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Abstract

Inverse Compton scattering is a method to produce very high frequency photon
beam. However, the production mechanism can also be viewed as a undulator emission.
This is because the electron sees electric and magnetic fields of the incident laser beam
and is driven into transverse oscillatory motion in exactly the same way when the
electron passes through a undulator consisting of alternating magnetic field. This
note gives a detailed examination of the similarity about the two views. Equivalent
undulator parameters are derived for the incident laser beam, as well as the differential
cross section of photon emission.
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1 Introduction

Undulator emission is a mechanism to generate short-wavelength photon beam. An electron

going through a undulator of period or wavelength λu emits radiation with wavelength λs ≈
(1 + K2/2)λu/(2γ2) in the forward direction, where Ku is the undulator parameter and γ

is the relativistic factor of the electron. The reduction in wavelength by the factor 2γ2

is tremendous. Unfortunately, due to technical difficulties, the undulator period cannot

be manufactured to much less than the order of a centimeter, which therefore limits the

frequency of the photon generated at a fixed electron energy.

An electron colliding with a laser beam sees alternating electric and magnetic fields of

period ∼ λ
L
/2, where λ

L
is the wavelength of the laser beam. Thus the electron will be

driven into oscillatory transverse motion in exactly the same way as inside a undulator. The

equivalent undulator period ∼ λ
L
/2 is obvious very much smaller than the period of the

mechanical undulator. As a result, the photons emitted in the forward direction will have

the much smaller wavelength of ∼ λ
L
/(4γ2).

The above description can also be considered as a laser beam colliding with a moving

electron head-on and reversing its direction after scattered by the electron. This process is

called inverse Compton scattering. Thus inverse Compton scattering can also be described

by the language of undulator emission. In this note, we give a detailed examination of the

similarity about the two views. The limitation of the similarity of the two views are also

sighted. Equivalent undulator parameters are derived for the incident laser beam, as well as

the differential cross section of photon emission.

2 Inverse Compton Scattering

The electron-storage ring at IUCF of Indiana University will supply an electron beam with

γ = 100. A laser beam with optical wavelength λL = 10000 Å collides with the electron

bunches in the opposite direction. We have laser wavelength λL = 10−6 m and frequency

fL = 0.3 × 109/10−6 = 3 × 1014 Hz. Now transform to the rest frame of the electron. The

laser photon will increase in energy, which becomes

fL0 = γfL(1 + β) ≈ 2γfL = 6 × 1016 Hz, (2.1)
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and wavelength

λL0 =
c

fL0
≈ c

2γfL
=

λL

2γ
= 5 × 10−9 m = 50 Å. (2.2)

This is the frame (electron initially rest) Compton scattering is usually studied in the old

days. In this frame, the scattered photon has the energy

hfs0 =
hfL0

1 + hfL0

mec2
(1 − cos θe)

. (2.3)

Here, θe is the scattered angle of the scattered photon in the rest frame of the electron. It

is defined in such a way that a forward scattered photon (no direction change) has θe = 0,

while a backward scattered photon (direction reversed) has θe = π. Obviously, the scattered

photon that reverses its incident direction has the lowest energy, which equals

hfs0 =
hfL0

1 + 2h0fL0

mec2

≈ hfL0, (2.4)

since for a 6 × 1016-Hz photon, hfL0 = 2.48 × 10−4 MeV, where h = 4.1357 × 10−21 MeV-s

is the Planck constant. With hfL0/mec
2 � 1, Compton scattering just reduces to Thomson

scattering, and we call this the Thomson limit,

Now going back to the lab frame, this backward scattered photon moves in the direction

of the electron with frequency

fs = fs0γ(1 + β) ≈ 2γfs0 ≈ 2γf0 ≈ 4γ2fL. (2.5)

Or
fL

fs
=

1

(1 + β)2γ2
. (2.6)

The scattered photon frequency is fs ≈ 4γ2fL = 1.2 × 1019 Hz and the wavelength is

λs = λL/4γ2 = 2.5 × 10−11 m = 0.25 Å. Notice that the change has been by the factor 4γ2,

which is very big. Compton scattering in the moving frame of the electron with the photon

beam reversing direction is called inverse Compton scattering.

For a scattered photon in the general direction θe, its scattered direction θ� in the lab

frame is given by (see Appendix)

cos θe =
γ2β tan2 θ� − sec θ�

1 + γ2 tan2 θ�

, (2.7)

where the subscript e designates the frame of reference where the electron is at rest, while

the subscript � designates the lab frame where the undulator is at rest. Here, θ� is defined
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in the forward direction of the electron; i.e., θ� = 0 implies the scattered photon is emitted

exactly in the forward direction of the electron or the reverse direction of the laser beam.

For large γ, θ� is small, and the above can be approximated by

cos θe ≈ −
{

1 −
[
γ2(1 + β) − 1

2

]
θ2

�

}
≈ −(1 − 2γ2θ2

� ). (2.8)

Since the photon energy is transformed to the lab frame by

hfs = γ(1 − β cos θe)hfs0, (2.9)

the scattered photon will have frequency fs in the lab frame given by

fs

fL
≈ γ2(1 + β)(1 − β cos θe)

1 + hfL

mec2
γ(1 + β)(1 − cos θe)

. (2.10)

Substituting for cos θe, we get

fs

fL
≈ γ2(1 + β)2

[
1 − 1

2
β(1 + β)γ2θ2

�

]
1 + 2hfL

mec2
γ(1 + β)

[
1 − (

1
2
γ2(1 + β) − 1

4

)
θ2

�

] . (2.11)

In above, we have only made the small θ�-expansion, but have kept all orders of (1−β). Since

hfL/mec
2 � 1, we can let β → 1 in the denominator. We can then write the wavelengths of

the scattered photon to the initial photon as

λs

λL
≈ 1 + 4hfL

mec2
γ(1−γ2θ2

� ) + 1
2
β(1+ β)γ2θ2

�

γ2(1 + β)2
. (2.12)

Consider an electron bunch of length 1 ps or 0.3×10−3 m (0.3 mm) containing Nb = 1012

particles. In each wavelength of the scattered laser beam, number of electrons is on the

average

Nλ =
Nb × 2.5 × 10−11

0.3 × 10−3
= 8.33 × 104. (2.13)

3 Interaction with Laser Beam

If the laser beam and electron are moving in the same direction, there should be no inter-

action. Suppose that the direction of propagation is z. At on moment, an electron sees a

E field in the x-direction and a B field in the y-direction. The electron is subject to the

electric force eE in the positive x-direction, and a magnetic force v×B which is the negative

x-direction. Since the electron velocity is close to c, the electric and magnetic forces cancel

each other. On the other hand, if the laser beam is propagation in the direction opposite to

that of the electron, the magnetic and electric forces add.
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4 Undulator Theory

Microscopically, we can view Compton scattering as an undulator theory. An electron sees

the laser beam in the lab frame as an undulator because the electron sees a magnetic field

that is alternating. The electron is set to transverse oscillation as a result of seeing the

electric and magnetic components of the laser beam. The synchrotron radiation emitted by

the electron is just the scattered photon ray of Compton scattering. However, there are two

differences from the conventional undulator theory:

Undulator Period

The equivalent undulator period λu is not equal to the wavelength λL of the laser beam,

because the photons from the laser beam is moving towards the electron. Let t be the

equivalent undulator period in time, or t is the time the electron sees another wave crest of

the laser beam after passing the previous wave crest. We have

t =
λu

βc
=

λL − λu

c
, (4.1)

where λ − λu is the distance the wave crest of the laser beam moves in time t to meet the

electron. Thus

λu =
βλL

1 + β
≈ λL

2
. (4.2)

Undulator magnetic field

As mentioned above, since the laser photon and the electron are traveling in opposite direc-

tion, the electric and magnetic forces enhance each other. For a plane wave, electric field

strength �E and magnetic field strength �B are related by

ω �B = �k × �E, (4.3)

where �k is the propagation vector having magnitude |�k| = ω/c. The magnetic field of the

equivalent undulator is just

Bu = B +
E

βc
=

(1 + β)B

β
≈ 2B. (4.4)
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Thus at an angle θ� in the lab frame in the direction of the electron, the wavelength of

radiation λs is
λs

λu
=

ku

ks
=

1 + (1 + β)K2/4 + β(1 + β)γ2θ2
� /2

β(1 + β)γ2
, (4.5)

where ku = 2π/λu, with the equivalent undulator parameter

Ku =
eBu

meβcku
=

eBuλu

2πmeβc
=

eBλL

2πmeβc
=

eB

meβck
. (4.6)

In Eqs. (4.5) and (4.6), we have tried not to let β → 1. We see that the undulator parameter

is exactly the same if we substitute the equivalent magnetic field Bu by B, the magnetic

field of the plane wave, and the equivalent undulator period λu by λL, the wave length of the

plane wave, both of them being their values in the lab frame. However, we must remember

that the implication is very different, the equivalent undulator period is actually about half

of the wavelength of the plane wave, resulting therefore in a much shorter wavelength for

the synchrotron radiation or scattered wave,

λs

λL
=

λs

λu

λu

λL
=

1 + 1
4
(1+β)K2

u + 1
2
β(1+β)γ2θ2

�

β(1 + β)γ2

β

1+β
=

1 + 1
4
(1+β)K2

u + 1
2
β(1+β)γ2θ2

�

(1 + β)2γ2
.

(4.7)

This is to be compared with the general result of Compton scattering in Eq. (2.12). We see

that the two expressions are exactly the same to all orders of (1 − β) provided h = 0 and

Ku = 0. On the one hand, it is not unexpected that we require h = 0 in the comparison,

because the above undulator theory is classical while the treatment of Compton scattering

is quantum mechanical. On the other hand, it is not clear why we require the undulator

parameter Ku to be zero, since Ku is the center of the undulator theory. Here, the undulator

parameter depends the intensity of the laser beam through its magnetic field. However,

the Compton scattering theory discussed above is merely kinematic together with the the

quantum nature of the photon. Because of this, the frequency of the Compton scattered

photon should not depend on the intensity photon beam at all. We are going to show that

the equivalent undulator parameter K for a high intensity optical laser beam is rather small.

Then if K can be neglected, the undulator theory discussed above does serve as an accurate

interpretation of the inverse Compton scattering process.

The intensity of a laser beam IL can be defined as the energy per cross-sectional area

traversed per unit time. Thus IL is the same as the Poynting vector,

IL = | �E × �H| =
1

μ0

| �E × �B|. (4.8)
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Since the center of the laser beam can be viewed as a plane wave, we can substitute for

E = cB to obtain

IL =
c2B2

Z0
. (4.9)

For a high intensity laser beam of IL = 1019 W/m2, B = 204.5 Tesla. For an optical laser

beam of wavelength∗ λL = 10000 Å (fL = 3 × 1014 Hz), we obtain an undulator parameter

K = 0.02. The smallness of the undulator is the result of the small wavelength of the laser

beam

5 Power of Plane Wave

From the Maxwell’s equations

�∇× �H = −∂ �B

∂t
and �∇× �E = �j +

∂ �D

∂t
, (5.1)

one can easily obtain

�∇ · ( �E × �H) = −∂ �B

∂t
· �H − �E ·�j − �E · ∂ �D

∂t
. (5.2)

We now integrate over a volume V enclosed by the area S to arrive at

−
∫

V

�E ·�j dV =
∂

∂t

∫
V

1
2

(
�H · �B + �E · �D

)
dV +

∫
S

(
�E × �H

)
· d�S, (5.3)

where the medium over which the integration is performed is assumed to be linear. The the

left side is recognized as negative rate of Joule heat losses or rate at which an electromotive

force is doing work on the system. The first term on the right side represents the rate

of increase of electric field and magnetic field energy inside V , while the second term is

recognized as the rate at which field energy is going out of the volume through the area S.

This is just an equation of energy balance and each side has the dimension of power.

For a plane wave in vacuum, we can substitute for

ω �B = �k × �E, �D = ε0
�E, �B = μ0

�H, (5.4)

∗Optical wavelength ranges between 3800 and 7500 Å.
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so that the above becomes

−
∫

V

�E ·�j dV =
∂

∂t

∫
V

1
2

(
B2

μ0
+ ε0E

2

)
dV +

1

μ0

∫
S

(
�E × �B

)
· d�S,

=
∂

∂t

∫
V

cB2

Z0
dV +

∫
S

c2B2

Z0
dS. (5.5)

For a plane wave is there is no rate of increase of magnetic and electric field energy in a

volume; i.e., the first term on the right side vanishes. The integral over the surface is just

the power PL of the plane wave. The intensity of the plane wave is defined as the energy

passing through a unit cross-sectional area per unit time and is therefore

IL =
PL

S
=

c2B2

Z0
. (5.6)

6 Radiation Intensity

Let Nx be the number of photon radiated. The rate at which the radiation take place is

dNx

dt
= f

NeNL

4πσxσz

σ
T
, (6.1)

where Ne and NL are, respectively, the numbers of electrons and photon in the electron

bunch and laser pulse, σx,y are the rms transverse beam sizes, f is the frequency of collision,

and

σ
T

=
8π

3
r2
e (6.2)

is the total Thomson cross section and re = e2/(4πε0mc2) is the electron classical radius.

Note that 4πσxσy is the effective cross section of the electron beam. We have taken 2σx and

2σy as the radii of the elliptical area. We wish to point out that whether we take πσxσy or

4πσxσy as the effective cross-section of the laser pulse does not affect the final result that

we are going to derive. What we use later in Eq. (6.8) is to relate the intensity of the laser

pulse (power per unit cross-sectional area) to the magnetic field strength B of the pulse.

We are interested in the number of photons radiated, Nx, per electron during one col-

lision passage into a solid angle. For this we need the differential Thomas cross-section per

unit solid angle Ωe in the electron rest frame, or

dσ

dΩe
=

r2
e

2

(
1 + cos2 θe

)
, (6.3)
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which obviously integrate to the total Thomas cross-section. Note that the angular distri-

bution here is given in the traditional frame of Thomas scattering, or the frame where the

electron is initially at rest. The number of photon emitted in a solid angle per electron per

collision is therefore

dNx

dΩe

=
1

fNe

dNx

dt
=

NL

4πσxσy

r2
e

2

(
1 + cos2 θe

)
. (6.4)

Now the energy in the laser pulse of duration τ is EL = NLhfL, which is equal to PLτL,

where PL is the power of the laser beam. In terms of these new variables,

dNx

dΩe
=

PLτL

4πσxσyhfL

re

2

e2

4πε0mc2

(
1 + cos2 θe

)
=

PLτL

4πσxσyfL

αre

4πmc

(
1 + cos2 θe

)
, (6.5)

where

α =
e2

4πε0�c
=

e2

2ε0hc
≈ 1

137
(6.6)

is the fine-structure constant. The effective number of undulator periods is defined as

Neff =
cτL

λL
= fLτL. (6.7)

The strength of the magnetic component B in the laser beam is related to the power of the

beam by
PL

4πσxσy
=

cB2

μ0
. (6.8)

Then

dNx

dΩe

=
Neffλ2

L

c

cB2

μ0

α

4πmc2

e2

4πε0mc2

(
1 + cos2 θe

)
=

αNeffK2
u

4

(
1 + cos2 θe

)
, (6.9)

where the undulator parameter

Ku =
eBλL

2πmc
(6.10)

has been used. Integrating over all outgoing directions, the total number of photons produced

is

Nx =
4π

3
αNeffK2

u. (6.11)

To compare with an undulator theory, we need to transform the above to the angular

distribution in the lab frame. The transformation is from the solid angle dΩe = sin θedθedϕe

to dΩ� = sin θ�dθ�dϕ�, where we have denoted the polar angle in the lab frame as θ� and is

connected to θe by Eq. (2.7). Note that although the azimuthal angle ϕ does not change in
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a transformation along the polar axis, however, the polar axis does reverse direction in these

two frames. Thus ϕe = 2π − ϕ� or dϕe = −dϕ�. We have

d cos θe

dθ�
=

sec θ� tan θ� [2γ2β sec θ� + γ2 sec2 θ� + γ2 − 1]

(1 + γ2 tan2 θ�)2
, (6.12)

or
dΩe

dΩ�
= −d cos θe

d cos θ�
=

sec2 θ� [2γ2β sec θ� + γ2 sec2 θ� + γ2 − 1]

(1 + γ2 tan2 θ�)2
, (6.13)

Because of the (1 + γ2 tan2 θ�)
2 in the denominator, the polar angle θ� in the lab frame is

restricted to ∼ γ−1, when γ � 1. How about the angle π − θ�, the scattered angle in the

direction of the laser beam? The expression inside the squared-brackets in the numerator

gives [ ] → −1/(4γ2) at θ� = π, whereas the same factor gives [ ] → 4γ2 when θ� = 0. The

implication is that all the scattered photon are concentrated in the reverse laser direction

within a cone of opening angle γ−1, but not in the reverse direction. This is just a kinematic

result of Lorentz transformation. Thus the transformation of differential solid angles can be

rewritten as
dΩe

dΩ�
=

4γ2(1 + 3
2
θ2

� )

(1 + γ2θ2
� )

2
→ 4γ2

(1 + γ2θ2
� )

2
, (6.14)

where the term 3
2
θ2

� is neglected because it contributes only O(γ−2). Thus the differential

scattered photon intensity in the lab frame becomes

dNx

dΩ�

=
2αNeffK2

uγ
2

(1 + γ2θ2
� )

2
. (6.15)

Notice that the integration of the above expression over the solid angle Ω� (θ� from 0 to π

and ϕ� from 0 to 2π) does not reproduce Nx in Eq. (6.11). This is a not real surprise because

the above expression [Eq. (6.15)] has been simplified. If we wish to obtain the correct result

of Eq. (6.11), we need to let sin θ�dθ� ≈ 1
2
dθ2

� and integrate θ� = 0 to

θ1 =

√
e2/3 − 1

γ
=

0.974

γ
, (6.16)

which demonstrates that the opening angle is ∼ γ−1. Another method that is usually made

is to assume the differential intensity to be constant at the exact forward direction of the

electron (i.e., θ� = 0) within a small opening solid angle, and multiply it by the small

opening solid angle to obtain the total number of photons emitted. To match the result of

Eq. (6.11), this small opening solid angle is ΔΩ� = πθ2
2 = π/(3γ2), or the opening angle in

each transverse direction is θ2 = 1/(
√

3γ).
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7 Differential Undulator Emission Intensity

In this section, we compute the intensity of the emitted per electron while passing through

an undulator, starting from the theory of synchrotron radiation. The differential intensity

observed at a point P is

d2N

dΩ�dω
=

remcω2

4π

∣∣∣∣
∫ ∞

−∞
�n × (�n × �β)e−iω(tr−�n·�rp/c)dtr

∣∣∣∣
2

, (7.17)

for an electron moving with velocity �βc, where re is the classical electron radius. Here �rp

is the vector from the origin of the reference frame to electron and �n is the unit vector

pointing from the electron to the point of observation P . The frequency ω varies from 0

to ∞ (negative frequency has been included already). All quantities are to be taken at the

retarded time tr at the electron. The origin of the reference frame is located at the center of

the undulator, while the length of the undulator is running in the z-direction, which is the

direction of the electron before entering into the undulator.

We consider the undulator to be helical in order to simplify the derivation. Let us

introduce the unit vectors

ê± =
x̂ ± iŷ√

2
, (7.18)

which satisfies the properties

ê± = ê∗∓, ê± · ê± = 0, ê± · ê∓ = ê± · ê∗± = 1. (7.19)

The spiraling magnetic field �Bu of the undulator can be generated from the vector potential

�Au =
Au√

2

[
ê−eikuz + c.c.

]
= Au

[
x̂ cos kuz + ŷ sin kuz

]
, (7.20)

where λu = 1/ku is the period of the undulator. Thus

�Bu = �∇× �Au = −kuAu√
2

[
ê−eikuz + c.c.

]
(7.21)

where Bu = −kuAu is the strength of the spiraling undulator magnetic field. The canonical

momentum �p = γm�v−e �Au is conserved. Before entering the undulator, p⊥ = 0. Thus inside

the undulator

�β⊥ =
e �Au

γmc
=

eAu

γmc

1√
2

[
ê−eikuz + c.c.

]
= −Ku

γ

1√
2

[
ê−eikuz + c.c.

]
, (7.22)
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where

Ku = − eAu

γmc
=

eBu

γmcku

(7.23)

is the undulator parameter. Note that unlike the planar undulator, here β⊥ = |�β⊥| is a

constant inside the helical undulator. The longitudinal velocity of the electron inside the

undulator is given by

β2
‖ = β2 − β2

⊥ = β2 − K2
u

γ2
= 1 − 1 + K2

u

γ2
(7.24)

and is also a constant inside the helical undulator. We obtain the longitudinal position

z(tr) = β‖tr. Substitution into Eq. (7.22) and integration gives the position vector �rp of the

electron

�rp =
iKuc√
2γωu

[
ê−eiωutr − c.c.

]
+ ẑβ‖ctr, (7.25)

where ωu = kuβ‖c is the angular frequency of the undulator. The constant of integration

has been chosen in such a way that the origin of the reference frame is right at the center of

the undulator, which spans from z = −1
2
Nuλu to +1

2
Nuλu, where Nu is the total number of

undulator periods and λu is the undulator period.

The point of observation P is assumed to be very far away from the undulator. It is

represented by the vector �R. Since the width and length of the undulator is very much

smaller than R, we make the assumption that the unit vector n̂ from the electron to P is

always in the direction of �R, or �R = n̂R. Thus the polar angle θ� and azimuthal angle ϕ� at

the point P are assumed to be constant. In other words, the unit vector

n̂ = x̂ sin θ� cos ϕ� + ŷ sin θ� sin ϕ� + ẑ cos θ� =
sin θ�√

2

[
ê−eiϕ� + c.c.

]
+ ẑ cos θ�, (7.26)

is assumed to be time independent. We are now in the position of computing the synchrotron

radiation using Eq. (7.17). First, we compute

n̂ × (n̂ × �β) = n̂(n̂ · �β) − �β (7.27)

With

n̂ · �β = −Ku

2γ
sin θ�

[
ê−eiϕ� + c.c.

] · [ê−eiωutr + c.c.
]
+ β‖ cos θ�

= −Ku

γ
sin θ� cos(ωutr − ϕ�) + β‖ cos θ�, (7.28)
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we obtain

n̂ × (n̂ × �β) =
1√
2

[
ê−eiϕ� + c.c.

] [
−Ku

γ
sin2 θ� cos(ωutr − ϕ�) +

β‖
2

sin 2θ�

]

+
Ku√
2γ

[
ê−eiωutr + c.c.

] − ẑ

[
sin2 θ� +

Ku

2γ
sin 2θ� cos(ωutr − ϕ�)

]
. (7.29)

We know that the synchrotron radiation will be in the forward direction of the electron

concentrated within the opening angle θ� ∼ γ−1. The above messy expression can therefore

be very much simplified by keeping only the first order in θ�, or

n̂ × (n̂ × �β) =
1√
2

[
ê−

(
β‖θ�e

iϕ� +
Ku

γ
eiωutr

)
+ c.c.

]
− ẑ

Kuθ�

γ
cos(ωutr − ϕ�). (7.30)

The exponent in the synchrotron-radiation formula is

−iω

(
tr − n̂ · �rp

c

)
= i

Kuω

γωu
sin θ� cos(ωutr − ϕ�) − iωtr(1 − β‖ cos θ�) (7.31)

This can be readily simplified using the small-opening-angle approximation. Notice that

1 − β‖ cos θ� ≈ 1 −
√

1 − 1 + K2
u

γ2

(
1 − θ2

�

2

)
≈ 1 + K2

u + γ2θ2
�

2γ2
=

ωu

ω1
, (7.32)

where ω1 denotes the fundamental emission frequency from the helical undulator. The

corresponding wavelength is λ1 = 2πc/ω1, which is to be compared with λs in Eq. (4.5)

in a planar undulator. There we have K2
u/2 in the numerator instead of just K2

u here in

Eq. (7.32). The exponent then simplifies to

−iω

(
tr − n̂ · �rp

c

)
= i

ω

ωu

Kuθ�

γ
cos(ωutr − ϕ�) − i

ωu

ω1
ωtr. (7.33)

We are now ready to perform the integration over tr in the differential intensity formula

of Eq. (7.17). It is clear that the term containing cos(ωutr −ϕ�) in the exponent [Eq. (7.33)]

will lead to a summation over Bessel functions and higher harmonics for the undulator

emission, and as a result complicated mathematical expressions. Fortunately, all these can

be avoided by setting θ� = 0, or to restrict ourselves to the computation of the differential

intensity of the synchrotron emission in the exact forward direction of the incident electron.

We then obtain the simplified expression[
n̂ × (n̂ × �β) e−iω(tr−�n·�rp/c)

]
θ�=0

=
Ku√
2γ

[
ê−eiωutr + c.c.

]
e−i(ωuω/ω1)tr

=
Ku√
2γ

[
ê−e−i(ω/ω1−1)ωutr + ê+e−i(ω/ω1+1)ωutr

]
. (7.34)
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The integration over tr is now attempted over the range of the undulator from tr = −πNu/ωu

to +πNu/ωu (remembering that the origin of the coordinate system has been placed at the

center of the undulator), where Nu is the number of undulator periods and 2π/ωu is the

undulator wavelength or undulator period in time. The integration readily gives∫ πNu/ωu

−πNu/ωu

[
n̂×(n̂ × �β) e−iω(tr−�n·�rp/c)

]
θ�=0

dtr

=

∫ πNu

−πNu

Ku√
2γωu

[
ê−e−i(ω/ω1−1)ωutr + ê+e−i(ω/ω1+1)ωutr

]
d(ωutr)

=

√
2πKuNu

γωu

[
ê−

sin πNu(ω/ω1 + 1)

πNu(ω/ω1 + 1)
+ ê+

sin πNu(ω/ω1 − 1)

πNu(ω/ω1 − 1)

]
(7.35)

This is finally substituted into the differential intensity formula of Eq. (7.17) to obtain the

number of radiated photons emitted per electron per unit angular frequency and per unit

solid angle

dNx

dωdΩ�

∣∣∣∣∣
θ�=0

=
1

�ω1

dW

dωdΩ�

∣∣∣∣∣
θ�=0

=
αω2

4π2ω1

∣∣∣∣
∫

n̂ × (n̂ × �β) e−iω(tr−�n·�rp/c)dtr

∣∣∣∣
2

θ�=0

=
αω2K2

uN
2
u

2γ2ω2
uω1

[∣∣∣∣sin πNu(ω/ω1 + 1)

πNu(ω/ω1 + 1)

∣∣∣∣
2

+

∣∣∣∣sin πNu(ω/ω1 − 1)

πNu(ω/ω1 − 1)

∣∣∣∣
2
]

, (7.36)

where we have made substitutions for the classical electron radius and the fine-structure

constant

re =
e2

4πε0mc2
, α =

e2

4πε0�c
, or

re

α
=

�

mc
. (7.37)

The sinc functions in Eq. (7.35) indicate that the variation of the emission frequency ω is

limited to within ∣∣∣∣ ω

ω1
± 1

∣∣∣∣ � 1

Nu
. (7.38)

where the positive/negative sign is for the first/second sinc function. Since the number of

undulator periods Nu is usually is a rather larger number, the sinc functions are therefore

approximately δ-functions; i.e.,

∫ ∞

0

∣∣∣∣sin πNu(ω/ω1 ± 1)

πNu(ω/ω1 ± 1)

∣∣∣∣
2
dω

ω1
≈ 1

Nu

∫ ∞

0

δ

(
ω

ω1
± 1

)
dω

ω1
=

⎧⎪⎨
⎪⎩

0 + sign

1

Nu
− sign

(7.39)

The differential intensity of synchrotron radiation can therefore be written as

dNx

dωdΩ�

∣∣∣∣∣
θ�=0

=
αω2K2

uN2
u

2γ2ω2
uω1

[
sin πNu(ω/ω1 − 1)

πNu(ω/ω1 − 1)

]2

(7.40)
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and
dNx

dΩ�

∣∣∣∣∣
θ�=0

=
αω2

1K
2
uNu

2γ2ω2
u

=
2αK2

uNuγ
2

(1 + K2
u)2

(7.41)

when the integration over ω is performed. The last expression is to be compared with the

differential scattered intensity of Thomson scattering in Eq. (6.15). The difference is the

extra factor of (1 + K2
u)

2 in the denominator of Eq. (7.41). This factor comes about because

the different definitions of ω1/ωu in the two theories:

ω1

ωu
=

⎧⎪⎨
⎪⎩

2γ2 Thomson scattering,

2γ2

1 + K2
u

undulator theory.
(7.42)

To obtain the total number of photons emitted, we need to integrate over the solid angle

Ω�. Since we have here only the differential intensity at θ� = 0, it is unsure about the small

solid angle that we need to multiply Eq. (7.41) with. One may follow the experience from

Thomson scattering and multiply it by the small solid angle ΔΩ� = π/(3γ2). However,

this need not be correct because although the angular distributions for the two theories are

roughly the same when θ� � γ−1, they may not exactly the same at larger opening angles.

Appendix

Transforming from the frame where the electron is initially at rest to the lab frame, the

momentum of the scattered photon has a longitudinal component and transverse component

equal to (
hfs

c

)
‖

= γ(− cos θe + β)
hfs0

c
.

(
hfs

c

)
⊥

= sin θe
hfs0

c
. (A.1)

Thus the scattered angle (in the direction of electron) in the lab frame is

tan θ� =
sin θe

γ(− cos θe + β)
. (A.2)

Writing sin θe =
√

1 − cos2 θe and solving the quadratic equation results in Eq. (2.7).
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