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Abstract

The separatrices of the rf buckets near transition are mapped when the synchronous
phase is neither 0 or π. The small-amplitude synchronous tune is derived when the rf
frequency is changed.
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1 Introduction

Synchrotron radiation is present in all electron storage ring. As a result, the synchronous

phase is always offset from φs = π to compensate for the power loss. Even for proton storage

rings with negligible synchrotron radiation, the synchronous phase is also required to be

offset from φs = 0 or π slightly to compensate for beam loading. Thus for all storage rings

operating near transition, beam particles reside in accelerating buckets instead of stationary

bucket. It is of interest to map these buckets and see how they evolve near transition.

When the rf frequency is varied, the closed orbit is pushed radially inward or outward.

The momentum of the particle synchronous with the rf is thus changed. By measuring the

small-amplitude synchrotron tune as a function of the rf frequency, the lowest first few orders

of the slip factor can be inferred. Here, we derive this relationship up to the lowest first three

orders of the slip factor when the particle velocity is not ultra-relativistic.

2 Equations of Motion

The arrival time advance τ of a particle with fractional momentum spread δ = (p − ps)/ps

is given by
τ

Ts
= −η(δ)δ, (2.1)

where the subscript ‘s’ stands for on-momentum or synchronized with the rf. Thus Ts is

the revolution period of an on-momentum particle, and η(δ) is the slip factor, which can be

expanded in δ as

η(δ) = η0 + η1δ + η2δ
2 + · · · . (2.2)

The negative sign on the right-side of Eq. (2.1) is correct, because a particle with δ > 0 will

arrive late above transition (η > 0). Let T denote the revolution period of the test particle.

Equation (2.1) can also be written as

ΔT

Ts
=

T − Ts

Ts
= +η(δ)δ. (2.3)

Note the positive sign on the right.

The energy equation is

ΔE = eV
[
sin φ − sin φs

]
, (2.4)
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where V is the rf voltage, φ is the rf phase, while φs is the synchronous phase. Here Δφ =

φ − φs is the rf phase advance compared with the synchronous or on-momentum particle.

This is the accumulation on the rf clock as the test particle reaches the rf cavity. Since the

synchronous particle is behind by time τ , we must have Δφ = −ωrfτ . The negative sign

comes about because a positive time advance (τ > 0) implies the rf clock, that is synchronized

with the synchronous particle by advancing the phase 2πh with h the rf harmonic, is lacking

behind.

We first assume beam particles to be ultra relativistic, or β → 1. Thus ΔE/Es → δ.

After smoothing the discrete nature, the equations of motion become

dΔφ

dt
= hω0s

[
η0 + η1δ + · · · ]δ,

dδ

dt
=

eV

EsTs

[
sin(Δφ + φs) − sin φs

]
, (2.5)

where ω0s = 2π/Ts is the angular revolution of the synchronous or on-momentum particle.

We next explore the situation when η0 > 0, η1 < 0, and neglect all higher-order slip factors.

The fixed points are (see Fig. 1)

δf = 0,
η0

|η1| ,

Δφf = 2nπ, (2n + 1)π − 2φs. (2.6)

Let us examine the fixed point (δf , Δφf) = (0, 2nπ − 2φs). For small amplitude deviation,

the equations of motion becomes

dΔφ

dt
= hω0sη0δ,

dδ

dt
=

eV

EsTs

[
sin(Δφ + φs) − sin φs

]
=

eV cos φs

EsTs
Δφ. (2.7)

Eliminating Δφ, one gets
d2δ

dt2
=

ehV η0 cos φs

2πEs
ω2

0sδ. (2.8)

Thus (0, 2nπ) is a stable fixed point if η0 cos φs < 0, and the synchrotron tune is

νs =

√
ehV η0 cos φs

2πEs
. (2.9)

Obviously
(
0, (2n + 1)π − 2φs

)
is the unstable fixed point nearby.
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Figure 1: Plot of separatrices when φs = 0 or π in the Δφ-δ space. Top: When |η0/η1| is larger than

the critical value
∣∣∣η0

η1

∣∣∣
c

=
√∣∣∣ 6eV

πβ2
0hη0Es

[(
π
2 − φs

)
sin φs − cos φs

]∣∣∣, there are two series of pendulum-

like rf buckets with their stable fixed points separated by |η0/η1|. Middle: The two series merge
when |η0/η1| is reduced to the critical value. Bottom: Further reduction of |η0/η1| to below the
critical value causes the stable and unstable fixed points to pair differently, top and bottom instead
of side by side. The pendulum-shape buckets change drastically to α-shape. All the stable fixed
points are denoted by small circles. The unstable fixed points are where the separatrices cross each
other.
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Consider next the fixed point (δf , Δφf ) = (η0/|η1|, 2nπ) Letting δ = δf + Δδ, one gets

dΔφ

dt
= −hω0sη0Δδ,

dΔδ

dt
=

eV cos φs

EsTs
Δφ, (2.10)

implying that the fixed point is unstable when η cos φs < 0. On the other hand, near the

fixed point (δf , Δφf) =
(
η0/|η1|, (2n + 1)π

)
, the equations of motion are

dΔφ

dt
= −hω0sη0Δδ,

dΔδ

dt
= −eV cos φs

EsTs
Δφ, (2.11)

showing that this fixed point is stable. We see that the small-amplitude synchrotron tune is

again given by Eq. (2.9), and is exactly the same as around the other stable fixed point.

Separatrices

The Hamiltonian from which the equations of motion are derived can be written as

H = hω0s

(
η0δ

2

2
− |η1|δ3

3

)
+

eV ω0s

2πEs

[
cos(Δφ + φs) + Δφ sin φs

]
. (2.12)

The separatrix that passes through the unstable fixed point
(
0, (2n + 1)π − 2φs

)
is(

η0δ
2

2
−|η1|δ3

3

)
+

eV

2πEsh

{
cos(Δφ+φs)+Δφ sin φs

}
=

eV

2πEsh

{
−cos φs+

[
(2n+1)π−2φs

]
sin φs

}
,

(2.13)

or(
η0δ

2

2
− |η1|δ3

3

)
=

eV

2πEsh

{[
(2n + 1)π−Δφ− 2φs

]
sin φs − cos(Δφ + φs)− cos φs

}
, (2.14)

There is also another branch of the separatrix that passes through the fixed point (η0/|η1|, 2nπ).

The moment when these two branches merge is obtained by substituting (δ, Δφ) = (η0/|η1|, 2nπ)

into Eq. (2.14) and is represented by

(
η0

|η1|
)

c

=

{
6eV

πEshη0

[(π

2
− φs

)
sin φs − cos φs

]}1/2

. (2.15)

When η0/|η1| < (η0/|η1|)c, we have the ordinary pendulum-like bucket, i.e., with
(
0, (2n +

1)π − 2φs

)
as the unstable fixed point for the bucket centering at the stable fixed point
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(
0, (2nπ + φs)

)
, while (η0/|η1|, 2nπ + φs) as the unstable fixed point for the bucket centering

at the stable fixed point
(
η0/|η1|, (2n + 1)π − 2φs

)
. At η0/|η1| = (η0/|η1|)c, these two series

of buckets merge. When η0/|η1| > (η0/|η1|)c, the buckets become tear drops or α-like, with

(η0/|η1|, 2nπ + φs) as the unstable fixed point for the bucket centering at the stable fixed

point
(
0, (2nπ + φs)

)
, and

(
0, (2n + 1)π − 2φs

)
as the unstable fixed point for the bucket

centering at the stable fixed point
(
η0/|η1|, (2n + 1)π − 2φs

)
.

One important remark is that although the branches of the separatrix move and merge,(
0, (2nπ + φs)

)
and

(
η0/|η1|, (2n + 1)π − 2φs

)
remain stable fixed points. This implies that

the small-amplitude oscillations about the stable fixed point would not experience sudden

changes during the merging of the separatrix branches.

3 Plotting the Separatrices

The separatrix in Eq. (2.14) can be plotted by setting a value of Δφ and solving a cubic

equation to obtain δ. First let us perform the normalization

η̄0 =
2πEsh

eV
η0,

η̄1 =
2πEsh

eV
η1. (3.16)

We then have
η̄0δ

2

2
− η̄1δ

3

3
= a, (3.17)

where

a =
{[

(2n + 1)π − Δφ − 2φs

]
sin φs − cos(Δφ + φs) − cos φs

}
. (3.18)

We next cast the equation into the form

δ−3 − η̄0

2a
δ−1 = −|η̄1|

3a
. (3.19)

Now substitute for δ−1 = bx to obtain

x3 − η̄0

2ab2
x = − |η̄1|

3ab3
. (3.20)

If a > 0, identify

b = −
√

2η̄0

3a
. (3.21)
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Let

c = −4|η̄1|
3ab3

> 0. (3.22)

If c < 1, we get

cos 3A = c so that A =
1

3

[
cos−1

∣∣∣∣ 4η̄1

3ab3

∣∣∣∣ + 2πn

]
, n = 0, 1, 2. (3.23)

Then the three solutions are given by δ = (b cos A)−1. If c > 1, we get the solution

cosh 3A = c so that A =
1

3
cosh−1

(
4η̄1

3a|b3|
)

. (3.24)

In this case, there is only one real solution δ = (b cosh A)−1.

When a < 0, we have instead

x3 +
η̄0

2|a|b2
x =

|η̄1|
3|a|b3

. (3.25)

We can identify

b =

√
2η̄0

3|a| . (3.26)

We obtain

sinh 3A = c so that A =
1

3
sinh−1

(
4η̄1

3|a|b3

)
, (3.27)

and there is only one real solution δ = (b sinh A)−1.

To plot the separatrices, let us assign some reasonable value to η̄0. One example is with

Es = 1 GeV, h = 200, V = 100 kV, and η0 = 0.001, arriving at η̄0 = 1.26 × 1010. For

simplicity, let us assign just η̄0 = 1× 106. The synchronous phase is chosen to be φs = 0.9π.

Then the critical η1 turns out to be |η1|/η0 = 38.482. The first example is for |η1|/η0 = 28.

We show in Fig. 2 the two separatrix branches with n = 0. We do see the upper (red)

and lower (black) buckets resemble the fish-like accelerating buckets, but mingled together.

What is not expected are two small isolated circles. We next decrease |η1|/η0, the small

isolated circles become larger and the two branches of the separatrix bulging out towards

the circles. When |η1|/η0 = 23.315, each isolated circle becomes the separatrix of adjacent

branch, as shown in the second-row left figure. We can say that the n = 0 upper branch

coincides exactly with the n = 1 lower branch, while the n = 0 lower branch coincides exactly

with the n = −1 upper branch. Now instead of one, each branch has two unstable fixed

points and two stable fixed points. When |η1|/η0 is further decreased, the n = 0 lower branch
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Figure 2: Plot of the n = 0 upper and lower separatrix branches on the left and more adjacent
branches on the right, with φs = 0.9π. η0/|η1| increases gradually from row to row. The last row
is on the next page.
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(black) has the new unstable fixed point opened up and wrapped around the n = −1 upper

branch (blue). At the same time, a new isolated circle appears to the left. In this plot, we

shown not only the n = 0 upper and lower separatrix branches (black and red), but also the

n = −1 upper branch (blue) and the n = 1 lower branch (green). We see in the following

rows that, as |η1|/η0 decreases further, the n = 0 lower branch (black) gradually spread out

to the right near the upper series buckets (δ = η0/|η1|). Finally as η0/|η1| becomes very very

large, the upper and lower series of buckets appear to be separated and look exactly like

those buckets with η1 = 0.

From the above study, it is clear that the small isolated circles are not part of the

separatrix. They are just elliptical trajectories about the next stable fixed point and happen

to have exactly the same Hamiltonian value as the n = 0 separatrix branches under study.

For this reason, these isolated circles are removed, and we plot all adjacent branches of the

separatrix on the right of the rows. We see that all those plots are very busy. In general,

there are h upper branches and h lower branches where h is the rf harmonic. At the upper

and lower edges, there are h wavy separatrices clustered together, exactly in the same way

as in the situation when η1 = 0.

When η0/|η1| reaches the critical value given in Eq. 2.15, the upper and lower series of

buckets merge, as depicted in the upper plots of Fig. 3. Further reduction of η0/|η1| produces

the α-like or tear-drop buckets, as depicted in the lower plots.

When the synchronous phase φs = 0 or π, the separatrices are very much simpler,

because all the individual accelerating buckets corresponding to the same momentum series

collapse into one long string of connected buckets. They are depicted in Fig. 1 and also

Fig. 4 when η0/|η1| is larger, equal, or equal to the critical value determined by Eq. (2.15).
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Figure 3: Plot of the n = 0 upper and lower separatrix branches on the left and more adjacent
branches on the right. First row is when η0/|η1| = 1/38.482, its critical value. The upper and lower
branches merge. When η0/|η1| is further increased, the two branches split leaving the buckets in
another shape, with stable and unstable fixed points at the same rf phase, but δ = 0, and η0/|η1|.
On the other hand, before the merging when η0/|η1| > 1/38.482, each bucket has its stable and
unstable points at the same δ (either 0 or η0/|η1|) but different rf phase.
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Figure 4: The plots are the same as before, but when φs = π. All the plots are much more
simplied. The first, second, and third plots are when η0/|η1| larger than, equal to, and smaller than
the critical value.

4 Measurement of η0 and η1

The first two or three expansion coefficients of the slip factor can be measured by varying

the rf frequency. This push the closed orbit inward or outward. The energy or momentum

of the particles synchronized to the new rf frequency is now changed and so will be the

synchrotron tune. By measuring the synchrotron tune as a function of rf frequency, η0 and

η1 can be inferred. To accomplish this, we must derive the equations of motion at this new

synchronous momentum p1.
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Phase Equation

The rate of change in time advance is

dΔτ

dt
=

τ − τ1

T1

, (4.28)

where T1 = 2π/ω1 is the revolution frequency of the particles synchronized to the new rf

frequency ωrf = hω1, and τ1 is the time advance of the new synchronous particles relative

to the old one. Note that we are still using the old synchronous particles as a reference. In

other words, in above τ is the arrival time of a test particle in advance of the old synchronous

particles. We wish to point out that we are just using the old synchronous particles as a

mathematical reference. We do this because we have already the equations of motion and

all expansion referenced to the old synchronous particles. We then have

dΔτ

dt
=

T0

T1

(
τ − τ0

T0
− τ1 − τ0

T0

)
. (4.29)

Notice that we are changing our notations. The subscript ‘0’ denotes quantities synchronized

to the old rf frequency, instead of the subscript ‘s’ used in the first section.

In Eq. (4.29) obviously τ0 = 0, because the old synchronous particle is always on time.

With δ = (p − p0)/p0 and δ1 = (p1 − p0)/p0, Eq. (4.29) becomes

dΔτ

dt
= −T0

T1

[
(η0δ + η1δ

2 + η2δ
3 + · · · ) − (η0δ1 + η1δ

2
1 + η2δ

3
1 + · · · )

]
= −T0

T1

[
(η0 + 2η1δ1 + 3η2δ

2
1 + · · · )Δ +

1

2
Δ2(2η1 + 6η2δ1 + · · · ) + O(Δ3)

]
, (4.30)

where Δ = δ − δ1 = (p − p1)/p0. The rf phase advance is still given by Δφ = −hω1τ . We

therefore have the phase equation

dΔφ

dt
= −hω1

dΔτ

dt
=

hω1T0

T1

[
(η0 + 2η1δ1 + 3η2δ

2
1 + · · · )Δ + O(Δ2)

]
. (4.31)

Energy Equation

Since the momentum offset Δ has been used as a canonical variable, the energy E in the

energy equation must be converted to momentum also. In other words, we are now including

the fact the the particles are not ultra-relativistic. Here, E =
√

p2 + m2 with m the particle
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mass and the velocity of light put to unity. Let us expand around the old synchronous

particle momentum p0. We have

dE

dp
=

p√
p2+m2

=
p

E
,

d2E

dp2
=

m2

(p2+m2)3/2
=

m2

E3
,

d2E

dp2
=− 3m2p

(p2+m2)5/2
=

3m2p

E5
, (4.32)

and therefore
ΔE

E0

=
E − E0

E0

= β2
0δ +

β2
0

2γ2
0

δ2 − β4
0

2γ2
0

δ3 + O(δ4). (4.33)

Then

dδ

dt
=

1

β2
0

d

dt

(
ΔE

E0

) (
1 +

δ

γ2
− 3β2

0

2γ2
0

δ2 + · · ·
)−1

=
eV

β2
0E0T0

[
sin(Δφ + φs) − sin φs

] (
1 − δ

γ2
+

3γ2
0β

2
0 + 2

2γ4
0

δ2 + · · ·
)

. (4.34)

This is the energy equation for a particle in the old reference rf, when the particle is not

ultra relativistic. The small-amplitude synchrotron tune requires only the linear part of the

equation. Thus the synchrotron tune ν0 is given by

ν2
s0 =

heV cos φsη0

2πβ2E0
, (4.35)

where the expansion of E in terms of p does not contribute at all.

We now derive the energy equation at the new rf frequency hω1. We have

ΔE1

E0
=

E − E1

E0
=

(E − E0) − (E1 − E0)

E0

=
(
β2

0δ +
β2

0

2γ2
0

δ2 − β4
0

2γ2
0

δ3 + · · ·
)
−

(
β2

0δ1 +
β2

0

2γ2
0

δ2
1 −

β4
0

2γ2
0

δ3
1 + · · ·

)

=

(
β2

0 +
β2

0

γ2
0

δ1 − 3β4
0

2γ2
0

δ2
1 + · · ·

)
Δ +

Δ2

2

(
β2

0

γ2
0

− 3β4
0

γ2
0

δ1 + · · ·
)

+ O(Δ3), (4.36)

with Δ = δ − δ1. Notice the notation that ΔE1 = E − E1 and is not ΔE = E1 − E0. We

then have

d

dt

(
ΔE1

E0

)
=

[(
β2

0 +
β2

0

γ2
0

δ1 − 3β4
0

2γ2
0

δ2
1 + · · ·

)
+ Δ

(
β2

0

γ2
0

− 3β4
0

γ2
0

δ1 + · · ·
)

+ O(Δ2)

]
dΔ

dt
. (4.37)
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We can write

dΔ

dt
≈ 1

β2
0

d

dt

(
ΔE

E0

) [(
1 +

δ1

γ2
0

− 3β2
0

2γ2
0

δ2
1

)
+

Δ

γ2
0

(
1 − 3β2

0δ1

)]−1

≈ 1

β2
0

d

dt

(
ΔE

E0

) [(
1 − δ1

γ2
0

+
3β2

0

2γ2
0

δ2
1

)
− Δ

γ2
0

(
1 − 3β2

0δ1

)
+

(
δ1

γ2
0

+
Δ

γ2
0

)2
]

≈ 1

β2
0

d

dt

(
ΔE

E0

) [(
1 − δ1

γ2
0

+
3γ2

0β
2
0 + 2

2γ4
0

δ2
1

)
− Δ

γ2
0

(
1 − 3γ2

0β
2
0 + 2

γ2
0

δ1

)]
. (4.38)

We finally arrive at

dΔ

dt
≈ eV

β2
0E0T1

[
sin(Δφ+φs)− sin φs

][(
1− δ1

γ2
0

+
3γ2

0β
2
0 +2

2γ4
0

δ2
1

)
− Δ

γ2
0

(
1−3γ2

0β
2
0 +2

γ2
0

δ1

)]
. (4.39)

Thus the small-amplitude synchrotron tune νs1 is given by

ν2
s1≈−hη0eV cos φs

2πβ2E0

T0

T1

(
1+

2η1

η0

δ1+
3η2

η0

δ2
1

)(
1− δ1

γ2
0

+
3γ2

0β
2
0 +2

2γ4
0

δ2
1

)

= −hη0eV cos φs

2πβ2E0

[
1−η0δ1 + (η2

0−η1)δ
2
1

][
1+

(
2η1

η0
− 1

γ2
0

)
δ1+

(
3η2

η0
+

3γ2
0β

2
0 +2

2γ4
0

− 2η1

η0γ2
0

)
δ2
1

]

= −hη0eV cos φs

2πβ2E0

[
1+

(
2η1

η0
− 1

γ2
0

− η0

)
δ1+

(
3η2

η0
+

3γ2
0β

2
0 +2

2γ4
0

+
(η2

0−2η1)

η0γ2
0

+η2
0−3η1

)
δ2
1

]
.

(4.40)

The change in rf frequency is related to the change in momentum offset according to

Δωrf

ω0
rf

=
ω1 − ω0

ω0
=

T0 − T1

T1
= −ΔT1

T0

1

ΔT1/T0 + 1
≈ −η0δ1 + (η2

0 − η1)δ
2
1 . (4.41)

Inverse solving yields

δ1 = − 1

η0

(
Δωrf

ω0
rf

)
+

η2
0 − η1

η3
0

(
Δωrf

ω0
rf

)2

. (4.42)

Substituting into Eq. (4.40) gives

ν2
s1≈−hη0eV cos φs

2πβ2E0

[
1 +

s1

η0

(
Δωrf

ω0
rf

)
+

s2

η2
0

(
Δωrf

ω0
rf

)2 ]
, (4.43)

with the coefficients

s1 =−2η1−η2
0

η0
+

1

γ2
0

,

s2 =
3η2η0−2η2

1

η2
0

− η1

η0γ
2
0

+
3γ2

0β
2
0 +2

2γ4
0

. (4.44)
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In practice, the fractional shift in rf frequency is usually of the order η0, or Δωrf/ω
0
rf ∼ η0,

which is small near transition. Thus this experiment must be performed with high accuracy.

A formula similar to Eq. (4.44) is given by Nadji, et. al. [1] and derived in a different

way for ultra-relativistic beam particles,∗

ν2
s1≈−hα0eV cos φs

2πE0

[
1 − 4α1

α2
0

(
Δωrf

ω0
rf

) ]1/2

, (4.45)

where we define the momentum-compaction expansion as

ΔC

C0

= α0δ + α1δ
2 + α2δ

3 + · · · , (4.46)

with C0 being the length of the closed orbit synchronous at the unperturbed rf frequency

and ΔC being the change in closed-orbit length at momentum offset δ. As β → 1, one

should make the substitutions η0 → α0, η1 → α2, η2 → α2, etc. Nadji’s formula of Eq. (4.45)

agrees with our Eq. (4.44) up to the first order in Δωrf/ω
0
rf . It also agrees in the next order

provided that α2 = 0.
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