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Abstract

The stable region of the Fermilab Booster beam in the complex coherent-tune-
shift plane appears to have been shifted far away from the origin by its intense space
charge making Landau damping appear impossible. Simulations reveal a substantial
buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded
combined-function magnets and the beam pipes joining the magnets, whenever the
secondary-emission yield (SEY) is larger than ~1.6. The implication of the electron-

cloud effects on the space charge and collective instabilities of the beam is investigated.

*Operated by the U.S. Department of Energy, under contract with the Fermi Research Alliance, LLC.



1 Introduction

Assuming tri-Gaussian distribution, the Fermilab Booster has maximum space charge
tune shift of AP ~ (.6 near injection and the incoherent tune spread is shifted quite far
away from the coherent tune. We wonder why Landau damping coming from octupoles can
be possible, because the tune spread due to the latter can at most amount to ~ 0.05. This
ambiguity can be resolved if there is an electron cloud around the beam intense enough to
neutralize part of the space charge effects, but weak enough not to generate unwanted beam

instability issues. Other possibility to answer this ambiguity is also discussed.

2 Stability Contours

Following the analytic solution of Métral and Ruggiero, [1] we computed the stability
contour of the Fermilab Booster beam including space charge and octupole tune spread. The
dashed curve in every plot of Fig. 1 shows the stability contour of having an octupole tune
spread of roughly +0.05 with space charge totally neglected. The plot is Re Av, versus
Im Aveyy,, which is proportional to —Zm Zi- versus — Re Zi- with Zi- being the transverse
impedance experienced by the beam. The region under the contour implies stability while
the region above implies instability. When space charge is turned on according to the infor-
mation in Table I, this stability contour becomes the solid curve shown in Fig. 1(a). Now
the stability region becomes much wider as a result of the large space-charge tune spread.
Unfortunately, this wide stable area has been shifted far far away from center of the plot as
a result of the large incoherent tune shift. Thus the inductive part of the vacuum chamber

impedance must be extraordinary large so as to be under the contour in order to stabilize

Table I: Some properties of the Booster and its beam near injection.

Radius R (m) 75.42
Total Energy £ (GeV) 1.40
No. of filled rf buckets 81
No. of empty rf buckets 3
Bunch intensity 6 x 1010
Tune v, /v, 6.8/6.8
Normalized rms emittance (107 7m) 2.00

Rms bunch length o, (m) 0.70
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Figure 1: In all plots, stability contour from octupole alone is shown in dashes as reference. (a) The
stability contour changes to the solid curve with the introduction of full space charge force. (b) Its
spread becomes narrower and the shift from the Zm Avegp-axis is smaller with 50% of space charge,
and (c) it even covers the Zm Av op-axis at 25% capacity. (d) As the octupole current reduces to

25% but with full space charge, the stability contour becomes about 25% tall only.



the beam. Physically, the inductive impedance of the vacuum chamber must be large enough
to cancel the space charge impedance, or the tune shift from the inductive impedance must
be large enough to cancel that coming from space charge. Unfortunately, the inductive im-
pedance is usually very much smaller than the space charge impedance. In the derivation of

the contours, coasting beam has been assumed, but the peak current has been used.

Figure 1(b) shows the situation when the space charge effect is reduced by half. We
see as expected that the stability contour becomes narrower and moves closer to the vertical
axis. When space charge is reduced to just 10%, we see in Fig. 1(c) that the stability
contour now covers the Zm Av,,, axis, implying that even with zero or very tiny amount of
inductive impedance, the beam will be stable if | Re Z{-| is not too large. Physically, this
is the situation when the space-charge effect of the beam is small enough and the octupole
tune spread stabilizes the beam. Figure 1(d) shows the situation of having space charge
in full force but with the octupole current reduced to 25%. Here we see the spread of the
stability contour is of roughly the same width as that in Fig. 1(a). However, its height has
been reduced to 25%, implying that the stability region has been greatly reduced. It also
tells us that the ability of Landau damping comes from the octupole tune spread instead of
space charge. In fact, when the octupole current is reduced to zero, the stability contour
collapses onto the Re Av,,, axis. Physically, the center of the beam is not affected by the
space charge force, which therefore cannot generate any Landau damping by itself.

3 Electron Cloud

The code POSINST [2] is employed to study electron cloud buildup in the Booster.
The Booster is made up of 24 unshielded combined-function F-magnets and 24 unshielded
combined-function D-magnets. Their cross sections are shown in Fig. 2. In the simulations,
the F-magnet is represented by a 13.0” x 1.64” rectangular pipe with uniform magnetic field
0.084102 Tesla, while the D-magnet is represented by a 12.0” x 2.25” rectangular pipe with
0.071480 Tesla. According to the observed initial loss rate of ~ 1.5% for the first 500 turns,
beam loss to the surrounding per beam particle per meter is 6.49 x 10~%, and each of these
strayed particles is assumed to generate 100 electrons. These electrons dominate over the
electrons generated by collision with ions at the vacuum pressure of 1 x 107 Torr. Figure 3
shows the electron density around one transverse o,, of the beam inside the F- and D-
magnets for various secondary-emission yield (SEY). The bunch pattern has been taken to

be 81 bunches plus 3 empty buckets. Thus the density dips in the plots correspond to the
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Figure 2: Cross sections of the F- and D-magnets. All dimensions are in inches. The bending
fields at the centers are 0.084102 and 0.071480 Tesla, respectively.

ends of revolution turns. We see that saturation is reached in the D-magnet when SEY> 1.5,
while it requires a SEY> 1.9 to have saturation in the F-magnet. This observation is due
to the fact that the vertical gap of the D-magnet is much bigger than that of the F-magnet
and can therefore trap more electrons. The same simulations were performed for the circular
stainless steel pipes joining the magnets. They consists of 168 m of 2.25” pipe and 28.8 m
of 4.25" pipe. The results are shown in Fig. 4. Again the larger pipe appears to have the
ability to trap more electrons. In any case, however, electron cloud reaches saturation when
SEY 2 1.6.

It is unfortunate that we have no knowledge of the SEY for the unshielded magnet
laminations. In below, we try to do the investigation using SEY=1.6, implying that electron
cloud buildup will saturate in the round pipes and inside the D-magnets, but not necessary
in the F-magnets. We next look into the electron density near the beam in Fig. 5. Since the
peak beam particle density is given by

N,
k b

[ — 14 -3
e 2.72 x 10" m 3, (3.1)

the electron density appears to be very much smaller. However, the particle density decreases

very rapidly away from the beam axis, but the electron density does not. The particle density
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Figure 3: (Color) Electron cloud linear density inside an F-magnet (top) and a D-magnet (bottom)
for various values of the secondary-emission yields (SEY). The average linear density of the beam

is shown in dashes as a reference.
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Figure 4: (Color) Electron cloud linear density inside the 2.25” pipe in the long-straight sections

(top) and the same inside the 4.25” pipe in the short-straight sections (bottom). The average linear

density of the beam is shown in dashes as a reference.
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Figure 5: (Color) Electron density inside a D-magnet with SEY=1.6, with its zoomed view between
rf buckets 200 and 210 shown below. Black curve is the electron density averaged over one o, of
the beam; red curve is the electron density averaged over four o, ,’s of the beam; green curve is

the electron density averaged over the whole cross section of the magnet.
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Figure 6: Particle density averaged over n o,,’s is seen to decrease rapidly with n. The corre-

sponding electron density averaged over n o ,’s, although smaller, yet decreases less rapidly.

averaged over n o, ,’s is given by

2 2
pu(nosy) = o (1-e2) (3.2)

and is shown in Fig. 6. Alongside, we also plot the corresponding electron density averaged
over the same n o0, ,’s computed using POSINST. For example, the ratio of electron density
to particle density averaged over two o, ,’s is 0.187. The implication is that the cancellation
of space charge of the beam may be ~ 18.7%, which is rather appreciable. The inductive
tune shift of the beam particle in the electron cloud, Avg, can also be estimated from the

assumption of a uniform electron density [3]
(3.3)

where 7, = 1.535 x 107 m is the classical proton radius, and v and § are the relativistic
factors. The beam particles reside mostly within two o, ,’s of the bi-Gaussian distribution.

We therefore read off p, = 2.2 x 10*® m™ from Fig. 6 as the electron density averaged



over two o,,’s. This gives Ayg = 0.11, which is 18.0% of the maximum space-charge tune
shift of AP = (0.60. The tune depression of an intense Booster beam as well as the
inductive part of the magnet laminations and connecting beam pipe has been measured
and computed. They are found to supply at most an inductive tune shift of ~ 0.04 (see
Appendix). Thus, in total, at most ~ 25% of the space charge will be canceled by electron
cloud and inductive walls. As is shown in the stability contours of Fig. 1, there is still no
possibility for the transverse impedance of the beam to be inside the stable region. However,
as will be suggested below, when we take into account that fact that the beam is bunched
instead of coasting, the situation will be much better. Before going into that let us first
compute the effective impedance generated by the electron cloud and study its possible

effects on collective instabilities of the Booster beam.

4 Collective Instabilities

The effects of the electron cloud can be modeled by a short range wake. In Heifets

derivation, [4] this wake is, at a distance z from the source particle,

. 8ZOIOQW,3R
(1+p)As°

Wi(z) w(2), (4.1)
where p = 0,/ is the aspect ratio of the particle beam with linear density )\Ek =N,/ V2ro.,
where o, is the rms bunch length. The effective wake Weg(z) is depicted in Fig. 7 for various
ratios of the rms spread of the cloud ¥, , to that of the beam o,,. This wake resembles
a resonance wake with the resonant frequency near the electron angular bounce frequency
we. The transverse impedance can be readily computed by performing a Fourier transform,
with the result depicted in Fig. 8,7 where an average electron density of p. = 1 x 10 m™3 in
the vicinity of the beam has been assumed. Alongside, we have also plotted the transverse
impedance of the 48 laminated magnets. [6] We see that the impedance arising from the
electron cloud is mostly dominated by the resonance near the electron bounce frequency
and is much larger than that from the magnets below ~ 150 MHz. This is to be expected,
because we wish to have a larger inductive impedance at low frequencies to cancel the space
charge of the beam more efficiently, and large inductive impedance naturally brings in large

resistive impedance. The large impedance will unavoidably bring about severe transverse

TA similar figure appears also in Ref. [7], an extract of this paper. There, the right plot of Fig. 4 is
incorrect because the electron bounce frequency has been computed with an incorrect formula which is v/2

to big.
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Figure 7: (Color) Effective wake derived from an electron cloud around a round beam, where w, is
the angular electron bounce frequency while ¥, and o, are the vertical rms radii of the cloud and

beam, respectively.

head-tail instabilities and transverse microwave instabilities to the Booster beam. Detailed
analysis will be devoted to a separate paper. [5] Since these rather strong instabilities have
not been observed, it is possible that the SEYs of the magnet laminations and the adjoining
beam pipes are much smaller, for example, < 1.3, so that electron cloud does not accumulate
around the beam. For example, the electron cloud effects will become minimal when the

cloud density is reduced to below 1 x 102 m=3,

5 Bunching Effects

In the discussion of stability contour in Sec. 2, a coasting Booster beam has been as-
sumed. The situation of a bunched beam can be different. This is because there will be
many more particles, for examples those away from the longitudinal center, having smaller
space-charge tune shifts. Since the derivation of the stability contour for a bunched beam is

more involved, here we will study instead the simpler problem concerning the distribution
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comparison.

of space-charge tune shifts of the particles inside a bunch, which can also shed some light on

the shape of the stability contour.

The distribution of space-charge tune shift in a coasting beam with circular cross section

and bi-Gaussian distributed shows that the distribution is skewed towards higher values, with

A spch A spch
X’TJ — 0.6334, (A"Spch> — 0.1678. (5.1)
Vmax Vmax / rms

This distribution, called fop (AP /AvPd) s shown in dashes in Fig. 9. [8] Tt also shows
that the distribution is essentially zero when ApsP® /AP < (0.15. This curve has close
resemblance to the stability contour in Fig. 1(a). In fact, they should be closely related. For
a bunch, however, the space-charge tune shift distribution can be very different because the

particles near the two ends have rather small space-charge tune shifts.

Let the longitudinal or linear distribution of the bunch be A\y(2), which is normalized to
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Figure 9: (Color) Plots of distribution in space-charge tune shift in a round bunch with longitudinal
Gaussian, cosine square, cosine, and parabolic distribution. The transverse distribution is bi-

Gaussian. The distribution of a coasting beam is also shown for comparison.

unity after integrating over z. For a slice of the bunch at z, the number of particles residing

in the slice is NyAy(2)dz. Thus the maximum space-charge tune shift inside this slice is

M) = Az (5.2

Here, AvP9(0) is the maximum space-charge tune shift of the whole bunch, and is the same

spch
as AP

in Eq. (5.1) for the 2D coasting beam. For simplicity, we set AvPh = 1 below.

max

Thus for this particular slice, the distribution in space-charge tune shift is

A(0)
Fs o A spch _ A spch 70
lice (AVP, 2) f2D< v /\b(Z))

Ap(0)
/\b(Z) '

(5.3)

which is properly normalized that an integration over AvP" gives unity. The distribution



13

for the whole bunch is therefore

Fyp (AP :/ F(AUP 2\ (2))d2

—z

SIS

where the limits of integration £z are given by the excursion of 2z’ at the maximum space-

charge tune shift, or
ApPh 2 — (5.5)

Take the Gaussian distribution as an example, the 3D distribution is given by

z 2 dz’
F3D(Ay590h) /_Z Jap (Ayspchez /2> \/27r7
with

z =/ —21In Apspeh, (5.7)

For the cosine square distribution,

1 Tz
Mo(2) = 3 cos” 55 (5.8)
the 3D tune shift distribution is
o 6 Ayspch 2d0/
F3D(Ayp h) — /_0 f2D <m> Tj (59)

with

0 = cos ' V Apspeh, (5.10)

For the cosine distribution,
T Tz
A = — C0S —, 5.11
o(2) = 7 c08 57 (5.11)

the 3D tune shift distribution is

. o Ay qp
Fsp(AvP h) _ /_6 fap ( 7 ) ER (5.12)
with
0 = cos™! AP, (5.13)

Finally, for the parabolic distribution

My(z) = (1 - Z_Z) , (5.14)
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the 3D tune shift distribution is

A spch d /
Y > sz (5.15)

z
Fyp(AvPH) = /_Z Jop (m 1

with
z2=11— Apspch, (5.16)
These distributions are shown in Fig. 9. These curves show that there are plenty of particles
with space-charge tune shift close to zero tune shift, and they are more plentiful when
the longitudinal linear density has longer tails. A longitudinal Gaussian distribution may
have been too ideal, but the cosine-square distribution is rather realistic. We expect the
stability contour for a bunch behaves similarly. As a result, beam stability can be attained
provided that there is some reasonable inductive impedance, some extra tune spread arises
from octupoles, and | Re Z{-| is not too big, while electron cloud need not play an important

role.

6 Conclusion

An analytic solution of the stability contour for the Fermilab Booster has been per-
formed following the derivation of Métral and Ruggiero. Due to the large space-charge tune
shift at injection, it appears that the stability region has been shifted by so much that Lan-
dau damping will not be possible unless the inductive impedance of the vacuum chamber
is extraordinarily large. We have studied the possibility of electron cloud buildup in the
Fermilab Booster, hoping that the cloud would cancel at least part of the large space-charge
tune shift near injection, so that Landau damping will become possible in the presence of
octupoles. We found that at most the cancellation is only about 25%, when a SEY=1.6 is
assumed. On the other hand, the electron buildup generates a strong resonant impedance
near the electron bounce frequency, which is very much larger than the impedance arising
from the magnet laminations. Such a large transverse impedance will drive severe transverse
microwave instabilities and head-tail instabilities in the beam. Since such strong transverse
instabilities have not been observed, it is possible that the SEY is in fact much less and there
is not a significant electron cloud buildup. On the other hand, the effects of electron cloud
on collective beam instabilities have not been well understood at this moment. It is possible
that the derivation of the wake of the cloud and its subsequent interactions with the particle

beam require more detailed investigation.

The analytical model of Métral and Ruggiero assumes a coasting beam. However, the

beam of the Booster is bunched. As a result, there are many more low space-charge tune
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shifted particles and the tune shift distribution is now skewed back towards the zero tune
shift side. We believe the stability contour for a bunched beam will behave in the same
way; i.e., there will be ample stable region under the stability contour close to the origin of
the complex coherent-tune-shift space. As a result, a small amount of inductive impedance
together with some octupole tune spread will be able to stabilize the Booster beam, provided
that | Re Zi-| is not too large.
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Appendix: Tune Depression of Booster

A.1 Measured Tune Depression

Turn-by-turn transverse positions of some Fermilab Booster bunches were measured by
Huang [9] for 2-, 4-, 6-, 8-, and 10-turn injection, corresponding to the intensities of 0.92,
1.85, 2.79, 3.69, and 4.66 x 10 particles per bunch, respectively. A pinger was turned on
and its voltage was ramped from 0.6 kV at injection to 3.8 kV near extraction. The pinger
was fired every 0.5 ms with 2.0-us pulse width, so that the bunches were kicked vertically
every 0.5 ms. Each set of data covers 2000 turns or the whole ramping Booster cycle. Each
data set is divided into small pieces, each 0.5 ms long (225 to 300 turns), so that the co-
herent motion induced by each pinger pulse can be analyzed. The data are supplied to an
independent-component-analysis routine [9] to solve for the betatron oscillation modes and
the vertical betatron tune v, is computed from the fast Fourier transform (FFT) of the tem-
poral pattern. The independent-component-analysis routine increases the accuracy of tune

measurement since the data of all the beam-position monitors (BPMs) are used.

The vertical betatron tunes throughout the Booster 15-Hz cycle had been measured.
However, only those measurements up to the transition time (roughly at 17 ms or 9500
turns) were used for the present analysis. These measurements for all the data sets are
plotted in Fig. 10. The tune depressions due to beam intensity are clearly seen at various
times. The measurements near turn 3000 were found to come from errors. Near injection, the
tune depression of a 10-turn injection beam is roughly 0.03. The 10-turn beam corresponds
to a bunch intensity of N, = 4.66 x 10'°. Thus, the tune depression for a N, = 6 x 10*°

beam is ~ 0.04. The tune depression is also called the coherent betatron tune shift.

A.2 Compared with Theoretical Computation

The transverse coupling impedance of the laminated magnets together with the beam pipes
joining them has been computed, from which the tune depression can be inferred. Here, we
wish to approach the problem in the reverse order by computing the impedance from the

measured tune depressions and comparing the result with the theory.

Since the Booster bunches have roughly Gaussian linear distribution, the Sacherer’s



17

0.86 — From top trace down:
0.85 | 2-, 4-, 6-, 8-, 10~turn injection

0.84

0.83

0.82 [—

0.81 [—

0.80 [—

Vertical Residue Tune

. gz

N kA B “g__a..‘ A\
0.79 |— VR xR T T A TRy
=¥ “+~ Py —?’3,# y

0.78 — —

S N T T Y Y Y B B
2 4 6
Turn Number (1000’s)

Figure 10: Measured coherent vertical betatron tune shifts in the Fermilab Booster as functions of
revolution turn number for 2-, 4-, 6-, 8-, and 10-turn injection, corresponding to intensity of 0.92,
1.85, 2.79, 3.69, and 4.66 x 10'° particles per bunch.

integral equation of transverse motion is solved in the Hermite mode. The lowest order
perturbation gives, for the most easily excited rigid-dipole mode (m = 0 and k = 0), the
dynamic betatron tune shift*

2
R nar| (A1)

Ayl =
Yldyn 8m3/2 3 Eyvyo, off

where ¢, is the rms bunch length and the effective vertical impedance is

e d 2 .2
/ ™ T Z{ (w)e " °r

0o 2T

= o0
eff / d_we_w2o'72'
w0 2T

Im Zy (A.2)

In above, a broadband impedance has been assumed so that the summation over the betatron

sidebands can been replaced with an integral.

To obtain the coherent betatron tune shift, the incoherent tune shift must be added

onto the dynamic tune shift. Thus one should be careful about what should be included in

If one tries to approximate the betatron tune shift of a bunch by the betatron tune shift of a coasting
beam, with the average bunch current replaced by the peak current Inx = eNy/(V270,), the numerical
factor in the denominator of Eq. (A.1) changes from 87%/2 to 4/273/2.
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the transverse impedance when the coherent betatron tune shift is computed. For example,

the transverse space-charge impedance can be expressed as

Zo €se SY_ GY
7y, = e > L LQ' + | (A.3)

% \

where the summation runs over each section of the vacuum chamber of length L;, half-height
h;, and half height of the beam a

charge coefficients and Laslett’s electric image coefficients. [11] Only the terms involving

while €V

Vo, 1% . . : .
vis v.. &, and €] represent the appropriate space-

the coherent Laslett’s image coefficient £} should be included.® The beam pipes joining the
magnets have such a contribution. The contribution is important at low energy, ~ 24 M{2/m,
but rolls off as (3v) % as the beam energy increases. As for the magnets, this contribution
may not be appropriate, because the Laslett’s coherent electric coefficient £} is for perfectly
conducting vacuum chamber only. Here, the laminated magnet pole faces are not perfectly
conducting. The modification can be obtained by noticing that the term involving &} in

Eq. (A.3) can be rewritten as
§ & &
e e

where the first term is for the electric image in the perfectly conducting walls of the vacuum

_52

(A.4)

chamber and the second term is for the magnetic image in the same perfectly conducting

walls. For the laminated magnets, the electric image is formed at the enclosure of the magnet,

which carries most of the return current at low frequencies. The magnetic image is formed

at the magnetic pole faces. We therefore have instead the replacement
& & &

2
e e T

(A.5)

where h? stands for the radius of the magnet enclosure and £ = 72/16 is the Laslett’s
coherent magnetic coefficient for two horizontal parallel perfect magnetic surfaces separated
by the distant 2h,;. Attention should also be paid to the change in sign of the magnetic
contribution from perfectly conducting surfaces to perfect magnetic surfaces. Since the
radius of enclosure is usually much larger than the magnet half gap (h? > h2), the electric
contribution is small and can be neglected. For example, if the enclosure radius is h; = 8”,

the electric contribution is only 0.4 M{2/m, where &/ = % for a circular enclosure has been

$The tune shift corresponding to the self-force part of Eq. (A.3) is cancelled by the incoherent self-force
tune shift. The tune shift corresponding to the €] part is cancelled by the incoherent tune shift due to

images.
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used. Thus the contribution of the magnets to the transverse impedance becomes with the

summation going over all the magnets,

08— L
D |y = 5 Z 2 (A.6)

However, more thinking reveals that the above expression is still not quite correct, be-
cause the pole surfaces are not exactly perfectly magnetic. They are laminated instead. The
effects of the laminations and cracks will become more apparent as the frequency increases.
In fact, a somewhat more accurate representation of the transverse impedance of the lami-
nated magnets is the one computed and depicted in Fig. 8, of which the low-frequency limit
is just the bypass inductive impedance. The model of laminated magnets employed in the
computed result should take care of both terms on the right side of Eq. (A.5). There are
other contributions to Zm Z} at low frequencies, such as BPMs, bellows, steps, etc. Since
they amount to only ~ 0.4 MQ/m up to 200 MHz in the Fermilab Tevatron, [12] it is safe
to regard them as negligible compared with the laminated magnets in the Fermilab Booster.
In short, the main contributions to the vertical coherent betatron tune shift arise from the
bypass inductive impedance of the magnets plus the electric-image contribution of the pipes

joining the magnets.

For each of the data piece, Huang performed a linear fit to the measured coherent
vertical tune depression as a function of bunch intensity. Then following Eq. (A.1), the
coherent part of the effective transverse impedance was computed. The rms bunch lengths
were taken from a previous measurement [10] by fitting Gaussians to the linear waveforms
of the beam recorded using a wall-gap monitor. As shown in Fig. 11, the bunch length is
almost intensity independent up to transition crossing near 17 ms. The resulting effective
impedance is plotted as squares in Fig. 12. The exotic point at 3000 turn arises from a

measurement error.

For the theory side, the effective vertical dipole impedance is then evaluated according
to Eq. (A.2) by including only the impedance computed for the laminated magnets as well
as the contribution of the coherent Laslett’s image coefficients from the beam pipes joining
the magnets. The result, not exactly the same as Ref. [9], is shown as a solid curve in
Fig. 12. The agreement is excellent after understanding that the impedance of the laminated
magnets displayed in Fig. 8 is only an estimate using the concept of surface impedance and
does not evolve rigorously from Maxwell equations. Nevertheless, the experiment appears to

reproduce the right order of magnitude for the bypass inductive impedance.
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Figure 11: (Color) Rms bunch length measured by Huang by fitting a Gaussian to the waveforms
recorded by the wall-gap monitor for 4-turn and 11-turn injection. The measurement was made at

1-ms interval throughout the whole Booster ramping cycle. Transition crossing is at 17.5 ms.
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Figure 12: Squares: effective coherent vertical dipole impedance in the Fermilab Booster derived
from measured coherent tune shifts. The point near 3000 turns arises from an error in the mea-
surement. Solid curve: the same from evaluating the integrals in Eq. (A.2) using the computed

impedance of the laminated magnets and the contribution from the beam pipes joining the magnets.
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