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Abstract
Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring
leading to increase in transverse emittances and beam loss. The driving source of these
instabilities has been attributed to the resistive-wall impedance with space-charge play-

ing an important role in suppressing Landau damping. Growth rates of the instabilities

are computed. Remaining problems are discussed.



1 INTRODUCTION

The Fermilab Recycler Ring is a ring to store, accumulate and stochastically cool antiprotons.
Since the beginning of 2004, transverse instabilities have been reported in the antiproton
beam with the signature of a sudden increase in the transverse emittances and a small loss

in beam intensity.

The first such documented transverse instability was observed on February 19, 2004. [2]
An antiproton beam of intensity 126 x 10 and length 7.3 us was stored in the Recycler
Ring between two barrier waves. The horizontal and vertical 95% normalized emittances
were cooled stochastically to about 77 mm-mr. The horizontal and vertical emittances were
roughly the same because the residual horizontal and vertical betatron tunes were close
resulting in strong horizontal and vertical coupling. As seen in the left plot of Fig. 1, the
emittances took a sudden jump to about 157 mm-mr at about 12:00 noon. At the same
time, as shown in the right plot of Fig. 1, there was a small beam loss of about 1 x 10,
When the record of the Main Injector, that shares the same tunnel with the Recycler Ring,

was traced, it was found that the Main Injector changed its ramp pattern a few hours earlier.
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Figure 1: (color) An antiproton beam of intensity 126 x 10-” and length 7.3 us was seen on February

19 to suffer a transverse instability with a sudden emittance growth (left) and a slight beam loss
(right).

Some common features of these instabilities are:

1. The beams are all antiprotons of various lengths, from 5.28 us to 9.3 us, bunched in a



barrier bucket.
2. The instabilities occurred with beam intensities either about 30 x 10 or 125 x 10'°

3. The transverse 95% normalized emittances of the beam have been cooled to less than

4m mm-mr (except the one on February 19).

4. Every instability appears to be preceded at least one hour or more by a reduction
in the ramp cycle of the Main Injector. The stray fields of the Main Injector during
ramping affect the orbit of the Recycler Ring. Although there is a correction mechanism
using beam-position monitors and bump magnets, the compensation has never been
complete, especially when the ramping pattern of the Main Injector is changed. The
closed orbit of the Recycler beam will be pushed inwards and outwards according to

the pulsation of the partially compensated stray fields.

It has been suggested that these instabilities are related to ions trapped inside the antiproton
beam, although no direct verification has been made. Various analysis has been made in

this direction without any decisive conclusion. [1]

Since the instabilities do not occur very often, to study them, similar instabilities were
induced, [3, 4] although it is unclear whether what were induced are the same instabilities

that were observed before. The methods of inducing transverse instabilities include:

1. Turning off rf. When the rf is off, the beam will spill into the beam gap eliminating

the possibility of ion clearing.

2. Turning on/off cooling. On the one hand, intense stochastic cooling increases the
transverse density of the beam and may lead to instability. On the other hand, turning
off stochastic cooling may cease to help stabilize a transverse instability if the instability

growth rate is extremely slow.

3. The quadrupole-correction loop (QCL). The two quadrupole buses of the Main
Injector leave a net current of ~ 100 A around the circumference of the ring. The
dipole field created by this difference current is usually compensated by passing an
equal and opposite current through a quadrupole-correction loop (QCL) around the
ring. Therefore pulsing the QCL when the Main Injector is not ramping or turning off
the QCL while the Main Injector is ramping will mimic the sudden change in ramping
pattern of the Main Injector.



4. Decreasing chromaticity to zero. The Recycler antiproton beam has not been sta-
ble at low chromaticities if it is very intense. Thus reducing the nominal chromaticities

& and &, to zero may help induce an instability.

On June 9, an experiment was performed on a 28 x 101 antiproton beam of length 3.5 us
by turning off the QCL and reducing the vertical chromaticity to zero. [3] An instability was
induced with a blowup in 95% normalized vertical emittance from €ygs = 3.0m mm-mr to
about 107 mm-mr and a small beam loss of 3 x 10!, During the instability, the difference
signals were collected at a split-tube vertical beam-position monitor at location VP522,
where the horizontal and vertical betatron functions are, respectively, 47.6 m and 16.7 m.
The Fourier transform up to roughly the first 70 revolution harmonics is shown in Fig. 2. The
slow roll-off of the lower betatron sidebands up to the 70th revolution harmonic (~ 7.2 MHz)
indicates that the instability might be driven by resistive-wall impedance. On July 9 of 2004,
a similar experiment was performed on a proton beam by reducing the chromaticity. [4] The
proton beam was prepared as coasting by turning off the rf barrier voltages. A very similar
transverse instability was induced when the beam intensity was larger than 40 x 10*° and
the transverse emittances were reduced by scraping, because the proton beam, traveling in
the opposite direction of the antiprotons, could not take advantage of the stochastic cooling.
This proton experiment indicates very clearly that these instabilities were probably driven

by the resistive-wall impedance rather than by trapped ions.

In this paper, we would like to compute the growth rates of the instabilities, compare
them with experimental observation, and discuss some remaining problems. We end this
section by quoting in Table I some relevant properties of the Fermilab Recycler ring, which

is a ring with permanent gradient magnets and quadrupoles.

Table I: Some relevant properties of the Fermilab Recycler Ring.

Circumference (m) ~ 3319.419
Kinetic energy (GeV) ~ 8.00
Revolution frequency (kHz) 89.812
Revolution period (us) 11.134
Slip factor (n) —0.008511
Horizontal betatron tune 25.425

Vertical betatron tune 24.415
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Figure 2: (color) Top: Betatron sidebands of the first 80 rotation harmonics monitored at the split-
tube beam-position monitor VP522 during the instability induced on June 9, 2004. The antiproton
beam that went into instability had an initial intensity of 28 x 10'° and the initial emittance were
engs = 3.0m mm-mr. Bottom: Zoom-in view of the first 10 harmonics. The pre-amp on VP522
monitor had flat response from 10 kHz to 10 MHz.



2 DISPERSION RELATION

The equation governing the vertical displacement y of a beam particle of mass m and energy
E = ymc? is

d2y 2 1 F/ Fl

ﬁ + Wyo Y = ’y—m [ coh<y> + inc(y - <y>)] ’ (21)
where the first term on the right-side is responsible for coherent betatron tune shift and
the second term incoherent betatron tune shift. In above, v,0 = wyo/wy. with wy being the
angular revolution frequency, is the bare vertical betatron tune, which is adjusted to the
incoherent betatron tune v, = w,/wy when combined with the term F}, .y on the right side.

What is left on the right side

vake () = (Flon — Fie) () (2.2)

is the dipole wake force acting on the particle when the center of the beam is displaced by
(y). The vertical particle displacement y is a function of (s,t) where s is the distance along
the ring. For a coasting beam, we can denote the snapshot dipole current of the center of

the beam by the ansatz,
I{y(s.t)) = I(g)e™ /T, (2.3)

where (7) denotes the amplitude and is time-independent. The growth is attributed to the
imaginary part of the collective angular frequency (2, to be determined by the solution of the
equation of motion. In above, n is a revolution harmonic and R is the mean radius of the
ring. The ansatz just postulates that the revolution harmonics are not related and can be
studied individually. At a fixed location s of the ring, a test particle experiences the wake
force left by the dipole current averaged over one revolution turn,

¢ e 32 v
e / o NG el (y(s, 1)) 27 ()
5T - vdt' Wi (vt — vt ) [ {y(s,t")) = R '

vake (Y (5,)) = (2.4)

where v = fc is the nominal velocity of the particles in the beam, W is the dipole wake

function, and Z; the vertical dipole impedance.

Now let us come back to the beam particle described by Eq. (2.1). If it passes the
location S at time t = 0, its location at a later time ¢ is s = S + vt, and the equation of

motion becomes ) '
d°y 5 velcZy

_ ~\ _inS/R—i(Q2—nwo)t
a e = g, e e

, (2.5)



where Ty = 27 /wy is the nominal revolution period of the beam and F is the nominal energy.

The right-side can be re-written conveniently as —2w,Aw,(y(s,t)), where

 Aw,  eleZy

wo drw, B

Ay, (2.6)
represents a tune shift. Sometimes it is loosely called the coherent tune shift.* But actually,
according to Eq. (2.2), it is the difference of the coherent and incoherent tune shifts.

This force-driven differential equation can be solved easily, giving the solution
w2 — (2 —nwo)?] y(s. t) = —2w, Aw, () e/ R @=nwolt (2.7)

For small perturbation, there are two solutions for the coherent frequency Q2 ~ nwy+w,. For
a coasting beam, when we allow for both positive and negative revolution harmonics, the
same physical conclusion will be achieved when we choose either €2 ~ nwy + w, or nwy — wy.
This is because (1) the beam spectra of the two choices are related by symmetry and (2)
Z{ (w) has definite symmetry about w = 0. We choose the convention of upper sidebands,
which leads us to the approximation,

w2 — (2 —nwp)® = (wy — Q4 nwo) (wy +Q — nwy) & 2w, (wy — Q2+ nw) (2.8)
The solution of Eq. (2.7) becomes

Awy(Y)  ins/r—ito—
1) = _ =%y\d/inS/R—i(Q—nwo)t 2.9
ot =~ (29)

Self-consistency with the ansatz of Eq. (2.3) leads to the dispersion relation,

1= Awy/ _plwy)de, (2.10)

oo 2= nwy — wy

where we have introduced the distribution density p(w,) of the particles in the beam, which
is normalized to unity when integrated over w,. Solution of Eq. (2.10) gives the collective
betatron frequency 2 of the beam as observed at a fixed location at the ring. It can be
verified easily that when there is no spread in betatron frequency among the beam particles,
Aw, = Q) —nwy —w, indeed represents a dynamic contribution of the coherent betatron tune
shift of the beam.

*The coherent tune shift is defined as the shift of the coherent betatron tune from the bare betatron tune.
The shift here, however, is from the incoherent betatron tune to the coherent betatron tune, which is the
dynamical part of the coherent tune shift.



To solve the dispersion relation, let us consider the situation of Landau damping coming

from energy spread only. For a particle with momentum offset ¢,
wy + nwy = Wy + nwy + [§, — n(n + 7,)] wed | (2.11)

where &, and 7 denote, respectively, the vertical chromaticity and slip-factor of the ring. In
above, w,, Wy, and v, denote, respectively, the nominal angular betatron frequency, nominal
angular revolution frequency, and nominal vertical betatron tune of the beam particles.
However, for the sake of convenience, these overhead bars will be omitted in below. As a

short-hand notation, we introduce the effective chromaticity
Sy=& —nn+wy) . (2.12)

The dispersion relation now takes the form’

Aw, [ 3(6)dd
/ A\Tiaay 2.13
S o -5 (2:13)

with
A Q—nw —wy

0= , (2.14)

|:Sy|wo
where p(0) is the distribution density of the beam particles in momentum spread, and is
normalized to unity when integrated over ¢. Although the effective chromaticity S, can be
positive or negative, we choose to normalize the eigen-frequency by |S,|. so that Im > 0

always implies an instability.

The integral in the dispersion relation must be an analytic function of Q) because the
impedance Z;" is an analytic function of the eigen-frequency 2. With the path of integration

along the real axis, however, it is obvious that the integral is discontinuous across Zm €2 = 0.

/mﬂdzzp/m&dzqziﬂ'@ (2.15)

T Eie—2 0T —2

This is because

where z is real, € is positive but infinitesimal, and o denotes the principal value. Analyticity
can be achieved by continuing the upper ) half plane into the lower Q) half plane. This
analytic continuation is accomplished by distorting the path of integration from § = (—o0, 00)

to the path C' so that it always goes below the pole 6 = Q, as illustrated in Fig. 3. In order

TWe must be more careful when S, < 0. We have

_ Auw, /—500 p(wy — |Sylwod) d( — |Sy|wod) :/500 p(wy — |Sylwod) [Sylwo dS /°° p(8)do
1Sylwo J 5= oo Q+6 s=—o0 Q-6 5=—oc =0

)

where the distribution in 6 is 5(8) = p(w, — |Sy|wed) | Sy |wo-
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Figure 3: To satisfy causality and analyticity, the integration contour C' must be chosen to go

below the pole § = €).

to incorporate the initial condition that the driving force has not been in existence since
t = —o0, the eigen-frequency always has a infinitesimal positive imaginary part; or instead
of €2, we should write €2+ ie. This explains why we continue the upper Q) half plane into the

lower € half plane instead of continuing the lower half plane into the upper half plane.

For the Gaussian distribution density with the rms momentum offset oy,

1 2 2
5(0) = —— /%) 2.16
A0) = < 210
the dispersion relation becomes
Aw 1 e’ dz imAw
1= Y / = — Y w(z) , 2.17
|Sylwo v2ros Jo 21 — = V21o5|Sy|wo (z1) ( )
where z, = Q/(v/205) and w(z) is the complex error function.
Let us introduce the traditional reduced vertical dipole impedance (U, V') by
A 1,3%cZi+
UiV =@ clfeZ, (2.18)

V271os|Sy|wo B AN2rvweop|S,|

where the substitution of Aw, from Eq. (2.6) has been made. Thus given the vertical

transverse impedance, we can solve the dispersion relation

U+iV =

e (2.19)



to obtain the growth rate

1
— =TImQ = V204|S,|lwo Tm 2 . (2.20)
-

3 IMPEDANCES OF THE RECYCLER RING

3.1 Resistive-Wall Impedance

For a cylindrical beam pipe of radius b, the monopole longitudinal impedance and dipole

transverse impedance are

~2c Z(|)|

| Rp,
Zy| = —isgn(w)] £ S

cyl 655 '

(3.1)

3
cyl

where d, is the skip-depth into the walls of the beam pipe and p; is the resistivity.

For the elliptical beam pipe, the monopole longitudinal impedance and the dipole hori-
zontal and vertical impedances can be written as

V=2 Fo. 2@ =2 Fu, ZHw=2%_ F. (3.2

cyl cyl cyl
where the elliptical form factors can be expressed in terms of elliptical functions according
to Ref. [5]. The beam pipe of the Recycler Ring is made of stainless steel of resistivity
pss = 7.4 x 1077 O, and elliptical in cross section with horizontal and vertical diameters,
respectively, 2a = 3.75” and 2b = 1.75”. The form factors are F, = 0.9591, F}, = 0.4501,

and Fy = 0.8369. Thus we obtain the resistive wall impedances:

Zl =1 -i11.68n"? Q,

28 = (1 =) 1179 [n — [1]] > MQ/m
7Y = (1=9)21.92|n — [y 7> MQ/m (3.3)
where, for the transverse impedances, n = 1, 2, 3, --- denotes the excitation of the lower

betatron sidebands n — [v,], which are also commonly known as the (n — Q) lines.

We see in Fig. 2 that the instability on June 9 was excited up to the revolution harmonic

n = 70 only. If the instability was excited mainly by the resistive wall impedance, this implies
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that the beam is unstable only when 7} 2 21.9/,/70 — [v,]| = 2.63 MQ/m. From Eq. (2.18)

the actual driving force is proportional to

b Rezy
|5y

(3.4)

If the instability on June 9 occurred at &, = 0 and is driven by the resistive-wall impedance,

then the minimum driving force for an observed excitation will become

2.63

Fomin = T~ m])

MQ/m = 4.29 MQ/m . (3.5)

3.2 Space-Charge Impedance

The transverse space-charge impedance is given by

. ZoR
zy = .
1 spch 7”_)/2/820/2 ) (3 6)

where 7y &~ 376.7 () is the free-space impedance, a is the radius of the beam if the transverse
distribution is uniform. The average vertical beta-function is 8, = R/v,. In terms of the 95%

normalized emittance €yg5, the rms beam radius for a bi-Gaussian transverse distribution is

o €N955y
oy = 65, (3.7)

It can be shown easily [6] that the equivalent-uniform-distribution beam radius of a bi-
Gaussian distribution is a = \/éay. Thus at €yg5 = 3 mmm-mr,
320V,
7V =i — 971 Q/m , (3.8)
YBeNnos
which is very much larger than the resistive-wall impedance in magnitude. There is also an

image contribution which reads

Sl _ . %R

. image _ZW ’ <39)

for a round beam pipe of radius b. Using b = 0.875", the contribution is only —i0.11 MQ/m,

and can therefore be safely neglected.
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Figure 4: (color) Vertical dipole impedance of the 205 sets of vertical BPM in the Recycler Ring.
3.3 Beam-Position Monitors

If we approximate the split-can BPMs as cylindrical strip lines of length ¢ = 12” with covering

angle ¢y ~ 7, the longitudinal impedance of a pair of striplines is [7]

2
¢ 2wl
2 =2z, <@) <28in2w— —sin i) , (3.10)
BPM

2 c c

where Z, = 50 2 is the termination impedance. The vertical dipole impedance can be

expressed in terms of the longitudinal as

Z_(I)I
w

bgicgsinz%. (3.11)
BPM %

BPM

Z

There are 205 sets of vertical BPMs and 205 sets of horizontal BPMs. The total contribution
to the vertical dipole impedance of all BPMs is shown in Fig. 4. We see that Zm Z} |gpy =~
—i10.25 MQ/m below 10 MHz, which will give a slight cancellation to the space-charge
impedance. The real part exhibits maximum at Re Z} |gpm & 7.43 MQ2/m near f = 180 MHz
(revolution harmonic ngpy ~ 2000). However, the driving strength of transverse instability,
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U + iV in the dispersion relation of Eq. (2.19), is proportional to

Re 7V
Syl

Driving force F' o< , (3.12)

where S, is the effective chromaticity. At zero chromaticity, §, = 0, the driving force of the

BPM peak impedance is therefore about

F= 743 MQ/m = 0.422 MQ/m . (3.13)

[nnBpm|
At the chromaticity of §, = —2.0, the effective chromaticity is S, = 15.0, giving the driving
force F' = 0.497 MQ/m. Compared with the minimum driving force of F' = 4.29 M/m
derived from resistive-wall impedance in Eq. (3.5), we conclude that the BPMs do not con-
tribute to the vertical instability observed on June 9 for revolution harmonic less than ~ 70.
It should not drive any significant vertical instability to the beam even at ~ 180 M Hz when

the real part of the BPM impedance assumes its maximum.

At low frequencies, wl/c < 1, the BPMs do have a constant inductive contribution of

. 16MZ.L

A =
U lgpM m2h2

= —i10.3 M€2/m , (3.14)

for M = 205 sets of BPMs. This will counteract the space-charge impedance slightly.

3.4 RF Cavities

There are four 50 € broadband ferrite-loaded rf stations. [8] The amplifiers are of 3.5 kW
from 10 kHz to 100 MHz, capable of supplying a total of +2 kV. The rf waveform generated

is determined by the amplitude and phase of each of the 588 revolution harmonics.

Each station consists of a 12.5” diameter water-cooled outer aluminum shell, a 5" di-
ameter aluminum inner conductor, and a 4” diameter stainless steel beam pipe with a 1”
ceramic gap which is electrically connected to the cavity with beryllium-copper finger stock.
The cavity is filled with 25 11.5” OD by 6” ID by 1” thick Mn-Zn ferrite cores (MNG60) and
three 10” OD by 6” ID by 1” thick Ni-Zn ferrite cores (CMD10). The ferrite cores are air-
cooled, spaced by 0.5”, and supported by Kapton spacer blocks. A 60 € resistor is connected
directly across the cavity gap and to the inner conductor at the gap by 1” wide by 4” long

copper straps. A schematic drawing as shown in the top plot of Fig. 5.
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Figure 5: (color) Top: Schematic drawing of a Recycler wideband rf cavity, showing the 24 MNG60
ferrite cores, the 3 CMDI10 ferrite cores and its cross section. Bottom left: A photo of the cavity
with 60 €2 resistor protruding horizontally. Bottom right: ReZ(|)| and Im Z(|]| of the rf cavity measured
by Dye and Wildman, with the 50 €2 not connected to the amplifier.

The outer and inner aluminum shells form a ferrite loaded coaxial transmission line.
The monopole impedance Z(l)| seen by a particle beam consists of the 60 €2 resistor and the
copper strap in parallel with the input impedance of the coaxial transmission line. This
understanding [9] can reproduce most of the characteristics of the impedance measured by
Dye and Wildman. [8] The measurement, shown in the bottom right plot of Fig. 5, indicates
that the monopole impedance is mostly real and that Re Z(|)l is mostly constant at 50 €2 below
~ 50 MHz and starts rolling off to zero below 100 kHz, roughly the revolution frequency of
the Recycler Ring. For this reason, we see a Re Z(|)l /n ~ 50 € near revolution frequency. In
the measurement the 50 {2 input resistor was not connected to the amplifier. If connected
we expect Re Z(l)| /n becomes 25 . Thus, for four cavities, we expect Re Zg /n = 100 € near

revolution frequency. If we use the Panofsky-Wenzel-like formula to estimate the transverse
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impedance, we obtain

2 Re Z)
»?
where b = 2" has been used as the radius of the beam pipe at the cavities. This transverse

Re Zi" = ~ 37 MQ/m , (3.15)

impedance appears to be larger than the contribution from the resistive wall.

The situation becomes worse if we take into account of the 50 €2 input resistor and the
60 2 output resistor. These resistors are in the horizontal position, while the image dipole
current clusters mostly in the top and bottom of the beam pipe, as illustrated in the cross-
sectional view in the top right plot of Fig. 5. At low frequencies, it is not difficult to imagine
that the dipole currents will not be able to see these two resistors at all. As a result, the
dipole current just flows into the upper and lower parts of the cavity and experiences two
heavily ferrite-loaded transmission line. The implication is that Re Z} will be very much

larger than what was estimated in Eq. (3.15) above.

However, Sacherer [10] (and also many other authors) pointed out that the Panofsky-
Wenzel-like relation between the monopole impedance and the dipole impedance is strictly
valid only for the resistive wall impedance of a round beam pipe provided that the frequency
is not too low. A simple case of a deviation is shown in Fig. 6, namely a high impedance
interruption in the vacuum chamber, for example a ceramic tube with a resistive coating.
The monopole impedance Z(|)| is increased, but not the dipole impedance Z;-, because the
differential image current can avoid the high impedance region. The dipole impedance is
increased only at very high frequencies where the wavelength becomes comparable to the
interruption length or the pipe circumference, or in other words, where the added inductance
due to the more circuitous path begins to contribute. Roughly speaking, this occurs around
the cutoff frequency of the beam pipe, ~ 400 MHz for the present 2”-radius beam pipe of
the cavities. Thus below ~ 400 MHz, we expect the dipole current to flow, after the passage
of the beam particles, vertically near the gaps of the cavities and annihilates at the 50-(2
input and 60-2 output resistors, instead of flowing into the cavities. In other words, below

~ 400 MHz, we do not expect the cavities to contribute significantly to the dipole impedance.

In conclusion, the vertical dipole impedance of the Recycler Ring is dominated by the
resistive wall and space charge below ~ 400 MHz. In addition, we may allow ~ —i30 M{2/m
of inductive impedance at low frequencies to account for the BPMs, size variations, and

other discontinuities of the vacuum chamber.
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Figure 6: Illustration showing an interruption in the vacuum chamber increases the monopole

impedance Z(|]| but not the dipole impedance Zi-.

4 Application to Instability of Proton Beam

A proton beam consisting of 13 bunches at 4-turn injection was injected into the Recycler
Ring from the Main Injector on July 8, 2004. [4] Initially, the beam intensity was 79 x 10,
It was debunched and scraped to 43.9 x 10'Y using the scraper Top Jaw so that the 95%
horizontal and vertical emittances were about e€ygs = 67 mm-mr. The skew quadrupole
SQ408 was set to zero current to simulate the period from December 2003 to June 12 2004.
The quadrupole-correction loop (QCL) was turned off to enhance the effect of the Main
Injector ramping. Finally when the vertical chromaticity was reduced from &, = —2 to zero,
an instability of the beam was observed, with an about 6-fold jump of vertical emittance
and a 14% beam loss, as illustrated in Fig. 7. The difference signal in Fig. 8 shows that
the growth time was about 500 to 1000 turns or 11 to 56 ms. The rms energy spread was
1 MeV and did not change throughout the instability. The FFT in Fig 9 shows the lower
betatron sidebands (red) excited very much more than the upper sidebands (blue) starting
from (1 — @). The amplifier connected to the monitoring BPM has been patched so that its

gain is constant throughout the frequency range of observation down to ~ 10 kHz.

At zero vertical chromaticity, the stability U-V plot is shown in Fig 10 according to
the dispersion relation of Eq. (2.19). The equi-growth contours are standardized to be the
inverse of complex error function in this and later plots. The (UV') values (or —Z7") of each
of the (n— Q) modes are shown in circles. The proton beam should not have a transverse bi-
Gaussian distribution because (1) it had never been cooled stochastically and (2) it had been
scraped heavily so that only about one half of the particles remained. We think it would be

more appropriate to approximate the transverse distribution as uniform. The space-charge
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self-field impedance is therefore

2| =i 2% e MO/ (4.1)

spch YPEN9S5
This becomes 7103 MQ/m after adding ~ —i28.6 MQ/m coming from the inductive wall and
another ~ —i30 M2/m inductive impedance coming from BPMs, pump ports, cross-section
variations, etc. The (1 — @) mode is off-scale at (UV') = (78.0, —281) and is on the contour

of reduced growth rate Zm z; = 44.0 units, which corresponds to an actual growth rate of

% = V205|S,|wo Tm 2, = 19.6 s+, (4.2)
or a growth time of 51.2 ms. The (2—Q) excitation has a growth rate of 11.9 s™ or a growth
time of 84.1 ms. They agree approximately with the observed growth times of 75 ms and
105 ms for these two modes as depicted in Fig. 12. At &, = —0.3, we see that (1 — Q) is
at (UV) = (1.27,—4.59) near the 0.65-unit growth contour and is at (UV') = (0.77, —2.20)
near the 0.3-unit growth contour when &, = —0.5. When §, = —0.775, all modes are inside

the stability region.
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Figure 7: (color) A vertical instability was observed in a coasting proton beam of intensity 43.9 x
10'° when it was heavily scraped to transverse emittances of ~ 67 mm-mr using the Top Jaw,
reducing the vertical chromaticity from £, = —2 to zero, turning off the quadrupole-control loop
and skew quadrupole SQ408.
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Figure 8: (color) Difference signals sampling at roughly 8MHz for a period of 9 x 10* revolution

turns during the induction of transverse instability in the coasting proton beam.
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Figure 9: (color) FFT of 1048576 samples between turn 30,000 to 42,000 of the difference signals
in Fig. 8. The lower sidebands are in red, the upper sidebands are in blue, and the harmonic lines

are in green. The (1 — @) line is clearly dominant. The amplifier gain is constant in the frequency

range of observation down to ~ 10 kHz
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Figure 10: (color) Plot showing the equi-growth contours in the U-V (normalized —Z7") plane.
The (U, V) values of each betatron excitation (n — Q) withn =1, 2, 3, --- are shown as circles for
& = 0. The (1 — Q) excitation is off-scale at (UV') = (78.0, —281).
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Figure 11: (color) Same as Fig. 10 at &, = —0.3, = —0.5, and —0.775. At &, = —0.774, all modes

are inside the stable region.
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Figure 12: (color) The amplitudes of the first 40 lower betatron sidebands during the induced
instability of the proton beam on July 8, 2004. The largest one is the (1 — @) sideband and the
next one is the (2 — Q) sideband.

Although the (UV') values of the (1 — @) mode differ so much at &, = 0 and —0.3, the
computed actual growth rates are, respectively, 19.6 st and 17.8 s7!, and are comparable.
The physical reason is suppression of Landau damping by space charge and this will be
explained in detail in the next section. As illustrated in Fig. 13, the growth rates of the low-
frequency modes are nearly independent of chromaticity. Actually the effect of chromaticity
is important only when the excitation is near stability. For example, the first stable mode at
&, = 01is (60 — Q). However, £, = —0.1 stabilizes the mode at (50 — @), &, = —0.2 stabilizes
the mode at (39 — @), §, = —0.3 stabilizes the mode at (29 — Q).

The independence of the growth rate on chromaticity suggests that it is possible to

derive a formula of the growth rate when the excitation is far from stability. The complex
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Figure 13: (color) Growth rates for excitation (n — Q) at vertical chromaticity §, =0, —0.1, —0.2,
and —0.3. The simple theoretical expectation is shown in dashes, which is the growth rate without

Landau damping, and is in excellent agreement when the excitations are far from stability.

error function has the asymptotic behavior

o ()] as

provided that |arg(iz;)| < 27. This has been demonstrated obviously by the equi-growth

contours in Fig. 13. For example, the Zm z; = 1 contour (growth rate of 1 unit) approaches
Rew(z)™' = /mImz = /7. Taking the real part of the dispersion relation [Eq. (2.19)]
and using the definitions of (U, V) and 2z, [Egs. (2.18)], we obtain
_elyFPeReZY  /TImQ
AN2rvywoos|S,| V2|, |lwoos

We see that the chromaticity factors cancel arriving at the simple expression for the growth

(4.4)

rate,
1 T - _e]ocRer '

T Ay, E (4.5)
This theoretical expectation is plotted in Fig. 13 as dashes. We see that it agrees very well
with the exact numerical solution and shows significant deviations only when the excitations
are close to stability. Notice the negative sign on the right-side of Eq. (4.5). It reminds us

that instabilities are driven only by the slow waves at negative frequencies where Re Z)" < 0.
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Actually, the expression in Eq. (4.5) is exactly the growth rate without Landau damping,

easily derivable from the dispersion relation, for example, Eq. (2.10).

4.1 Space-Charge Effects

The large growth rate of 19.6 s™! for the (1 — Q) excitation is a result of the large space-
charge impedance, although it is the real part of the impedance that drives the growth.
We mentioned in Fig. 11 that the (1 — Q) excitation is at (U, V) = (1.27,—4.59) when
the chromaticity is {, = —0.3. If there were no space-charge impedance, this excitation
would be at (U, V) = (1.27,0), where we have neglected, for convenience, the reactive part
of the resistive-wall impedance. To move it inside the stability curve will only require’
& ~ —0.3 x 1.27 = —0.38, since the V value is proportional to Re Z}/|S,|. The tune
spread required to Landau-damp the instability is therefore oa,, = [£,05] = 4.3 x 107°. This
rms tune spread is reasonable, because it corresponds to an rms angular betatron frequency
spread of 0,,, = 24 Hz while the growth rate of the (1 — Q) excitation is 19.6 s~" as indicated
in Fig. 13.

Space-charge shifts the incoherent tune spread downward away from the coherent ex-
citation and Landau damping cannot be activated. For this reason, a sizeable chromaticity
is required to generate a tune spread so that the coherent excitation is again inside the

incoherent spread and Landau damping becomes possible.

The incoherent self-field space-charge tune shift is related to the transverse self-field

space-charge impedance by
IR
Av o gv (4.6)

v incoh B 2471'ﬁE71/y L
With the self-field space-charge impedance given by Eq. (3.6) with —i28.7 M€ /m of inductive
wall impedance and about —i30 MQ/m inductive part from other discontinuities in the

vacuum chamber subtracted, the incoherent self-field space-charge tune shift is

Avy,|  =-126x10"". (4.7)

spch

Because a uniform transverse distribution has been assumed, this is the self-field space-charge

tune shift for every particle in the beam. According to the U-V plot, a vertical chromaticity

{For the excitation of 1 — Q, Sy =~ &, because the slip factor is n = —0.008815.
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Figure 14: Incoherent tune shift is 1.26 x 10~* away from the coherent excitation. A chromaticity
of & = —0.774 provides a rms tune spread of oa,, = 0.87 x 10~%. A half spread of 20 Ay, Will cover

the coherent excitation and activate Landau damping.

&y = —0.774 will suffice to damp transverse instability. This leads to an effective chromaticity
of S, = —0.779 for the (1 — @) mode, or a rms tune spread of

OAv, = |Sylos = 0.87 x 107+ . (4.8)

A half spread of ~ 204, = 1.74 x 107" is slightly larger than the incoherent self-field tune
shift, and will therefore be able to cover the coherent tune line providing Landau damping.
This is illustrated schematically in Fig 14.

5 Antiproton Instability on June 9

Transverse instability was induced on June 9 to an antiproton beam of intensity N, =
30 x 10%, length T;, = 3.5 us, and rms energy spread o, = 3 MeV. When the vertical
chromaticity was reduced to zero, the beam became unstable with the 95% vertical emittance

jumping from €ng5 = 3 mmm-mr to 6 7mm-mr together with a small beam loss.

As in the case for the proton beam, we make the stability plot in the U-V plane. The
results are shown in Fig. 15 for vertical chromaticity §, = —2, —1, and —0.5. At §, = =2,
the plot shows that stability is maintained only for the betatron modes (n —1) with n > 13,
which is in contradiction to the daily operation, because antiproton beam of this intensity,
length, energy spread, and emittances has always been stable at such chromaticity. It is

possible that there are other means of Landau damping that have not been considered here.
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Figure 15: (color) Plot showing the equi-growth contours in the U-V (normalized —Z7") plane.
The (U, V') values of each betatron excitation (n — Q) with n = 1, 2, 3, --- are shown as circles

for £, = =2, —1, and —0.5. Here, with §, = —2, stability is maintained only for modes equal to or
higher than (13 — Q). To stabilize all the modes, a chromaticity &, = —2.26 is required.
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Figure 16: (color) Growth rates for excitation (n — Q) at vertical chromaticities &, = 0, —0.5, —1,
and —2. The simple theoretical expectation, which is the growth rate without Landau damping, is
shown in dashes, which is the growth rate without Landau damping, and is in excellent agreement

when the excitations are far from stability.
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According to the present dispersion relation, we require a vertical chromaticity of §, = —2.26
to stabilize all the betatron modes.

The growth rates of the lower betatron sidebands are depicted in Fig. 16. At zero
chromaticity, all (n — @) with n < 220 are unstable. However, we see in Fig. 2 that only
those modes for n < 70 are unstable, another indication showing that the antiproton beam
was actually more stable than the theoretical prediction. By the way, the growth rate without

Landau damping for this antiproton beam is 77 = 40.2 s~! agreeing with observation.

We also see in Fig. 2 that the (1 — @) mode has not been excited as much as the (2 —Q)
mode, although the resistive-wall impedance at (1-@Q) is /(2 — [1,]) /(1 — [,]) = 1.65 times
larger than the impedance at (2 — Q). This apparent paradox can be explained by the finite

length of the beam. The beam of length T, = 3.5 us can support a wave of maximum half
wavelength 3.5 us. Thus the minimum frequency of excitation is 1/(27}) = 143 kHz. The
(1 — Q) mode is at (1 — [vg])fo = 52.5 kHz and is therefore harder to excite. On the other

hand, the (2 — @) mode is at 142 kHz and is therefore easier to excite.

5.1 Space-Charge Effects

The large growth rate of 40.2 s for the (1 — Q) excitation at zero chromaticity is a re-
sult of the large space-charge impedance, although it is the real part of the impedance
that drives the growth. The impedance of the (1 — Q) excitation has the value (U, V) =
(52.77,—1680) at zero chromaticity. If there were no space-charge impedance, this excita-
tion would be at (U, V') = (52.77,0), where we have neglected, for convenience, the reactive
part of the resistive-wall impedance. To move it inside the stability curve will only require
Sy ~ 52.7Tn[vz] = —0.27. The tune spread required to Landau-damp the instability is there-
fore oy, = |&,05| = 0.923 x 10~*. This rms tune spread is reasonable, because it corresponds
to an rms angular betatron frequency spread of o,, = 52 Hz while the growth rate of the
1 — Q excitation is 40 s 1.

Space-charge shifts the incoherent tune spread downward away from the coherent exci-
tation and Landau damping cannot be activated. For this reason, a nominal chromaticity
of & ~ —2.26 is required to generate the tune spread oa,, = |§,05] = 7.59 x 10~* so that
the coherent excitation is again inside the incoherent spread and Landau damping becomes

possible.
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The incoherent self-field space-charge tune shift is

Av eloR

=i 7V =9227x 1074 5.1
Y spch Z47TﬂEl/y ! % 7 ( )

where we have used Zm Zy = i912.1 MQ/m, which is equal to the sum Zm Z)|pen =
i970.9 MQ/m, Im Z |wan = —i28.7 MQ/m for the resistive wall at the (1 — @) mode, and
Im 7Y |other = —130.0 M /m for other inductive effects of the vacuum chamber. The above is
the maximum small amplitude tune shift for particles at the center of the beam. For all other
particles in the beam with bi-Gaussian transverse distribution, this self-field space-charge
tune shift has a distribution skewed towards the maximum as illustrated in Fig. 17. For our
beam, the average incoherent tune shift is —22.7 x 107* x 0.6334 = —14.4 x 107*. At the
chromaticity &, = —2.26, the 20’s point falls on the tune shift —14.4x10"*4+2x7.59x 10~* =
+0.83 x 10~%. Thus the spread in tune will definitely cover the coherent excitation line and

therefore the excitation can be Landau-damped.
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Figure 17: Distribution density of particles with incoherent horizontal space-charge tune shift
Av,, in units of the maximum |Av2?*|. Also shown are the average and rms spread which are,
respectively, 0.6334 and 0.1678 of Av?*.
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6 Conclusions

(1) Although the measured sideband spectra point to instabilities driven by the resistive-
wall impedance, however, the computed growth rates appear larger than observed and not
so many sidebands are unstable in observation. For example, in the induced instabilities
of the proton beam, only the lowest ~ 15 betatron sidebands were excited (Fig. 2), but
the dispersion relation says 60 are unstable (Fig. 13). In the induced instabilities of the
antiproton beam (Fig. 8), only the lowest ~ 70 betatron sidebands were excited, but the

dispersion relation says 250 are unstable (Fig. 16).

There may also be possible Landau damping coming from the nonlinear lattice elements

of the ring. The nonlinear betatron tune shifts from these elements can be expressed as

ov. ov.

Ay, = —% T
Vg a€$ €z + aéy 6y ’

T

Ay, = Bc. €x a—eyey : (6.1)
where Ov,,/O¢, = Ov, /O, . With the emittances ¢, , unnormalized and represented in meters,
the nonlinear coefficients of the Recycler lattice including quadrupole fields, sextupole fields
in the body and ends, and the feed-down due to end shims are listed in Table II from a
computation using MAD. [11] With the addition of skew and normal multipole errors of the
magnets, the nonlinear coefficients are found to be not much different from those listed in
the table, at the most about 10% smaller. Since €, = ¢, the tune shift is dominated by the
coefficient dv, /e, , both the horizontal and vertical betatron tunes are found always to shift

in the negative direction independent of the chromaticity setting. In other words, particles

Table II: Nonlinear coefficients of the Recycler lattice including quadrupoles, sextupole fields
in the body and ends, and the feed-down due to end shims as represented in Eq. (6.1), with the

emittance in meters and unnormalized.

£./€, ~ 10/ — 10 1.9/ - 23 0/0 +10/ + 10
g’f (m~Y) 707 —70.4 846 —98.0
8Vy -1
My (Y 463.8 447.9 429.9 _84.8
Oe,

Wy (1) 140 360 426 719

Oe,
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at the edge of the beam have their betatron tunes shifted downwards much more than
particles at the center. This is exactly opposite to the situation of self-field space-charge tune
shifts. The implication is that the total self-field space-charge tune spreads in a nonuniform
transverse distribution will become smaller both horizontally and vertically, resulting in the
reduction of Landau damping. Luckily, at { = &, = 0 and €;ngs = €y n95 = 37 mm-
mr, the vertical betatron tune spread from nonlinear lattice fields turns out to be only
Av, = 1.26 x 107*, which amounts to about 6% of the vertical self-field space-charge tune
shift [Eq. (5.1] in the antiproton-beam experiment, but is of the same order as the vertical
self-field space-charge tune shift [Eq. (4.7)] in the proton-beam experiment. The conclusion
is that the betatron tune spreads due to nonlinear lattice elements may help Landau damping
in the proton-beam experiment, but will have very little effect on the Landau damping in

the antiproton-beam experiment.

(2) We want to ask whether the space-charge impedances of the beams have been overes-
timated. Smaller space-charge impedances would lead to better agreement between theory
and observation. For the proton beam, uniform transverse distribution has been assumed
and that should give the smallest transverse space-charge impedance. For the antiproton
beam, stochastic cooling makes the beam very bi-Gaussian and this has been verified by
measuring the transverse beam shape using scrapers. Thus there is not much problem in the
estimation of the space-charge impedances.

Some physicists argue that the self-field portion

7
v DR (6.2)

1 lspch 72ﬁ2a2

should not be included in the transverse space-charge impedance. The impedance is derived
by offsetting the beam transversely by a small amount as illustrated in Fig. 18 and computing
the electric and magnetic forces on the beam center from the dipole charge and current
distributions set up at the edges of the beam. They argue that when oscillation amplitude
is larger than the beam radius, the displaced charges will not be seen by the beam. In any
case, however, the space-charge impedance should play an important role at the beginning of
the instability when the transverse offset is small. Experimentally, space-charge effects are
certainly significant. The observed proton beam instabilities do depend on heavy scraping,
and to induce instabilities of antiproton beams, reduction in the transverse beam size by
stochastic cooling is certainly required. However, we notice that

Zi| ocp(0) (6.3)

spch
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=

Beam shifted
upward by A

Figure 18: The transverse space-charge impedance is derived by offsetting the beam transversely
and computing the dipole electric and magnetic forces on the beam center set up at the edges of
the beam. If the offset A is larger than the beam radius, the center of the beam will no longer see

the dipole electric and magnetic forces.

where p(0) is the transverse distribution at the center of beam. Thus the transverse space-
charge impedance corresponds to the largest incoherent space-charge tune shift. Maybe
something that is averaged over the beam particles would be more correct. For this, the

derivation of the transverse space-charge self-field impedance should be revisited.

(3) There have been some problems concerning skew quadrupole SQ408. In May of 2004, it
was discovered that SQ408 had been wired incorrectly and was not supplying the required
skew-quadrupole field to counteract horizontal and vertical coupling. It was repaired near
the end of June, and after that no more natural transverse instability has ever been recorded.
In the induced proton instability on July 8, the turning off of SQ408 was a very essential step
to excite the instability. With the SQ408 on, no instability could be induced. It is possible
that the beam got jittered horizontally by the stray fields of the Main Injector and the was
then coupled to the vertical to start the instability. It is also possible that with the SQ408
off, strong horizontal and vertical coupling moves the tune footprint onto some parametric
resonances, which trigger the instability. In short, up to now there has not been any sound
theory about the role SQ408 plays on the instabilities.
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