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Abstract
In storage rings with slow resonant extraction one of the

main goals of optimization is the extraction inefficiency, or
the fraction of beam lost due to hitting the septum plane. A
simple analytical model based on a perturbation theoretic
approach is built to help determine optimal parameters. It
also helps to evaluate the design performance in time and
in a range of machine parameters.

INTRODUCTION
The third-integer resonance is widely used for slowly

extracting a good quality beam continuously over an ex-
tended time period, the “spill.” The range of possible ap-
plications is wide, as well as the range of requirements im-
posed by each project. Due to the high complexity, per-
formance optimization at the design stage is best accom-
plished with tracking simulations that may include machine
optics specific details, beam properties, space charge ef-
fects, RF feedback loops and so forth. However, it would
be practical to use simple, analytic calculations to evaluate
the reach of main performance characteristics and reduce
the allowed range of machine parameters before doing rig-
orous simulations. This possibility is offered by a simple
model based on perturbation theory and a few reasonable
assumptions. The model was developed in the context of
slow extraction from the Fermilab Delivery Ring1 for the
Mu2e experiment.

RESONANCE MODEL
Figure 1 illustrates the idealized separatrix for the third-

integer resonance drawn in a complexified, normalized,
horizontal phase space with coordinates,

a =
√
I ei(π/2−ϕ) =

x+ i(αx+ βx′)√
2β

(1)

where β and α are the usual Courant-Snyder horizontal lat-
tice functions. The Hamiltonian associated with the third-
integer resonance model, written in angle-action coordi-
nates (ϕ, I), is as follows. [1, 2]

H = ∆ν · a∗a− iga3 + ig∗a∗ 3 + · · ·
= ∆νI − ( ge−i3ϕ + g∗ei3ϕ ) I3/2

For Mu2e extraction, the difference between the linear (i.e.
small amplitude) horizontal tune and the resonant tune is

∗Operated by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the United States Department of Energy.

1Formerly, the antiproton Debuncher Ring.

Figure 1: Separatrix geometry.

∆ν = νx − 29/3, which is presumed to be small. The “res-
onance coupling constant,” g, is a linear functional of the
sextupole field strength distribution,

g =
i

6
√

2
1

4π

∑ (
B′′l

Bρ
β3/2(θ) e−i 3(ψ(θ)−∆νθ)

)
(2)

where the sum is carried out over the locations of the sex-
tupoles. The phase, Ψ, of the complex parameter g deter-
mines the orientation of the third-integer separatrix, which
is bound by the equilateral triangle with vertices

|a0| =
√
I0 = |∆ν/3g| (3)

0 < ∆ν ⇒ ϕ0 = Ψ/3 mod 2π/3
∆ν < 0 ⇒ ϕ0 = Ψ/3 + π/3 mod 2π/3 .

as shown in Figure 1. In the beginning of extraction all
beam should be included in the starting separatix – this de-
termines initial ∆ν and g. As ∆ν reduces during extrac-
tion, the separatrix boundary squeezes leaving less and less
stable beam in the machine. Particles outside the separa-
trix are streaming away along the outcoming rays of the
triangle like shown by arrows in Figure 1. The direction of
streaming depends on the sign of ∆ν; the figure illustrates
a flow when ∆ν < 0.

STEP SIZE
The step size is a measure of the speed of a particle

streaming away and is defined as the increase in its hori-
zontal projection after three consecutive turns. In order to
estimate the step size we assume that (a) the extraction pro-
cess is adiabatic and (b) extracted particles reside on the
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outgoing branch of the separatrix. The latter approxima-
tion is reasonable provided they are not “too far” from it.
Accordingly, we write

a ≈ a0 ( 1 + resgn(∆ν) iπ/6 ) .

Transformation to the x-coordinate can be written as

x =
√

2β <
{
a0 (1 + resgn(∆ν) iπ/6)

}
, (4)

∆x =
√

2β <
{
a0 e

sgn(∆ν) iπ/6
}
·∆r . (5)

The step size is determined from da/dθ = −i∂H/da∗,
which yields

dr/dθ = |∆ν | · r (
√

3 + r ) . (6)

We integrate this over three turns to obtain the result,

∆ r =
r ( r +

√
3 )

[
√

3/( exp( 6π
√

3 |∆ν | )− 1 ) ]− r
. (7)

Notice that the sextupole strength does not appear ex-
plicitly in these expressions. Instead, it is present implic-
itly in the parameter a0, which actually has to be matched
initially to the injected beam size. Eq.(3) is used to fix the
initial ratio |∆ν/g| at injection, but there is some freedom
of increasing the sextupole strength while moving the ini-
tial machine tune farther away from the resonance.

OPTIMIZATION OF THE EXTRACTION
EFFICIENCY

Eq.(5) and Eq.(1) imply |∆x| ≤
√

2β |a0|∆r, with
equality when (π/2− ϕ0) + sgn(∆ν)π/6 = 0 or π. (Of
necessity, ∆r ≥ 0 while ∆x may be positive or negative.)
For ∆ν < 0 and a given |a0|, the ratio |∆x|/∆r is therefore
maximized by orienting the separatrix so that ϕ0 = −2π/3
when ∆x < 0 on the outgoing branch, thereby making it
parallel to the x-axis.2 We shall assume this orientation,
where needed, in what follows. Eq.(4) then simplifies to

x = x0 ·( 1+2r/
√

3 ) , with x0 = −
√

3β/2 | a0 | . (8)

With this configuration, x ≤ x0 < 0, accordant with
counter-clockwise rotation of the bunch in the Delivery
Ring. To avoid having to adjust to this polarity continu-
ally, we shall define X ≡ −x and use it below.

Figure 2 shows X1(r), the horizontal position as func-
tion of the dimensionless parameter r, and X2(r), the hor-
izontal position on the next step, after the next three turns.
That is, X2(r) = X1(r) + ∆x(r), where r is obtained by
inverting Eq.(8) with x ≡ X1. The value is then used in
Eq.(7) to find ∆r, which is then inserted into Eq.(5), which
determines ∆x. The lower horizontal dash line in the plot
shows the position of the septum wire/foil plane. The beam

2 Maximizing |∆x| decreases the probability of hitting the septum’s
wire or foil. Maximizing the ratio |∆x|/∆r may not necessarily be opti-
mal but will be close to it.

Figure 2: Current x-position (X1) and x-position after three
turns (X2) as functions of parameter r.

particles on their way to extraction span all the space be-
low this plane. Once they pass the vertical marker R1, they
would be extracted on the next step as the blue line crosses
the septum plane. In the simplified model losses occur for
those of them that exactly cross the septum plane thickness,
and particles that land on the other side of the wire/foil
plane do not contribute to the losses. Although this is a
widely used figure of merit for septum losses, the validity
of this assumption is limited and varies with the type of
septum plane. MARS simulations performed for the Deliv-
ery Ring show that this assumption is quite reasonable for
thin foil septa. [3]

The larger we can make the gap between red and blue
lines (step size), the smaller fraction of particles end up in
the septum plane, hence, the better efficiency. However,
there are natural limitations on the step size. If it is too
large, the particles start to fall out of the machine aperture
and have chances to get lost in the ring before reaching
the extraction septum. The exact definition of the step size
limitation depends on the aperture details of the machine
section between the sextupole magnets and the extraction
region. Here we require that the blue line should not cross
the boundary of machine acceptance, shown as the upper
horizontal dash line in Figure 2, which in case of the FNAL
Muon Campus Delivery Ring is set to 35π mm-mrad. The
optimal condition for the septum plane location therefore
is obtained by requiring that the blue line cross upper dash
line at the same moment when red line crosses the lower
dash line (marker R2). This can be optional if the machine
acceptance is very large and the step size is limited by other
practical factors. However in many cases, including FNAL
Delivery ring, machine aperture is a limiting factor. Also,
in case of the Delivery ring the condition formulated above
is a very close call, as the tightest aperture of the ring is
presented in the straight section right upstream of the ex-
traction region.

The fraction of beam loss on the septum’s wire (or foil)
can be estimated as a ratio

RL =

[ ∫
n(x)dx

]
wire∫ xmax

xsep
n(x)dx

,

where n is the number density of particles on the outgo-



ing branch of the separatrix. If we assume a steady-state
flow, then n ∝ (dr/dθ)−1. With this assumption, and us-
ing Eq.(6), RL is written,

RL =
dw

X2
S −X2

0

2X0

ln
(

(Xmax−X0)(XS+X0)
(Xmax+X0)(XS−X0)

) , (9)

where the numerator is evaluated only to first order in dw,
the effective wire plane thickness, assumed to be “small.”

PARAMETRIZATION IN TIME
The plot in Figure 2 is made at a particular moment - at

the beginning of the squeeze. As the tune moves to the res-
onance, the separatrix shrinks (is ”squeezed”), which alters
the curves X1(r) and X2(r). For the purpose of this dis-
cussion, we shall assume that this is accomplished with a
dedicated zeroth harmonic quadrupole circuit and that Ψ,
the phase g appearing in Eq.(2), does not change. This
fixes the separatrix’s orientation, so we can continue to use
Eq.(8) through extraction.

From Eq.(3), the history of a separatrix’s vertex is linear
in the ramp profile, ∆ν(t), where t is time. Thus,

|a0(t)| = |∆ν(t)/3g| =
∆ν(t)
∆ν(0)

|a0(0)| .

In writing the final expression, we assume that |g| remains
constant – that is, the separatrix is squeezed by changing
only the tune control quads, not the sextupoles – and ∆ν
does not change sign throughout the ramp. Further, with
normalization as in Eq.(1), |a0(0)| is related to the initial,
unmatched emittance, εi, through the expression,3

εi =
π

2
|a0(0)|2 .

Combining these with Eq.(8), we can write

x = −( 2r +
√

3 ) · ∆ν(t)
∆ν(0)

·
√
β εi/π . (10)

This is equivalent to Eq.(8) but parametrized so as to make
explicit the dependence on time.4

The curves X1(r) and X2(r) can now be defined as be-
fore but at any arbitrary time during the ramp. As discussed
already, the optimal placement of the septum wire is the
value of X1 when X2 is at the machine aperture (or accep-
tance). However, the septum plane’s position can not be
changed during the squeeze, so the optimum must be eval-
uated at the end of the squeeze, when this value reaches
its minimum. This could be mitigated by a dynamic orbit
bump if this is practical, but here we shall assume other-
wise.

3 That is, εi is the emittance associated with a maximal Courant-
Snyder invariant ellipse, tangent to the separatrix at three points. It is 1/4
the emittance of an ellipse passing through the vertices, and π/(3

√
3)

times the emittance of the central stable region. εi is an estimate of the
injected emittance, before filamentation occurs.

4 We can neglect the small variation in β during the ramp, one of the
advantages of third-integer over half-integer extraction.

Superficially, the end of the squeeze appears to present
a numerical problem because expressions such as those
appearing in Eqs.(10), (7) or (6) become meaningless if
one blindly plugs in ∆ν = 0. The difficulty arises be-
cause the scale of r is set by a0, which means that
r →∞ as a0 → 0, so that x remains finite. It can be
handled by defining a “renormalized” real variable, u, as
a0r ≡ u exp(−i(ϕ0 − π/2)). Then, in the limit ∆ν → 0,
Eq.(7) approaches the finite expression,5

∆u =
18π|g|u2

1− 18π|g|u
.

Having thus positioned an optimal XS = Xseptum,
Eq.(9) is used to estimate the loss rate throughout the
squeeze by setting Xmax = Xseptum + ∆X and using
Eq.(10) to fix X0. This gives us the loss rate as a function
of time, via the ramp profile, and the other two paremeters
appearing in Eq.(10).

RL = RL(∆ν(t), εi, β)

This expression can be obtained by plugging all the param-
eters as functions of time, as determined above, into Eq.(9).
It is straightforward but bulky, so we shall not reproduce it
here.

Figures 3 and 4 show the application of this model to
Fermilab’s Delivery Ring. The tune ramp profile, ∆ν(t),

Figure 3: Calculated septum losses as function of time for
three values of the beta-function. Initial normalized emit-
tance is 16π mm-mr and machine acceptance is 35π mm-
mr.

can be written analytically only for a limited set of simple
cases. When space charge, chromaticity and other effects
are taken into account, it must be obtained from tracking
simulations. In these calculations we used a tune ramp
profile devised to produce a close to uniform spill rate in
simulations with the program ORBIT.6 Figure 3 uses this
curve to show losses vs time (parametrized by turn num-
ber) for three different values of the beta function. The

5 This is most easily seen by first taking the limit of the differential
equation, Eq.(6). Details are worked out in Reference [1].

6 More recently, piecewise linear ramp profiles have been designed
to minimize deviation from a constant spill rate simulated by the code
Synergia. That work will be reported elsewhere.



Figure 4: Septum wire losses vs. machine acceptance.

Delivery ring was originally designed as a compact, low
beta machine. If its optics remain unchanged during Mu2e
operations, the beta function at the entrance to the elec-
trostatic septum would be only ≈ 9 meters, and the best
achievable loss fraction for a 100µm septum wire width
would be around 2.5%.7 In order to reduce losses to 2%, it
will be necessary to increase β above 15 meters.

Figure 4 explores how the machine acceptance improve-
ment could help reduce the septum losses. Losses are cal-
culated at the moment of 30% through the spill at three
values of beta-function. One can see here that doubling the
aperture would be necessary in order to achieve the same
loss fraction reduction as increasing the beta function by
about a factor of three.

SUMMARY
We described here a semi-analytic approach to calculate

the limits of fractional beam losses during third-integer
resonance extraction. The parametric calculations are
general; we have applied them here to Fermilab’s Delivery
Ring for slow extraction to the Mu2e experiment.
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