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Abstract

The definition of the slip factor can be obtained from the phase equation. However,
a derivation using the relation A¢ = —hA0 leads to a different slip-factor definition.
This apparent paradox is examined in detail and resolved. Here A¢ is the rf phase
difference and A#@ is the azimuthal phase difference around the accelerator ring between

an off-momentum particle and the synchronous particle, while A is the rf harmonic.



1 Introduction

The phase equation in the longitudinal phase space must be compatible with the definition
of the slip factor . However, through the relation A¢ = —hA#, the phase relation readily
reduces to a different definition of 7. Here, A¢ is the difference in rf phase advance between
an off-momentum particle and the synchronous particle, A is the difference in azimuthal
phase along the accelerator ring between the two particles, while h is the rf harmonic. An
accurate definition of the slip factor is important, especially when the particle energy is close
to transition, or in an isochronous storage ring. To ensure isochronicity for particles of all
momentum in the bunch, sextupoles and octupoles are often employed to cancel, respectively,
the terms in the slip-factor expansion that are linear and quadratic in momentum spread. If
sextupole and octupole currents are applied according to an incorrect definition of the slip

factor, the anticipated cancellation may not materialize.

We show in Sec. 2 the concept of time advance and how the definition of the slip factor
can be obtained from the phase equation. To understand why the commonly used relation
A¢p = —hA0 leads us to a different definition, we first examine in Sec. 3 the definition of
A¢, the so-called rf phase difference. We next study the physical meaning of the relation
A¢p = —hAO and discover that it is only approximate. An exact alternative relation is
presented in Sec. 4. This alternative relation between the rf phase and azimuthal phase

leads us to the correct definition of the slip factor.

2 Time Advance

At time t = 0, the synchronous particle and the off-momentum particle have just clear the
single thin rf cavity in the ring. When the synchronous particle returns to the cavity after
exactly one revolution, the time past is 7 and the rf phase has advanced by ¢* = 2rh. At
this moment, the off-momentum particle has passed the cavity already; it passes at time
t = 15 + ATy, Here, we assume the off-momentum particle is ahead of the synchronous
particle, and therefore ATy < 0. We say that the off-momentum particle has a time advance
of —AT), because it will take the synchronous particle a time —AT, to catch up to this
present location of the off-momentum particle. Let the period of the off-momentum particle
be Tj, then

Ty =15 + AT, (2.1)



In the situation of a positive time advance (—ATy > 0), Ty < 1.

We define the slip factor as
AT

i

where ¢ is the fractional momentum spread, or

=19, (2.2)

change in period

no. (2.3)
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This translates readily into
time advance

syn. period 0, (24)
which is the phase equation in the longitudinal space space. The sign on the right-hand side
can be checked as follows. Above transition, n > 0. A particle with 6 > 0 will arrive slower.
So the time advance is negative. The conclusion is that the phase equation of Eq. (2.4) is

compatible to the definition of the slip factor of Eq. (2.2) or (2.3).

3 Phase Advance

When the synchronous particle crosses the cavity again, the off-momentum particle is ahead
of it. But at this moment time past since the beginning when both particles were at the cavity
is 1§, and the rf clock advances by the phase angle of 2rh exactly. Then how do we define
rf phase advance? We can first monitor the time Ty = T3 + AT,y (AT < 0) when the off-
momentum particle crosses the cavity. The rf phase at that moment is ¢ = 2mh — (—ATHwys).
When the synchronous particle crosses the cavity at time Ty, the rf phase is ¢° = 27h.
We can then say the the off-momentum particle is ahead of the synchronous particle by
rf phase A¢ = ¢ — ¢* = w ATy, This phase advance is related to the time advance by
—ATy = —A¢/wyg, and the phase advance is negative.

The best description is not to use the time ¢ as the independent variable. Instead use
s, the distance along the closed orbit of the synchronous particle. So instead of talking
about the off-momentum particle ahead of the synchronous particle by a certain amount
in distance at the moment of the synchronous particle crosses the cavity (description 1),
we monitor everything at the cavity and talk about the synchronous particle crosses it at
time 7 and the off-momentum particle crosses it at time Ty = 1§ + ATq (description 2).

The first description is called the snapshot view, which records the two particles at different



places but at the same time 7§, similar to taking a photograph from above. The second
description is to record the two particles crossing the same location in different times. It will
be easier to talk about phase advance in this second description, because the the rf phase
¢ will accumulate a phase larger than 27h if the off-momentum particle passes through the
cavity later than the synchronous particle. The phase advance A¢ = ¢ — ¢* > 0 here means
longer phase accumulated by the rf clock or the particle passes the cavity at a later time than
synchronous particle, when the off-momentum particle is behind the synchronous particle.

In this case, we define time advance by —ATy = —A¢/wys.

4 The Relation A¢p = —hAf

Let 6 be the azimuthal angle an off-momentum particle covered around the accelerator ring,

and ¢ be the phase accumulated in the rf clock. Sometimes, one writes
¢ = —ho, (4.5)

and with a superscript s,
¢° = —hb?, (4.6)

for the synchronous particle. The difference of the two gives
A¢p = —hAD, (4.7)

where Ap = ¢ — ¢ and A0 = 0 — 0°. But what is the physical meaning of these equations?

4.1 Positions of 2 particles at specific moment

First, we compare the off-momentum and synchronous particle at some particular time ¢, the
snapshot description. Since there is only a unique reading of the rf clock at one moment, we
must have A¢ = 0. Second, the two particles are not at the same azimuthal angle around the
ring and therefore A@ # 0. Thus, the relation (4.7) cannot be satisfied at all. The problem
comes about because there is always one ¢ for the rf clock in this interpretation, or we always
have ¢ = ¢*. In this sense Eq. (4.5) is totally meaningless and we have only Eq. (4.6). In fact,
the negative sign in Eq. (4.6) for the synchronous particle is also completely arbitrary in this

interpretation, because we can choose the accumulation of the azimuthal phase in the same



direction of accumulation of the rf phase (hence positive sign) or in the opposite direction
(hence negative sign). For this reason, Eq. (4.7) definitely does not imply the comparison of

the two particles at any particular time.

4.2 Phases of two particles at same location

We next try an alternate interpretation. Assume the on-momentum and off-momentum
particles leave the rf cavity at the same moment. Then one turn later when the synchronous
particle crosses the cavity again, the off-momentum is at an azimuthal angle A# in front of the
synchronous particle. This implies that the off-momentum particle crosses the rf cavity again
at an earlier time than the synchronous particle. Then if the off-momentum particle is pushed
back an azimuthal phase angle Af to the moment it crosses the cavity the second time, the rf
phase accumulated at that moment is A¢p ~ —hAf. The approximation sign indicates that
A¢ may not be exactly equal to —hA0. Let us examine the possible deviation. The push-
back time is At = Af/wy, where wy is the angular frequency of the off-momentum particle
after passing the cavity the second time. Then we will have A¢p = —w At = —w,tAO/wy.

However, w,s/w§ = h, where wj is the revolution frequency of the synchronous particle, and
Wit /wo #£ h.

Before continuing the discussion, a comment on w; is necessary. Note that wj, which is
defined by w§ = v*/R?®, where v* is the velocity of the synchronous particle and 27 R® is the
length of the closed orbit of the synchronous particle. This definition is important because
wj is not the actual angular change in azimuthal angle per unit time measured from some
center of the accelerator ring or it is not the change in angular direction per unit time of a
radius vector sweeping along the closed orbit, because this latter definition makes w§ not a
constant around the accelerator ring; the ring is not a perfect circle but consists of dipole
arcs and straight sections. The definition w§ = v*/R® makes w a constant in one revolution
around the ring between two successive passages of the rf cavity (if there is only one thin
cavity). In the same way, the azimuthal angle 6 along the closed orbit of the synchronous
particle is not really the phase angle of some radius vector, it is simply defined by 6 = s/R?®,
with s being the distance along the closed orbit measured from some reference point. The
same applies to the revolution frequency wy of the off-momentum particle, with the definition
wo = v/ R, where v is the velocity of the particle and 27 R is circumference of the close orbit

of that particle.



Although the revolution frequency wqg of the off-momentum particle does change after
passing through the rf cavity due to the change in energy. In above, when we push the
off-momentum particle back by A, the azimuthal in advance of the synchronous particle at
the moment the synchronous particle passes the cavity the second time, to the moment the
off-momentum particle passes the cavity the second time, the push-back time At = Af/wy is
computed with the wy of the off-momentum particle between the second and third passages
of the cavity. But independent of which wy is used, it is not the same as wjj, and therefore, we
do not have exactly the relation A¢ = —hAf#. Thus according to this second interpretation,
A¢p = —hA0O cannot be established. Instead we have

Ap= = ng _ paph (4.8)

Wo Wi wo Wo

Also we have to remember that while wyj is the angular frequency of the synchronous particle
between first and second passages of the rf cavity, wg is the angular frequency of the off-
momentum particle between second and third passages of the rf cavity. This is not really
a problem, because the rf frequency wys is usually the same turn after turn throughout the
acceleration cycle, and so will be w§ = wy/h, the angular frequency of the synchronous
particle. Thus we just say wg/wj is the ratio of the angular frequency of the off-momentum

particle and the synchronous particle in the next revolution around the ring.

It is educational that Eq. (4.8) can be checked easily. If we divide throughout by At,
the push back time, we get for the left side Ap/At = —w, = —hw§ (the rf phase would have
advanced by —A¢ = wAt in time At), which is equal to the right side since AG/At = wy.
However, if we divide both sides by T§ = 27 /wg, the period of the synchronous particle, we

will get something completely different, as will be shown in the next section.

4.3 Definition of n

We wish to answer the question: If the phase equation of motion is written as

dA¢

dA
e wefnd  or aBé _ huwgino, (4.9)

dt
what is the definition of 7. Here A¢ is the phase angle of the rf clock at the moment

an off-momentum particle passes the rf cavity in advance of the rf phase angle when the
synchronous particle passes the cavity. The positive signs on the right come about as follows.

Above transition n > 0 and 6 > 0, an off-momentum particle will arrive later and later than



synchronous particle turn after turn, so the rf clock needs to continue accumulate its phase
until the off-momentum particle reaches the rf cavity again, and A¢ should therefore be

positive.
If one sticks to the incorrect relation
AP = —hAb, (4.10)

after dividing by 7§ the revolution period of the synchronous particle, one gets

dA
—dtd) = —hAw, = wynd, (4.11)

where A¢ = —hA#f has been used in the first step and the phase equation of (4.9) has been
used in the last step. Or

1
Awy = —Ewrmé = —wyno. (4.12)
We therefore have the definition for n,
D0 g, (4.13)
“o
which is obviously different from Eq. (2.2).
We next start with the correct relation
wo
A¢p = —hAH—. (4.14)
Wo
Division by 7§ leads to
dA wp
% = —hAwow—Z = wyeno. (4.15)
We have A
et NP (4.16)
Wo
This becomes .
Y7 % _ s, (4.17)
Wo

which is different from Eq. (4.13) by having wy, the angular frequency of the off-momentum
particle, in the denomination rather than wj, the angular frequency of the synchronous

particle. Dividing the numerator and denominator of the left side by wow, we obtain

11
“o - “Wo _ —nd, (4.18)
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or T
o~ 40
= —no, 4.19
Ts n (4.19)
which is the same as Eq. (2.3).
The revolution period Ty of the off-momentum particle can be expressed as
C
Ty = — 4.20

where C' is the closed orbit of the off-momentum particle and Gc¢ denotes its velocity. We

can easily expand Ty as a Taylor series in ¢, from which each higher-order of the slip factor
can be identified. For example, we have
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where the prime denotes differentiation with respect to 0 and all variables are evaluated at

the synchronous particle, which explains why all the variables above carry the subscriptions
or superscripts s. The derivatives of C' can be read off easily from the expansion

C(6) = Cs[1+ agd(1 + a1d + agd® + -+ )],

(4.22)
where ag, agaq, agas, - - -

are different orders of the momentum compaction factor of the
accelerator ring. The derivatives of § can be computed straightforwardly. They are:

By _ 1
Bs 72
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With the expansion of the slip factor

n=1n0+m0+ 8+, (4.24)



*

we obtain the expressions for the higher-order components of the slip factor:

1
o = Qo — —5
3 52 Mo
m = qpay + 272 — 7—37
m | (1=562)82 362
= - = . 4.25
e & R > (4:25)

On the other hand if the incorrect definition of 7 in Eq. (4.13) is used, we will be
expanding wy = B¢/C' in powers of §. The result is the same for the lowest order component

No. But the higher order components become

3532 7o 2
T = apaq + 272 — 7—3 — Mo
1 (1—-562)62  38In0
M2 = Qo2 — T <2770 + ?> + 22 + 22 — 7—02 — 0. (4.26)

We wish to point out that although Eq. (4.26) is different from Eq. (4.25), however, they are

exactly the same when 7y = ag — 7,2 = 0.

5 Conclusion

1. The correct definition of the slip factor is

AT
Ty

= —no, (5.27)

where AT is the time advance in arrival of the off-momentum particle and 77 is the

period of the synchronous particle. It can also be written as

AT,
15

= nd, (5.28)

where ATy = Ty — 1§ is the difference in revolution period for the two particles.

*One must be careful about the factorials in the Taylor expansion. For example, here we have

173 173"

ATy Ty
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2. The relation A¢ = —hA# is only approximate. The accurate relation is given by
Ap = —hAIZY, (5.29)
wo

where wy and wj are, respectively, the revolution frequencies of, respectively, the off-

momentum particle and synchronous particle.

3. The above relation, Eq. (5.29), cannot be discussed in the snapshot view, that is
monitoring the off-momentum and synchronous particles at different locations but at
the same time, like taking a photograph from above. The relation is valid only when
the observation is made at a fixed location along the accelerator ring, monitoring the

arrival of the off-momentum and synchronous particles at difference times.



