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Abstract

Transverse beam instability of a coasting beam with a digital
damper is examined. Threshold of instability is calculated in spe-
cific cases with Landau damping taken into account. The results are
applied to the Fermilab Recycler Ring. Some improvement of existing
RR damper is proposed.

1 Introduction

Transverse instability damper of the Fermilab Recycler Ring includes analog-
digital and digital-analog converters with digital delay lines between [1]. Be-
cause the converters have own (sampling) frequency 52.83 MHz (588 times the
beam revolution frequency) they create a coupling of the beam eigenfrequen-
cies. As a result, eigenmodes of the system can contain several frequencies
even in the beam rest frame. This phenomenon not included in standard the-
ory can effect on the beam instability changing performances of the damper.
The problem was investigated first in Ref. [2]. Somewhat different methodics
is used in this paper to investigate stability of a coasting beam giving special
attention to Landau damping.
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2 Damper transfer function and impedance

Transformation of a signal by a pattern: Analog-Digital Converter – Delay
Line - Digital-Analog Converter is schematically shown in Fig.1. Input sig-
nal V (in) (black line) is measured with interval T (c)/M where M is integer
(M = 4 for the RR) and converted in digital form by ADC (blue points).
Four consecutive numbers are averaged (green points), transferred with delay
T (d) (red points), and converted by DAC to a stepped signal V (out) (red line).
Thus

V (out)(t) =
1

M

M−1
∑

m=0

V (in)
(

T (c)[n−m/M ]−T (d)
)

at (n−1)Tc<t−T (d)<nT (c)

(1)
Corresponding relation of Laplace images is:

V̂ (out)(ω) =

∞
∫

0

V (out)(t) exp (iωt) dt = (2)

exp (iωT (c))−1

2πiωM

∞
∫

−∞

[

1 − exp (iω′T (c)
]

exp (iω′T (d)) V̂ (in)(ω′) dω′

[

1 − exp (iω′T (c)/M)
][

1 − exp (i[ω −ω′]T (c))
]

The under-integral function has poles at ω′ = ω + nω(c) which should be
bypassed below resulting:

V̂ (out)(ω) =
2 exp(iωT (c)) sin2(ωT (c)/2)

ωMT (c)
× (3)

∑

n

exp
(

i [ω + nω(c)][T (d) − T (c)/2M ]
)

sin
(

[ω + nω(c)]T (c)/2M
) V̂ (in)(ω + nω(c))

where ω(c) = 2π/T (c). Eqiuvalent formula at T (d) = 0 was obtained in
Ref. [2] where delay line was not included between AD and DA converters.
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Figure 1: Schematic of AD-DA Conversion with delay line.
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The input signal is proportional to beam deviation on the pickup azimuthal
position θ(p):

V̂ (in)(ω) ∝ X̂(ω, θ(p)) =
∑

k

X̂k(ω) exp (ikθ(p)) (4)

The output voltage is applied to a kicker located on azimuth θ(k) and creates
a δ-shape force, i.e. it has a uniform Fourier spectrum:

Ê
(d)
k (ω) ∝ V̂ (out)(ω) exp (−ikθ(k)) (5)

Space between the kicker and pickup is

θ(pk) = θ(k) − θ(p) =
π [ l + 1/2 ]

Q0
, (6)

where Q0 is central betatron frequency and l is integer. Two delay lines
should be used between the pickup and the kicker:

T (d) =
θ(pk)

Ω0
−

2M − 1

2M
T (c) and T (d∗) = T (d) +

2π

Ω0
(7)

where Ω0 is the beam angular velocity. The signals are subtracted resulting
the kicker field which, with Eq. (9) taken into account, can be represented
in Fourier-Laplace domain as:

Ê
(d)
k (ω)=i(−1)l 2mγΩ0Q0

e
exp

(

iθ(pk)
[ ω

Ω0

− k
])

∑

n

W (d)
n (ω)

∑

k′

X̂k′(ω + nω(c))

(8)

W (d)
n (ω) =−iF(ω)

2 sin2(ωT (c)/2) exp (inθ(pk)ω(c)/Ω0)

ωMT (c) sin ([ ω + nω(c) ] T (c)/2M)

[

1−exp
(

2πi
ω+nω(c)

Ω0

)]

(9)
where e and m are the particle charge and mass, γ is its normalized energy,
and F(ω) is gain produced by analog part of the damper (low-pass filter).
We will see later that W (d) is decrement created by the damper.

Also we need to include field E(z) due to space charge, resistive wall, etc.,
symbolizing it as

Ê
(z)
k (ω) =

2mγΩ0Q0

e
W (z)(ω)X̂k(ω) (10)

where the factor W (z) is proportional to the usual beam coupling impedance
and numerically coincides with the impedance produced frequency shift.
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3 Dispersion equation w/o Landau damping

A spread of angular velocity and betatron tune of particles is neglected in
this section. Then betatron oscillations of the beam center can be described
by the equation:

[

[ ∂

∂t
+ Ω0

∂

∂θ

]2
+ Ω2

0Q
2
0

]

X(t, θ) =
e

mγ

[

E(z)(t, θ) + E(d)(t, θ)
]

(11)

It has a solution X̂k(ω) exp (ikθ − iωt) where:

X̂k(ω) = −
e

mγ

Ê
(z)
k (ω) + Ê

(d)
k (ω)

[ ω − kΩ0]2 − Ω2
0Q

2
0

(12)

Using Eq. (8) and (10) one can represent it in the form:

X̂k(ω)=i(−1)l+1exp
(

iθ(pk)
[ ω

Ω0
−k

])2Ω0Q0
∑

n W (d)
n (ω)

∑

k′ X̂k′(ω+nω(c))

[ω−kΩ0]2 − Ω2
0Q

2
0 + 2Ω0Q0W (z)(ω)

(13)

Summarizing over k results:

X̂(ω) = S(ω)
∑

n

W (d)
n (ω)X̂(ω + nω(c)) (14)

where X̂(ω) =
∑

k X̂k(ω) and

S(ω) =
∑

k

2i(−1)l+1Ω0Q0 exp
(

iθ(pk)[ ω/Ω0 − k ]
)

[ω − kΩ0]2 − Ω2
0Q

2
0 + 2Ω0Q0W (z)(ω)

(15)

As usually, unperturbated spectrum of the beam includes frequencies:

ω
(∓)
k = Ω0(k ∓ Q0) (16)

among which there are not coinciding because Q0 can’t be integer or half-
integer. However, the digital damper produces a coupling of the harmonics
which depends on the parameter (ω(c)/Ω0− nearest integer). We consider the
ultimate cases separately.
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3.1 Non-integer ωc/Ω (offset damper)

If a deviation of ωc/Ω from integer is rather large, only term n = 0 gives a

contribution is series (14) providing dispersion equation S(ω)W
(d)
0 (ω) = 1.

Expression (15) can be simplified also:

S(ω) ≃
1

ω − ω
(∓)
k ∓ W (z)(ω

(∓)
k )

(17)

As a result, solution of the dispersion equation is:

ω ≃ ω
(∓)
k + W (t)(ω

(∓)
k ) (18)

where
W (t)(ω

(∓)
k ) = ±W (z)(ω

(∓)
k ) + W

(d)
0 (ω

(∓)
k ) (19)

It means that the beam coupling impedance and the damper contribution
are additive in this case. Somewhat simplifying Eq. (9), one can represent
the damper contribution in the form:

W
(d)
0 (ω) ≃ −i∆ω(d)

[ sin(πω/ω(c))

πω/ω(c)

]2
F(ω) (20)

where the constant ∆ω(d) is the damper decrement at low frequency. Some-
times we will use a simplest model of the low-pass filter:

F(ω) =

{

1 at |ω| < ω(f)

0 at |ω| > ω(f)

}

(21)

Then one can assert that the offset damper is capable to provide the beam
stability overall in the band |ω| < min {ω(c), ω(f)}, i.e. |ω| < ω(c), at reason-
ably wide-band filter.

The damper offset should be more of the beam frequency spread to avoid
an overlapping of Schottky bands. An optimal offset is obtained if space
between ω(c)/Ω0 and nearest integer number coincides with space between
Q0 and nearest half-integer.

As for threshold of instability, frequency spread and Landau damping
should be taken into account to determine it, which will be done in next
section.
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3.2 Integer ω(c)/Ω0, narrow-band filter

The ratio ω(c)/Ω0 is integer and bandwidth of the filter satisfies the condition
ω(c)/2 < ω(f) < ω(c) at the existing RR damper [1]. This case is considered
here still without Landau damping. Then series (14) is reduced to 2 equa-
tions:

X̂(ω) = S(ω)
[

W
(d)
0 (ω)X̂(ω) + W (d)

s (ω)X̂(ω + sω(c))
]

(22)

X̂(ω+sω(c)) = S(ω+sω(c))
[

W
(d)
0 (ω+sω(c))X̂(ω+sω(c))+W

(d)
−s (ω+sωc)X̂(ω)

]

where s = −sgn(ω). Condition of its solveability (dispersion equation) is:

[

1 − S(ω)W
(d)
0 (ω)

][

1 − S(ω + sω(c))W
(d)
0 (ω + sω(c))

]

= S(ω)S(ω + sω(c))W (d)
s (ω)W

(d)
−s (ω + sω(c)) (23)

Using Eq. (9) and a simplifying S(ω) like (17), one can represent it in the
form:
[

W−W (t)(ω
(∓)
k )

][

W−W (t)(ω
(∓)
k +sω(c))

]

= W (d)(ω
(∓)
k )W (d)(ω

(∓)
k +sω(c)) (24)

where W = ω − ω
(∓)
k , and W (t)(ω) is given by Eq. (19). It is seen that the

coupling of harmonics really exists at ω(c)−ω(f) < |ω|< ω(f) only; otherwise
the right-hand part of Eq. (24) is zero, and we turn back to solutions (18).

We consider the beam behavior in the coupling region in detail, describing
the damper by simplified formulae (20)-(21) and assuming that resistive wall
impedance is a source of instability:

W (z)(ω) = ∆ω(rw)
[

1 + i sgn(ω)
]

√

Ω0

|ω|
(25)

Solution is displayed in left Fig. 1 at ∆ω(rw) = 0.0003 Ω0, ∆ω(d) =
0.0005 Ω0, and ω(c) = 588 Ω0, ω(f) = 400 Ω0 (52.8 MHz and 35.9 MHz
for the RR). Upper sign in the combination (∓) taken for the definiteness,
because opposite choice means simply a mirror reflection of all traces without
additional physical content. Red and blue traces present imaginary part of 2
eigenvalues against the basic frequency ωk. Because the satellite frequency
ωk + sω(c) assists at the spectrum also, the green trace shows ration of the
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Figure 2: Imaginary part of eigenfrequencies at ∆ω(rw)/Ω0 =
0.0003, ∆ω(d)/Ω0 = 0.0005. Only lowest frequency is used in the left graph,
and both physical frequencies in the right one.
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Figure 3: Imaginary part of eigenfrequencies at ∆ω(rw)/Ω0 = 0.0003 and
different ∆ω(d)/Ω0 = 0.0005. Only potentially unstable solution is shown.
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amplitudes: satellite/basic for the ’red’ solution and basic/satellite for ’blue’
one. As expected, there is sole frequency (18) at |ωk| < ω(c) −ω(f): basic
(lowest) for the ’red’ case and satellite for the ’blue’ one. It is more apparent
by right Fig. 2 where the traces are partly shifted on 588 points to make
visible real frequencies as possible (’long scale’).

Note that the ’red’ solution strongly depends on the damper gain, moving
proportionally up or down. ’Blue’ one changes rather weakly as it is shown
in Fig. 3 where corresponding imaginary part is represented in ’long’ scale at
∆ω(rw) = 0.0003 Ω0 and different ∆ω(d).

4 Landau damping and threshold of instability

Positive imaginary part of frequency obtained in previous section means only
a possibility of instability, which can be suppressed by Landau damping in
reality. Spreads of revolution frequency and betatron tune should be added
to Eq. (11) to include this effect. A formal replacement in Eq. (12) and later
follows by this:

1

[ ω − kΩ0 ]2 − Ω2
0Q

2
0

⇒

∞
∫

−∞

F (p) dp

[ ω − kΩ(p) ]2 − Ω2(p)Q2(p)
(26)

where F (p) is normalized distribution function on momentum. Then the
basic series of equations (14) holds its form with correspondingly modified
function S(ω). Besides of this, we need to modify definition (24) to include
space charge impedance:

W (z)(ω) = ∆ω(sc) + ∆ω(rw)
[

1 + i sgn(ω)
]

√

Ω0

|ω|
(27)

Real value ∆ω(sc) depends on the beam density, and for Gaussian beam it is
[3]

∆ω(sc) =
r0Ω0N

8πβγ2ǫ⊥
(28)

where r0 = e2/mc2 (1.535× 10−16 cm for protons), N is number of particles,
and ǫ⊥ is transverse r.m.s. emittance. This addition would cause only a
general real shift of all frequencies in previous section. However, with Landau
damping it is the main factor determining threshold of instability.
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4.1 Non-integer ωc/Ω

In this case there is no coupling of the beam eigenmodes, and dispersion
equation is reduced to a standard form:

1 = W (t)(ω
(∓)
k )

∞
∫

−∞

F (p) dp

W − δω
(∓)
k [p − p0]/σp

(29)

where
δω

(∓)
k =

d

dp

[

Ω(p) [ k ∓ Q(p) ]
]

σp (30)

is r.m.s. frequency spread, and definition (19) is used. For Gaussian beam in
practical case Re W (t) > ImW (t), approximate (not worse of 20%) condition
of stability is:

∣

∣

∣

∣

Re W (t)(ω
(∓)
k )

δω
(∓)
k

∣

∣

∣

∣

<

√

√

√

√ln
(

4

3

∣

∣

∣

∣

ReW (t)(ω
(∓)
k )

Im W (t)(ω
(∓)
k )

∣

∣

∣

∣

2)

(31)

We will apply it to the RR taking upper sign in the combination (∓) and
using numerical values:
• Resistive wall tune shift:

∆ω(rw)

Ω0

= 0.5 × 10−6(N/1010) (32)

• Space charge tune shift:

∆ω(sc)

Ω0

= 6.8 × 10−6 N/1010

ǫ⊥(mm-mrad)
(33)

• Tune spread:

δωk

Ω0

= 10 × 10−6
∣

∣

∣ 0.0085(k − Q0) − ξ
∣

∣

∣ ǫ‖(eV-s) (34)

where ξ is chromaticity and ǫ‖ is longitudinal r.m.s. emittance. Because
transverse r.m.s. emittance in the RR certainly less of 10 mm-mrad, space
charge impedance dominates, what allows to represent stability condition
(31) in the form:

D < 0.061
∣

∣

∣ 0.0085 [ k − Q0 ] − ξ
∣

∣

∣

√

√

√

√ ln
(

250 [ k − Q0]

ǫ2
⊥(mm-mrad)

)

(35)
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where D is the beam ’phase density’ in terms of 95% emittances:

D =
N/1010

[ 4 ǫ‖(eV-s) ][ 6ǫ⊥(mm-mrad) ]
(36)

A rough estimation of the threshold density can be obtained using a
typical emittance ǫ⊥ ∼ 1 mm-mrad in the right-hand part of Eq. (35). More
exact results are plotted in Fig. 4 at nominal chromaticity ξ = −2 and at
ξ = −6. Some numerical solutions of Eq. (29) without approximation (31)
are shown also demonstrating rather good agreement. The lowest harmonic
k − Q0 = 0.575 (k = 1 in the picture) is most unstable if the damper is
off. If the damper is on and its gain is large enough, threshold of instability
can be obtained also by Eq. (35) at k − Q ≃ 588 (it is presumed that min
{ω(f), ω(c)} = 588 Ω0). It is seen from the figure that the offset damper can
provide merit factor 5 – 9 at nominal chromaticity ξ = −2 and 3 – 5 at
ξ = −6.
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Figure 4: Threshold beam density vs transverse emittance. Solid lines –
Eq. (35), circles – numerical solution of Eq. (29)
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4.2 Integer ω(c)/Ω0, narrow-band filter

In this part, we are assuming again that the damper characteristic is given
by Eq. (20) and (21) at ω(c)/2 < ω(f) < ω(c). With Landau damping taken
into account, it gives the following dispersion equation instead of (23):
[

I
(∓)
k,0 −W (t)(ω

(∓)
k )

][

I
(∓)
k,s −W (t)(ω

(∓)
k +sω(c))

]

= W (d)(ω
(∓)
k )W (d)(ω

(∓)
k +sω(c))

(37)
where

I
(∓)
k,n (W ) =

[

∞
∫

−∞

F (p) dp

W − δω
(∓)
k,n [p − p0]/σp

]−1

(38)

and
δω

(∓)
k,n =

d

dp

[

Ω(p) [ k + nω(c)/Ω0 ∓ Q(p) ]
]

σp (39)

Numerical solution of this equation is performed at the same conditions as
above (see subsection 3.2, and Eq. (27), (32)-(34)), Damper gain providing
∆ω(d) = 5/3 ∆ω(rw) is taken to ensure suppression of all low-frequency har-
monics. Ultimate phase density (36) is plotted in Fig. 5 vs harmonic number

300 400 500 600
Harmonic Number

0

1

2

3

4

5

D
en

si
ty

 (
10

10
/e

V
s/

m
m

m
ra

d) ξ=−2
ξ=−6

Figure 5: Threshold beam density vs transverse emittance. Solid lines –
Eq. (35), circles – numerical solution of Eq. (29)
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at ǫ⊥ = 1 mm-mrad and chromaticity −2 or −6. The ’long’ frequency scale
is used in this case like Fig. 3.

For harmonics k > 400 , i.e. outside the damper band, the same result as
above is obtained – see Eq. (35) and Fig. 4. An abruption at k = 400 appears
because of approximation (21) used, and would be smoothed out at more
realistic filter characteristic. Then the density increases i.e.the beam turns
more stable, reaching a total stabilization (formally infinite density) at k <
286. There is a distinction from an offset damper in this point, because
the last would assure a total stabilization even at k < 400 at the same
conditions (or k < 588 with wider low-pass filter). Another distinction is
that an additional gain of the onset damper effects on this (less stable) mode
only slightly, as it is seen also from Fig. 4. Nevertheless, considered ’medium-
band’ onset damper is also capable to bring threshold of instability inside the
band to a level exceeding the outside one.

5 Conclusion

It is shown that a digital damper, in principle, could provide a beam stability
right up to sampling frequency, that is up to 52.8 MHz in the Recycler.
Of course, low-pass filter should be wide-band enough also. However, an
excessive width can create problems at integer ratio of sampling/revolution
frequencies, coupling more of 2 harmonics with unclear consequences. The
damper offset cracks the problem bringing an optimal result if the filter band
a bit more of the sampling frequency – about 60 MHz for the Recycler. The
offset providing maximal space between the Schottky bands is required in
this case. It is about 7 kHz (optimal) but not less of 1 kHz for the RR.

Next table summarizes the RR digital damper efficiency at tune 0.425+in-
teger and transverse r.m.s. emittance 1 mm-mrad. Ultimate phase density of
the beam determined by Eq. (36) as well as most unstable harmonic number
are given for different cases.

Damper off Damper on Upgraded damper
Chromaticity k = 1 k ≃ 400 k ≃ 588

ξ = −2 0.23 1.1 1.5
ξ = −6 0.70 2.0 2.4
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