FERMILAB-FN-0762-AD

Comments on Landau Damping due to

Synchrotron Frequency Spread

K.Y. Ng
Fermi National Accelerator Laboratory,” P.O. Box 500, Batavia, IL 60510

(January 1, 2005)

Abstract

An inductive/space-charge impedance shifts the synchrotron frequency downwards
above/below transition, but it is often said that the coherent synchrotron frequency
of the bunch is not shifted in the rigid-dipole mode. On the other hand, the inco-
herent synchrotron frequency due to the sinusoidal rf always spreads in the downward
direction. This spread will therefore not be able to cover the coherent synchrotron
frequency, implying that there will not be any Landau damping no matter how large
the frequency spread is. By studying the dispersion relation, it is shown that the above
argument is incorrect, and there will be Landau damping if there is sufficient frequency
spread. The main reason is that the coherent frequency of the rigid-dipole mode will

no longer remain unshifted in the presence of a synchrotron frequency spread.
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Energy.



1 Introduction

A capacitive or space-charge impedance below transition (or an inductive impedance above
transition) shifts the incoherent synchrotron frequency downwards while it is often said that
the coherent synchrotron frequency of the rigid-dipole mode of the bunch is not shifted and
remains at the value of the bare synchrotron frequency. Let us turn on synchrotron frequency
spread as a result of the sinusoidal rf potential. This provides the incoherent synchrotron
frequency a spread also in the downwards direction. Thus the coherent synchrotron frequency
appears always to be not covered by the incoherent spread at all, and therefore there would
not be any Landau damping no matter how large the frequency spread is. An illustration

is shown in Fig. 1. The figure is drawn schematically for the Tevatron in Run II 36 x 36
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Figure 1: Schematic drawing showing the incoherent spread of of the synchrotron frequency in
the sinusoidal rf potential shifted away from the coherent synchrotron frequency which remains
at the bare frequency fso, thus not being able to provide Landau damping. Here f,. denotes the
incoherent synchrotron frequency of the particles at the center of the bunch. The figure is drawn

schematically for the Tevatron in Run II 36 x 36 operation.

operation, where the proton bunch has the intensity N, = 2.7 x 10'° with a rms bunch length
oy = 37 cm. At injection, the energy is Fy = 150 GeV. Assuming a parabolic distribution
with half-bunch length # = v/50,/(/3¢c), the incoherent synchrotron frequency shift subject
to an inductive longitudinal impedance Zm Z(|]| = 3 (2 is given by
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where use has been made of the mean ring radius R = 1 km, the rf harmonic A = 1113, the
rf voltage Vi = 1 MV, the rf synchronous phase ¢, = m, the slip factor n = +0.002827, the
bare synchrotron frequency fso = for/—nheVis cos ¢,/ (2m32Fy) = 87.2 Hz, and the average
bunch current [, = eN, fo with fo = wg/(27) = 47.7 kHz denoting the revolution frequency.

The spread of the synchrotron frequency from the center to the edge of the bunch can be

approximated by [1]

Afs 1+sin?¢,\ (7hifo)’
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[0 (1 — sin? ¢S) ( 2 0.0529  or fs‘spread 62 Hz (1.2)

The purpose of this paper is to demonstrate that the above assertion is incorrect, and there

spread

will be Landau damping provided that the spread in incoherent synchrotron frequency is
large enough. The main reason is that the coherent synchrotron frequency will not remain
unshifted in the presence of the synchrotron frequency spread. The investigation is through
the dispersion relation of a bunched beam, which will be reviewed in Sec. 2. The elliptical
distribution in the longitudinal phase space (or parabolic linear distribution along the phase
or time axis) will be used in the study. As an addendum, we are showing also stability

threshold curves for other distributions and also in the higher azimuthal modes.

2 Dispersion Relation

The discussions on collective instability and Landau damping are best derived from the
dispersion relation, for which we are going to give a brief derivation. [1, 2] Let 7 be the
arrival time of a particle at a location in the ring ahead of the synchronous particle, and

pr = nAE/(8%w,.Ey) its canonical momentum. They obey the equations of motion:

dr Wae

-V = Pr

dﬁs N _— (2.1)
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where w,, is the incoherent angular synchrotron frequency of the particles at the center of
the bunch and v = fSc is the nominal velocity. This formulation makes the two canonical
variables more symmetric. In the absence of the wake force (FA' (735))ayn, the trajectory of
a beam particle is just a circle in the longitudinal phase space. In above, the dynamic part

of the longitudinal wake force is defined as
(B (73.8))aya = (Fy (75 ) rotar — (B (75 5) sta - (22)
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and only the dynamic or time-dependent part of the linear density of the bunch will con-
tribute. The static part of the linear density has already been taken care of by solving the
problem of potential-well distortion so that we have the incoherent synchrotron frequency
wse used in the equations of motion and the Vlasov equation below instead of the bare

synchrotron frequency wsg.

The phase-space distribution 1 of a bunch can be separated into the unperturbed or

stationary part 1y and the perturbed part 1;:
7/1(7': AEa 5) = wO(Ta AE) +w1(7—a AE? 8) ) (23)

where 1 (TAF) is obtained from solving the problem of potential-well distortion in the zeroth

order Vlasov equation. The first order Vlasov equation is

8¢1 Wse aQ:bI + Wse 8¢1 + alpO n
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{ T=7rcoso, (2.5)

(Fl(7:8))agn = 0 (2.4)

and, in the circular coordinates,

pr =rsing ,
it simplifies to
% Wse 81/}1 n dwo

; .. _
3 o 96 T Beop dr SR ))ay = 0. (2.6)

The perturbed distribution can be expanded azimuthally in the longitudinal phase space,

’l“ ¢’ Zam m zm¢>—iQs/U ’ (27)

where R,,(r) are functions corresponding to the mth azimuthal, «,, are the expansion co-
efficients, and €2/(27) is the collective frequency to be determined. In above, m = 0 has
been excluded because it has been included in the stationary part 1y, otherwise charge

conservation will be violated. The Vlasov equation becomes

(Q—mwsc)amRm(r)e_ms/”——EOZJZB d;ff)/ ;M) e MPsin qb(F”(T $))dyn - (2.8)

The wake force acting on a beam particle at location s, with time advance 7 relative to the
synchronous particle, due to all preceding particles passing through s earlier can be expressed

as
2 00

© dr'K (7' — )M (1 8) | (2.9)
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where the translational-invariant kernel K (7" — 7) is exact for continuous interactions such
as space-charge or resistive-wall (assuming smooth walls), and retains the average effect of
localized structures such as cavities. For a broadband impedance the kernel is the same as
the longitudinal monopole wake potential, or K (7) = W{(7). Since the perturbed linear dis-
tribution A;(7; s) is equal to the projection of ¢ (1, AE; s) onto the T-axis, Eq. (2.8) becomes

an eigen-equation in the R,,(r) after substituting the azimuthal expansion of Eq. (2.7).

We now make the approximation that the perturbation is small so that Q — mw,. <
wse, implying that the coupling between different azimuthal modes can be neglected. This

simplifies the Vlasov equation to one involving only one azimuthal mode m,

d (0@
(Q—mwse) R (1) = —% / G (r, ") Ry (r)r'dr” (2.10)
0
where the interaction matrix is
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Equation (2.10) is the simplified form of the Sacherer’s integral equation. [3] Given a lon-
gitudinal wake WA' (1) and an unperturbed distribution y(r), the coherent frequency of
excitation {2 can be solved. Unfortunately, analytic solutions are only possible for some
particular vy(r), especially when there is a spread in the incoherent synchrotron frequency,
such as inside an rf bucket. In order to extract some useful information concerning the
stability of the particle beam, we resort to the method of synthetic kernel, which involves
the substitution of the kernel of longitudinal dipole wake by a simple function. To study
dipole motion, we assume the wake force to be proportional to the longitudinal position of
the bunch center, an assumption which should be true only when the bunch is rigid. Looking
at Eq. (2.9), we can readily set the kernel as

K(t'=7)=A("" —7) = A(r' cos ¢’ —rcos o) , (2.12)

where A is a constant. We obtain immediately

me?vA

2

Gm(r,r') = — ' 0m1 (2.13)

or only the m = 1 dipole mode will contribute as expected. Substitution into Eq. (2.10)

gives
relvA " (r
Rl(’l") = 9 Cl ¢0( )Sc s

(2.14)



where the prime denotes derivative with respect to r and
o) = / Ro(r)r2dr (2.15)
0

is a constant. Landau damping is introduced by assuming a spread in the incoherent syn-
chrotron frequency, making it a function of r such that ws(0) = ws.. Thus multiplying both

sides by r? and integrating over r leads to the dispersion relation

00 / (7")7"2
1=—7A 0 2.1
A wsdyn/o 0 _ ws(r) dr ) ( 6)
where Awgqyn = —e*vA/2. Actually Awgqyn has a physical meaning. When there is no

spread in the incoherent synchrotron frequency, the denominator of the integrand can be
moved to the left side. It is then easy to verify that Awsgm = @ — wee, OF Awsqyn is
the dynamical shifting of the incoherent synchrotron frequency wyaqy, towards the coherent
frequency €). Since the incoherent synchrotron frequency shift for particles at the bunch
center is defined as

Au-1sin4:oh = Wse — Ws0 (217)
we arrive at

Adeyn = (Q - wSO) - Awsincoh ) (218)

implying that Awgayy, is the difference between the coherent frequency shift and incoherent
frequency shift. We refer Aw;qyn as the dynamic frequency shift arriving from the dynamic

effects of the wake fields. As an example, let us consider the elliptical distribution

3 r2
Yo(r) = Q72 L - 727 (2.19)

when r < 7 and zero otherwise. When projected onto the 7-axis, this distribution leads to

the parabolic linear distribution

Ao(7) = 4—?; (1 - 7—2) , (2.20)

72

when |7| < 7 and zero otherwise. Let us first neglect the synchrotron frequency spread in
the sinusoidal rf potential. In the presence of a constant Zm Zg /n such as space-charge below
transition, every particle in the bunch including the one at the bunch center has the same

self-force frequency shift given by Eq. (1.1), which can also be rewritten as

3e*NynIm Z(‘)‘/n
87Tﬁ2E0w5(]7A'3

Aws incoh — (2 21 )
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Notice that this frequency shift is negative when driven by a space-charge impedance below
transition or inductive above transition. Now because of the dynamic effects of the wake
fields, the coherent frequency at which the center of the bunch is oscillating receives an
additional dynamical shift Awggyn. Thus the coherent synchrotron frequency of the bunch
is

Q= ws0 + AWsincon + Awsdyn - (2.22)
Because the wake-field pattern and therefore the potential-well distortion moves with the
bunch in this rigid-dipole mode, the bunch center will not be affected by the wake field at
all. For this reason, we must have in this case the cancellation of the dynamic frequency
shift and the incoherent frequency shift so that the coherent frequency € is just equal to the
bare synchrotron frequency. As will be demonstrated below, however, this is true only when

there is no spread in the incoherent synchrotron frequency.

Before ending this section, let us give some more comments about how the synthetic
kernel has affected the problem physically. There is only one rigid-dipole mode (with m = 1),
which is generated by displacing the unperturbed bunch distribution ¢ from the equilibrium
position of the rf potential so that the distribution rotates rigidly with the synchrotron
frequency. However, there are infinite number of nonrigid dipole modes with m = 1. For
example, we can imagine the bunch as an elastic sheet in the longitudinal phase space and has
only its center part displaced from the equilibrium position of the rf potential but leaving the
edge part of the distribution undisturbed. The perturbation now rotates with synchrotron
frequency but with a particular distribution radially. The same applies to the quadrupole
modes (m = 2), sextupole modes (m = 3), etc. In other words, there are infinite number of
radial modes associated with each azimuthal mode. The synthetic kernel just singles out the
most easily excited radial mode (the one with the least frequency shift) for each azimuthal,

thus reducing the twofold infinity of modes to only one series of modes.

3 Elliptical Distribution

In the elliptical distribution, the only spread of incoherent synchrotron frequency comes from

the sinusoidal rf potential well. With small half bunch length 7, this spread is given by

Wsincoh(%) = Wse — S%Q ) (31)



where w,, is the incoherent angular synchrotron frequency of particles at the center of the
bunch and the spread S can be can be read off from Eq. (1.2),

hwo \ 2 1+ sin? ¢
S = , 3.2
<4) 1 —sin?g, ’ (3:2)

where h is the rf harmonic. The dependence on the synchronous angle ¢, is the result of
a fitting with numerical computation. Here, the expression for S, quoted for the sake of
completeness, will not be used in the discussion below. However, it is important to point
out that this spread of synchrotron frequency, as defined in Eq. (3.1) is measured from w..,

the incoherent synchrotron frequency of the particles at the center of the bunch.

For the rigid-dipole mode (m = 1), the dispersion relation now takes the form

= ahy(r)r?
1 = —71Awsgyn — T dr. 3.3
™ wdy/o O~ w,. 1 52 r ( )

Let us introduce the dimensionless variable

— 3.4
1 (34)
and change the variable of integration to t = r2. The dispersion relation becomes
Awggyn [ (1)t
] = T8Ysdy / Yot dt | (3.5)
S o t—z-+ie

where ¥)(t) = dio(r)/dr?|,2—;, and an infinitesimal imaginary part ie with € > 0 has been
added to represent the situation just above threshold when z is real. Now the explicit
expression for the elliptical distribution, Eq. (2.19), is substituted and the dispersion integral

is evaluated to arrive at the threshold curve:

( M —
§2+ 2 ln\/l z+1 ’ 2 <0,
4 | V1i—z J1—-2z-1

As n_l [ 1 1_
(wdy) I +\/—Z_mi}, 0<z<1,  (3.6)
S 410 VJVi—-z 1—-+1-=z V1—2z

3_2 2z tan— 1 1<
-z — an , <

L 4 vz—1 vz—1

where, for the sake of convenience, we have set the half bunch length to 7 = 1. The stability
threshold curve is depicted in the complex (Awgayn/S)-plane in Fig. 2. We have plotted
Awsayn/S as a function of z in Fig. 3 to facilitate our discussion below. As defined in the

previous section, Re Aws qyy is the dynamic part of the coherent synchrotron tune shift of the
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Figure 2: Stability threshold curve for elliptical distribution. The arrows point to the direction of

increasing z (decreasing €2).
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Figure 3: Awgayn/S as a function of z = (ws. — §2)/S in the stability threshold contour.



bunch in the absence of synchrotron frequency spread (S = 0). It is equal to the incoherent
synchrotron frequency shift Awgincon and is therefore a measure of the reactive impedance

per harmonic of the vacuum chamber. When z is negative, the dynamic part of the coherent

dyn

seon = $1—ws is real and positive in the presence of synchrotron frequency

frequency shift! Aw
spread (S > 0) when measured from the frequency ws.. Thus, the coherent synchrotron
frequency is away from the incoherent synchrotron frequency spread. There is no Landau
damping and the bunch is unstable in the presence of any small Re Z(|)|. When 2z = 0, there
is no dynamic coherent frequency shift or the coherent synchrotron frequency is right at wq.,
just at the edge of stability. In the plot, this corresponds to Awsqayn/S = % or Point A. As z
turns positive, the dynamic coherent synchrotron frequency shift Awfzgh becomes negative
when measured from wgy.. The beam is now inside the stability region. This is the region
between Points A and B in stability plot. As the reactive impedance of the vacuum chamber
becomes smaller and smaller (Aw;ayn/S — 0), Point B is approached with z — 1—. When
the reactive impedance changes sign (nZm Z(|)| /n going from negative to positive), z > 1,

Landau damping vanishes and the beam becomes unstable again.

The corresponding linear density of the particle bunch as a function of synchrotron fre-
quency is shown schematically in Fig. 4. The top plot is for the situation when 1 Zm Z(l]| /n < 0.
In this plot, when Aw®™" = —0.26S (z = 0.26), Re Awsayn = —Awsineon = 0.429S and
Im Awsgyn = 0.1465 on the stability contour, which are obtained by solving the dispersion
relation or Eq. (3.6). The coherent synchrotron frequency is depicted by the vertical arrows
between Points A and B. We see that the coherent synchrotron frequency now lies inside
the incoherent frequency spread which provides Landau damping. Of course, the beam
will become unstable if Zm Awgqyn > 0.146S (or ReZg becomes larger) and z will have a
negative imaginary part (€2 will have a positive imaginary part). Let us imagine that the
incoherent frequency spread S is getting smaller and smaller while Awgineon 18 held fixed.

In another words, Re Awgayn/S becomes larger and larger. From Fig. 3, z decreases or the

dyn

dynamic coherent synchrotron frequency shift Aw,;

becomes less negative until it reaches
zero (z = 0) arriving at Point A when S = %Aws dyn = —%Aws incoh- As S continues to shrink,

Awgzgh becomes positive and goes outside the incoherent frequency spread. As S — 0, we

tHere, ijzgh is the dynamic part of the coherent shift and is measured from ws.. The total coherent
shift is measured from the bare frequency wso and contains, in addition to this dynamical part, a static
part which is equal to the incoherent shift Awsincon = wse — wso. On the other hand Aws gyn represents the
same dynamic part of the coherent shift measured from wg. only in the absence of incoherent synchrotron

frequency spread.
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Figure 4: Plot of linear bunch density as functions of synchrotron frequency w, z, and the dynamical
part of the coherent synchrotron frequency shift Aw™” when (top) 7Zm Zg /n < 0 and (bottom)
nIm Z(|J| /n > 0. The vertical arrows point to the coherent synchrotron frequency of the bunch.
Thus, when REZ('J| is small, the bunch is stable in the top plot, but unstable in the bottom plot.
Points A and B correspond to the same Points A and B in the threshold plot of Fig. 2.

know from Fig. 3 and Eq. (3.6) that 2 — —oo. Solving Egs. (3.4) and (3.6), one finds
Awszgh — —AWsinoan Or the coherent synchrotron frequency goes back to the unperturbed
value of wyy as expected. On the other hand, we can fix the incoherent frequency spread
S and reduce Aw;, or Rewsqyn instead until it reaches zero. The coherent synchrotron fre-
quency will shift towards Point B. It reaches Point B when Awgincon reaches zero (z reaches

+1). Thus, when nZm Z(|)|/n < 0, #z varies from —oo to +1.

The bottom plot of Fig. 4 is for the situation when nZm Z(l)| /n > 0. Now the incoherent
frequency shift Awgincon in the absence of incoherent frequency spread becomes positive and
the incoherent frequency spread may encompass the unperturbed synchrotron frequency wyg

as illustrated in the plot. However, there is no Landau damping, because under this situation

tAs z — —o0, Eq. (3.6) becomes Awsayn/S — 1 — z. With z = —Aw®™”, /S, we obtain Aw®” —

scoh scoh
Aws dyn — S — _Aws incoh-
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z > 1 (see Fig. 3 when Awgdyn = —Awsincon < 0). In other words, the dynamic coherent
synchrotron frequency shifts negatively from w,. and the shift must be larger than w,. — S,
which is towards the right side of Point B. This plot shows Awg gy, = —0.405. Solution of
Eq. (3.6) gives z = 1.27. This value of coherent synchrotron frequency is depicted by the
vertical arrows. It is easy to see that no matter how large or small the incoherent frequency
shift is, the coherent synchrotron frequency is always outside the incoherent frequency spread

between Points A and B, or the beam is always unstable independent of how small Re Z(‘)‘ is.

4 Equi-Growth Contours

With a purely inductive wall above transition or a purely capacitive space-charge force below
transition, the incoherent synchrotron frequency shift Awgineon in an elliptical distribution
without any frequency spread from the nonlinearity of the rf potential is given by Eq. (2.21)
and is negative. We have shown in the above that this is equal to the negative of Re Aw;qyn,
real part of the dynamical frequency shift (in the absence of incoherent synchrotron fre-
quency spread). It is easy to understand that the incoherent frequency shift in the absence
of frequency spread is always real even when the coupling impedance contains a real part.
This is because the incoherent frequency shift is obtained by linearizing the driving force
(F(l| (755))ayn on the right-side of Eq. (2.1), which consists of the convolution of the wake
potential and the linear beam distribution and both of them are real. However, Aw; 4y, as
defined in Eq. (3.3) is in general, complex. Since Re Awsqyy is well-defined and is propor-
tional to Zm Zg /N, Awsayn, being analytic in frequency can be defined easily by analytic

continuation. In other words, we can write
Awggyn ~ —Im(nZ) — —Im(nZ) +iRe(nZ) . (4.1)

This explains why Re(nZ) and Im(Aw/S) are in the same direction in the left plot of
Fig. 2, while Zm(nZ) and Re(Aw/S) are in the opposite directions. Thus, in the absence of

incoherent frequency spread,

32N, Re 7]
Tm Q = 4.2
T B Eowa (77 n ) (42)

and the solution is unstable/stable depending on 1 Re Z(l]| /n 2 0. Therefore in the (Aws dyn/S)-
space such as in the left plot of Fig. 2, the left half is stable and the right half unstable in
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Figure 5: Left: Equi-Growth contours of the elliptical distribution % 1 — 72, with growth rate
increasing by steps of 0.15 to the left of the stability contour (darker curve) and damping rate
increasing by steps of 0.1.5 to the right. Right: Stability contours for the elliptical distribution for

azimuthal m = 1 to 6.

the absence of incoherent synchrotron frequency spread, and the stability contour is just the
Re Aws ayn /S coordinate axis. when there is finite incoherent synchrotron frequency spread,
The stability contour is pushed to the right so that a solution with nRe Z(|)| /n > 0 can still
be stable provided that it falls to the left-side of the stability contour. The equi-growth con-
tours and equi-damping contours can be easily computed by letting z complex in Eq. (3.6).
The result is shown in the left plot of Fig. 5. The thick contour is the stability contour. To
the right, the equi-growth contours correspond to growth rates at steps of 0.1.5. To the left,
the equi-damping contours correspond to damping rates at steps of —0.1S. It is clear that
Points A and B (z = 0 and 1) are two branch points and the straight line AB is a branch

cut.

12



5 Stability of a Bunch

The upper and lower synchrotron sidebands flanking a positive revolution harmonic corre-
spond to the upper sidebands associated with, respectively, the positive and negative revolu-
tion harmonics. Since Re Z(l)| /n is an odd function of frequency, 7 Re ch)| /n is positive for the
upper sidebands and negative for the lower sidebands above transition (n > 0). As a result,
all the upper sidebands are stable, while all the lower sidebands are unstable unless there
is sufficient Landau damping, such as the damping depicted in the left plot of Fig. 2. The
opposite will be true below transition. The stability that we studied above is for a single
azimuthal mode only, for example, either the upper or lower dipole synchrotron sideband
in the language of only positive frequency. The spectrum of a bunch mode covers quite a
number of synchrotron sidebands, some of which are stable and some unstable. To determine
whether the bunch mode is stable or not, we need to sum up all the synchrotron sidebands
of the bunch mode with 7 Re Z(l)| /n as weights because all of them will be excited unless the

impedance happens to vanish at those frequencies.

As an example, the growth rate of the mth azimuthal mode can be expressed as

1 o0 Z”
- o _Z_: Nh (nwy+mwsy) 9 (g +muw,)
o ZH Z||
:Znhm(nwo—l—mws) ReZy (nwo+mws) — ReZg (nwo—mws) | . (5.1)
n=0

The power spectrum of the bunch h,,(w) = |p,,(w)|? enters into the expression with p,, being
the mth azimuthal Fourier component of the linear bunch density because pm(w)Zg (w)/n
gives the longitudinal wake field, which must be integrated over the bunch to get the total
force. The first line of Eq. (5.1) addresses the upper sidebands associated with both positive
and negative frequency, while the second line corresponds to folding the negative-frequency
sidebands onto the positive-frequency sidebands. The second line therefore expresses the
difference in longitudinal impedance at the upper and lower synchrotron sidebands flanking
the positive revolution harmonic n. For a broadband impedance, this difference is close
to zero. In other words, the contributions of the upper and lower sidebands flanking each
revolution harmonic cancel each other even if there is no incoherent frequency spread. In the
presence of incoherent frequency spread, Landau damping will lead to an additional amount
of damping when all sidebands are summed. The conclusion is that, when coupling of

different azimuthal modes is unimportant, a bunch is always stable if the driving impedance
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is broadband. This is quite different from the longitudinal instability of a coasting beam.
Here, synchrotron oscillation plays an important role having the two components it creates,
a growing and a damping, cancel each other. This conclusion does not exclude the possibility
of the Keil-Schnell type of microwave instability for a coasting beam. This is because the
bunch can be treated as a coasting beam when the wavelength of the instability is much
less than the bunch length and when the growth time of instability is much smaller than

the synchrotron oscillation period. In that case, there will not be any synchrotron sidebands
established.

Equation (5.1), however, still leaves the option of a bunched-beam instability. The
only possible instability that can occur in a bunch is when only one upper synchrotron
sideband in Eq. (5.1) contributes essentially above transition (one lower sideband below
transition.) This happens when the impedance is a narrow resonance of the width of or
less than the synchrotron frequency leaning more towards an upper synchrotron sideband
than the accompanied lower sideband and the other way around below transition. This
explains why the fundamental mode of a rf cavity is usually detuned slightly downward
from a revolution harmonic above transition and slightly upward below transition in order
to guarantee stability. This is the so-called Robinson stability criterion [4] which manifests

itself because of the fine tuning of the resonance frequency.

6 Coherent Shift from Mean Incoherent Frequency

Consider an impedance which has an inductive part and a resistive part and is well inside
the stability region (0 < z < 1) when the beam is above transition. The dynamic coherent
synchrotron frequency shift must therefore be negative. However, without any synchrotron
frequency spread, the dynamic coherent synchrotron frequency shift is positive for an in-
ductive impedance. Is there a contradiction? Our conclusion is that in the absence of a
synchrotron frequency spread, when the unperturbed distribution is elliptical, every parti-
cle has its synchrotron frequency shifted by the same amount and so is the center of the
bunch. Therefore the static shift of the coherent synchrotron frequency is downward or
Awit;tff = AWs incoh = Wse — wso < 0. Since all particles execute synchrotron oscillation

with exactly the same frequency, the bunch is rigid. The wake-field pattern moves with the

bunch. Thus the motion of the bunch as a whole cannot be affected by the wake field at

dyn

all. In other words, the dynamic coherent shift Aw_;

must be upward and is equal exactly
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to Awstatic Tn the presence of a synchrotron frequency spread, the picture is different. The

bunch will see the change in wake-field pattern and the bunch center will be affected by the

wake. As a result, the coherent synchrotron frequency will be affected by the wake and the

static

dynamic coherent synchrotron frequency shift will be different from Aw$?)c.

In the presence of a synchrotron frequency spread, the synchrotron frequency of the
center-of-mass of the bunch due to the static effect of the impedance will be less than w;..
This can be estimated by finding the rms of the synchrotron frequency of the individual
particle because the synchrotron frequency appears as square in the equation of motion. We
have

(W?) = /(wsc — Sr*)24pordrdd . (6.1)
For the elliptical distribution, the result is

4 S 8 S?
2 2
1-2
(ws) wsc|: bwse 3Hw |7

(6.2)

where the last term can be neglected because usually S/w,. < 1. Thus, in the presence of a

large spread, the synchrotron frequency of the center-of-mass is roughly wg. — %S from the
5
is twice the static coherent shift without spread, the dispersion relation gives a dynamic

coherent shift of Aw®” = —0.2095 according to Eq. (3.6). This shift is negative because

scoh —

static effect of the impedance. If Awggy,/S = 3, or the spread in synchrotron frequency

it is measured from w,.. However, this shift becomes +0.191S, which is positive, when
measured from w,. — %S , the synchrotron frequency of the center-of-mass with the static

effect included only.

On the other hand, Aws 4yy shifts from w;. in the negative direction when nZm Zg /n <0
(dynamical coherent shift in the absence of spread). Now in the presence of an incoherent fre-
quency spread S, the rms incoherent synchrotron frequency is no longer at wg., but becomes
somewhere in between w,. and w,.—S. Thus an additional coherent shift from the dynamical
effects in the negative direction can easily land the coherent synchrotron frequency outside
the incoherent frequency spread (more negative than w,.—S). This may explain why there

will not be any Landau damping when nZm Z(l)| /n < 0.
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7 Addendum

It will be nice to repeat the above argument with the bunch in other distributions as well.
However, the investigation becomes much more involved, because besides the incoherent
synchrotron frequency spread coming from the sinusoidal rf potential which is intensity
independent, there is now also the incoherent synchrotron frequency spread coming from the
nonlinear longitudinal self-force which is intensity dependent. The general method to tackle
the problem is to move this intensity dependent synchrotron frequency spread from the left
side of Eq. (2.10) to the right side, so that the interaction matrix now consists of the original
wake-force part plus the new synchrotron-frequency-spread part. Although the interaction
matrix becomes more complex, however, the left side contains only the same synchrotron-
frequency spread coming from the rf potential. Thus all investigation can proceed as before

and we envision to arrive at the same conclusion as in the elliptical distribution.

As an addendum, we are going to give the stability threshold contours for the higher
azimuthal modes as well as for other distributions in the longitudinal phase space. However,
we shall ignore the incoherent synchrotron frequency spread due to nonlinear self-field effects,

because their inclusion will lead to nonanalytic expressions.

7.1 Higher Azimuthal Modes

For higher azimuthal modes, such as the quadrupole modes (m = 2), sextupole modes
(m = 3), etc. the dispersion relation can be derived in the same way as the dipole modes.
Again we include only the most easily excited radial modes using synthetic kernels, which
can be inferred easily from Eq. (2.11). Remembering that the mth multipole kernel K, (r, ")

is nothing more than the mth multipole wake function, we must have
K (r, ) oc P ™t (7.1)

The mth multipole interaction matrix is therefore G,,(r,7") = ™ where €, is a
constant. From the simplified Sacherer’s integral equation in Eq. (2.10), it is easy to derive
the dispersion relation,

- Aw,, Uy (r)r?m

d 7.2
W, Q — mws. + mSr? T (7:2)
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where the spread S in incoherent synchrotron frequency has been included and C,, =
—Awy, /W, We have introduced

W, = /000 Yo (r)r?™dr (7.3)

so that in the absence of incoherent spread (S = 0), Aw,, = Q — mwy, is the dynamic part

of the mth azimuthal coherent frequency shift. We further define

Wse — Q/m

e (7.4)

w
I

and change the variable of integration to t = 2.

Aw,, ()t
mSWp, Jo t—z

where we have used the short-hand notation ¥}(t) = [dio(r) /dTQ]ﬂ:t' In above, Aw,, =
C/(mS) with Aw; = Awg gyn, the dynamic part of the coherent synchrotron frequency shift

The dispersion relation finally takes the
form

1= dr (7.5)

in the absence of an incoherent synchrotron frequency spread. It is convenient to define

()
m(t) = ——=, 7.
(1) = 2 (7.6)
so that the dispersion relation simplifies to
Aw,, [ G,tdt
1= . 7.7
S 0 t—z ( )
The stability threshold curve can then be readily solved and is given by
| = % [Hm(z) . mgm(z)] , (7.8)
where G, (1)t
M) =p [ 2 (7.9)
0 -z
For the elliptical distribution, it is easy to obtain the solution:
32
Il = e T=5
m—1
1 \/1 — 1
Hm(z) Z Im n— lZ + i 9
mly, 2\/ 1-— z \/ I—2-1
31 2™m/!
=—"" and I,= [ (1-u)"du= —— 1
Wi 5 and I /0 (1 —u*)™du Gmr Il (7.10)



when 0 < |z| < 1, and analytic continuation elsewhere. The stability contours for the higher
azimuthal modes are depicted in the right plot of Fig. 5. We see that the stable regions
for higher azimuthal modes are much larger; especially, the point corresponding to z = 0 is
getting larger and larger. Physically, the point at z = 0 (Point A in Fig. 2) is determined by
the unperturbed distribution. If we consider Point A as the threshold, then the thresholds for
various azimuthal modes can be computed by evaluating H(0). The principal-value integral

can be performed easily to give

Im—l

0) = ) 7.11

H(0) = (711)
The threshold for the mth azimuthal mode is then
Aw,, m?

— 7.12

S m+ % ’ ( )

which gives % for m =1, £ for m = 2, £ for m = 3, etc.

7.2 Other distributions

The elliptical distribution, when projected onto the rf phase axis 7, results in the parabolic
linear distribution, 3(1 — 72), which has a discontinuity in linear intensity gradient at the
edges of the bunch, where we have set the half bunch length 7 = 1 for convenience. An

improvement is the distribution
2 2
Po(r) = =(1 =17 O<r<1. (7.13)
s

The projection onto the rf phase axis is £ (1 —72)32, which has a continuous linear intensity
gradient at the edges of the bunch. However, the distribution itself in the longitudinal phase
space still does not have a continuous radial gradient. To remedy this, we introduce the
distribution

Uo(r) = nil(l—ﬁ)" O<r<1. (7.14)

for different larger values of n. As n gets larger and larger, the distribution becomes clustered
more and more around the origin. Thus to compare their stability contours, we should not
use the synchrotron frequency spread S from the center to the edge of the bunch. Instead

we should employ the half-width-at-half maximum spread S

wwin: Which is easily found to
be

S

HWHM

=(1-2"Y"s. (7.15)
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For the bi-Gaussian distribution

1 2
Yo(r) = %e_r 2 (7.16)
Sy = V211250 - (7.17)

when Sy, is the spread of the synchrotron frequency from the bunch center to particles at

the rms bunch length.

The dipole (m = 1) stability threshold curves of these distributions are computed. Here,

we plot them on top of each other for comparison in Fig. 6.

15 T T T [T T T T[T T T T[T 117

-30 A b b Py
0.5 1.0 15

l m Aws dyn/SHWHM

o
o
n
o

Figure 6: Stability threshold curves of the dipole mode (m = 1) for various
distributions in order of smoother gradients at the edge of the bunch: (1)
elliptical distribution ¢o(r) = 2=v1 =72, (2) 2(1 —r?), (3) 2(1 —r?)%, (4)
S0 12, (5) B(1 - r2)4, (6) 21— 2P, (1) e,

s ™ 21

The analytic expressions for these stability contours are derived as follows. In fact, to

draw these curves, it is only necessary to solve the integral in the region 0 < z < 1. When
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the elliptical distribution is projected onto the phase axis, we have the parabolic distribution
which entails an abrupt change of intensity gradient at the end of the bunch. In order to

achieve a continuous intensity gradient, let us consider the distribution

2
Yo(r)==(1—-r*) r<1, (7.18)
s
which results in the linear distribution = (1 — 72)%2. Here we have
2
Wp=—-——"—, 7.19
(m+ )7 (7.19)
with .
G = g (7.20)
m
The threshold curves are given by
m—1
m+1 2" 1—=2
()= my . 7.21
Hm(2) - nZ:()m_”+Z n|— ] (7.21)

These stability curves in the Awsdyn/Sywmy-Plane are shown in the right plot of Fig. 7. On
the left plot we show once more, for comparison those threshold contours of the elliptical
distribution. This is essentially the same as the right plot in Fig. 5 with the exception that
the HWHM spread S

w15 used instead of the full spread.

For the distribution

3
do(r) =—(1=1%* r<1, (7.22)
m
which results in the linear distribution 2¢(1 — 72)%2, we have
W, — 0 (7.23)
T mED(m 2 '
with 1 2)(1 =)™
G, — M Dm+ A = O (7.24)

m
The principal-value integral is very similar to that for the previous distribution. It is useful

to introduce a reduced function h,,(z) by

1 m—1
m n 1 —
o (2) = @/ dt N~ 2y |12 (7.25)
o t—2 f~m—n z
The function H,,(z) of this distribution can now be written as
1 2
tn(z) = IR ) (2] (7.20

m
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Figure 7: Stability threshold curves in the Awggyn/Sywuv-Space for the
lower azimuthal modes (m =1, 2, ---, 6) for (left) the elliptical distribution
Yo(r) = 21— 72 and (right) 1/)0(1“) = 2(1 —r?) . The stability limits for
2
Re Aws dyn/Sywim A€, respectively, ”jrl and \{n_ﬁ
In general, for the distribution
n+1
dolr) = (1 =) (7.27)
where n is an integer, we have the general expression
1
m + n . m+k )

H® () k' T (7.28)

k=0

where the superscript (n) denotes the power n in the distribution. The stability limit is

Awg g 1 1 1 m?
Re —22% = = , 7.29
Suwia 1 =27V M) 1-2"Y"m+n (7.29)

where the factor 1 — 27" converts the HWHM frequency spread to the frequency spread
at half width of the bunch. It is worth mentioning that Eq. (7.29) applies for the elliptical
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distribution also with n = % For completeness, the threshold curves for n = 2, 3, 4, and 5

are plotted in Figs. 8 and 9.
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Figure 8: Stability threshold curves in the Awggyn/S
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7.3 Bi-Gaussian Distribution

1—2-1/n m+n"*

S

The stability contours for any unperturbed distribution v in the longitudinal phase space
can be derived from the dispersion relation depicted in Eq. (7.5). Here, let us study the
bi-Gaussian distribution

(7.30)
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_ 1 m?
1—2-1/n m+n"*

where the rms spread of the bunch has been normalized to unity. The solution is given by

the same expression in Eq. (7.8) with S equal to the rms incoherent frequency spread, and

where

and

Zmez/Q
2m+lmm!
m—1
1 Z\" Z\™ _, z
gt [0 () () e ()]
" Ln=0
2"m)
W, = — 2;” , (7.32)
* e~tdt
Ei(u) = / ; (7.33)



= w,=exp(-r’/2)/(2m)

/ 4
TR - ‘ - ‘ I ]//‘ - ‘ T ‘ I
0 5 10 15 20 25 30
Im A, 4,/S Im Aw, /S

Figure 10: Left: Equi-Growth contours of the bi-Gaussian distribution ¥o(r) = e~ /(27), with
growth rate increasing by steps of 0.1S to the left of the stability contour (darker curve) and
damping rate increasing by steps of 0.15 to the right, where S is the rms spread of the incoherent
synchrotron frequency. Right: Stability contours for the bi-Gaussian distribution for azimuthal

modes m =1 to 6.

is the exponential integral. The stability contour and equi-growth contours are depicted in
the left plot of Fig. 10 with growth rates in steps of S. In the right plot, we show the stability

contours for the higher azimuthal modes.
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