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Abstract

The separatrices of the rf buckets near transition are mapped when the synchronous
phase is neither 0 or m. The small-amplitude synchronous tune is derived when the rf

frequency is changed.



1 Introduction

Synchrotron radiation is present in all electron storage ring. As a result, the synchronous
phase is always offset from ¢, = 7 to compensate for the power loss. Even for proton storage
rings with negligible synchrotron radiation, the synchronous phase is also required to be
offset from ¢, = 0 or 7 slightly to compensate for beam loading. Thus for all storage rings
operating near transition, beam particles reside in accelerating buckets instead of stationary

bucket. It is of interest to map these buckets and see how they evolve near transition.

When the rf frequency is varied, the closed orbit is pushed radially inward or outward.
The momentum of the particle synchronous with the rf is thus changed. By measuring the
small-amplitude synchrotron tune as a function of the rf frequency, the lowest first few orders
of the slip factor can be inferred. Here, we derive this relationship up to the lowest first three

orders of the slip factor when the particle velocity is not ultra-relativistic.

2 Equations of Motion

The arrival time advance 7 of a particle with fractional momentum spread 6 = (p — ps)/ps
is given by
— = —n(9)d, (2.1)

where the subscript ‘s’ stands for on-momentum or synchronized with the rf. Thus 7} is
the revolution period of an on-momentum particle, and 7(9) is the slip factor, which can be
expanded in ¢ as

n(8) = 1o + md + nod% + -+ - . (2.2)

The negative sign on the right-side of Eq. (2.1) is correct, because a particle with § > 0 will
arrive late above transition (n > 0). Let T" denote the revolution period of the test particle.

Equation (2.1) can also be written as

AT T-T,
T, T,

+1(0)0. (2.3)

Note the positive sign on the right.

The energy equation is
AE = eV [sin¢ — sin ¢;], (2.4)



where V' is the rf voltage, ¢ is the rf phase, while ¢, is the synchronous phase. Here A¢ =
¢ — ¢, is the rf phase advance compared with the synchronous or on-momentum particle.
This is the accumulation on the rf clock as the test particle reaches the rf cavity. Since the
synchronous particle is behind by time 7, we must have A¢ = —w,7. The negative sign
comes about because a positive time advance (7 > 0) implies the rf clock, that is synchronized
with the synchronous particle by advancing the phase 2wh with h the rf harmonic, is lacking
behind.

We first assume beam particles to be ultra relativistic, or § — 1. Thus AE/E; — 0.

After smoothing the discrete nature, the equations of motion become

dA
ng = ths[TIO +7715+ o }5’
dd eV .. .
& BT [sm(A¢ + ¢,) — sin ¢s}7 (2:5)

where wys = 27/T; is the angular revolution of the synchronous or on-momentum particle.
We next explore the situation when 1y > 0, 7; < 0, and neglect all higher-order slip factors.
The fixed points are (see Fig. 1)

7o
o = 07 T
T
A¢r =2nm, (2n+ 1)1 — 2¢,. (2.6)

Let us examine the fixed point (67, A¢s) = (0,2nm — 2¢5). For small amplitude deviation,

the equations of motion becomes

4

dt = hw05n067
ds eV .. . eV cos ¢
Fri o [sm(A¢ + ¢5) — sin ¢s] = WA¢- (2.7)
Eliminating A¢, one gets
2
5 _ enVmpeosds o 29

dt? 2rE,
Thus (0,2n7) is a stable fixed point if 79 cos ¢s < 0, and the synchrotron tune is

ehVng cos ¢
=4 ———7° 2.
Vs 2 E, (2.9)

Obviously (0, (2n+1)m — ngs) is the unstable fixed point nearby.
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Figure 1: Plot of separatrices when ¢ = 0 or 7 in the A¢-6 space. Top: When |ng/m| is larger than
0

2] = [t (8 - 0o, —conol]
like rf buckets with their stable fixed points separated by |ng/m1|. Middle: The two series merge

the critical value , there are two series of pendulum-

when |no/m| is reduced to the critical value. Bottom: Further reduction of |ny/n1| to below the
critical value causes the stable and unstable fixed points to pair differently, top and bottom instead
of side by side. The pendulum-shape buckets change drastically to a-shape. All the stable fixed
points are denoted by small circles. The unstable fixed points are where the separatrices cross each
other.



Consider next the fixed point (3¢, Ags) = (no/|m|, 2nm) Letting 6 = 05 + Ad, one gets

dA
qu = _thsn0A57
dAS§ eV cos ¢,
& - ET Ao, (2.10)

implying that the fixed point is unstable when ncos¢, < 0. On the other hand, near the
fixed point (07, Agy) = (no/|m|, (2n + 1)), the equations of motion are

dA
% = _thsnOA57
dA§ eV cos ¢
&~ BT Ao, (2.11)

showing that this fixed point is stable. We see that the small-amplitude synchrotron tune is
again given by Eq. (2.9), and is exactly the same as around the other stable fixed point.

Separatrices

The Hamiltonian from which the equations of motion are derived can be written as

_ 109° _ m0° eVwos .
H = hwy, ( 5 3 + 57 E, [cos(Aqb + ¢5) + A¢psin gbs]. (2.12)

The separatrix that passes through the unstable fixed point (0, (2n+1)m — ngs) is

52 53 Vv
(%2 - |n13| ) i B0+ 0+ 8050} = 5 {-con ok (220, sin .
(2.13)
or
2 3
(?7025 B |7713|5 ) _ 2;}3 h{ [(2n+ 1) — Ag — 26, sin ¢, — cos(A¢ + ¢,) — cos d)s}, (2.14)

There is also another branch of the separatrix that passes through the fixed point (19 /|m1], 2n).
The moment when these two branches merge is obtained by substituting (8, A¢) = (no/|m |, 2n7)
into Eq. (2.14) and is represented by

().~ (i (G -osme ol e

When no/|mi| < (n0/|m|)e, we have the ordinary pendulum-like bucket, i.e., with (0, (2n +
D — 2gz5s) as the unstable fixed point for the bucket centering at the stable fixed point




(0, (2n7 + ¢5)), while (no/|m|, 2n7 + ¢) as the unstable fixed point for the bucket centering
at the stable fixed point (no/|ml, (2n + 1)7 — 2¢,). At no/|m| = (no/|m|)e, these two series
of buckets merge. When 19/|m1| > (10/|m])e, the buckets become tear drops or a-like, with
(no/|m|, 2nm + ¢s) as the unstable fixed point for the bucket centering at the stable fixed
point (O, (2nm + gbs)), and (0, (2n+ 1)m — 2gz5s) as the unstable fixed point for the bucket
centering at the stable fixed point (no/|m|, (2n + 1)7 — 26).

One important remark is that although the branches of the separatrix move and merge,
(0, (2n7 + ¢5)) and (no/|m], (2n + 1)m — 2¢) remain stable fixed points. This implies that
the small-amplitude oscillations about the stable fixed point would not experience sudden

changes during the merging of the separatrix branches.

3 Plotting the Separatrices

The separatrix in Eq. (2.14) can be plotted by setting a value of A¢ and solving a cubic

equation to obtain §. First let us perform the normalization

o 2nEh
o = e Mo,
2nEh
A = ) 3.16
Ui e T ( )
We then have o 53
Mo T
A 1
5 5 = (3.17)
where
a= { [(2n+ )7 — Ag — 2¢,] sin ¢, — cos(A¢ + ¢,) — cos ¢S}. (3.18)
We next cast the equation into the form
3 Mo |71
03— Ll = 3.19
2a 3a ( )
Now substitute for 5! = bz to obtain
3 770 |7_]1|
NP 1Nt 3.20
v 2ab2x 3ab3 ( )
If a > 0, identify
7
b=—y/ 20 (3.21)



Let

A |
= — > 0. 3.22
3ab3 (322)
If c <1, we get
cos3A =c¢ so that A= E cos ! A + 2mn n=0,1,2. (3.23)
3 3ab? ’ T

Then the three solutions are given by § = (bcos A)~!. If ¢ > 1, we get the solution

1 4n
cosh3A =c¢ sothat A = 3 cosh™! (3@?&,) . (3.24)

In this case, there is only one real solution 6 = (bcosh A)~1.
When a < 0, we have instead

7o v — |71
2|a|b? 3la|b®

| 210
b= y|—. 3.26

1 4n
sinh3A = ¢ so that A = 3 sinh ™! (3\;7]163) ) (3.27)

and there is only one real solution § = (bsinh A)~!.

2+

(3.25)

We can identify

We obtain

To plot the separatrices, let us assign some reasonable value to 7. One example is with
E, =1 GeV, h = 200, V = 100 kV, and ny = 0.001, arriving at 7, = 1.26 x 10'°. For
simplicity, let us assign just 7o = 1 x 10°. The synchronous phase is chosen to be ¢, = 0.97.
Then the critical 7; turns out to be |n;|/no = 38.482. The first example is for |n;|/ny = 28.
We show in Fig. 2 the two separatrix branches with n = 0. We do see the upper (red)
and lower (black) buckets resemble the fish-like accelerating buckets, but mingled together.
What is not expected are two small isolated circles. We next decrease |n;]/no, the small
isolated circles become larger and the two branches of the separatrix bulging out towards
the circles. When |n|/ny = 23.315, each isolated circle becomes the separatrix of adjacent
branch, as shown in the second-row left figure. We can say that the n = 0 upper branch
coincides exactly with the n = 1 lower branch, while the n = 0 lower branch coincides exactly
with the n = —1 upper branch. Now instead of one, each branch has two unstable fixed

points and two stable fixed points. When |n;]/ng is further decreased, the n = 0 lower branch
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Figure 2: Plot of the n = 0 upper and lower separatrix branches on the left and more adjacent

branches on the right, with ¢ = 0.97. n9/|n1| increases gradually from row to row. The last row
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(black) has the new unstable fixed point opened up and wrapped around the n = —1 upper
branch (blue). At the same time, a new isolated circle appears to the left. In this plot, we
shown not only the n = 0 upper and lower separatrix branches (black and red), but also the
n = —1 upper branch (blue) and the n = 1 lower branch (green). We see in the following
rows that, as |n;|/ny decreases further, the n = 0 lower branch (black) gradually spread out
to the right near the upper series buckets (6 = no/|m|). Finally as n9/|n:| becomes very very
large, the upper and lower series of buckets appear to be separated and look exactly like
those buckets with 7, = 0.

From the above study, it is clear that the small isolated circles are not part of the
separatrix. They are just elliptical trajectories about the next stable fixed point and happen
to have exactly the same Hamiltonian value as the n = 0 separatrix branches under study.
For this reason, these isolated circles are removed, and we plot all adjacent branches of the
separatrix on the right of the rows. We see that all those plots are very busy. In general,
there are h upper branches and h lower branches where h is the rf harmonic. At the upper
and lower edges, there are h wavy separatrices clustered together, exactly in the same way

as in the situation when 7, = 0.

When 19 /|m:| reaches the critical value given in Eq. 2.15, the upper and lower series of
buckets merge, as depicted in the upper plots of Fig. 3. Further reduction of 7, /|n:| produces
the a-like or tear-drop buckets, as depicted in the lower plots.

When the synchronous phase ¢, = 0 or m, the separatrices are very much simpler,
because all the individual accelerating buckets corresponding to the same momentum series
collapse into one long string of connected buckets. They are depicted in Fig. 1 and also

Fig. 4 when 19/ |n:| is larger, equal, or equal to the critical value determined by Eq. (2.15).
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Figure 3: Plot of the n = 0 upper and lower separatrix branches on the left and more adjacent
branches on the right. First row is when 7o/|n1| = 1/38.482, its critical value. The upper and lower
branches merge. When ng/|n:| is further increased, the two branches split leaving the buckets in
another shape, with stable and unstable fixed points at the same rf phase, but 6 = 0, and 79/|n|.
On the other hand, before the merging when 79/|n1| > 1/38.482, each bucket has its stable and
unstable points at the same 0 (either 0 or 79/|n:1|) but different rf phase.
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Figure 4: The plots are the same as before, but when ¢, = 7. All the plots are much more
simplied. The first, second, and third plots are when 79 /|n:| larger than, equal to, and smaller than
the critical value.

4 Measurement of 7, and n,

The first two or three expansion coefficients of the slip factor can be measured by varying
the rf frequency. This push the closed orbit inward or outward. The energy or momentum
of the particles synchronized to the new rf frequency is now changed and so will be the
synchrotron tune. By measuring the synchrotron tune as a function of rf frequency, 1y and
11 can be inferred. To accomplish this, we must derive the equations of motion at this new

synchronous momentum p;.
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Phase Equation
The rate of change in time advance is

dAT  T-—7
a Ty

(4.28)

where Ty = 27 /w; is the revolution frequency of the particles synchronized to the new rf
frequency w,s = hwi, and 7 is the time advance of the new synchronous particles relative
to the old one. Note that we are still using the old synchronous particles as a reference. In
other words, in above 7 is the arrival time of a test particle in advance of the old synchronous
particles. We wish to point out that we are just using the old synchronous particles as a
mathematical reference. We do this because we have already the equations of motion and

all expansion referenced to the old synchronous particles. We then have

dAT_E(T—TO 7'1—7'0)

d t T1 To B TO

(4.29)

Notice that we are changing our notations. The subscript ‘0’ denotes quantities synchronized

to the old rf frequency, instead of the subscript ‘s’ used in the first section.

In Eq. (4.29) obviously 75 = 0, because the old synchronous particle is always on time.
With § = (p — po)/po and 61 = (p1 — po)/po, Eq. (4.29) becomes

dA T
—T = ——0|:(770(5+77152+77253+"‘) — (770(51 +771(5%+772(5%+)i|
dt T
T 1
= —70 [(770 + 2101 + 31907 4+ -+ )A + 5A2(2m + 61201 + -+ ) + O(A3)], (4.30)
1

where A = § — ) = (p — p1)/po- The rf phase advance is still given by A¢ = —hw;7. We
therefore have the phase equation

dA¢
dt

dAT i hw1T0
d T

:_Wl

[(770 + 2101 + 3207 4+ - A+ (’)(A?)} . (4.31)

Energy Equation

Since the momentum offset A has been used as a canonical variable, the energy E in the
energy equation must be converted to momentum also. In other words, we are now including
the fact the the particles are not ultra-relativistic. Here, ' = /p? + m? with m the particle
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mass and the velocity of light put to unity. Let us expand around the old synchronous

particle momentum py. We have

dE__p __p &£E__m _w’ LB 3mlp 3wl o
dp p24+m?2 B dp? (p?+m?)3/2 E3 dp? (p2+m2)5/2 - E5 ’
and therefore AE E_E ﬂ 4
— 0 0 ¢2 0 ¢3 4
= = (2§ 50" — 50"+ 0O("). 4.33
Then
2 -1
d_éz%i ﬁ 1+£_%52+...
dt  [ggdt \ Ey v2 295
eV [ : . § 3 +2, )
= sin(A¢ + ¢4) — sin S} (1——+7(5 +-- . 4.34
55 EoTo (A9 +¢.) ¢ 2 24 (4.34)

This is the energy equation for a particle in the old reference rf, when the particle is not
ultra relativistic. The small-amplitude synchrotron tune requires only the linear part of the

equation. Thus the synchrotron tune v is given by

9 heV cos ¢sng

= 4.35
Vso 27Tﬁ2E0 ( )
where the expansion of F in terms of p does not contribute at all.
We now derive the energy equation at the new rf frequency hw;. We have
AE; _ E—F, _ (E— Ey) — (Ey — Ep)
Ey Ey Ey
2 A o B 2 B o B
_ (505+ yn0 - 2725 +) - (5051+ yrlt = it + )

Bo 350 53 3ﬁo 3
B2+ 5 A—i—— — — —5 01+ + O(A°), 4.36
( ’ TR0 2 \% % (&7, 439

with A = 0 — ;. Notice the notation that AF; = F — FE; and is not AE = FE, — Ey,. We

then have

R R SR
0 0

dt \ Ey 27 o o dt



13

We can write

dA 1d (AE 6 3% L\ LA 2\
LB (142 _ 2505 L 2 (1 32
dt 63dt(Eo)( g pgt) + (1o ae)
1 d (AE & 332, A ) & AN
v LR (1= 2 2P02) J 2 s ) 4 (24 2
5§dt(Eo)_( 2 gatt) g (-adn) + (50 5
1 d (AE\ [ & 3B +2 2) A( 3665 + 2 )}
O e T e 1 e o Iy R 1T Ty SR N 4.38
32 dt (Eo) ( % 2y ') B 439

We finally arrive at

dA eV . . o1 37§ﬂ§+2 9 A 37853—1—2
a2 Ad+o,) —sind, | [[1= L 420020 2e) 2 (1 2ToPoT25 V1 (439
dt ﬁ%EoTl[Sm( Pto:) 51n¢]K 2T g )T w (4.39)

Thus the small-amplitude synchrotron tune vy is given by

hipeVeosds To (. 2m - 3 5, 3920242
2 no— 0V CO8 _0(1+ﬂ51+ﬂaf)(1——12+7%504+ 55)
2rPEy  Th 7o 7o Yo 2%

2m 1 0%+2 2
L e L R L

2132 Ey T Mo 275 075
hnoeV cos ¢ l ( 2m 1 ) ( 3 3VABE+2  (mE—2m) )
= T T e (ZE S g )i 2 + =3 ) 82| .
2132 E 7 °) Mo 274 073 0 Yo
(4.40)

The change in rf frequency is related to the change in momentum offset according to

Awrf - w1 — Wo TO — Tl ATl 1

_ _ ~ —nyd 2o 4.41
w?f CL)O Tl TO ATl/TO + 1 770 1 + (770 771> 1 ( )
Inverse solving yields
1 [(Aw, 2 - (Aw)?
51:——( “éf)Jr"" 3"1( ff) . (4.42)
Mo \ Wyt o Wrg
Substituting into Eq. (4.40) gives
hnoeV s Aw, Awpr) 2
- I O {Hﬁ( “Sf) +S—§( uéf) } (4.43)
2m 32 Eq To \ Wit Mo \ Wt
with the coefficients
_ 2m-mp ]
S1—=— >
To 70
-2 2 212 2
82:3772770 ™ Th +37050+ ' (4.44)

e NoYe 274
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In practice, the fractional shift in rf frequency is usually of the order 79, or Aw,s/wW% ~ 19,

which is small near transition. Thus this experiment must be performed with high accuracy.

A formula similar to Eq. (4.44) is given by Nadji, et. al. [1] and derived in a different

way for ultra-relativistic beam particles,*

hageV cos ¢ 4oy (Aw 1/2
2 0 s 1 rf
~— 1-— 4.45
et - (3] o
where we define the momentum-compaction expansion as

AC

F = 0[05 + 06152 + 06253 + MR (446)

0

with Cy being the length of the closed orbit synchronous at the unperturbed rf frequency
and AC' being the change in closed-orbit length at momentum offset 9. As f — 1, one
should make the substitutions 79y — ag, 11 — @2, 72 — ag, etc. Nadji’s formula of Eq. (4.45)
agrees with our Eq. (4.44) up to the first order in Aw,¢/w%. It also agrees in the next order

provided that ay = 0.
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*In Nadji’s paper, their «;’s are our a;_1’s.



