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Abstract

The terminologies, decoherence and Landau damping, are often used concerning
the damping of a collective instability. This article revisits the difference and relation
between decoherence and Landau damping. A model is given to demonstrate how
Landau damping affects the rate of damping coming from decoherence.
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1 Introduction

Decoherence and Landau damping are two commonly quoted terminologies when the curb-
ing an instability is addressed. To stop a transverse instability with growth rate 77, for
example, the spread in betatron frequency required is Awg = 771, roughly the same both
for decoherence and Landau damping. We want to ask: are decoherence and Landau damp-
ing the same thing? If they are not the same, we should compute the damping rate from
decoherence and the damping rate from Landau damping separately, so that the sum of the
two damping rates then becomes the true damping rate of the beam for that instability. If
they are the same, this summation will lead to double counting. Thus it is very important
to understand what is decoherence and what is Landau damping.

In Sec. 2, we review the concepts of decoherence and Landau damping in an ensemble of
oscillators. The study is next extended in Sec. 3 to a beam of charged particles in an accel-
erator vacuum chamber. We will see that decoherence and Landau damping, though very
different in concept, are inseparable. Although decoherence is not Landau damping, how-
ever, the Landau-damping does include decoherence. An example will be given to illustrate
how Landau damping influences decoherence. Sec. 4 is devoted to study the decoherence in
the longitudinal phase space. Finally in Sec. 5, conclusions are given. There have been quite
a number of good papers written on this subject by, for example, Hereward, [2] Hofmann, [3]
and Chao. [4] Some discussions in these articles will be used in this paper.

2 An Ensemble of Oscillators

2.1 Decoherence

Let us consider first an ensemble of oscillators, each having slightly different angular oscil-
lation frequencies w. If all oscillators are to have the same initial conditions, the motion of
the oscillators becomes out of phase as time progresses and the average displacement of the
ensemble decays. This is known as decoherence.

The process can be described mathematically. An oscillator with displacement y and
angular frequency w satisfies the equation of motion

j+wy =0, (2.1)

where the overdot represents derivative with respect to time. The most general solution is

. sinwt
y(t) = yo coswt + Yo — (2.2)

where yo and 9o are, respectively, the initial values of y and ¢ at time ¢ = 0. If all the
oscillators start with the same initial conditions, either yo # 0 but gy = 0 or gy # 0 and



Yo = 0, the average displacement of the ensemble becomes, as time evolves,

MW=%H®/MwMM@% Jo =0, (2.3)

or

mm:me/wmmmwx Yo =0, (2.4)

where H (t) is the Heaviside step function and p(w) is the distribution of oscillation frequency
in the ensemble of oscillators, which is normalized according to

/00 plw)dw = 1. (2.5)

We identify
G(t) = H(t) /dw coswip(w), (2.6)

and call it the shock response function, which is always real and vanishes when ¢t < 0. It
represents the time evolution of the average displacement of the ensemble of oscillators after
it is displaced by one unit. As an example, take the Lorentz distribution with half-width-

at-half-maximum Aw,
Aw 1

plw) = T (=) + (Aw)?’

where w is the mean angular frequency of the ensemble. The shock response function is

2.7)

easily found to be
G(t) = H(t) Re @A)t — [T(t)e™ 2! cos wt, (2.8)

and is depicted in Fig. 1. We see clearly that the average displacement of the oscillators
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Figure 1: Plots showing the shock response function G(t¢) for Lorentz frequency distribution.



decays with the e-folding time 1/Aw. In other words, if there is a collective transverse insta-
bility, with a growth rate 7! ~ Aw, the instability will not have been able to materialize.

We give this process the name kinematic decoherence. It is so called because only kine-
matics is involved and the equation of motion of each oscillator involves only its own intrinsic
frequency, which may also be amplitude dependent. A driving force either external or arising
from other oscillators, if present, will modify the decoherence.

2.2 Landau Damping

Now an harmonic force of amplitude A and angular frequency 2 is exerted onto the ensemble
of oscillators. The equation describing the displacement of one oscillator becomes

i + w?y = Acos Ot (2.9)

The most general solution is

sin wt

y(t) = yo cos wt + o [cos Qt — coswt]. (2.10)

w2 — ()2

The first two terms are due to a shock or d-pulse excitation, which have been discussed before
and has been shown to contribute to kinematic decoherence. As a result, these terms will
be dropped here in the present discussion. The third term is the response to the harmonic
force. Notice that this term is well-behaved even at w = (). For the whole ensemble, the
displacement of the center-of-mass is

(y(t)) = A/_Z dw % [COS Ot — cos wt}. (2.11)

The distribution p(w) is assumed to be a narrow one centered at angular frequency w. For
simplicity, let us assume that this distribution does not peak at any other frequency.! In
order to drive this ensemble of oscillators, the driving frequency must also be close to this
center frequency, or 2 &~ w. We can therefore perform the expansion w = Q + (w — 2), and
Eq. (2.11) can be approximated by

(y(t)) = ; [cos O / Tl plo) 2= o / R b L) BEPR P

w o w—{) o w—

"We may also assume the distribution to peak at both +& with the symmetry property p(w) = p(—w).
Then we obtain instead

(@) = % {/Zdw uf)(_—w;z - /oodw L‘”;J [cos Qt — coswt]

foo W

2
_A [ pw)
=3 [de - [cos QU — coswt]. (2.12)

However, the distributions commonly used, for example the Gaussian p(w) = exp[—(w — @)?]/(20?), do not
possess this symmetry property.



Notice that the fast-oscillating term of angular frequency €2 and the slow-oscillating envelope-
like terms with angular frequency w — ) have been separated. We also see a part, the cos (2t
term, that is not driven in phase! by the force, and the other part, the sin Q¢ term, that is
driven in phase by the force. It is interesting to see the asymptotic behavior of the average
displacement of the ensemble. We find that ast > 1/Aw, where Aw is a measure of the width
of the frequency distribution p(w), all the transients die, leaving us with (see Appendix)

(y(t)) = 2£_ {cos Ot o / " dw uf’ (“’22 4 mp(Q) sin Q| . (2.14)

w 00

The term proportional to sin ¢ in Eq. (2.13) is driven in phase by the harmonic force, and
the oscillators should be absorbing energy. Let us rewrite Eq. (2.11) in the approximation
that the frequency distribution p(w) is narrow around @:

Asinwt [ sin £ (w — Q)t
t)y = —— d —2 7 2.15
(o) = =2 [ dope) LA (215)
Consider a component corresponding to the frequency w, its envelope is
A sini(w—Q)t
Amplitude (w) — 4 2@ = Dt (2.16)

w w —

This means that all oscillators having frequency w are excited at ¢t = 0, increase to a maximum
of Af/[w(w—Q)] at t = 7/(w—), and die down to zero again at t = 27/(w—£2). Thus, energy
is gained but is given back to the ensemble. For w closer to €2, the response amplitude rises
to a larger amplitude and the energy is given back to the ensemble at a later time. For those
oscillators that have exactly the frequency €2, the amplitude grows linearly with time and
the absorption of energy continues indefinitely. This process of ceasing amplitude growth
except for the few oscillators having frequencies very close to € is called Landau damping.
An illustration is shown in Fig. 2, where the solid curve shows an oscillator having exactly
the same frequency as €2 and growing linearly, while the dashed curve shows an oscillator
with frequency 95% of Q decaying after about ten oscillations. In other words, oscillators
with w far away from €2 get excited, but the energy is returned, while those oscillators having
w close to € are still absorbing energy. Thus, as time progresses, less and less oscillators
will continue to absorb energy. As t — oo, only oscillators with frequency exactly equal to
) will be absorbing energy, and there are only very few oscillators doing this. If there is
a limitation to the amplitude such as the vacuum chamber of an accelerator, the process
stops when the growing amplitudes hit the limitation. This sets the time limit for Landau
damping to stop. The damping process starts when the amplitude of the first oscillator is
damped and this time is t ~ 27/ Aw.

fActually, “in phase” here implies the driving force is in phase with the velocity .
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Figure 2: Solid: The response of an oscillator having exactly the same frequency 2 as the driving
force grows linearly in time. Dashes: The response of an oscillator having frequency 95% of Q gives
up its energy after about 10 oscillations.

Let us study the energy distribution in the ensemble. The energy is proportional to the
square of the amplitude,
2 sin(w— Q)t/2

[Amplitude (w)] ST woae (2.17)

Therefore the energy of all the oscillators is

£

NA? /°° sin?(w — Q)t/2
- " (2.18)

2 dw p(w) w_Z

o

where N is the total number of oscillators in the ensemble. Figure. 3 shows the energy
distribution at the normalized time T' = Qt = 150 as a function of fractional frequency offset
dw = (w— Q)/Q, where a flat distribution has been assumed for simplicity. It is easy to see
all oscillators with frequency offset |6w| < w/T = 0.021 are inside the central area of the
plot and these oscillators continue to absorb energy from the harmonic force. On the other
hand, those oscillators outside the central area have their amplitude varying sinusoidally with
period AT = 7/éw, implying that they gain energy for half a period and give out energy
for the other half period. As time progresses the peak of central area, equal to 72, becomes
taller and taller while its width shrinks. This verifies that more and more oscillators stop
gaining energy and the number of oscillators continue gaining energy becomes smaller and
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Figure 3: Energy or amplitude squared distribution of the ensemble of oscillators as a function of
fraction frequency offset 0w = (w — ©)/Q at the normal time 7" = QT = 150. Oscillators inside
the central area continue to gain energy. Oscillators outside have their amplitude oscillating; they
gain energy in a half period AT = 7/(26w) and give up energy in the next half period. Uniform
distribution in frequency is assumed.

smaller.’ The fraction of energy possessed by oscillator inside the central area is

/T 372 ~
/ sm&g;éw 950 R
T == [ gu = 0.903, (2.19)
sin“Tow . T Jo u
e

$1t is often said that energy is being transferred from oscillators with frequencies w far from Q to those
oscillators with frequencies much closer to ). Strictly speaking, this statement is incorrect in this model.
From Eq. (2.9), it is clear that the oscillators are driven independently by the harmonic force. Since there
is no coupling between the oscillators, there is no way for energy to be transferred from one oscillator to the
other. In other words, each oscillator can be studied independently. Because the harmonic force is external,
there is no conservation of energy. The harmonic force drives an oscillator into motion with increasing
amplitude when it is in phase with the oscillator motion and damps the motion when out of phase. This
period of growing amplitude followed by damping is 7/dw. As a result, the average energy of the oscillator
under the influence of the force is always the same, although it does oscillate sinusoidally. For an oscillator
with frequency very close to §2, this oscillatory period of the amplitude is very long, or the oscillator continues
to absorb energy for a very long time. Since energy is exchanged between the oscillator and the harmonic
force, one may say loosely that energy is exchanged between oscillators through the harmonic force. As will
be seen below energy exchange between beam particles does occur when they are coupled by the impedance
of the vacuum chamber.



which is time independent. This implies that at any instant 90.3% of the energy reside in
oscillators that are absorbing energy continuously and these oscillators because less and less
as time progresses.

Since the square of the amplitude always covers an area of 7t/2, we have

: . 2 sinf(w—-O)t/2  wt
th_{& Amphtude(w)] = th_glo w02 32 O(w — Q). (2.20)
Thus, at t — oo, the steady-state energy of the ensemble is
m NA?
= — Q)t 2.21
5 o P, (2.21)

which increases linearly with time, and after an infinitely long time, all this energy goes into
those few oscillators having exactly the same frequency as ). However, we do see in the
asymptotic solution of Eq. (2.14) that (y(¢)) does not go to infinity. This is not a contradic-
tion, because even when a few oscillators have very large and still growing amplitudes, the
centroid will not be affected by very much.

We now see that decoherence is very different from Landau damping. Decoherence is
the response of a shock excitation on the ensemble and the mechanism is kinematic in
nature. On the other hand, Landau damping is the response of a driving force on the
ensemble. At the beginning when the force is exerted, all oscillators are driven in phase and
the displacement of the center of the ensemble increases rapidly. However, the motion of
more and more oscillators becomes out of phase because of the spread in frequency among
the oscillators. The displacement of the center of the ensemble starts decaying. The decay
of the displacement of the center is obviously the result of decoherence. However, this is
different from the kinematic decoherence after a shock excitation. It is the inability of an
harmonic force to excite the ensemble of oscillators coherently. For this reason, we can call
Landau damping dynamic decoherence.

3 Damping of a Beam

In our study so far, the amplitude A of the driving force is independent of the ensemble of os-
cillators. For an instability in a particle beam, the situation is slightly different. The driving
force comes from the wake fields of the beam particles interacting with the discontinuities of
the vacuum chamber, and usually has an amplitude proportional to the center displacement
of the beam. When there is a kick to the beam that creates a center displacement (y(0)) or
a center displacement velocity (7(0)), a force with amplitude A o (y(0)) or (y(0)) is gener-
ated and drives the whole system of particles with the coherent frequency 2. Each frequency
component of the beam will receive the amount of response according to Eq. (2.16). Now two
things happen. First, the particles give up their excited energy gradually to those particles
having frequencies extremely close to €2, the frequency of the driving force, and the center of



displacement approaches the transfer function R(u). Second, the center of displacement of
the beam starts to decay according to the shock response function G(t). As (y(t)) decreases,
the driving force decreases also. Finally, the disturbance goes away. This is how Landau
damping takes place in a beam. In fact, this process starts whenever the disturbance is of
infinitesimal magnitude, implying that any disturbance will be damped as soon as it occurs.
We say that there will be enough Landau damping to keep the beam stable. Notice that no
frictional force has ever been introduced in the discussion. Thus, there is still conservation
of energy in the presence of Landau damping, which merely redistributes energy from waves
of one frequency to another.

In case the frequency spread Aw is very very narrow, it will take ¢ ~ 7 /Aw for the first
wave to surrender its energy to another that has frequency closer to €2. This duration will be
very long. Before this moment arrives, all frequency components continue to receive energy
and (z(t)) increases and so will be the driving force. This is the picture of how an instability
develops when the spread of frequency is not large enough to invoke Landau damping.
However, the conservation of energy still holds. The energy that feeds the instability may
be extracted from the longitudinal kinetic energy of the beam resulting in a slower speed, or
from the rf system that replenishes the beam energy.

Let us consider the transverse betatron motion of a beam of particles. The equation of
motion governing the vertical displacement of a beam particle inside a coasting beam is

i+ wiy = iA(y), (3.1)

where the wake force on the right is proportional to the vertical displacement of the center-
of-mass of the beam and the constant A plays the role of the transverse impedance of the

vacuum chamber. More concretely, it can be easily shown that
elyBc2 7+
_ ehobeZy (3.2)
27TREO

where I is the beam current, Ej the nominal energy of a beam particle, R the mean radius
of the ring, and Zi- is the transverse impedance of the vacuum chamber, which is considered
to be broadband. The overdots on the displacement (6, t) represent the second-order total

> ) o\?
w = <§ +WO%) s (33)

with 6 denoting the azimuthal angle around the ring and wq is the angular revolution fre-

time derivative

quency. All the particles are initially at rest with y = 0 and y = 0. At time ¢ = 0, a vertical
displacement y(0,t)|—o = Y, ynoe™ and transverse velocity dy(6,t)/0tli—o = >, Unoe™
are imparted to the beam. We are going to study the time response of the center-of-mass.
Let us introduce the double Fourier transform

27 da )
— / / —y 9 t 7zn0+zwt. (34)



The inverse Fourier transform is given by

y(0,t) = Z / T (w)em =t dy, (3.5)
n=—oo w
where the contour W is from —oo + i to 0o + i with a > 0 and chosen in such a way
that the contour lies above all singularities of §(w) so that causality is preserved. After the
Fourier transform, Eq. (3.1) becomes the algebraic equation

—y27 #2 2:%)%0 + (W — O)n(w) = iA(Gn(w)), (3.6)

where 2 = w — nwy. In obtaining Eq, (3.6), we have made the assumption that w lies in the

upper half-plane so that the evaluation at ¢ = co can be performed. For simplicity, we set

Uno = 0 and solve for
. IAG(W)) Yo w—2nwo
n(w) = wg — 02 or wg - 02 (3.7)

Next integrate both sides with the distribution function p(wg) to obtain

—1Yno(w — 2nwy) ffooo :?3(“:‘;2)2 dwg

(Un(w)) = : (3.8)

21H(w)
where the function in the denominator is defined as
H(w) =1 —iA/ %dwﬁ when Zmw > 0. (3.9)
—oo Wi — 2

It will be convenient to define (g, (w)) in the lower w-plane as well so that contour integration
can be performed later to obtain the temporal evolution of the displacement of the center-
of-mass. It is easy to see that, as defined in Eq. (3.9), H(w) is discontinuous across the
real w-axis. Analytic continuation from the upper w-plane to the lower w-plane can be
performed easily by patching the discontinuity. This can be accomplished easily by changing
the contour of integration. Following Landau, this analytically-continued function can be
written conveniently as [1]

. p(ws)
where the contour C' is the path from ws = —o0 to oo with the detour of going above the

pole at wz = —(2 and under the pole at +{2, as illustrated in Fig. 4. It is important to note
that H(w) = 0 is just the dispersion relation governing the stability of the beam.
Now transforming back to the time domain, the response of the center-of-mass takes the

form,
w—2nw w
fc( 0)r(ws) g

— S d_w nf—iwt w%—!ﬂ
(y(0,0)= > yno/WQm.e Hw) : (3.11)

n=—oo
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Figure 4: To continue H(w) from the upper half w-plane to the lower half w-plane, the path of
integration C' in the wg-plane must go above the pole —{) and under the pole +£.

The solution consists of many waves which have frequencies that are the zeroes of H(w).
These zeroes are the collective eigen-frequencies of the dispersion relation and therefore of
the beam. First, let us consider the situation when there is no coupling impedance or H = 1.
The integration over w is performed first. Remembering that the contour of integration is
above all singularities, (y(t)) = 0 is obtained when ¢ < 0 by completing the upper semi-circle.
But for ¢ > 0, one must complete the lower semi-circle picking up the two poles at ££2 to
arrive at

(y(0,t)) = Z ynoei”(e_“’ot)/ dwgp(ws) (cos wst + o sinwwf) : (3.12)
n=-—00 % ws

which is the decoherence of the center of the beam subject to a sudden harmonic displacement

at time ¢t = 0. If this initial sudden displacement is the same for all beam particles, or

Yno = YoOno, the above simplifies readily to, for ¢t > 0,

o0

WO.0) = [ duaplios) coswat, (313
which is just the shock response function as defined in Eq. (2.8).

In the presence of the coupling impedance, H differs from unity and the response consists
of one or more collective waves instead. If the collective effect, driven by the impedance of
the vacuum chamber, is large and the spread in betatron frequency is not large enough for
damping, there will be a growing collective wave which dominates over all other collective
waves in the response (y(t)). The response will therefore have large deviation from the shock
response function (or from kinematic decoherence). However, if the spread in betatron
frequency is large enough so that the collective instability is Landau damped, then the
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collective waves will all be damped, and the response of the center-of-mass will not deviate
much from the shock response function. In that sense, we may say Landau damping is not
much different from kinematic decoherence. Thus there will not be double counting because
the dynamical effect is small. This explains why it is not easy to reveal the impedance effects
by monitoring decoherence after a sudden kick of the beam.

An example is Experiment E778 performed at the Fermilab Tevatron at the design era
of the Superconducting Super Collider (SSC), where the linear aperture of the lattice was
pursued. [5] Since the beam in the Tevatron was very stable, the decoherence monitored
received negligible contribution from the impedance of the ring. [6] If the beam were not
so stable, the experiment could not have been performed. To reveal impedance effects, the
beam under study must be close to the threshold of instability, but still be stable subject
to a transverse kick. In any case, we have demonstrated that Landau damping involves
decoherence, but is much more than kinematic decoherence. On the other hand, simple
decoherence is just a kinematic process and is different from the dynamic process of Landau
damping, especially when collective effects are strong.

In order to show that decoherence is an essential ingredient of Landau damping, let us
consider the Lorentzian distribution

o 1

plwp) = ;(WQ—CD)2+0'2’

(3.14)

where @ is the mean and o is the spread. We obtain by completing the upper semi-circle
and picking up the poles at wg = € and w + io,

p(ws) Q+10
d = - . 1
/C PR Q-0 +i0)(Q+w+io) (3:15)

Substituting into Eq. (3.11), we can write

= , a2 e~ (nwy — Q) (2 + io)
_ in(0—wot) 0
(w000 = > vnoe /W 27 UQ — @ +1i0)(Q+w + i0) +iA(Q + o)’ (3.16)

n=—oo

The three poles in the denominator are exactly the same three solutions to the dispersion
relation H(w) = 0. This indicates that the response of the beam center consists of three
harmonic waves. Recall that the ¢4/(2w) just serves as the dynamic part of the betatron
frequency shift in the absence of betatron frequency spread. We can therefore make the

A
% < @, (3.17)

approximation that

and assume that it is of the same order as 0. Physically, Eq. (3.17) states that the dynamic
frequency shift or growth rate should be much less than the mean betatron frequency and is of
the order of the betatron frequency spread. Thus we can write A = 2we with |¢| ~ O(0) < w.
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Here, ¢ is nothing more than the transverse impedance Z;i- multiplied by a positive constant.
The denominator of the integrand can then be rewritten as

D=QQ+w+i(oc—e€)][Q—w+i(o+e)]+i2woe. (3.18)

The problem will be very much simplified if the last term i2woe is neglected. Keeping only
the lowest order terms, the result is

= MWT o0
W(O.0) = Y yoo| g €O+

W — N inf—i(nwo+)t ,—(o+e)t
—F——¢€ e +
2w
W + nwg

= einf—i(nwo—w)t ,—(o—€)t | (3.19)

The first term is just an harmonic wave with a small frequency perturbation ~ —20¢/w
which we have neglected.Y This term comes from those particles with ws = 0, because of
the peculiar behavior of p(0) # 0 in the Lorentzian distribution. Thus, this term should
not be there in a more realistic distribution. The second term corresponds to the upper
betatron sidebands of all harmonics, positive and negative, while the third term corresponds
to the lower sidebands. Since upper and lower sidebands will give the same physics, we can
concentrate on the second term only. When nw 4+ w > 0, the harmonic waves are either fast
waves or super-slow waves and Re Z{+ > 0. Thus Ree > 0, which enhances the kinematic
decoherence rate 0. When nw + @ < 0, we are dealing with slow waves. Since Re Z{- < 0,
so is Re €, implying that a transverse impedance cancels partly the decoherence rate. As the
transverse impedance increases, the slow waves start to grow eventually when o + Ree < 0
and the beam becomes unstable.

The Lorentzian distribution has been chosen here in favor of the more common Gaussian,
because the former leads to a solution with a finite number of terms corresponding to a finite
number of zeroes in the dispersion relation. On the other hand, a Gaussian distribution will
lead to an infinite number of terms in the solution. Just retaining the term with the highest
growth sometimes may not be meaningful because an infinite sum may lead to anything.

Let us apply the solution to Experiment E778. In 1987, E778 was performed with beam
intensity N, = 0.5 x 10'° per bunch, rms bunch length oy, ~ 15 cm, rms momentum spread
os = 1.5 x 107, energy Ey = 150 GeV, and betatron tune vg ~ 20. With a chromaticity of
§ = 10 units, the betatron tune spread is 0,, = {os = 1.5 X 1073, or the rms decoherence
time is 670 turns. The Tevatron has a mean radius of 1 km. For an exponential decay
corresponding to the Lorentzian distribution in Eq. (3.14), the rms decay time is v/2/o.
Thus we set o = v/20,,wo = 450 s7*. The peak current Iy = eN,Bc/(V2roy) = 0.64 A

YKnowing that this solution for € is much smaller than @, we can set the second and third €’s on the
right side of Eq. (3.18) to zero. Then it is easy to find Q = i20¢/® to be second order in o or e.
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should be used in Eq. (3.2). The transverse impedance was about Zi- = 2 M)/m according
to the estimation in Ref. [7] from ~ 1 MHz to ~ 1 GHz. We therefore obtain

GIOCZIL

‘- drEyvg

=102, (3.20)

or a growth time of wy/e = 2.9 x 10* revolution turns. We can therefore conclude safely that
the effect of coupling impedance to the observed decoherence rate is negligible.

4 Longitudinal Decoherence

If decoherence and Landau damping are two completely independent mechanisms, there
should be a knob with which we can turn off decoherence or Landau damping in a beam
interacting with a coupling impedance. In this way, either process can be studied separately.
Let us investigate whether the energy-offset distribution in a beam can serve as such a knob.
In the longitudinal instabilities of a coasting beam, we learn that the beam transfer function
involves the derivative of the energy distribution. In other words, there will not be any
Landau damping in a flat distribution. On the other hand, decoherence appears to take
place via any energy distribution. It may therefore be difficult to visualize the involvement
of decoherence in Landau damping. In fact, this argument is incorrect. It is easy to show
that decoherence of a coasting beam also requires the derivative of the energy distribution. [§]

Let us choose as canonical variables the energy offset AE and the azimuthal angle around
the ring § = s/R, where s is measured along the on-momentum orbit and R is the mean
radius of the ring. The distribution that is normalized to unity can be written as

[0, AE;t) = fo(AE) + f1(0, AE; 1), (4.1)

where fo(AFE) is the stationary distribution of a coasting beam which must be a function of
AFE only. The perturbation part of the distribution can be obtained by adding a harmonic

deviation
OE(0) = 0E cos kO (4.2)
at time ¢ = 0. We therefore have at t = 0+,
_ dfy —~
f(0. AE;0+) = fo(AE = 0E cos kf) = fo(AB) — - AfOE(SEcos k6. (4.3)

A particle moves according to 6 = 6" + wyt where 0 is the position at ¢ = 0 and wy is the
revolution angular velocity. Thus the perturbation distribution at time ¢ > 0 is

dfo

fi1(0, AFE;t) = _dAE(SE cos(kf — kwot). (4.4)

The perturbation part of the current recorded at 6y jumps from zero at ¢t < 0 to

N NSE [ d
N(0,t)= 627 wofi(0, AE;t) dAE = = / ﬁ wo cos(kf— kwot)dAE (4.5)
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at t > 0, where N is the total number of particles in the beam. We next change the variable
of integration from AFE to Awg, where Awy = wy — @y is the deviation from the nominal
revolution angular frequency wy. For this, we introduce the distribution go(Awg) that is
normalized to unity when integrated over Awqy by

fo(AE)dAE = go(Au)o)dAu)o. (46)
Then if p .
0 9o NWo  ago
AE = Awp = — A 4.
ang @ dAE AN = T e G, A (4.7)

where 7 is the slip factor, Fy is the nominal particle energy, wy is the nominal revolution
angular frequency, and 3 is the relativistic factor. The negative sign comes about because
the revolution angular frequency wy is smaller at a larger energy offset AE above transition
(n > 0). The perturbation part of the current recorded at location 6y as a function of time
becomes

eNmDSgE /°° dgo

]1 (9, t) B QTBQEO 00 dAu)o

[COS(kG — kwot) cos kAwgt +

+ sin(kf — kwot) sin kAwgt | dAwy. (4.8)
Since fo(AE) is even in AE, g(Awyp) is even in Awy. This indicates that dg/dAwy is odd in
Awg. Thus the cosine term vanishes leaving behind

d
sin(kf — kwot) / dAgf; sin kAwot dAwy. (4.9)
o 0

eNnw2sE
L(6,t) = WQOEO

We can identify the longitudinal shock response function in a coasting beam as

G)(t) = H(t) /_oo digfjo cos kwot dwy, (4.10)
where H(t) is the Heaviside step function, because it tells us how the perturbation in the
current dies away after a disturbance at t = 0. We can now understand how longitudinal
kinematic decoherence takes place, especially its involvement with the derivative of the
distribution function.

To conclude this section, let us compute and plot the time evolution of the energy per-
turbation to the beam. With the aid of Eqs. (4.3) and (4.7), the distribution in phase space
is -

F(0,AF:) = f, {AE _ §F cos <k:0 ~ kot + %AEH (4.11)
0
Let us normalize everything to the rms energy spread o of the unperturbed beam. The
distribution observed at the nth revolution turn is

f0,AE;t) = fy [5 — acos(kl + k{s)], (4.12)
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where we have used the abbreviations

AFE o) 2mnnog
E = — a = — = —
Op ’ O—Ej 62E0

(4.13)

This distribution for the energy disturbance with second harmonic (k = 2) and disturbance
amplitude a = gE/UE = 0.4 is shown in Fig. 5 at different ‘times’ & = 0, 0.31, 0.62, 0.93,
and 1.24. In each plot, equi-density curves are depicted at ¢ = —2.0 to 2.0 in steps of 0.5.
As an example, the equi-density curve at density x o’s fo(z) is obtained by solving for £(0)

from the equation
e —acos(kl + kée) = x. (4.14)

On the right is shown the energy spread distribution of the beam observed at the azimuthal
angle § = 1 along the ring, where we have assumed a Gaussian for the unperturbed beam,
or ]
= —o*/2 4.15
x) = e . .

In the bottom is the perturbed beam current at each € obtained by integrating over AE, or

1(0,¢) = /_OO fole — acos(kb + ke)]de. (4.16)

We notice that at time & = 0+ just after the introduction of the energy disturbance, the
energy-spread distribution at 0 = x is still Gaussian but shifted to a higher energy by the
amount a = 0 F /0. There is completely no change in the beam current at all because the
disturbance is in the energy direction.

As time progresses, shearing occurs in the beam because of the finite slip factor n with
particles having larger energy offsets shear more than those having smaller energy offsets. As
a result, the equi-density curves are no longer sinusoidal and the energy distribution deviates
from Gaussian. As the maxima of one equi-density curve move away from those of the others
and the beam current starts exhibiting a cos 26 linear density, which possesses the largest
amplitude at € = 0.5. As time goes on, however, the shearing becomes so pronounced that
the modulations at the different energy deviations overlap. This reduces the modulation of
the beam current and the cos 260-behavior slowly dies down in the last two plots. This is just
the static decoherence of an energy disturbance in a coasting beam. Now it is easy to see
why there will not be any decoherence if the energy distribution of the unperturbed beam
is flat. In that case, we can no longer talk about equi-density curves. Instead every point in
the longitudinal phase space has the same density or the whole longitudinal phase space is
of equi-density. A truly flat distribution does not support any energy disturbance at all and
therefore we cannot talk about decoherence either. For a water-bag energy distribution, an
energy disturbance occurs at the two edges of the distribution. Decoherence occurs when
the two edges shear differently.
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Figure 5: Ilustration of longitudinal decoherence of an energy disturbance of harmonic £ = 2 and
modulation amplitude a = 0E /oy = 0.4 in a coasting beam, where oy is the rms energy spread
of the unperturbed beam. The first five plots are at ‘times’ & = 04, 0.31, 0.62, 0.93, and 1.24.
Shown in each plot are equi-density curves at 0, +0.5, +1.0, £1.5, and +2.00z’s. The energy
spread distribution as recorded at azimuthal angle 8 = 7 along the ring is shown at the right,
with Gaussian assumed for the unperturbed. The perturbed current is shown at the bottom. The
current modulation starts from zero at £ = 0+, goes through a maximum at £ = 1/k = 0.5, and
rolls off like a Gaussian, as illustrated in the last plot.
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The decay of the current modulation can be derived directly from Eq. (4.5) by integrat-
ing over the revolution-frequency offset Awy or the energy offset AE. In the normalized
notations, we have

= asin(k0 — kwot) Z—{? sin ke de, (4.17)

]1(97 f)
Iy

where Iy = eNw/(27) is the unperturbed current of the beam. For a Gaussian distribution

—0o0

in energy spread for the unperturbed beam, the integral can be performed exactly to give

11(07 5)
Iy

— —asin(kd — kgt kEe 2, (4.18)

As monitored at location # = m, the envelope of the current modulation increases linearly
with time, goes through a maximum at £ = 1/k, and rolls off like a Gaussian, agreeing with
what we observe in the numerical plots.

5 Conclusions

We have answered a number of questions concerning decoherence and Landau damping:

1. Decoherence is usually the smearing of the phase space because of the spread in fre-
quency among an ensemble of oscillators. We reference this as kinematic decoherence.

2. Landau damping is the inability of an harmonic force to excite an ensemble of oscillators
coherently because of the spread in frequencies among the oscillators. Only those few
oscillators will continue to absorb energy from the force. For the large majority, energy
is absorbed and released. Since decoherence is involved, we can reference Landau
damping as dynamic decoherence.

3. Since kinematic decoherence and Landau damping are two difference processes, the
damping rate for each of them should be computed and added together in a certain way.
A demonstration has been made using a model of beam particles with their transverse
motion coupled by the transverse impedance. A small transverse displacement of the
beam excites harmonic waves in the particle beam. Depending on the sign of the real
part of the impedance, these waves can be damped faster or slower than kinematic
decoherence, and can even become exponentially growing in amplitude.

4. We have not been able to find a knob that can turn off decoherence or Landau damp-
ing. We have demonstrated that the longitudinal decoherence of a coasting beam also
depends on the gradient of the energy-offset distribution just as in Landau damping,
and is not such a knob.
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Appendix
To study the transient effects of Eq. (2.13), it is convenient to introduce two functions
1 - t inwt
pw)= L% ad dw) = 2 (A1)
w W

as illustrated in Fig. 6. The function p(w) always vanishes at w = 0 and decays as w! when
w — £oo. It has peaks of values tat at +b/t, where b = 2.33 is the root of b = tan(b/2)
and a = 2b/(1 + b?) = 0.725. These peaks grow linearly with ¢=! and move closer to w = 0
as t increases. When t — 00, the function approaches

) 1
fim p(w) = p—, (A.2)
where p stands for the principal value. On the other hand, d(w) has a peak of value ¢ at
w = 0 and rolls off as w™' for large w, having the first zeroes at w = +7/t. As ¢t — oo,
the peak at w = 0 grows linearly with ¢ while its width also shrinks inversely with ¢; the
area enclosed is always 7. Outside the peak, the function oscillates very fast with period
Aw = 271 /t. When t — oo, the function approaches

lim d(w) = 1é(w). (A.3)

t—o0

Coming back to Eq. (2.13), as t > 1/Aw, where Aw is a measure of the width of the
frequency distribution p(w), all the transients die, leaving us with Eq. (2.14), the limiting
displacement of the center of the ensemble of oscillators.

plw)= Jlfco;c))swt d(w):SH&l}wt t
0.725t 7

m/t

AN Ty

Figure 6: Plots of the functions p(w) and d(w) with ¢ being a parameter. As ¢ — oo,
p(w) — pw ! and d(w) — 7 (w), where g denotes principal value.
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The derivation can be repeated with the force Asin Q¢ and the solution combined with

the former to arrive at the long-term response to the force Ae **:
AefiQt o0 p(w) AefiQt
— ARy = A4
ey =2 [o [ aw 20 imp)| = 55 R, (A4
where the transfer function (TF) is defined as
R(u) = f(u) +1g(w), (A.5)
with __q
o
U= (A.6)
and -
f(u) = Aw p/ dw wp(—% and g(u) = TAw p(w—ulAw). (A.7)

Here Aw is a measure of the width of the frequency distribution and the parameter u plays the
role of the relative deviation of the frequency of the driving force from the mean frequency
of the system. The transfer function is essentially the response of the particle per unit
driving force. It is an important function, because it can be measured and it gives valuable
information on the distribution function p(w). As will be demonstrated below, when the
driving force is acting on a beam inside a vacuum chamber, the transfer function contains
also information on the coupling impedances of the vacuum chamber.
We can also combine the two expressions in Eq. (A.7) into one to obtain

o)

R(u) = f(u) +ig(u) = Aw/ dw _ ) (A.8)

w—0—ie

—00

There is a singularity in R(u) when 2 = w — i€ or uAw = © — w + ie. This implies that, if
p(w) is analytic, R(u) is an analytic function with singularities only in the upper u-plane.
Notice that instead of the derivation starting from the initial condition, the displacement of
the center of the bunch, Eq. (A.4), can also be obtained directly by writing the force as

Ae=iO+it — go=i et (A.9)

where € is an infinitesimal positive number, so that the solution becomes

0 / Tgg W) AT [p / " dw wp(“’z) Limp(@)], (A10)

2w w— Q) —ie 200

— 00 —00

which is exactly the same as Eq. (A.4). The addition of the small € implies that the force
in Eq. (A.9) is zero at t = —oo and increases adiabatically. It is interesting to point out the
transfer function R(u) is the Fourier transform of the shock-response function G(7). This
may shed more light on the relation between decoherence and Landau damping.
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In the study of microwave instability of a coasting beam, we can also define a longitudinal
transfer function for revolution harmonic n, [4]

Ry(uw) = fy(u) +igy(u) = (Awp)? {p/dw%pl& +inp (%)] , (A.11)
where . 20— Qfn
N

p(wp) is the distribution in angular revolution frequency of the beam, with mean w, and

(A.12)

spread Awy. It differs from the transverse one by having the involvement with the gradient
of the distribution function rather than the distribution function itself. It can also be shown
that the longitudinal transfer function Rj(u) is the Fourier transform of the longitudinal
shock-response function G)(t) defined in Eq. (4.10). This serves as another demonstration
that both Landau damping and longitudinal decoherence depend on the gradient of the
distribution function in revolution frequency.

References

[1] L.D. Landau, J. Phys. USSR 10, 25 (1946); J. D. Jackson, Nucl. Energy Part C: Plasma
physics 1, 171 (1960).

[2] H. G. Hereward, CERN Report 65-20 (1965).

[3] A. Hofmann, Coherent Beam Instabilities, Frontiers of Part. Beams: Intensity Limita-
tions, Lecture Notes in Phys. 400, eds. M. Dienes, M. Month, and S. Turner (Hilton
Head Island, SC, Nov. 7 14, 1990) Springer-Verlag, 1990, p. 110.

[4] A. W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, Wiley
Interscience, 1993, Chapter 5.

[5] A. Chao, D. Johnson, S. Peggs, J. Peterson, C. Saltmarsh, and L. Schachinger, R. Meller,
R. Siemann, R. Talman, P. Morton, D. Edwards, D. Finley, R. Gerig, N. Gelfand,
M. Harrison, R. Johnson, N. Merminga, M. Syphers, FEzxperimental Investigation of
Nonlinear Dynamics in the Fermilab Tevatron, Phys. Rev. Lett. 61, 2752 (1988);
N. Merminga, D. Edwards, D. Finley, R. Gerig, N. Gelfand, M. Harrison, R. John-
son, M. Syphers, R. Meller, R. Siemann, R. Talman, P. Morton, A. Chao, T. Chen,
D. Johnson, S. Peggs, J. Peterson, C. Saltmarsh, and L. Schachinger, Nonlinear Dynam-
ics BExperiment in the Tevatron, Proc. of 1989 IEEE Part. Accel. Conf., eds. F. Bennett
and J. Kopta (Chicago, March 20-23, 1989), p. 1429.

6] K. Y. Ng, Impedance Effects on Decoherence Rate of Fzperiment E778, SSC Report
SSC-N-436, 1987.



21

[7] K. Y. Ng, Impedances and Collective Instabilities of the Tevatron at Run II, Fermilab
Report TM-2055, 1998.

8] A. Hofmann, Landau Damping, CERN Accelerator School 5th Advanced Accelerator
Physics Course, (Hotel Paradise, Rhodes, Greece, Sept. 20 Oct. 1, 1993), p. 275, CERN
Report CERN 95-06.



