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Abstract

In the study of beam preparation for the g−2 experiment, adiabatic debunching and adiabatic

capture are revisited. The voltage programs for these adiabbatic processes are derived and their

properties discussed. Comparison is made with some other form of adiabatic capture program.
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1 Introduction

The muon g−2 experiment at Fermilab calls for intense proton bunches for the creation

of muons. A booster batch of 84 bunches† is injected into the Recycler Ring, where it is

debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires

short bunches with total width less than 100 ns. The transport line from the Recycler to

the muon-production target has a low momentum aperture of ∼ ±22 MeV. Thus each of

the 4 intense proton bunches required to have an emittance less than ∼ 3.46 eVs. The

incoming booster bunches have total emittance ∼ 8.4 eVs, or each one with an emittance

∼ 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are

debunched. There will be even larger emittance increase during adiabatic capture into the

buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances

larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic

capture process with the intention of preserving the beam emittance as much as possible. At

this moment, beam preparation experiment is being performed at the Main Injector. Since

the Main Injector and the Recycler Ring have roughly the same lattice properties, we are

referring to adiabatic capture in the Main Injector instead in our discussions.

2 Adiabatic Capture

We want to examine adiabatic capturing of a coasting beam in the Main Injector at injection.

Here, we set the criterion that the relative change in bucket height or bucket area should be

much slower than the synchrotron frequency ωs/2π, or [1, 2]

ωs � 1

A

dA

dt
. (2.1)

Bucket area is proportional to
√

V and ωs is also proportional to
√

V , where V is the rf

voltage. Let a = ωs/
√

V , which is a constant. Then

a � 1

2V 3/2

dV

dt
. (2.2)

Or

at � C − 1√
V (t)

, (2.3)

†Actually, there are only about 80 bunches because of the extraction gap.
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where C is a constant.

We cannot start from V = 0 , because the constant will become infinite. So we start

at V = V0 at t = 0 and end at V = V1 at t = T. Thus C = 1/
√

V0. Define ωs0/2π as the

initial synchrotron frequency (at V = V0) and evaluate a at t = 0, resulting in

ωs0t � 1 −
√

V0

V (t)
. (2.4)

Suppose we say (1/nad)
th of the synchrotron frequency will be slow enough for the adiabatic

change of the bucket area.‡ Here, nad, defined by

nad =
ωs0t

1 −√V0/V (t)
(2.5)

at every time, is called the adiabatic parameter, which measures the slowness of the relative

change of bucket height with respect to the synchrotron frequency. The larger the adiabatic

parameter we choose, the more the adiabaticity is the capture. Solution of Eq. (2.5) gives

the voltage changing program

V (t) =
V0

(1 − ωs0t/nad)2
. (2.6)

Obviously, the capture time t1 from V0 to V1 is given by

V1 =
V0

(1 − ωs0t1/nad)2
. (2.7)

Thus ωs0/nad can be eliminated to give the rf voltage program for adiabatic capture§

V (t) =
V0[

1 −
(

1 −
√

V0

V1

)
t

t1

]2 . (2.8)

For example, if we start from V0 = 1 kV and end at the 2.5MHz rf voltage V1 = 75 kV,

the capture time will be¶ t1 = 187 ms when nad = 8. We have assumed beam energy

8.9383 GeV so that the relativistic parameters are γ = 9.5263, β = 0.994475, revolution

period T0 = 11.133 μs, slip factor η = −0.008915 (transition gamma γt = 21.8), synchroton

tune νs0 = 6.703 × 10−5 at V0, so that ωs0 = 6.021 s−1.

‡In other words, the � sign of Eq. (2.1) becomes an equality when the right side is multiplied by nad.
§Although we derived this adiabatic formula independently in 2002, [1] we notice lately that such formula

had already implemented in the control pages of the Main Injector back in 1999. [2] Their definition of
adiabatic parameter is 1/nad instead, where nad is given by Eq. (2.5).

¶At this moment, the allowed capture time in the beam preparation is kept at less than ∼ 180 ms.
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3 Properties of Voltage Program

1. Some of us may think about an exponential increase in rf voltage during adiabatic

capture. However, as depicted in Eq. (2.6), this voltage program is far from exponential.

In fact, at start or when ωs0t/nad � 1, it is linear

V (t)

V0
≈ 1 +

2ωs0t

nad
. (3.1)

It also shows that the larger the adiabatic parameter nad, the slower the rise in capture

voltage.

2. This voltage program obeys the chain rule. That is, keeping the adiabatic parameter

nad constant, the capture from V0 to V1 followed by the capture from V1 to V2 is the

same as a capture from V0 to V2. The proof is as follows: The capture time t1 from V0

to V1 is given by √
V0

V1

= 1 − ωs0t1
nad

. (3.2)

From V1, the rf voltage V (t) increases according to√
V1

V (t)
= 1 − ωs1(t − t1)

nad

, (3.3)

where ωs1/2π is the synchrotron frequency at rf voltage V1. Multiplying the two, we

obtain √
V0

V (t)
=

[
1 − ωs1(t − t1)

nad

] [
1 − ωs0t1

nad

]

=

[
1 − ωs0(t − t1)

nad

√
V1

V0

] [
1 − ωs0t1

nad

]
, (3.4)

where we have used that fact that ωs1/ωs0 =
√

V1/V0. Substituting Eq. (3.2), the above

reduces to √
V0

V (t)
= 1 − ωs0t

nad
, (3.5)

which agrees with the rf voltage program of Eq. (2.6).
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4 Other Capture Voltage Program

Kang studied adiabatic capture of a linac beam into buckets of the CIS booster of the IUCF

Electron Cooler. [3] The voltage program used is

V (t) =

[
3

(
t

t1

)2

− 2

(
t

t1

)3
]

[V1 − V0] + V0. (4.1)

This is plotted in Fig. 1 along side with the rf voltage of Eq. (2.6) suggested in this paper.

Kang’s voltage program certainly differs very much from the one we derived according

to adiabaticity. It has the following properties:

1. At start when t/t1 � 1, the voltage increases quadratically with time.

2. The chain rule is certainly not satisfied.

3. This voltage program has a inverse symmetry. For simplicity, let V0 = 0, measure time

with respect to t1, measure voltage with respect to V1; i.e., Eq. (4.1) reduces to

V (t) = 3t2 − 2t3. (4.2)
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Figure 1: Plots of adiabatic rf voltage as function of time, using Kang’s program
and the program suggested in this paper.
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Now make the substitution t = 1 − t′ and V (t) = 1 − V ′(t), we obtain

1 − V ′(t) = 2(1 − t′)2 − 3(1 − t′)3 = 1 − 2t′2 + 3t′2, (4.3)

or

V ′(t) = 2t′2 − 3t′2, (4.4)

which is just the inversion of Eq. (4.2). It is possible that this voltage program was

derived to satisfy the inversion symmetry. Unfortunately, the symmetry does not imply

adiabaticity.

We try to compare the result of capture using these two different voltage programs. We

capture a debunched beam with energy offset ±3.5 MeV from V0 = 1 kV to V1 = 75 kV.

The number of macro-particles has always been 4000 and they uniformly fill the debunched

beam initially. The results are shown in Fig. 2. We see that when the capture time is

187 ms (corresponding to Ng’s adiabatic parameter nad = 8), the bunch is captured within

±20 MeV using Ng’s rf voltage program, whereas with Kang’s rf voltage program, the bunch

has a spread of ±30 MeV instead. The reason is the much more rapid increase in rf voltage

in Kang’s program at the beginning of the capture. The next comparison is a capture in

468 ms or Ng’s adiabatic parameter nad = 20. We still see Ng’s voltage program leads to

a better capture than Kang’s voltage program. We may even conclude that Ng’s voltage

program in 187 ms is better than Kang’s voltage program in 468 ms.

When the capture is extremely slow with adiabatic parameter nad = 100 or 2338 ms,

the results using the two capture voltage programs become roughly similar. The similarity

between the two results comes from the fact that the approximate limit of adiabaticity has

already been reached long before 2338 ms when Ng’s voltage program is used, but may

have just been reached when Kang’s voltage program is used. Careful examination reveals

that Ng’s voltage program is still better than Kang’s program, that the bunch edge is much

better defined with the former than with the latter programs. In short, we can conclude

that adiabatic capture will take less time using Ng’s voltage program than Kang’s voltage

program.
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Figure 2: Results of adiabatic capture using Ng’s rf voltage program (left) and Kang’s rf voltage
program (right) in 187 ms, 468 ms, and 2338 ms. In all cases, the rf voltage is ramped from
V0 = 1 kV to V1 = 75 kV, and the initial half energy spread of the unbunched beam is 3.5 MeV.
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5 The Initial RF Voltage

When the capture time is increased, the capture process becomes more adiabatic, and the

captured bunch will have much better appearance, for example, smoother edges. This is

supported by Fig. 2, where we see that as the captured time increases from 187 ms to

2238 ms, the empty phase-space portion inside the bunch diminishes drastically. However,

there is still an increase in bunch area during the capture process. The original beam area

is 2ΔET0/h = 2.783 eVs, where T0 = 11.13 μs is the period of the Main Injector, h = 28

is the rf harmonic and ΔE = 3.5 MeV is the half energy spread. The final bunch, even

after the captured time of 2338 ms, has a half width of τ̂ = 62.3 ns and half energy spread

Δ̂E = 19.5 MeV. The area is A ≈ πτ̂Δ̂E ≈ 3.82 eVs, an increase of ∼ 37%.

To reduce the increase in bunch area, in addition to a long capture time, the initial rf

voltage V0 must be reduced as well. To demonstrate this, we lower V0 from 3 kV to 0.01 kV,

perform the simulation with 10000 macro-particles with adiabatic parameter nad = 100. The

final rf voltage is always V1 = 75 kV. The area of the captured bunch is computed in two

ways. First, the maximum half time spread τ̂ and half energy spread Δ̂E are monitored.

Assuming that the final bunch fits the V1 = 75 kV bucket, the energy spread of the bunch

edge at time advance τ is given by‖

ΔE =

√
2eV1β2E

πh|η|

√
sin2 hω0τ̂

2
− sin2 hω0τ

2
. (5.1)

The bunch area is

A = 4

∫ τ̂

0

ΔEdτ =

√
128eV1β2E

πh3ω2
0|η|

I, (5.2)

where φ = hω0τ̂ /2 and

I =

∫ a

0

√
sin2 φ − sin2 x dx. (5.3)

To evaluate the integral, let sin x = sin φ sin θ. Then

I =

∫ π/2

0

sin2 φ cos2 θ√
1 − sin2 φ sin2 θ

dθ =

∫ π/2

0

[√
1 − sin2 φ sin2 θ − 1 − sin2 φ√

1 − sin2 φ sin2 θ

]
dθ

= E(m) − (1 − m)K(m), (5.4)

‖The Hamiltonian is H = −ηΔE2

2β2E
+

eV

2πh
[1 − coshω0τ ] .
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with m = sin2 φ. The bunch area is therefore

A =

√
128eV1β2E

πh3ω2
0|η|

[
E(m) − (1 − m)K(m)

]
, (5.5)

where ω0 = 2π/T0, K(m) and E(m) are complete elliptical functions of the first and second

kind. The area is thus evaluated using the half bunch length Δτ as an input. We next start

from the half energy spread of the bunch Δ̂E. From Eq. (5.1), the half bunch length τ̂ can

be obtained via

Δ̂E =

√
2eV1β2E

πh|η| sin
hω0τ̂

2
. (5.6)

The bunch area is computed again by substituting this new τ̂ into Eq. (5.5). The results of

the two computations are shown in the left plot of Fig. 3 in black and red, respectively. The

average of the two is shown in blue. We see that the bunch area approaches the initial area

(2.783 eVs) of the beam only when the initial rf voltage approaches zero. Because of the

ruggedness of the bunch edge with finite number of macro-particles, it may not be accurate

to consider the maximum extents of the bunch as the half bunch length and half energy

spread. We therefore try to compute the rms bunch length στ and rms energy spread σE
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Figure 3: Left plot: Emittance of captured bunch when captured from various initial voltage V0.
Initial emittance is 2.783 eVs. Black curve shows emittance computed from bunch length and red
curve shows emittance computed from energy spread, while blue curve shows the average. Right
plot: Same as left plot, but with rms emittance depicted instead. Black curve shows rms emittance
computed from rms bunch length and red curve shows rms emittance computed from rms energy
spread, while blue curve shows the average. In all cases, adiabatic parameter has been kept constant
at nad = 100, and the highest captured voltage is 75 kV.
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instead. They are then used separately to compute the rms area of the bunch. The results

are shown in the right plot of Fig. 3. We see that the computation using the rms bunch length

(black) does differ from the the computation using the rms energy spread (red). The reason

is unknown. Probably, this is a signal that the captured bunch does not fit the bucket well.

Anyway, the average is shown in the blue curve. Here we see that the bunch rms emittance∗∗

(0.695 eVs) is preserved only when the initial rf voltage is less than ∼ 0.2 kV.

It is plausible to believe that if the rf bucket created by the initial rf voltage V0 is well

within the initial unbunched beam, the emittance of captured bunch will be preserved. This

is reasonable because the structure of the phase space set up by the rf voltage matches the

initial unbunched beam as closely as possible. The bucket height is given by Eq. (5.1) with

V1 replaced by V0, hωsτ̂ = π, and τ = 0, or

ΔE
∣∣∣
bucket

=

√
2eV0β2E

πh|η| . (5.7)

With ΔE|bucket = 3.5 MeV, we obtain V0 = 0.543 kV. The emittance growth in our simulation

is 2.9% when V0 = 0.5 kV, reduces to 0.63% when V0 = 0.25 kV, and almost zero when

V0 = 0.01 kV, using the rms computation. Thus ΔE|initial bucket � ΔE|intial beam does give

us a guide line of how small the initial rf voltage should be. It is important, however, to

point out that lowering the initial rf voltage implies lengthening the capture time if the

same degree of adiabaticity is maintained. According to Eq. (2.7), the increase in capture

time t1 is proportional to V
−1/2
0 . In practice, the allowable time to perform this type of rf

maneuvering is often limited. For this reason, the capture result must be compromised.

6 Adiabatic Debunching

Similar logic can result in the voltage program of adiabatic debunching. We start from the

same requirement that the relative change bucket area is much slower than the synchrotron

frequency, or

ωs = −nad
1

A

dA

dt
, (6.1)

where nad � 1 is the adiabatic parameter. Notice that there is a negative sign on the

right side because the bucket area is decreasing during the debunching process. Solving the

∗∗For a uniformly distributed circular bunch, the rms area is a quarter of the area of the circle. Thus
without emittance increase the rms bunch area should be 2.783/4 = 0.695 eVs.
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differential equation exactly as before, we arrive at

ωs0t = nad

[√
V0

V (t)
− 1

]
, (6.2)

or

V (t) =
V0

(1 + ωs0t/nad)2
, (6.3)

where V0 is the initial rf voltage and ωs0/2π is the corresponding synchrotron frequency. For

a debunching duration t1, the final rf voltage is

V1 =
V0

(1 + ωs0t1/nad)2
, (6.4)

We can therefore eliminate ωs0 to arrive at

V (t) =
V0[

1 +

(√
V0

V1
− 1

)
t

t1

]2 , (6.5)

which is to be compared with the capture voltage program of Eq. (2.8).
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