillations) projection of proton beam on axis x,

X(s, t) is the beam coherent displacement, and λ(s) is its linear density. The coefficient

w(τ) describes evolution of each snake local density which appears, increases in a time due to

secondary electrons, and decays eventually because the e-oscillations are typically unstable

as they are focused by field of bunched proton beam. Calculation of this function is not a

subject of this paper, and it will be treated further as some phenomenological parameters.

III. PROTON EQUATIONS OF MOTION

Horizontal electric field of the cloud looks like Eq. (5)

Ee(x, s, t) = e

∫ s

0

w(τ) F
(

x − X(s, t − τ)
)

λ(s′) ds′, F ′(x) = 4πρ̄(x) (6)

If the beam consists of short identical bunches, the integral turns into the sum

EN (t, x) = e

N
∑

n=0

wnF
(

x − XN−n(t − nT )
)

(7)
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where T is the time separation of the bunches which are enumerated from the beam head

(index 0) to the current bunch (index N). Therefore equation of horizontal oscillations of a

proton in N th bunch is

ẍ(t) + ω2
0x = −

e2

mγ

N
∑

n=0

wnF
(

x − XN−n(t − nT )
)

(8)

where ω0 is betatron frequency without e-cloud. It gives for small oscillations:

ẍ(t) + ω2
0x = −2ω0

N
∑

n=0

Wn

[

x − XN−n(t − nT )
]

(9)

where Wn = 4πe2ρn(0)wn/mγ, and ρn(x) is averaged over s e-cloud density in nth bunch.

Therefore average incoherent betatron frequency is in N th bunch:

ωN =
(

ω2
0 + 2ω0

N
∑

n=0

Wn

)1/2

≃ ω0 + ∆ωN , ∆ωN =

N
∑

n=0

Wn (10)

Thus the coefficient Wn has to be treated as the betatron frequency shift created by a bunch

#(N − n) in the bunch #N . It is clear that this single-bunch wake has a restricted length

which effectively can be taken as Nw. Then NwW is the saturated tune shift which could

be created by rather long batch and measured experimentally (W is the average value).

IV. COHERENT OSCILLATIONS (LINEAR APPROXIMATION)

Small betatron oscillations are considered in this section. Averaging Eq. (9) over each

bunch, one can obtain equations of motion of the bunch centers:

ẌN + ω2
0XN = −2ω0

N
∑

n=0

Wn

[

XN(t) − XN−n(t − nT )
]

, N = 0, 1, . . . (11)

Looking general solution in the form

XN(t) = AN (t) exp
(

iω0[t − nT ]
)

+ c.c. (12)

and using ordinary method of averaging, one can get series of equations for the complex

amplitudes:

ȦN (t) = i

N
∑

n=0

Wn

[

AN(t) − AN−n(t − nT )
]

(13)
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The special solution of the series has to be emphasized particularly: AN(t) = const that is the

amplitudes depend neither time nor bunch number. It means that all bunches are injected

at the same conditions and move on the same trajectory, as it is shown in Fig. 1 by solid

lines. Field on axis of this e-cloud is zero so it does not affect motion of the bunch centers.

It follows from this that some spread of the injection conditions is one of the prerequisites

of the e-cloud instability.

It should be emphasized in this connection that coherent eigentunes of the bunches co-

incide with their incoherent tunes (if the bunch coherent interaction is excluded). It is

apparent that the mutual influence of bunches is stronger when their eigentunes are closer.

Therefore an approach of the eigentunes is another prerequisite of the instability.

Fig. 2 is represented for an explanation of these statements. A possible wake function of

a single bunch is sketched separately in upper part of the picture. It arises inside the bunch,

remains constant for a time, and quickly decays after this. The figure itself represents

corresponding e-cloud of a long batch. The density (and the tune shifts) increase in the

beginning of the batch (5 bunches in the example), and remains constant hereafter. The red

line is added to sketch expected behavior of coherent amplitudes. Rather disorderly moving

in the beginning of the batch changes into a systematic growth later. It is taken into account

also that the growth cannot be unrestricted, in particular because of nonlinear effects which

are beyond of presented approximation and will be considered in following section.

ABC

CLOUD DENSITY AND TUNE SHIFT

AMPLITUDE

SINGLE BUNCH WAKE

5 4 3 2 1 0

NONLINEAR TUNE SHIFT

FIG. 2: Proton batch and its e-cloud (very schematically). Top – single bunch wake: rise, growth,

being, decay (lifetime 5 periods). Bottom blue line – e-cloud density and tune shift: (A) 5 period

growth, (B+C) saturation. Red line – amplitude of coherent oscillations: (A) irregular wobbling

at different tunes of the bunches; (B) more or less systematic growth at coinciding tunes; (C)

saturation due to nonlinearity of the wake field.
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This pattern has to be compared with results of e-cloud simulation presented in Fig. A2.

Even though the simulated shape of the e-cloud is more complicated, the model reflects its

important properties: fast growth in the beginning and saturation at the end (partial decay

and oscillations between the bunches seem to be less important for the bunch centers).

A. Constant wake.

The case Wn = W = const is considered in this subsection as a preliminary step. It

means that the wake of any bunch does not decay, at least in the range of considered part

of the batch. Then series (13) obtains the form:

ȦN (t) = iW
N

∑

n=0

[

AN(t) − AN−n(t − nT )
]

(14)

and has the simple solution

AN(t) = A0i +
N

∑

n=1

(Ani − An−1,i) exp(inWtN ) (15)

where tN = t − NT , and subindex ’i’ marks the injection instance t = nT that is tn =

0. This result affirms both of foregoing statements: (i) e-cloud does not affect coherent
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FIG. 3: Amplitudes of bunch oscillations with constant wake. Initial amplitudes have Gaussian

distribution with dispersion σ (both real and imaginary parts).
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oscillation at stable injection conditions, (ii) systematic growth of the coherent amplitudes

does not happen at different eigentunes of the bunches. An example is given in Fig. 3 where

random distribution of initial amplitudes has been applied.

B. One-step wake

An opposite case is considered in this subsection: very short wake which can reach only

the nearest following bunch: Wn = Wδn,1. Then Eq. (13) gives:

Ȧ0 = 0, ȦN>0(t) = iW
[

AN(t) − AN−1(t − T )
]

(16)

which series has the solution

A0 = A0i, AN(t) = A0i + exp
(

iWtN )
N

∑

n=1

Ani − A0i

(N − n)!
(−iWtN )N−n (17)

It is seen that systematic amplitude growth is possible at N ≥ 2 with additional condition

that initial complex amplitude of the bunch, or at least one of the previous bunches, differs

from amplitude of the leading bunch (N = 0). Examples are given in Fig. 4 for the conditions

Ani = 1 − δn0 that is the injection error is 0 at leading bunch, and 1 at others. Another

example is given by Fig. 5 with random initial distribution. It looks very similarly in average

though a random spread appears.

C. Restricted uniform wake

Restricted uniform wake is considered in this subsection as the more general case:

Wn =

{

W at n ≤ Nw

0 at n > Nw

(18)

Then Eq. (13) obtains the form

ȦN(t) = iW

Nm
∑

n=0

[

AN(t) − AN−n(t − nT )
]

, Nm = min{N, Nw} (19)

1. The batch head

At N ≤ Nw, Eq. (19) coincides with Eq. (14) having solution (15). These amplitudes can

oscillate only at variable injection conditions (Fig. 3).
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FIG. 4: Amplitudes of bunch oscillations at initial values ANi = δN0. The leading bunch (N = 0)

does not oscillate having zero error of injection, but it creates a path for following bunches providing

them the same eigentune. Coherent betatron amplitude is constant at first bunch (N = 1), growths

linearly at N = 2, etc.
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FIG. 5: Amplitudes of bunch oscillations with a random errors of injection. Initial amplitude

of the leading bunch A0i = 0, other initial amplitudes are distributed randomly in the interval

−1 < ANi < 1. Bunches N = 1, 3, and 10 are presented for 10 random realization.
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2. The batch tail.

Thus there is no systematic growth of the amplitude in the butch head, but there is only same

variation due to random superpositions of the bunch amplitudes. Obtaining amplitudes are

as small as injection errors, and can be neglected at the analysis of the batch tail. Then it is

convenient to use new bunch enumeration N ′ = N − Nw = 1, 2, . . . , and modified complex

amplitudes

A′

N ′(t) = AN ′+Nw
(t) exp

(

− iNwW [t − NT ]
)

, N ′ = 1, 2, ... (20)

These variables satisfy the series of equations:

Ȧ′

0(t) = 0, Ȧ′

N ′(t) = −iW
Nm
∑

n=1

A′

N ′
−n(t − nT ), Nm = min{Nw, N ′} (21)

The solutions can be represented in the form

A′

N ′(t) =
N ′

∑

k=0

S
(k)
N ′

k!

[

(−iW (t − NT )
]k

(22)

with coefficients satisfying the series of equations

S
(k)
N ′ =

N ′

m
∑

n=1

S
(k−1)
N ′

−n , N ′

m = min{Nw, N ′, N ′ + 1 − k} (23)

TABLE I: Coefficients S
(k)
N at initial amplitudes aNi = 1.

N ′ → 0 1 2 3 4 5 6 7 8 9

k = 0 1 1 1 1 1 1 1 1 1 1

k = 1 - 1 2 3 4 5 5 5 5 5

k = 2 - - 1 3 6 10 15 19 22 24

k = 3 - - - 1 4 10 20 35 53 72

k = 4 - - - - 1 5 15 35 70 122

k = 5 - - - - - 1 6 21 56 126

k = 6 - - - - - - 1 7 28 84

k = 7 - - - - - - - 1 8 36

k = 8 - - - - - - - - 1 9

k = 9 - - - - - - - - - 1
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FIG. 6: The tail part of the batch with 5-step wake. Initial amplitudes of presented bunches

AN ′i = 1, foregoing bunches do not oscillate.
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FIG. 7: The same conditions as in Fig. 6 but initial amplitudes are random numbers distributed

uniformly in the interval −1 < AN ′i < 1. Bunches N = 1, 5, and 20 are presented for 10 random

realization
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Set of the coefficients S
(0)
N ′ should be defined separately to satisfy initial conditions. In

accordance with Eq. (20) and (22)

S
(0)
N ′ = A′

N ′(NT ) = AN ′+Nw
(NT ) = ANi (24)

where subindex i marks initial amplitude of N -th bunch at t = TN . Calculation of

coefficients SN ′(k) is not a problem with any initial conditions because Eq. (23) is actually

a recurrent relation. An example is given in Table I with the parameters: Nw = 5, ANi =

0 at N < Nw or ANi = 1 at N ≥ Nw, Corresponding dependence of amplitudes on

time is plotted in Fig. 6. Another example is presented in Fig. 7 with a random initial

distribution. There is some resemblance of these plots to Fig. 4-5 where one-step wake has

been represented. However, the amplitude growth rate is now about 3 times faster at the

same W .

D. Discussion

The main conclusions from this model are:

1. The “instability” appears because of injection errors which are amplified from bunch to

bunch along the batch.

2. However, it cannot appear at absolutely stable injection conditions. Some spread of the

errors is necessary to turn on the bunch coherent interaction.

3. Expected bunch coupling is not very strong in the batch beginning because of essential

difference of their eigentunes. Non-growing bunch oscillations are possible in this part. The

amplitudes coincide with injection errors in order of value, having an interference if the

errors are varied. Duration of this part is about saturation time of the cloud.

4. Systematic growth of the amplitudes can happen in more remote parts of the batch where

the e-cloud is saturated. The amplitude growth rate increases from the batch beginning to

its tail being almost exponential at the end.

These statements are partially confirmed by experimental data presented in Fig. A3. Very

small and about constant amplitudes are observed in the front part of the batch including

about 20 bunches. Then the amplitudes demonstrate a growth by factor 2-3 in following 20-

30 bunches. These data do not conflict to the model with Nw ≃ 20. However, the bunches

with N >∼ 50 have about equal amplitudes whereas the model predicts their unrestricted

growth. Similar contradiction (saturation against unrestricted growth) concerns the long
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term effects that is the dependence of the amplitudes on revolution number. Nonlinearity of

the e-cloud field is a possible cause of the contradictions, which statement will be considered

in following section.

V. NONLINEAR EFFECTS (1 STEP WAKE).

With cubic nonlinearity taken into account, Eq. (8) gives the equation of betatron oscil-

lation of protons in N th bunch:

ẍ(t) + ω2
0x(t) = −2ω0

N
∑

n=0

Wn(ξn + ǫnξ3
n/3) (25)

where ξn = x(t) − XN−n(t − nT ), ǫn = ρe”(0)/2ρe(0)

Solution of this equation can be represented in the form like Eq. (12):

x(t) = a(t) exp
(

iω0[t − NT ]
)

+ c.c. (26)

providing the equation for amplitude a

ȧ(t) = i
N

∑

n=0

Wnη(1 + ǫn|ηn|
2), ηn = a(t) − AN−n(t − nT ). (27)

One-step wake is considered below: Wn = Wδn1. Note that the condition W0 = 0 follows

from this definition which is reasonable because a noticeable e-cloud cannot appear in the

leading bunch in absence of secondary electrons. Therefore amplitude of any particle does

not depend on time in this bunch, so that amplitude of the bunch center is constant as

well. The last can be taken as 0 because a difference of other bunches is the only crucial

circumstance. Their equations of motion are

ȧ(t) = iW
[

a(t) − AN−1(t − T )
][

1 + ǫ
∣

∣a(t) − AN−1(t − T )|2
]

, A0 = 0. (28)

Following steps have been used for numerical solution of the equations:

1. Generation of random initial distribution of particles in first bunch;

2. Calculation of the function a(t) for each particle of this bunch (N = 1) by solution of

Eq. (28) with the known AN−1 = A0;

3. Calculation of the central amplitude A1(t) as a function of time;

4. The same for second bunch with known A1(t), etc.

Results of the calculation are presented below.
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Instability of a thin beam (R = 0) is illustrated by Fig. 8 where the bunch offsets are

taken as AN = 1 , and the nonlinearity parameter ǫ = −0.001 . The left-hand graph

represents dependence of amplitudes of the bunches on time. It can see that their behavior

at WtN <∼ 4 closely resembles the curves of Fig. 4 where similar beam is considered

without nonlinearity. However, the plots strongly differ further because the growth of the

amplitudes in the nonlinear system actually deceases at A ≃ 30 (note that corresponding

to ǫA2 ≃ −1).

The amplitude averaged over all the bunches and its growth rate are shown in the right-

hand picture. It is seen that the rate peaks at Wt ≃ 4, and it is about 0 at Wt = 10.

Motion of second bunch is considered more closely in Fig. 9 where its amplitude against

time (left-hand graph) and phase trajectories are presented at different nonlinearity. It is a

typical behavior of nonlinear oscillator exited by periodical external field which cannot be

treated as Landau damping.

A thick beam is considered at the same conditions being presented by similar plots in

Fig. 10. The water-bag model of radius 1 is used for transverse distribution of the proton

beam. There is no essential difference between Fig. 8 and 9, demonstrating that the beam

radius is a factor of second importance in this problem.

Next example pertains to the same beam with different injection errors of the bunches:

ANi = 0.3+0.1 exp(iφN) with random phase φN . One of the random realization is presented

in Fig. 11 which has only small distinction from previous examples.

The data are collected in left-hand Fig. 12 where the average betatron amplitude growth

rate averaged across the batch (20 bunches) are represented. The curves have much in

common with each other having a maximum at Wt ≃ 4 and decreasing to zero at Wt ≃ 10.

Similar experimental curve for the Recycler is shown in the right-hand graph which is copied

from Ref. [1]. By comparison of the plots, one can get the relation of the parameters:

Wt = 10 corresponds to 80 revolutions, that is WTrev ≃ 1/8. Because of WTrev = 2π∆Q

with the one-step wake, ∆Q ≃ 0.02 in these examples. On the other hand,

∆Q =
2πr0ρeR

2

Qβ2γ
≃

ρe

1014m3
(29)

that is the e-cloud density can be estimated as ρe ≃ 2 × 1012/m3.
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FIG. 8: Instability with nonlinear e-cloud field. Thin beam, one-step wake, non-oscillating leading

bunch, initial amplitude of other bunches ANi = 1 , nonlinearity ǫ = −0.001.

Left-hand graph: amplitudes of 20 bunches vs time. Saturation appears at |ǫA2| ≃ 1.

Right-hand graph: the amplitude averaged across the batch, and its growth rate.
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FIG. 9: Oscillations of bunch N = 2. Left-hand: amplitude vs time at different values

of the nonlinear parameter. Right-hand: phase trajectories of the bunch centers at ǫ =

0 (black), 0.01 (blue), 0.1 (red). The behavior is typical for nonlinear oscillator excited by ex-

ternal harmonic force.
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FIG. 10: The same as in Fig. 8 but the beam is thick: water-bag model of radius 1.

Saturation at |ǫA2| ≃ 1.
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FIG. 11: The same as in Fig. 10 but the injection errors include a random part:

ANi = 0.3 + 0.1 exp(iφN ) with φN as uniformly distributed random.
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FIG. 12: Left-hand: the averaged instability growth rate as it has been represented in Fig. 8, 10, 11.

Right-hand: measured instability growth rate in percent per turn [1]

VI. CONCLUSION

Model of electron cloud is developed in the paper to explain the e-cloud instability of

bunched proton beam in the Fermilab Recycler [1].

By this model, e-cloud is an immobile snake which density depends on horizontal coor-

dinate and time. The cloud is composed of e-streams each of them is generated by some

proton and is remembering its position.

Interaction of proton beam with the cloud can result in an amplification of injection errors

in form of coherent bunch oscillation growing up from the batch head to its tail. Spread of

the errors from bunch to bunch is one of the conditions of the instability.

Another condition is an approach of the bunch eigentunes which value is proportional to

the cloud density. Therefore the amplitude growth accepts a systematic disposition in the

batch tail where the cloud is saturated.

The amplitude growth is restricted by nonlinearity of the e-cloud field.

Results of calculations correlate with the experiment qualitatively and in order of value.
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VII. APPENDIX: REPRINTED FIGURES [1]

Fig. A1. E-cloud transverse cross section simulated by POSINST.

Fig. A2. E-cloud profile simulated by POSINST
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Fig. A3 Horizontal betatron amplitude across batch and over time.
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