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Abstract 

Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or 

normalized  variab les) transformation. Th is technique was used to create classical nonlinear integrable lattices 

for accelerators and nonlinear integrable plas ma t raps. Now, all classical results are carried over to a 

nonrelativistic quantum case. 

I. INTRODUCTION 

Chaotic motion is not desirable in particle accelerators or plasma traps because it leads to 
particle losses and beam blow-ups.  The preferred lattices in use are those that conserve simple 
invariants of motion and in most of them the motion is linear. The invariants for a linear time-

dependent oscillator were found by V. Ermakov [1] in the 1880s and became known as Courant-
Snyder invariants in accelerators [2]. Also, there exists a simple change of coordinates and time 

that results in a time- independent motion in special (the so-called normalized) variables.  

Surprisingly, this transformation (we will call it the Ermakov transform below) allows one to 

create a large class of nonlinear integrable systems for accelerators [3] and plasma traps [4]. In 
this paper we extend it to quantum systems. We will show that all classical time-dependent 
integrable systems, found with the help of Ermakov transform, generate quantum integrable 

systems with a similar transformation of nonrelativistic quantum equations.  The Schrödinger 
and Pauli equations become separable in some coordinate systems and can be solved in analytic 

functions. 

II. THE ERMAKOV TRANSFORM 

The equations of motion in accelerators (in the uncoupled case) are written as: 

  

, ,

( ) 0

( ) 0

( ) ( )

x

y

x y x y

x K s x

y K s y

K s C K s

  

  

 

 (1) 

where Kx and Ky are piecewise constant functions of s (the time-equivalent longitudinal 
coordinate), and C is the accelerator circumference and the longitudinal motion is negligible. 

One can notice that these are two uncoupled Hill’s equations. Such an equation was first 
solved by Ermakov [1] who obtained its invariant, which in accelerator physics is called the 
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Courant-Snyder invariant [2].  This invariant can be understood by introducing the so-called 
normalized phase-space coordinates: 
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where z stands for either x or y, p is similarly either px or py, and β(s) is either the horizontal or 

vertical beta- function (defined in, e.g. [5]).  In these new normalized variables, the initial time-
dependent Hamiltonian associated with Eqs. (1) becomes time- independent, 
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and thus leads to two invariants, the horizontal and vertical Hamiltonians.  According to Eq. (3), 
in a linear lattice, all particles execute harmonic oscillations around the reference orbit with a 
frequency, known as the betatron tune, which is identical for all particles, regardless of their 

amplitude.  Linear lattices have been considered attractive, in part because linear dynamics is 
easily understood.  Now, we use the transform (2) for nonlinear systems. For any Hamiltonian of 

the form 
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the transformation (2) produces a new Hamiltonian 
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  . Now if we choose the potential V  such that it is independent of µ, we would 

obtain one invariant of motion – the new Hamiltonian (5).  In addition, other invariants can be 

found to obtain a completely integrable system (see [3, 4]). 

 

III. SCHRÖDINGER EQUATION 

We rewrite the Schrödinger equation in some convenient form by redefining time and 
coordinates: 
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where time here is /2Tt   (T is the real time), and coordinates 


/2mRr   ( R


stands for 

real coordinates), K(t) is an arbitrary  focusing coefficient and ),( trU


is an arbitrary potential.  

Now we introduce a new “time” variable,  , new coordinates, and a new wave function by 

using functions ( ),  ( )f t g t and ( )t  (to be defined below) with the following relation to the 

conventional time and coordinates: 
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The equation (6) in these new coordinates and time for the new wave function becomes: 
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provided ( )t  satisfies the following differential equation: 
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  1/4( )f t   . (11) 

One can see a complete analogy with the Hamiltonian (5). In addition, Eq. (9) is exactly the 
envelope function equation for the linear motion in accelerators (see [5]), implying that all 
classical results on integrability from references [3, 4] are applicable to the Schrödinger 

equation.  Specifically, all integrable time-dependent classical systems from those references 
generate the time-independent Schrödinger equation in the new variables and can be solved 

analytically. In addition to the transformation (7), there exist another transformation of a simpler 
type (see the first publication in Ref. [3], Eq. 25) that produces a similar conversion of the 
Schrödinger equation to the same equation but with a different potential.  

    The simplest example of the conversion to a time- independent integrable system is given by 

  2( , ) /U r t A r  in (6), where  A  an arbitrary function of a zenith angle in spherical 

coordinates.  Then, by solving Eq. (9) and transforming the variables and the wave function 

using (7), (10) and (11), one obtains a time- independent equation (8) with the new potential 

(including the quadratic term) 
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  , which is a classical integrable potential and 

separable in spherical coordinates [6].  Note that all results of a classic paper [7] are obtained in a 
single line (transformation (7)) and many more integrable systems can be found by this transform 

from classical results of papers [3, 4]. 



IV. PAULI EQUATION 

This equation is more involved than the previous one and but the transformation from time-
dependent systems to time- independent ones is similar. The Pauli equation reads: 
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where   is a two-component spinor wavefunction, 


 are Pauli matrices, AU


,  are electric and 

vector potentials, respectively, B


is the magnetic field, med 2/ , and time and coordinates 

scaled as in (6). With the transformation (7) (with the bi-spinor 
N  instead of

N ) the Pauli 

equation is transformed to: 
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   Equation (13) has a few new features with respect to the magnetic field. While the electric 
potential in new variables gains a factor of   after the transform, the vector potential gains a 

factor of  - they transform differently. It means, for example, that the electric potential 

2

1

r
U  is invariant under transformation (7), but for the vector potential the invariant function is 

r

a
A


 , where a


is an arbitrary vector that does not change when all coordinates are multiplied 

by the same arbitrary factor. For the magnetic field, though, the invariant dependence on 

coordinates is 2/1 r as it should be because AB


 .  One can check that if the term with the 
vector and electric potentials is independent of time, the last two terms in (13) is also 

independent of time, therefore we restore all the properties of Ermakov transformation even for 
Pauli equation – all the classical approaches on how to obtain time- independent integrable 
systems automatically work for this equation as well.  

V. CONCLUSIONS 

In this paper we have described an extension of the Ermakov-like transformation to the 
Schrödinger and Pauli equations. It is shown that these newly found transformations create a vast 

variety of time dependent quantum equations that can be solved in analytic functions, or, at least, 
can be reduced to time- independent ones. 
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