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Abstract

The longitudinal monopole and transverse dipole space-charge impedances of a
round beam with various transverse distributions inside a cylindrical beam pipe are
derived analytically. The derivations are then extended to a beam with any distribution
in various shapes of the vacuum chamber. The relation with the incoherent self-field

space-charge betatron tune shift is mentioned.
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1 INTRODUCTION

For a round beam of radius a with uniform transverse distribution, the longitudinal
monopole and transverse dipole space-charge impedances are well-known. They are usually

written as
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where v and [ are the nominal relativity factors of the beam particles, R is the mean radius
of the accelerator ring, b is the radius of the cylindrical vacuum chamber, and 7, = 376.6 €2
is the impedance of free-space. Unfortunately, most beams are not uniform in transverse
distribution and these formulas therefore required modification. In application, one may
continue to use the two above formulas by guessing at an effective equivalent uniform-density
radius a. When the cross-section beam is of bi-Gaussian distribution with rms spread o,
one may be tempted to substitute a = v/60,, the radius that encloses 95% of the beam.
As will be illustrated below, the correct answer should be a = 1.7470, for the longitudinal
impedance and a = /20, for the transverse impedance. Thus, this wild guess would have
led to an 1+21In(b/a) which is smaller by 0.676 in absolute value, and an incorrect transverse

space-charge impedance which is 3 times too small.

In this note, we list in Sec. 2, the longitudinal monopole and transverse dipole space-
charge impedances of beams with some commonly-used transverse distributions, such as the
elliptical, parabolic, cosine-square, and bi-Gaussian. In Sec. 3, we first review the derivations
of the space-charge impedances for beam with uniform transverse impedance. In Sec. 4, these
derivations are extended to beams with non-uniform transverse distributions. The connection
with incoherent betatron space-charge tune shift is discussed in Sec. 5. The extension to
beams with non-cylindrical distributions inside non-cylindrical beam pipes is discussed in

Sec. 6. Conclusions are given in Sec. 7.

2 RESULTS

The longitudinal monopole space-charge impedance in Eq. (1.1) can be rewritten as
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where g is a geometric factor depending on the geometry of the beam transverse distribution
and the geometry of the beam pipe. For round beam of radius ¢ and uniform transverse
distribution

90:1+21n2. (2.2)

We have computed gy and also the transverse space-charge impedances of elliptical distribu-
tion, parabolic distribution, cosine-square distribution, and bi-Gaussian distribution. The
geometric factor and the transverse impedance can be expressed as Eq. (2.2) and (1.2) with
a replaced by the effective uniform-density radii ¢ and a,. The results are listed in Table 1.

Table I: Equivalent uniform-density radii aj and ay in the space-charge impedances of a
beam with linear density A for various cylindrically symmetric volume particle densities p(r).

See Sec. 4.1 and 4.2.1 for truncated bi-Gaussian. v, = 0.57721 is Euler’s constant.
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3 UNIFORM DISTRIBUTION

Let us first review how the longitudinal and transverse space-charge impedances are
derived for a beam with uniform transverse distribution, so that the impedances of other

distributions can be derived following the same procedures.



3.1 Longitudinal Monopole Space-charge Impedance

Consider a particle beam with linear density™ \(s, ) traveling in the positive s-direction with
velocity v inside a cylindrical beam pipe of radius b with infinitely-conducting walls. The
axis of the beam coincides with the axis of the beam pipe. The beam is assumed to be rigid;
therefore A = (s — vt). We also assume that its radius a does not vary longitudinally. We
are interested in the longitudinal electric field F, seen by the beam particles at the axis of

the beam. To compute that, we invoke Faraday’s law,

VxE=-——F, (3.3)

fE :——f3¢4 (3.4)

In above, the closed path of integration of the electric field E is along two radii of the beam

or in the integral form,

pipe at s and s + ds together with two length elements at the beam axis and the wall of the

beam pipe, as illustrated in Fig. 1. The area of integration of the magnetic flux density B

b =

Figure 1: Derivation of the space-charge longitudinal electric field Ey experienced by a

beam particle in a beam of radius a in an infinitely conducting beam pipe of radius b.

is the area enclosed by the closed path. Now, the left side of Eq. (3.4) becomes
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THere A(s,t) is the linear particle density. The linear charge density is e\ where e is the particle charge.




while the right side
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where ¢y = 1/(Zyc) and ug = Zy/c are the electric permittivity and magnetic permeability
of free-space with ¢ being the velocity of light. Assumption has been made that the opening
angle 1/ of the radial electric field is small compared with the distance ¢ over which the
linear density changes appreciably, or b/y < (. Here, v = Ey/(mc?) and m is the rest mass
of the beam particle. In terms of the squared-bracketed expressions in Eqs. (3.5) and (3.6),

we can define the geometric factor

go—QU rdr /dr}—l—l—ané. (3.7)

Combining the above, we arrive at
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which is the space-charge force experienced by a particle in a beam. In the reduction from

Eq. (3.7) to Eq. (3.9), use has been made of the relation epug = ¢™2.

Consider a longitudinal harmonic wave
M(s,t) oc e dns/B) (3.10)

perturbing a coasting beam of uniform linear density A, where n is a revolution harmonic, R
is the radius of the accelerator ring, and €2 is the frequency of the wave. It can be shown that
Q) = nwy = nv/R; the difference comes from the perturbation of the coupling impedance.
Thus, A; is roughly a function of s — vt. Substitution into Eq. (3.9) results in the voltage
_JneZocgo
272
seen by a beam particle per accelerator turn. The perturbing wave constitutes a perturbing

V=—-E2rR = A (3.11)

current I; = eAjv. The space-charge impedance experienced by a beam particle is just the
potential divided by the perturbing current, and we obtain Eq. (2.1). In general, for a beam
with linear density A and cylindrically symmetric distribution density p(r), the geometric

factor g is therefore given by

go " dr rp(r) 1.0 bdr
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where 7, is the transverse edge radius of the beam.



3.2 Transverse Dipole Space-Charge Impedance

When the beam is at rest, the particle volume distribution density is
p(r) = —=0(a—r), (3.13)
Ta
where A is the linear particle density. To create a dipole beam, let us displace it by an
infinitesimal amount A in the vertical direction. The dipole charge density is given by the

differential of p(r), ort

~_Op(r) . eAAsinf
Ap(F) = o A= —3 d0(a—r), (3.14)

which describes a hollow cylinder of charges of radius a with sin # variation, as illustrated in

Fig. 2. The electric force acting on a test particle at the center of the unperturbed beam in

Y
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Shift upward by A — 0

Figure 2: A beam of uniform transverse density and radius a is shifted by an infinitesimal

amount A vertically to create a dipole beam of hollow cylinder of charges of radius a.

the y-direction is purely dipole in nature and is given by

m > 2\Asin @ sin 0 2\AZ
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The negative sign in the last expression implies that the net vertical force on a particle at

the center of the beam pipe is pointing downward. We now take into account that the beam

To shift the whole distribution by the amount A in the y-direction, the distribution p(z,y) becomes
p(x,y — A), which explains the negative sign after the first equal sign in Eq. (3.13).



is moving at a velocity (¢ forming a current AGc. A hollow cylinder of current with sin @
distribution becomes a dipole current /gipoe = AABc. The magnetic force on the test particle
at the center of the beam is the same as the electric force except that it is multiplied by
—32. One of these 3 comes from the Lorentz force while the other comes from the velocity

of the test particle. The total integrated force observed by the test particle in a revolution

2rR 2 AcZ
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turn is therefore

The dipole current also induces a vertical dipole image current at the wall of the cylindrical
beam pipe at radius b. This dipole image current exerts a dipole force at the center of the
beam in the y-direction but in the opposite direction of the space-charge self-force. Thus the

total force exerted at the beam center in the y-direction is

2R 2
e“ANAcZyR | 1 1
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The transverse dipole impedance is defined as
1 2R
le = —mé Ftotalds (318)
ipole

which is just the integrated transverse force normalized to the vertical dipole current. We

therefore obtain the total transverse dipole space-charge impedance stated in Eq. (1.2)

4 NON-UNIFORM TRANSVERSE
DISTRIBUTIONS

4.1 Transverse Space-Charge Self-Force Impedance

Following the procedure laid out in Sec. 3.2, the transverse space-charge impedance for any
cylindrical transverse distribution p(r) can be derived. However, a closer examination shows
that the derivation can, in fact, be made much simpler. The shifted dipole density is

Ap(r) :—ag—(yr)A: _dfi—snr) sinf A . (4.19)
When substituted in Eq. (3.15), the dipole electric force in the vertical direction can be
written more generally as
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where we have used the fact that p(r) vanishes when evaluated at the upper limit or the
transverse edge of the beam.® The space-charge self-force part of the transverse impedance

is therefore
 ZoR mp(0)

self -/ ’)/2ﬂ2 A
In other words, the self-force part of the transverse impedance of a coasting beam with

1

(4.21)

cylindrical transverse distribution is just proportional to the distribution density at r = 0.

Or the equivalent uniform distribution radius a, is just

A
a; = (0] (4.22)

Thus the last column in Table I can be read out from the particle volume distribution easily.

A comment has to be made for the bi-Gaussian distribution if it is truncated at r = mo,,
where m need not be an integer, although we must require mo, < b so that the beam pipe

will be large enough to hold the beam. The volume particle distribution density is

AnA
p(r) = TNUQe_TQ/(Q"E) O(mo, — 1), (4.23)
with .

so that it is properly normalized to A when integrated over the transverse coordinates. Thus

the equivalent uniform-density radius is

oy Y20 (4.25)
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However, the approximation a; ~ v/20, is usually accurate enough. For example, with a

truncation at 3c,, the error in the transverse space-charge self-force impedance is only 1%.

4.2 Longitudinal Space-Charge Impedance

The geometric factor gy can be derived easily by substituting the particle volume distribution
density p(r) into Eq. (3.12). Here we will just give some comments for the truncated bi-

Gaussian distribution and the cosine-square distribution.

SFor a distribution density like that uniform distribution, p(r) = A\/(wa?) for r < a, that is not continuous
at the edge of the beam, one may be confused whether we should use p(a+) = 0 or p(a—) = \/(7a?) at the
beam edge. However, looking into the integration of Eq. (3.15), it is clear that we must use r = a+ as the
edge, otherwise the contribution of the §-function will not be included.



4.2.1 Truncated Bi-Gaussian

With the bi-Gaussian truncated at mo, as given by Eq. (4.23), the geometric factor, accord-
ing to Eq. (3.12) is given by

mor d b d
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where the normalization constant A is given by Eq. (4.24). The result is

b
V20,

where 7, = lim [1 + % + % + i +o 4+ % —In n} = (0.57721 is Euler’s constant and the ex-
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ponential integral is defined as
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with the asymptotic expansion
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Notice that with the truncation at 3¢’s, terms involving e ™/2 can be neglected with an
error of approximately 1% only. When written in the form of Eq. (2.2), the equivalent

uniform-density radius a) is given by

CL|| :1—’)/6.
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4.2.2 Cosine-Square Distribution

The volume particle distribution density is

p(r) = Ay cos® g—; o(r—r), (4.32)



where the normalization constant is

Ay = ——=. 4.33
M (r2 = 4)72 (433)
The integration from 0 to r is
"ptrY. ., rori . owr P2 o
2rr'dr' = Ay | = + —sin— + — <COS —— 1) ) (4.34)
0 A 2 T o 7
To compute gy, the line integral inside the beam involves the integral
Tt i m 0
—(1 —cost) = — — - 4.35
/0 plcs) = i 5w (435)
We then obtain
m 0 78

o =om 1021168 (4.36)
r

b 2
2l 4 2mAy | - -
fo=cmg+en N[w2+4-41 6.6 8.8l

The equivalent uniform-density radius a) = 0.63097 can be derived easily.

5 CONNECTION WITH INCOHERENT
SPACE-CHARGE TUNE SHIFT

The self-field part of the transverse space-charge impedance resembles the incoherent self-field
space-charge betatron tune shift. We are going to show that they are, in fact, proportional
to one another. The equation of motion of a beam particle of mass m and angular revolution
frequency wq in the y-direction can be written as

d*y

1
gz T Vaeoy = ,y—m[ con(¥) + Flucon(y — <y>)] : (5.37)

where vg is the bare betatron tune provided by the external focusing forces like the quadru-
poles. The forces arising from the vacuum chamber and other beam particles are on the right
and are expanded up to first order in the particle vertical displacement y and first order in the
displacement of the beam center (y). It is obvious that F , is the force gradient responsible
for coherent betatron tune shift and F} _,

betatron tune shift. Since the wake force F . (y) on the beam particle is proportional to

is the force gradient responsible for incoherent

the displacement of the beam center (y), we therefore have

/ v /
F - Fcoh - Encoh :

wake

(5.38)
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However, the self-field part of F,

o Is exactly zero because the beam center moves with the

beam and will not experience any net force from other beam particles inside the beam, which

is another statement of Newton’s third law of motion. Thus we must have

F! = —F/ . 5.39
wake self incoh self ( )

For this reason, the self-field part of the transverse space-charge impedance must be pro-
portional to the incoherent self-field betatron tune shift. The equality of the two forces in
Eq. (5.39) is not accidental and there is a simple physical reason behind it. A test particle at
the center of the beam will not experience any space-charge forces from other beam particles.
However, when the beam is displaced vertically upward by an infinitesimal amount A, the
particle at the unperturbed beam center will be seeing the dipole wake force £, A. But the
test particle will be seeing exactly the same force if the particle itself is shifted downward by
A instead while the beam is not moved. The latter force is just the defocusing space-charge
force experience by a particle while performing betatron oscillation. It is responsible for the

incoherent space-charge tune shift and is therefore denoted by —F!

teonA. This argument is

illustrated in Fig. 3 for clarification.

The equality F! —I! COh‘self provides a direct relation between the self-field part

wake ‘ self = in

4 v
T ¥ A Y

Beam shifted Test particle shifted
upward by A downward by A

Figure 3: When the beam is shifted upward by A, the self-field space-charge force,
denoted by F”

ke, acting on a test particle at the unperturbed beam center (left) is

exactly the same force, denoted by —F/ - A, if the test particle is shifted downward by

incoh

A while the beam is unperturbed (right).
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of the transverse space-charge impedance and the incoherent betatron space-charge tune
shift. For verification, we are now deriving the relation in another way. Consider a test
particle at the beam center making small amplitude betatron oscillation. At a distance r
from the center of the beam, the radial repulsive space-charge force is given by

2

T 2
Flucon = / pryzer'dr ~ 2 (5.40)
0

2meqr 2¢€q

where the small displacement approximation has been made in the last step. The vertical
incoherent self-field space-charge tune shift is therefore

1 aFﬂincoh o 62p(0)
ugymwt Oy  deougymwd

Avy = — (5.41)

Introducing the classical particle radius 7o = €%/(4megmc?) and the total number of particles
in the beam N = 27 R\, we get

T()NR p(O)

Apmax — 07T PAY)
ol w3 N

(5.42)
where an extra 72 has been added to the denominator so that both electric and magnetic
space-charge forces are included. We have also labeled this tune shift by “max” because the
betatron space-charge tune shift of beam particles at the center of the beam is usually at
its maximum. Comparing Eq. (5.42) with Eq. (4.21), we obtain the relation between the
maximum incoherent betatron space-charge tune shift and the self-field part of the transverse
space-charge impedance, which can be written as

eloR |

—] 4
]47TV56E0 ! self (5 3>

max
Ayﬁ =

where Iy = eNwy/(27) is the average beam current.

6 EXTENSION TO NON-CYLINDRICAL
TRANSVERSE DISTRIBUTIONS

Although the transverse cross-section of a particle beam may not have cylindrical sym-
metry, however, most of the time it does have elliptical symmetry. In other words, the
volume particle distribution density p is a function of u where

2 2
2 T Y

- 6.44

u a§+a§ (6.44)
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where a, and a, are measures of the horizontal and vertical beam sizes. Since p is now a
function of one variable only, many of the above procedures can be repeated by making the
substitution

6.45
Yy = ayusing . ( )

{x = a,ucosf

6.1 Transverse Space-Charge Impedance

The dipole particle density of Eq. (4.19) resulting from shifting the beam vertically by the
amount A now becomes

Opr) \ _dplu) v _dplu) A
AN == e A T e b oMY

(6.46)

The electric force in Eq. (4.20) in the vertical direction becomes

- A/da:d { 2dp(u )}sin9 LA (6.47)

FV
du 2megr?

elec

Changing the variables from (z,y) to (u,#), this electric force takes the form

e2Aa,a sin? 6 62 a,/\
JOA— ad y/ d@/ d u 0) , 6.48
elec 2meg Y u du az cos? 0 + a2 sin 29 €0 Qg + ay p(0) ( )

where the formula

/2 a2 0
/ do A i (6.49)
0

a?cos? 0+ aZsin®0  2a,(a. + ay)
has been used. Plugging into the definition of Eq. (3.18), we arrive at the self-field part of

the vertical and horizontal dipole space-charge impedances

ZoR 27mp(0)/A ZoR 27mp(0)/A
U =— d 77| =- .
Hlsat ]’7252 1+ ay/a, o ! lserr j72ﬂ2 L+a./a,’ (6:50)

where a,/a, represents the aspect ratio of the cross-section of the beam.

The equality of the self-field part of transverse wake force and the linear defocusing force
in Eq. (5.39) does not depend on the cross-section of the beam and will therefore hold when
the cross-section of the beam is elliptical. Thus, the relation between incoherent space-charge
tune shift and self-field part of the transverse space-charge impedance of Eq. (5.43) will hold

as well. From this, we obtain

roNR  p(0)/A roNR  p(0)/A
AVmaX:_ AHmax:_ 1
g 1/57362 1+a,/a, and Vg’y362 1+ a;/a, (6.51)
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For uniform distribution

2\ ) 2 y?
p(u) = ﬂ_awaye(l — U,) with u = % + a—g 5 (652)
we have
AL Zolt 2 and  Ap)Tme - rolV R (6.53)
b fsar V20? ay . (az+ay) A Ty 3 B ay . (ast+ay) '

For all other distributions, the results can be expressed in exactly the same forms as Eq. (6.53)
by defining the equivalent uniform-density radii a, and a,. These are listed in Table II for

the elliptical, parabolic, cosine-square, and bi-Gaussian distributions.

For the bi-Gaussian distribution truncated at mo, and mo,,

AN 2 . 2 y?
plu) = 27T0m0y6 20(m — u) with u = = + 0—22/ , (6.54)

Table II: Equivalent uniform-density radii a, and a, in the transverse space-charge impe-
dance and incoherent space-charge tune shift of a beam with linear density A\ and elliptical
cross-section for various particle volume densities p(u) with u = /(z/2)2 + (y/9)? except
for the bi-Gaussian distribution where v = \/(z/0,)? + (y/oy)>?.

Phase space distribution Equivalent radii
p(r)/A Uz y
. 1 . .
Uniform —0(1 —u) T T
TIY
3 2 2
Elliptical 5ri (1—u?)"?0(1 —u) 3¢ 59
Parabolic — (1 —u®)0(1 —u — =
2 2_4 2_4
Cosine-square QTTZ)J%Q COSQ% 0(1 — u) 7T27T2 z W27T2 Y
1
Bi-Gaussian e /2 V20, V2 oy
2m0,0y
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—m?/ 2 the equivalent uniform-density radii are

V20,,
Uy = ——=f
Y V1 — e—m2/2

The denominator can be neglected with less than 1% error in the impedance or incoherent

where Ay' =1—¢

(6.55)

space-charge tune shift if the bi-Gaussian is truncated at m 2 3.

6.1.1 Effect of Beam Pipe

In studying the self-field portion of the transverse space-charge impedance, nothing has been
said about the beam pipe. This is because this self-field portion of the impedance represents
the dipole space-charge force acting on a test particle while the whole beam is making dipole
oscillation of infinitesimal amplitude, and it is not affected by the existence of the beam
pipe. Although the beam forms images in the walls of the beam pipe, the image force acting
on the test particle does not depend on the transverse distribution of the beam. As a result,
the contribution of the images to the transverse impedance will not affect the contribution
of the self-field part. From Eq. (5.38), the contribution of the images to the transverse
impedance is proportional to the difference of image coherent betatron tune shift and the
image incoherent betatron tune shift. From the definition of transverse dipole impedance in
Eq. (3.18), we obtain

zv _ _ 2mR F A = AnF? [Fc’oh— 4

B i 6.56
image ]ﬂejoA wake image 62Nﬁ2c incoh ) ( )

] image

where Eq. (5.38) has been used. Now Eq. (5.37) gives the relation between tune shift and
force gradient:
VA P 6.57
9 . .
wovelvs =~ (6.57)
Eliminating the force gradient, we obtain the relation between the wall-image portion of the

transverse impedance and the corresponding tune shifts, or

2 usY 2,
A I Lol R AL} N e . (6.58)

image T QN coh incoh image

The wall-image effects are best represented by Laslett electric coherent image coefficient &)

and electric incoherent coefficient ¢;"”, which are defined as [1, 2, 3, 4]

ApVH — rolNR E;/’H and ApVE — roNR EYH

0 St =0 6.59
coh WUE,H/YBQ h2 incoh Tyg7H7/82 h2 ( )
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where h is the half height of the vacuum chamber. We finally obtain
 2ZR & ="

image 7 232 h? ’

where an extra 42 has been introduced in the denominator to include the effect of the mag-

netic force. The image coefficients for a centered beam in cylindrical, elliptical, rectangular,

(6.60)

Zy

and parallel-plate beam pipes are listed in Table III.

Table III: Image coefficients for centered beam in a cylindrical, elliptical, rectangular, and
parallel-plate beam pipes. K (k) is the complete elliptic integral of the first kind. & is determined
from (w—h)/(w+h) = exp(—7K’'/K) for the elliptical cross section but w/h = K’/(2K) for the
rectangular cross section, where w and h are the half width and half height, with e = Vw2 — h2,

and K’ = K (k') with ¥ = V1 — k2.

Coeff. | Cylindrical Elliptical Rectangular Parallel Plates
eV 0 12; {(Hk’?) (%)2—2} Ki? (1—6k+k?) Z—;
e 0 1_2}; {(1%’2) (%)2—2} #Z(k) (1 -6k + k%) —Z—;
o | 1| EE | B | :
G ) B I

6.2 Longitudinal Space-Charge Impedance

In the derivation of the longitudinal space-charge impedance, there is the integration of the
electric field E from the beam center to the wall of the vacuum chamber in Eq. (3.7), which
is just the potential difference ¢, between the beam center and the wall of the vacuum
chamber, and we refer it as the space-charge potential. In fact, we can write

el
— . .61
Areq 90 (6 6 )

¢Sp

Thus the derivation of the longitudinal space-charge impedance reduces to the computation

of the space-charge potential between the beam center and the walls of the vacuum chamber.
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Such a computation involves the solution of the Poisson equation with the beam particle
distributed inside the vacuum chamber. It is well-known that this problem is nontrivial
because it depends not only on the distribution of the particles in the beam but also the
cross-section of the vacuum chamber.Y The situation of a cylindrical beam at the center of
a cylindrical beam pipe has been simple because the equipotential surfaces of a cylindrical
beam are cylindrical and the beam pipe just coincides with one of them. Besides this special

situation, we are not aware of any that can provide a simple analytic formula.!

Although most of the time numerical solution is required to evaluate the space-charge
potential, however, there exist some semi-analytic approximations. One of them is for a
rectangular beam inside a rectangular beam pipe derived by Grobner and Hiibner.[5] Here,
the particle distribution is uniform in the y-direction between +a,, but is not restricted in

the z-direction. The coordinates of the beam pipe and the beam are shown in Fig. 4, with

Y

beam 2w

Figure 4: Ilustration showing the rectangular beam (enclosed by dashes) inside the

rectangular beam pipe.

w and h denoting the half width and half height of the rectangular beam pipe. The particle

YEven in the cylindrically symmetric case, gy depends on the beam size a) and the radius of the beam
pipe b through In(b/a), unlike the transverse dipole space-charge impedance where the parts involving a and
b are separated.

IThe potential of a one-dimension beam (planar beam with only variation vertically) between two hor-
izontal parallel plates can be solved exactly. However, this problem may not be of interest in practice,
because the horizontal width of a beam is usually not very much larger than the separation between the

plates making the one-dimension approximation invalid.
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density of the beam is expanded as a sine series:

A
pley) = Zgnsmnnx@(a -y, (6.62)
with
ni

The electrostatic potential U(x,y) satisfies the Poisson equation

Zgnsmnnw ly| < ay,

o 0? 4€oay

0 ay < |yl <h,
The solution is a linear combination of hyperbolic sine and cosine. After satisfying the

boundary condition at the walls of the beam pipe and after matching U and 0U/0y at the

edges of the beam, it is not difficult to arrive at the final solution

S coshn, (h — a,) coshn,y| g, sinn,x
€oayw <= | coshn,h nZ
U(z,y) = (6.65)
eX <= [sinhn,a,sinhn,(h - |y|)] g, sinn,z
<lyl<h,
\ dega,w nz_:l cosh n,h N2 ay <yl

We see that U vanishes at the walls of the beam pipe. Thus the space-charge potential is
the negative of the potential at the center of the beam (w,0), or

el — coshn,(h —a Jp Sin N w
o = 3 [1 _ coshm y)} iy (6.66)

dega,w coshn,h n2

For a uniformly distributed beam within w—a, < * < w+a, and |y| < a,, the spectrum

gn is given by
1

Qg

2

QT

Gn = [COS Nn(w —a) — cosny,(w+a)| = sin n,w sin N, a, . (6.67)

Thus the geometric factor gy can be expressed as

4t Z sinn,a, sinh $n,a, sinhn,(h — 3a,)
n3 coshn,h '

(6.68)

go = a4,
LY n=1,3,--
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Figure 5: (color) Top: A rectangular beam at the center of a squared beam pipe. We see that gy
is almost indistinguishable from 1 + 2In(h/a,) (plotted in dashes) when the beam is square, but
decreases as the beam spreads out horizontally, because the charges spread out and the vertical
electric field becomes less intense. However, the 2In(h/a,) behavior is preserved, where h and a,
are half heights of beam pipe and beam. Bottom: A squared beam at the center of a rectangular
beam pipe. As ratio of width to height w/h of the beam pipe increases, gy increases and deviates

from the 2In(h/a,) behavior, because the electric field from the beam is more concentrated.



19

In particular, we have computed gy for a rectangular beam inside a squared beam pipe with
results shown in the top plot of Fig. 5 for various aspect ratios of the beam as function of
h/a,. We see that when the beam is square, go is almost indistinguishable from that of a
circular beam inside a circular beam pipe, which is also plotted in dashes for comparison.
As the beam spreads out horizontally, gy decreases. However, its 21In(h/a,) behavior is
unchanged. The reduction in g is due to the fact that the charges spread out horizontally

so that the electric field becomes relatively smaller.

We have also computed the situation of a square beam at the center of a rectangular
beam pipe. We see that as the beam pipe is elongated horizontally, gy increases because
the electric field coming from the beam becomes more concentrated vertically. We also note
that go no longer follows the 2In(h/a,) behavior. For example, gy ~ 2.5 + 41In(h/a,) when
w/h =2, and go = 5+ 7.81n(h/a,) when w/h = 4.

6.2.1 Bi-Gaussian Distribution

With a beam of non-uniform transverse distribution, it is difficult to solve the Poisson equa-
tion in each part of the space inside the beam pipe and obtain the final solution through
boundary matching. Here, let us start out with the Bassetti-Erskine formula for the potential

of a bi-Gaussian distribution [6]

y2

z2
e /Oo . 1 —exp | —5 — 227
o (0F+0)V2Q202+1)12

o(z,y) = (6.69)

dmeq

where we have set the potential to zero at the center of the beam. A set of equipotential

surfaces is described by
¢(z,y) = constant , (6.70)

and we assume that the wall of the beam pipe just coincides with one of these surfaces that

passes through the point x = 0, y = h. Then the geometric factor is just given by Eq. (6.61),

o0 1 — exXp [_#2-‘,-1‘]
= Yy
9= /0 dt (202 + t)1/2(20§ i t)1/2 ) (6.71)

or

Let us make a transformation
207+t

_2<75—|-t7

2

(6.72)
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' 2R (1 — R?)h?
= = - ) 7
% /ag/ag 1— R? { o ( 2R?A? )} / (673)

05. The next transformation is

to obtain

where A2 = o2

x_

(1 — R?)h?
U= oRaAT (6.74)
from which we obtain W J(202)
%y du
90 :/ _— |1 —e7"| . (6.75)
0 uy/ 1+ %QU [ }

We have been successful in limiting the horizontal-vertical asymmetry of the beam cross
section to appear only under the square-root in the denominator. Also there is no need to
know whether o, > o, or 0, < 0,. In the situation of a cylindrical symmetric beam, we
have A = 0 and we recover the integral in Eq. (4.26). When A # 0, the integral cannot
be performed in the closed form. If the asymmetry in the beam cross-section is small, or
more precisely A?/ 05 < 1, the square-root in the denominator can be expanded and then g
can be obtained as a series in A2. Unfortunately, such an expansion is usually not possible
because most of the time o, > 0, leading to A?/o) > 1. Thus, numerical evaluation is
necessary. We have computed gy as function of h/(v/20,) for various aspect ratios of the
beam and the results are plotted in Fig. 6. As expected, the curve for the special case of
o, = 0y, a cylindrical beam inside a cylindrical beam pipe, coincides exactly with what we
derived before in Eq. (4.27), i.e.,

h h?
go = Ye + 21n \/50_ + E; ﬁ , (676)
Yy

Yy
where v, = 0.57721 is Fuler’s constant, F; is the exponential function. Here, no truncation
of the distribution has been considered. The function F; compensates for the non-uniform
distribution of the beam and is significant when h ~ 20, as expected. Except for this be-
havior, the curves for gy do not deviate much from what we have computed for a rectangular

beam inside a square beam pipe, and the 21In(h/ ﬁay) behavior is preserved.

7 CONCLUSION

We prove explicitly that the self-field part of the transverse dipole space-charge impedance is

proportional to the incoherent betatron space-charge tune shift of a particle at the center of
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Figure 6: (color) Plot of gy as functions of h/(v/20,) for various aspect ratios of a
bi-Gaussian beam using the Bassetti-Erskine formula. The one for a cylindrical beam

in a cylindrical beam pipe is shown in dashes.

the beam. A simple formula is derived to compute this part of the transverse dipole space-
charge impedance seen by a beam with any transverse distribution. The part coming from
the image effects in the walls of the beam pipe has been related to the difference between

the coherent and incoherent electric image coefficients defined by Laslett.

As for the longitudinal space-charge impedance, the geometric coefficient gq is essentially
the potential difference between the walls of the beam pipe and the center of the beam. This
is the solution of the Poisson equation with the beam. As a result, the effects of the beam and
and beam pipe are not separable. This leads to the impossibility of deriving simple analytic
formulas for the geometric factor except in the simple situation of a cylindrical beam inside

a cylindrical beam pipe.
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