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Abstract

Coupling impedances, both longitudinal and transverse, are derived for a beam
exposed to the laminations of magnets. The method consists of first deriving the
impedances in terms of the surface impedance per square, which is defined as the ratio
of the longitudinal electric field and the transverse magnetic field at the laminated
pole surfaces, and second deriving the surface impedance per square according to the
configuration of the laminations. A combined-function magnet is approximated by
laminations having two parallel faces. A Lambertson magnet is approximated by an
annular ring of laminations. Instead of diverging to infinity at zero frequency, the
existence of the bypass inductance for a dipole particle beam requires the real part of
the transverse impedance to bend around and go to zero instead, so that laminated
magnet will drive head-tail instabilities at nonzero chromaticity but not transverse
coupled-bunch instabilities. Applications are made to the laminated magnets of the
Fermilab Booster and the Lambertson magnets of the Fermilab Tevatron and Main
Injector.
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1 INTRODUCTION

A beam exposed to metallic laminations entails tremendous coupling impedances, both longi-

tudinal and transverse. The laminated elements can be Lambertson magnets or parallel-face

dipoles. The beam can be at the central axis of the magnet or at an offset close to the

laminated surfaces of the magnets. The coupling impedances can be derived in two steps. [1]

First, the resistive-wall impedances are derived assuming an effective surface impedance per

square R of the laminated surface, defined as the ratio of the electric field component in the

direction of the beam and the magnetic field transverse to the beam at the surface. For a

resistive metallic beam pipe, this surface impedance per square is just†

R =
1 + j

δcσc

, (1.1)

where σc is the conductivity of the beam pipe and

δc =

√
2

|ω|µσc
(1.2)

is the corresponding skin-depth into the walls of the beam pipe at the angular frequency ω

with µ being the magnetic permeability. The second step is to compute the effective surface

impedance per square of a laminated magnet by including the effect of the electromagnetic

waves going into and out of the cracks of the laminations.

It has been pointed out that the transverse dipole impedance Z⊥
1 does not follow the

ω−1/2 behavior at low frequencies. [2] In fact, the dipole image current sees a bypass in-

ductance Z0/(4πc) in parallel with the resistive-wall impedance, where Z0 ≈ 377 Ω is the

impedance of free space and c is the velocity of light. [3] Thus, when the frequency is low

enough, the image current will flow through the bypass inductance instead. In other words,

ImZ⊥
1 approaches a constant inductive reactance at zero frequency, while Re Z⊥

1 bends

around and goes to zero linearly. As a result, the bend-around frequency is determined

roughly by the equality of the bypass inductive reactance and the wall impedance, or

ωZ0

4πc
≈ |R|

2πb
, (1.3)

which reduces to √
2b

δc
∼ 1 , (1.4)

†When both positive and negative frequencies are addressed, 1 + j should be replaced by 1 + j sgn(ω).
However, or the sake of convenience, sgn(omega) is omitted most of the time in below.
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for a cylindrical beam pipe of radius b with smooth resistive wall. Or the bend-around

frequency is

fbend =
c

2πZ0σcµrb2
. (1.5)

With a beam pipe of radius b = 5 cm, wall conductivity σc = 0.5×107 (Ω-m)−1, and relative

magnetic permeability µr ∼ 1, the bend-around frequency is roughly 10 Hz, which is very

much less than the revolution frequency for nearly all accelerator rings. As a result, this

bend-around of Re Z⊥
1 plays no role in the discussion of collective instabilities of the particle

beam. For a laminated magnet, however, the surface impedance per square is very much

larger, and the bend-around frequency becomes much larger. The bend-around frequency of

a laminated magnet of annular cross-section is estimated to be roughly

fbend =
8cµr

Z0σcτ

(
ln

d

b

)2

, (1.6)

where b and d are, respectively, the inner and outer radii of the magnet, τ is the thickness

of a lamination with relative magnetic permeability µr and skin-depth δc. As an example,

with τ = 0.025′′, and µr = 100 for the lamination, and b = 1.25′′ and d = 6′′ for the radii,

the bend-around frequency becomes ∼ 250 MHz (actual computation gives ∼ 100 MHz).

The implication is that the laminated magnets do not contribute to the ω−1/2 behavior of

the transverse impedance at low frequencies. In other words, laminated magnets will not

drive transverse coupled-bunch instabilities. However, the broad peak of Re Z⊥
1 at 100 to

200 MHz does drive head-tail instabilities at nonzero chromaticities.

This paper is organized as follows. In Sec. 2, the longitudinal and transverse impedances

of a beam in a parallel-face laminated magnet or annular laminated magnet are derived. The

physical concept behind bypass inductance is studied in detail. The bend-around frequency

as given by Eq. (1.3) or Eq. (1.4) is derived. In Sec. 3, the impedance of the cracks in the

laminated magnet is derived, and the effective surface impedance per square of a laminated

magnet as seen by a particle beam is given for both the parallel-face cross-section and annular

cross-section. The bend-around frequency for a laminated magnet wall as given by Eq. (1.6)

is derived. Applications are made in Sec. 5 for the Fermilab Booster, Tevatron, and Main

Injector. Their wall impedances are computed, and their nonzero chromaticity head-tail

instabilities are discussed. Finally, conclusions are given in Sec. 6. Some of the derivations

and formulas in this paper are not original. They are included here for comparison and for

the sake of completeness.
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2 RESISTIVE WALL IMPEDANCE

In this section, we are going to solve the Maxwell’s equations for a particle beam first

traveling between two infinite parallel plates and later inside a cylindrical beam pipe. The

resistivity of the walls give rise to the longitudinal and transverse coupling impedances

experienced by the beam. Special attention is given to the behavior of the impedances at

low frequencies. For the sake of simplicity, the thickness of plates or the walls of the beam

pipe is considered to be infinite throughout this paper.

2.1 PARALLEL PLATES

2.1.1 ON-CENTER BEAM

Let us consider a beam flowing in the z-direction between two infinite plates y = ±b, as

illustrated in Fig. 1. The charge density is

ρ(x, y, z, t) = ρ1σ(x)ej(ωt−kz)δ(y) , (2.1)

where σ(x) = σ(−x), ρ1 is the linear charge density, and∫ ∞

−∞
σ(x)dx = 1 . (2.2)

y

y = +b

x

y = −b

z

beam

Figure 1: The two parallel plates are at y = ±b. The beam at y = 0, flowing in the z-direction,
has a horizontal distribution σ(x), but has no vertical spread.
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The current density of the beam is

�J(x, y, z, t) = ρ(x, y, z, t)βc = ẑρ1σ(x)βcej(ωt−kz)δ(y) , (2.3)

where βc = ω/k is the beam velocity. The total current is given by

I(z, t) =

∫
Jz(x, y, z, t)dxdy = ρ1βce

j(ωt−kz) . (2.4)

For convenience, the factor ej(ωt−kz) will be omitted in below most of the time. The horizontal

beam distribution can be Fourier analyzed according to

σ(x) =

∫ ∞

−∞
σ̃η cos ηxdη , (2.5)

and we can always work with one of the Fourier component σ̃η and recover the whole beam

at the end by superposition.

In the absence of source, the longitudinal electric Ez and magnetic field Hz satisfy the

Laplace equation, which after taking into account of the z and t dependency in Eq. (2.1),

(∇2
⊥ − q2

)( Ez

Hz

)
= 0 , (2.6)

where

q2 = k2 − ω2

c2
= k2(1− β2) . (2.7)

The transverse fields can be determined from the longitudinal fields via

Ex =
jk

q2

(
β
∂Z0Hz

∂y
+

∂Ez

∂x

)
,

Ey =
jk

q2

(
−β

∂Z0Hz

∂x
+

∂Ez

∂y

)
,

Z0Hx =
jk

q2

(
−β

∂Ez

∂y
+

∂Z0Hz

∂x

)
,

Z0Hy =
jk

q2

(
β
∂Ez

∂x
+

∂Z0Hz

∂y

)
,

(2.8)

where Z0 =
√
µ0/ε0 is the free-space impedance, with µ0 and ε0 denoting, respectively, the

magnetic permeability and electric permittivity of vacuum.

Notice that in the limit β → 1, q → 0. The transverse fields can no longer be derived

via Eq. (2.8). However, the limit of β → 1 does simplify the problem, because Eq. (2.8)
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indicates that Ez and Hz are no longer independent as q → 0. Let us start from the Maxwell’s

equations and write the field components in terms of Fourier transforms,
(
Ez, Ey, Hx

)
=

∫ ∞

−∞
dη cos ηx

(
Ẽz, Ẽy, H̃x

)
,

(
Hz, Hy, Ex

)
=

∫ ∞

−∞
dη sin ηx

(
H̃z, H̃y, Ẽx

)
,

(2.9)

where the choice of cos ηx and sin ηx is obvious following the left-right symmetry of the

beam. The Maxwell’s equations are now expressed as:

ηẼx +
∂Ẽy

∂y
− jkẼz =

ρ1σ̃η

ε0
δ(y) ,

−ηH̃x +
∂H̃y

∂y
− jkH̃z = 0 ,

∂Ẽz

∂y
+ jkẼy + jkZ0H̃x = 0 ,

−jkẼx + ηẼz + jkZ0H̃y = 0 ,

−ηẼy − ∂Ẽx

∂y
+ jkZ0H̃z = 0 ,

∂Z0H̃z

∂y
+ jkZ0H̃y − jkẼx = 0 ,

−jkZ0H̃x − ηZ0H̃z − jkẼy = 0 ,

ηZ0H̃y − ∂Z0H̃x

∂y
− jkẼz = Z0ρ1σ̃ηc δ(y) .

(2.10)

In above, the first two are Gauss’s laws for electric and magnetic fields, the 3rd to 6th

correspond to Faraday’s law, and the last three correspond to Ampere’s law. From the 2nd,

3rd, 4th, and 7th lines, we get the equations for the longitudinal fields:
∂Ẽz

∂y
= ηZ0H̃z ,

∂Z0H̃z

∂y
= ηẼz .

(2.11)

Knowing that Ẽz is symmetric in y and H̃y odd in y, we obtain immediately{
Ẽz = Aη cosh ηy ,

Z0H̃z = Aη sinh ηy .
(2.12)
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We next write the transverse fields in terms of the longitudinal fields:

∂Ẽy

∂y
+ ηZ0H̃y =

(
jk +

jη2

k

)
Ẽz +

ρ1σ̃η

ε0
δ(y) ,

∂Z0H̃y

∂y
+ ηẼy =

(
jk +

jη2

k

)
Z0H̃z ,

Ẽx = Z0H̃y − jη

k
Ẽz ,

Z0H̃x = −Ẽy +
jη

k
Z0H̃z .

(2.13)

Obviously, the transverse fields must be cosh ηy and/or sinh ηy, leading to the solution,
Ẽy =

[
j

2

(
k

η
+

η

k

)
Aη + Bη

]
sinh ηy ± ρ1σ̃η

2ε0
cosh ηy ,

Z0H̃y =

[
j

2

(
k

η
+

η

k

)
Aη −Bη

]
cosh ηy ∓ ρ1σ̃η

2ε0
sinh ηy ,

(2.14)

Some comments are in order. The first two lines of Eq. (2.13) are redundant giving only the

sum of the coefficients of Ẽy and Z0H̃y. Thus another constant Bη has been inserted into

Eq. (2.14) to account for their difference. With only the sinh ηy term, Ẽy vanishes at y = 0.

To account for the charge of the beam, the other term ± cosh ηy (for y ≷ 0), which is also

odd in y, has been added.

Inside the metallic plates, Maxwell’s equations are the same as Eq. (2.10), with the ex-

ception of having no charge and the additional current density �J = σc
�E inside the metallic

plates, where σc is the conductivity. This is equivalent to transforming the electric permit-

tivity to

ε → ε0

(
εr − σc

jωµε0

)
, (2.15)

where εr is the relative electric permittivity of the metal or the dielectric constant. Maxwell’s
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equations now take the form:

ηẼx +
∂Ẽy

∂y
− jkẼz = 0 ,

−ηH̃x +
∂H̃y

∂y
− jkH̃z = 0 ,

∂Ẽz

∂y
+ jkẼy + jkµrZ0H̃x = 0 ,

−jkẼx + ηẼz + jkµrZ0H̃y = 0 ,

−ηẼy − ∂Ẽx

∂y
+ jkµrZ0H̃z = 0 ,

∂Z0H̃z

∂y
+ jkZ0H̃y − (jkεr + Z0σc)Ẽx = 0 ,

−jkZ0H̃x − ηZ0H̃z − (jkεr + Z0σc)Ẽy = 0 ,

ηZ0H̃y − ∂Z0H̃x

∂y
− (jkεr + Z0σc)Ẽz = 0 ,

(2.16)

where µr is the relative magnetic permeability of the metal. Again we figure out the equations

governing the longitudinal fields first and then express the transverse fields in terms of them.

However, with the introduction of the current density inside the metallic plate, Eq. (2.7) is

now transformed to

q2 = k2 − ωµε → k2 − k2β2µrεr − jkβZ0µrσc = k2 − k2β2µrεr − λ2
c , (2.17)

with the introduction of

λ2
c = jkβZ0µrσ , (2.18)

which can be expressed in terms of the skin-depth δc as

λc =
√
jkβZ0µrσc =

1 + j

δc
, (2.19)

where the square root has been so chosen that that the fields decay into the metal from the

surface. Since q2 does not vanish, the longitudinal electric field and magnetic fields are no
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longer related. We therefore have

∂2Ẽz

∂y2
=
(
η2 + λ2

c

)
Ẽz ,

∂2H̃z

∂y2
=
(
η2 + λ2

c

)
H̃z ,

Ẽx =
1

Z0σc

(
−ηẼz +

∂Z0H̃z

∂y

)
,

Ẽy =
1

Z0σc

(
−ηZ0H̃z +

∂Ẽz

∂y

)
,

Z0H̃x = −Ẽy +
j

k

∂Ẽz

∂y
,

Z0H̃y = Ẽx +
jη

k
Ẽz ,

(2.20)

where, for simplicity, we have let µr = 1 and εr = 1. Note that the displacement current has

been included in Eq. (2.16). If not, the coefficient on the right side of the first two equations

in Eq. (2.20) will become (k2+η2+λ2
c) instead. If we denote λ′ =

√
λ2

c + η2, the longitudinal

fields can be solved exactly, giving‡{
Ẽz = Aη cosh ηb eλ′(b∓y) ,

H̃z = ±Aη sinh ηb eλ′(b∓y) ,
(2.21)

where the two longitudinal components are related now because of their continuities across

the plate surfaces. The transverse fields can then be solved exactly, giving

Ẽx =
Aη

Z0σ

(
− η cosh ηb− λ′ sinh ηb

)
eλ′(b∓y) ,

Ẽy =
Aη

Z0σ

(
∓ λ′ cosh ηb∓ η sinh ηb

)
eλ′(b∓y) ,

Z0H̃x =

[
Aη

Z0σ

(
± λ′ cosh ηb± η sinh ηb

)
∓ jλ′Aη

k
cosh ηb

]
eλ′(b∓y) ,

Z0H̃y =

[
Aη

Z0σ

(
− η cosh ηb− λ′ sinh ηb

)
+

jηAη

k
cosh ηb

]
eλ′(b∓y) .

(2.22)

Because of the presence of charge at the surfaces of the plates, Ẽy is discontinuous. However,

‡If we set Ẽz = Aη cosh ηb eλc(b∓y) and H̃z = ±Aη sinh ηb eλc(b∓y), we are neglecting η2 as compared to
λ2

c . If we set Ẽz = Aη cosh ηy eλc(b∓y) and H̃z = Aη sinh ηy eλc(b∓y), we are neglecting η as compared to λc.



9

we still have the continuities of H̃y and H̃x which translate as

[
j

2

(
k

η
+

η

k

)
Aη − Bη

]
cosh ηb− ρ1σ̃η

2ε0
sinh ηb

= − Aη

Z0σ

(
η cosh ηb+ λ′ sinh ηb

)
+

jηAη

k
cosh ηb ,

−
[
j

2

(
k

η
+

η

k

)
Aη + Bη

]
sinh ηb− ρ1σ̃η

2ε0
cosh ηb +

jηAη

k
sinh ηb

=
Aη

Z0σ

(
λ′ cosh ηb+ η sinh ηb

)
− jλ′Aη

k
cosh ηb .

(2.23)

The continuity of Ẽx gives the same relation as the continuity of H̃x. We can now solve for

Aη =

ρ1σ̃η

2ε0

(
coth ηb− tanh ηb

)
j
λ′

k
coth ηb− j

(
k

η
− η

k

)
− jkλ′

λ2
c

(
tanh ηb + coth ηb

)− j2kη

λ2
c

, (2.24)

where, as a reminder, λ2
c = jkZ0σ. Notice that the denominator has been written in the

order that each term is O(|λc|) smaller than its predecessor. Written in term of the surface

impedance per square R = λc/σc first defined in Eq. (1.1) and keeping only the next order

in R/Z0, Eq. (2.24) simplifies to

Aη = −
ρ1σ̃ηcR

2
sech 2ηb

1 + j
R
Z0

(
k

η
− η

k

)
tanh ηb

. (2.25)

Including all components in η, the longitudinal electric field at the beam is

Ez(x) = −
∫ ∞

−∞
dη Aη cos ηx . (2.26)

To derive the impedance, the average longitudinal electric field seen by the beam is desired.

For this, we average over x, or do the integration∫ ∞

−∞
dx σ(x)Ez(x) =

∫ ∞

−∞
dx

∫ ∞

−∞
dη′σ̃η′ cos η′xEz(x) . (2.27)

Using the fact that ∫ ∞

−∞
dx cos ηx cos η′x = π [δ(η − η′) + δ(η + η′)] , (2.28)
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we arrive at

〈Ez(x)〉 = −2πρ1cR
∫ ∞

0

dη
σ̃2

η sech 2ηb

1 + j
R
Z0

(
k

η
− η

k

)
tanh ηb

. (2.29)

For a line beam§ the horizontal beam distribution is σ(x) = δ(x) and σ̃η = 1/(2π). The

longitudinal impedance per unit length seen by the beam with current ρ1c is

Z
‖
0

L
= −〈Ez(x)〉

ρ1c
=

R
2π

∫ ∞

0

dη
sech 2ηb

1 + j
R
Z0

(
k

η
− η

k

)
tanh ηb

, (2.30)

When |λcb| � 1, or when the frequency is f � 10 Hz if the plate separation is 2b = 10 cm

and the plates are made of stainless steel with conductivity σc = 0.5× 107 (Ω-m)−1, the η/k

term in the denominator of Eq. (2.30) can be neglected. The k/η term will not have any

contribution unless kb � 100 or f � 100 GHz. Thus in all practical beam pipes with smooth

pipe walls, we can write

Z
‖
0

L
=

R
2πb

= (1 + j)
1

2πbδcσc
, (2.31)

which is exactly the same longitudinal impedance of a beam inside a cylindrical beam pipe

of radius b.

When |λcb| � 1 or f � 10 Hz with the same b and σa, the η/k term in the denominator

of Eq. (2.30) becomes important.¶ However, the effect is not big, as is illustrated in the top

plot of the impedance in Fig. 2. In the lower plot, we show Z
‖
0/(kb), which is proportional to

Z
‖
0/n, Here, we see clearly the deviation from the (kb)−1/2-behavior at low frequencies can

§For a line beam at x = 0, the averaging over x is unnecessary. We can just substitute x = 0 and
σ̃η = 1/(2π).

¶The k/η-term in the denominator is of no importance because we are not interested in very high fre-
quencies. The η/k-term will be dominating at low frequencies. If we pick out this only term, the integrand
behaves as η−2 which causes it to diverge. However, this procedure is incorrect because we should only take
the limit k → 0 after the integral is performed. For a sheet of beam extending uniformly from x = −∞
to ∞, σ̃η ∝ δ(η), and therefore this term does not contribute at all. Let us come back to the pencil beam
with σ̃η = 1/(2π). When k is finite, the denominator is equal to one at η = 0, ensuring the convergence
of integral. The integral receives most of its contribution when ηb � 1 since sech 2ηb is roughly equal to
one when ηb � 1 and decays exponentially when ηb � 1. For any finite k, ηb tanh ηb behaves as (ηb)2 when
ηb � 1 and therefore its contribution will be appreciable only when the frequency is extremely low. To see
this, let us write a2 = jkbZ0/R and assume it to be real and positive for simplicity. Then∫ ∞

0

sech 2x dx

1 +
x tanh x

a2

<

∫ ∞

0

sech 2x dx

1 +
tanh2 x

a2

= a tan−1 1
a
≈ πa

2
. (2.32)
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Figure 2: Top: The real and imaginary parts of the longitudinal monopole impe-
dance are shown as functions of kb for a beam pipe with radius b = 5 cm and wall
conductivity σc = 0.5 × 107 (Ω-m)−1 (stainless steel). While both parts increase
with frequency as

√
kb. The deviations from the

√
kb-behavior at low frequencies

can be seen. Bottom: The real and imaginary parts of the longitudinal monopole
impedance divided by frequency (∼ Z

‖
0/n) are shown. While both parts roll off with

frequency as (kb)−1/2, deviations from the (kb)−1/2-behavior at low frequencies when
kb � 1 × 10−8 or f � 10 Hz.
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Table I: Some definite integrals involving hyperbolic functions.∫ ∞

0

dη

cosh2 ηb
=

1

b

∫ ∞

0

dη

sinh2 ηb
= ∞∫ ∞

0

dη
η

sinh ηb
=

π2

4b2∫ ∞

0

dη
η2

cosh2 ηb
=

π2

12b3∫ ∞

0

dη
η2

sinh2 ηb
=

π2

6b3

be seen when kb � 1 × 10−8 or f � 10 Hz.

We close this section by listing in Table I some of the integrals involving hyperbolic

functions that we used.

2.1.2 IMAGE CHARGES AND CURRENT DENSITIES

The discontinuity of the vertical electric field across the surface of the plate gives the

electric charge density σim at the surface of the plate. With the help of Eqs. (2.13) and

(2.22), we obtain for the upper/lower plate,

σ±
im(x) = ε0

[
Eplate

y − Evacuum
y

]
y=±b

= ∓
∫ ∞

−∞
dη

[
jηAη

k
sinh ηb+

jλ′Aη

k
cosh ηb

]
cos ηx

= ∓
∫ ∞

−∞
dη

[
jη

k
tanh ηb +

jλ′

k

] ρ1σ̃η

2ε0
sech ηb cos ηx

jλ′

k
+ j

(
η

k
− k

η

)
tanh ηb

= ∓
∫ ∞

−∞
dη

ρ1σ̃η

2ε0
sech ηb cos ηx

(
1 +

k2

ηλc
tanh ηb

)
, (2.33)

where we have kept up to the second order in λc. For a line charge, σ̃η = 1/(2π), the surface

Since R ∼ √
k at low frequencies, a ∼ k1/4. The η/k-term in the denominator of Eq. (2.30) just makes the

impedance approach zero a bit faster. Since the low frequency end of Z
‖
0 usually does not affect the beam

stability, this η/k-term can be omitted.
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charge density becomes

σ±
ch(x) = ∓ ρ1

2π

∫ ∞

0

dη cos ηx sech ηb = ∓ρ1

4b
sech

πx

2b
, (2.34)

where ρ1 is the linear charge density and all higher orders of λ−1
c have been dropped. The

image surface current density or image current per unit transverse length in the top/bottom

plate is given by

K±
z (x) = Hx

∣∣∣
y=±b

= ∓ρ1c

4b
sech

πx

2b
. (2.35)

2.1.3 OFFSET BEAM

Now we offset the beam vertically so that it is at y = a. The two regions in between

the plates, a < y < b and −b < y < a, no longer exhibit up-down symmetry. As a result,

instead of Eq. (2.12), we must write{
Ẽz = Aη cosh ηy + Āη sinh ηy ,

Z0H̃z = Aη sinh ηy + Āη cosh ηy .
(2.36)

The vertical field components become
Ẽy =

[
j

2

(
k

η
+
η

k

)
Aη+Bη

]
sinh ηy +

[
j

2

(
k

η
+
η

k

)
Āη+B̄η

]
cosh ηy ± ρ1σ̃η

2ε0
cosh η(y−a) ,

Z0H̃y =

[
j

2

(
k

η
+
η

k

)
Aη−Bη

]
cosh ηy +

[
j

2

(
k

η
+
η

k

)
Āη−B̄η

]
sinh ηy ∓ ρ1σ̃η

2ε0
sinh η(y−a) .

(2.37)

The horizontal components are obtained from
Ẽx = Z0H̃y − jη

k
Ẽz ,

Z0H̃x = −Ẽy +
jη

k
Z0H̃z .

(2.38)

Inside the metallic plates, the longitudinal field components are{
Ẽz =

(
Aη cosh ηb± Āη sinh ηb

)
eλ′(b∓y) ,

Z̃0Hz =
(±Aη sinh ηb± Āη cosh ηb

)
eλ′(b∓y) ,

(2.39)
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and the transverse components are

Ẽx =
1

Z0σc

[
−Aη

(
η cosh ηb+ λ′ sinh ηb

)∓ Āη

(
η sinh ηb+ λ′ cosh ηb

)]
eλ′(b∓y) ,

Ẽy =
1

Z0σc

[
∓Aη

(
η sinh ηb+ λ′ cosh ηb

)− Āη

(
η cosh ηb+ λ′ sinh ηb

)]
eλ′(b∓y) ,

Z0H̃x = −Ẽy +
j

k

∂Ẽz

∂y
,

Z0H̃y = Ẽx +
jη

k
Ẽz .

(2.40)

The continuities of Ẽx and H̃x across the plate surfaces at y = ±b lead to the restrictions:

[
j

2

(
k

η
+
η

k

)
Aη−Bη

]
cosh ηb±

[
j

2

(
k

η
+
η

k

)
Āη−B̄η

]
sinh ηb∓ ρ1σ̃η

2ε0
sinh η(±b−a)

− jη

k

(
Aη cosh ηb± Āη sinh ηb

)
=

1

Z0σc

[
− Aη

(
η cosh ηb + λ′ sinh ηb

)∓ Āη

(
η sinh ηb+ λ′ cosh ηb

)]
,

∓
[
j

2

(
k

η
+
η

k

)
Aη+Bη

]
sinh ηb−

[
j

2

(
k

η
+
η

k

)
Āη+B̄η

]
cosh ηb∓ ρ1σ̃η

2ε0
cosh η(±b−a)

+
jη

k

(± Aη sinh ηb+ Āη cosh ηb
)

=
1

Z0σc

[
± Aη

(
η sinh ηb + λ′ cosh ηb

)
+ Āη

(
η cosh ηb + λ′ sinh ηb

)]
∓ jλ′

k

(
Aη cosh ηb± Āη sinh ηb

)
.

(2.41)

The continuities of H̃y give the same restrictions as those of Ẽx. Here, we have four restric-

tions, from which the four unknowns Aη, Āη, Bη, and B̄η can be solved. It turns out that

these four restrictions separate into four relations, two involving only Aη and Bη, and two

involving only Āη and B̄η, making their solutions extremely easy. We get

[
j

2

(
k

η
− η

k

)
Aη−Bη

]
cosh ηb =

ρ1σ̃η

2ε0
sinh ηb cosh ηa− Aη

Z0σc

(
η cosh ηb+ λ′ sinh ηb

)
−
[
j

2

(
k

η
− η

k

)
Aη+Bη

]
sinh ηb =

ρ1σ̃η

2ε0
cosh ηb cosh ηa +

Aη

Z0σc

(
η sinh ηb + λ′ cosh ηb

)
− jλ′

k
Aη cosh ηb .

(2.42)
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

[
j

2

(
k

η
− η

k

)
Āη−B̄η

]
sinh ηb = −ρ1σ̃η

2ε0
cosh ηb sinh ηa− Āη

Z0σc

(
η sinh ηb+ λ′ cosh ηb

)
−
[
j

2

(
k

η
− η

k

)
Āη+B̄η

]
cosh ηb = −ρ1σ̃η

2ε0
sinh ηb sinh ηa +

Āη

Z0σc

(
η cosh ηb+ λ′ sinh ηb

)
− jλ′

k
Āη sinh ηb .

(2.43)

From these, we can solve for

Aη =
−ρ1σ̃η

2ε0

(
coth ηb− tanh ηb

)
cosh ηa

−jλ′

k
coth ηb + j

(
k

η
− η

k

)
+

jkλ′

λ2
c

(
tanh ηb+ coth ηb

)
+

j2kη

λ2
c

,

Āη =
−ρ1σ̃η

2ε0

(
coth ηb− tanh ηb

)
sinh ηa

−jλ′

k
tanh ηb + j

(
k

η
− η

k

)
+

jkλ′

λ2
c

(
tanh ηb+ coth ηb

)
+

j2kη

λ2
c

.

(2.44)

If we keep only up to the second order in |λc|, we obtain the longitudinal field component at

a vertical distance y,

Ẽz(y) = −ρ1σ̃ηcR
2

 sech 2ηb cosh ηa cosh ηy

1 − k

λc

(
k

η
− η

k

)
tanh ηb

+
csch 2ηb sinh ηa sinh ηy

1 − k

λc

(
k

η
− η

k

)
coth ηb

 , (2.45)

where R = λ/σ. Including all components of η, the longitudinal electric field at the point

(x, y) is

Ez(x, y) = −ρ1cR
∫ ∞

0

dη σ̃η cos ηx

 sech 2ηb cosh ηa cosh ηy

1 +
jR
Z0

(
k

η
− η

k

)
tanh ηb

+
csch 2ηb sinh ηa sinh ηy

1 +
jR
Z0

(
k

η
− η

k

)
coth ηb

 .

(2.46)

2.1.4 IMPEDANCES OF CENTERED BEAM

For convenience, let us consider a pencil beam, σ̃η = 1/(2π), at x = 0 but displaced

vertically by a small amount at y = a. The longitudinal electric field on a test particle at
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x = 0 and y = ξ can be written as an expansion in a and ξ from Eq. (2.46):

Ez = − IR
2π

∫ ∞

0

dη

cosh2 ηb
− Iξ2R

2π

∫ ∞

0

dη
η2

cosh2 ηb

− IaξR
2π

∫ ∞

0

dη
η2

sinh2 ηb
− Ia2R

2π

∫ ∞

0

dη
η2

cosh2 ηb
+ · · · ,

(2.47)

where the denominators containing higher-order R/Z0 have been omitted for the sake of

clarity. On the right, the first two terms are the monopole and quadrupole Ez from an

on-axis monopole beam current, the third term is dipole Ez from a dipole current Ia, the

fourth term is the monopole field from a quadrupole Ia2 beam. The complication, that

a multipole field arises from a different multipole source, occurs because Eq. (2.47) is not

an exact multipole expansion.∗ Nevertheless, the expansion is still useful when only the

lowest multipoles for the longitudinal and transverse impedances are desired. Thus, when

the frequency is not too low, the longitudinal monopole impedance of a centered beam per

unit length is

Z
‖
0

L
= −Ez

I

∣∣∣∣ a=0
ξ=0

=
R
2πb

, (2.48)

agreeing with our former derivation in Eq. (2.31). Although the higher-order term has been

shown to be not too important for Z
‖
0 , however, it is important in the dipole mode when

k → 0, especially in laminated magnets where the effective surface impedance per square is

much larger than the ordinary surface impedance per square of a metallic surface. Picking

out the appropriate term in Eq. (2.47), the longitudinal dipole impedance can be expressed

∗The expansion is exactly multipole for a beam inside a cylindrical beam pipe. For example, for a
monopole ring beam of radius a inside a beam pipe of radius b traveling in the z direction, Ez at a < r < b is
independent of r and the azimuthal angle. For a dipole ring beam Ia at radius a, Ez at r = ξ is proportional
to Iaξ, and there are no other terms like Iaξ3 etc. However, for a pencil beam at the original between
two parallel plates at y = ±b, Ez depends on both x and y. This explains why we have the second term,
proportional to ξ2, in Eq. (2.47). To obtain a true multipole expansion, i.e., getting rid of terms like the
second and fourth in Eq. (2.47), one needs to perform a conformal mapping of the circular beam pipe onto
the two parallel plates and map the multipole ring beam of radius a onto two infinite sheets of beam at
y = ±a. For this two-parallel-plate system, the true monopole mode consists of two infinite sheets of current
at y = ±a flowing in the z-direction and corresponds to the first term of Eq. (2.46) with σ̃η = δ(η)/w, where
w → ∞ is the total horizontal width of the beam. The dipole mode consists of having the two current sheets
at y = ±a but flowing in, respectively, the ±z-directions, and corresponds to the second term of Eq. (2.46).
Thus for a sheet of current at an offset y = a flowing in the z-direction, Ez(x, y) = −IR/2 − IayR/(2b2),
where I is now the current per unit horizontal width. It appears that the mapping transforms the cylindrical
beam pipe into a two-dimensional problem, which can support only two modes.
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as
Z

‖
1

L
= − Ez

Iaξ

∣∣∣∣ a=0
ξ=0

=
R
2π

∫ ∞

0

dη
η2csch 2ηb

1 − jRη

Z0k
coth ηb

. (2.49)

We therefore have†

Z
‖
1

L
=


πR
12b3

|λcb| � 1 ,

πkZ0

16b2

(
4b

π2

√
k

χ
+ j

)
|λcb| � 1 ,

(2.51)

where we have used the fact that, at low frequencies,

R/Z0 = (1 + j)
√
kχ , (2.52)

where χ is frequency independent. For the smooth resistive wall surface,

χ =
µr

2Z0σc
. (2.53)

The change in behavior occurs at

|λcb| ∼ 1 , (2.54)

which is just Eq. (1.4), or

kb ∼ 1

Z0bσcµr

= 1 × 10−8 or f ∼ c

2πZ0b2σcµr

= 10 Hz , (2.55)

when the two metallic plates are separated by 2b = 10 cm and the wall conductivity is

σc = 0.5 × 107 (Ω-m)−1.

For the vertical dipole impedance, we need to compute the vertical Lorentz force F̃V (y)

acting on a particle at y. With the help of the Maxwell’s law of displacement current,

F̃V (y) = e(Ẽy+Z0H̃x) = e
jη

k
Z0H̃z = −jeIRσ̃ηη

2k

[
cosh ηa sinh ηy

{ } cosh2 ηb
+

sinh ηa cosh ηy

{ } sinh2 ηb

]
(2.56)

where { } denotes the denominators involving the next order of R. Notice that although

both Ẽy and H̃x are discontinuous across the particle beam, the Lorentz force, which is

†The low-frequency behavior can be derived from

Z
‖
1

L
=

Z0k

2π

∫ ∞

0

dη
η csch 2ηb

coth ηb

1 + j

Z0k

Rη coth ηb
+ 1 − j

≈ Z0k

2π

∫ ∞

0

dη
η csch 2ηb

coth ηb

(
j +

√
k/χ

2η coth ηb

)
. (2.50)
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proportional to H̃z, is continuous. It is important to realize that‡ FV ∼ F̃V cos ηx because it

is derived from Ey and Hx. For a pencil beam at x = 0 with small offset y = a � b, this

reduces to
FV

e

∣∣∣∣
ξ=0

= −jIaR
2πk

∫ ∞

0

dη
η2

sinh2 ηb

1

1 − jRη

Z0k
coth ηb

. (2.57)

Thus the vertical dipole impedance per unit longitudinal length is

ZV
1

L
= −FV /e

jIa

∣∣∣∣ a=0
ξ=0

=


πR

12kb3
|λcb| � 1 ,

πZ0

16b2

(
4b

π2

√
k

χ
+ j

)
|λcb| � 1 .

(2.58)

We notice that Z
‖
1 and ZV

1 are related through the Panofsky-Wenzel condition. It is important

to note that although ZV
1 increases according to k−1/2, however, it does not get to ±∞ as

k → 0. On the other hand, the resistive part of ZV
1 bends around and rolls to zero at zero

frequency. The real and imaginary parts of ZV
1 are shown in the top plot of Fig. 3 in the model

when the plate separation is 2b = 10 cm and the wall conductivity is σc = 0.5×107 (Ω-m)−1 .

The frequency range is from f = 0.001 Hz to 100 GHz (kb from 10−12 to 102.) We see that

both real and imaginary parts of the impedance decrease according to (kb)−1/2. However,

when the frequency is small enough the inductive part approaches the value πZ0/(16b
2)

while the real part bends over and goes to zero according to§
√
kb. As pointed out in the

previous subsection, Re ZV
1 bends around when kb = 1× 10−8 or f = 10 Hz when b = 5 cm.

Since this frequency is so much less than the typical revolution frequency of any existing

accelerator ring, the bend-around will not influence the negative betatron line closest to zero

frequency that drives transverse coupled-bunch instabilities. For the 231 km Very Large

Hadron Collider (VLHC) under design which has a revolution frequency of 1.29 kHz, the

radius of the beam pipe has been proposed to be b = 1 cm. [4] Corresponding to |λcb| = 1, the

bend-around frequency is f = 250 Hz. However, according to Fig. 3 Re ZV
1 begins to deviate

from the ω−1/2 behavior when the frequency is below ∼ 2.5 kHz (kb ∼ 10−7). In reality, the

wall of the beam pipe has a finite thickness, electromagnetic fields leaking outside will see a

much larger resistivity, resulting in a further increase of this bend-around frequency. Thus

‡It is incorrect to associate F̃V with sin ηx just because it is proportional to H̃z. Actually we have
F̃V ∝ ηH̃z ∝ ∂H̃z/∂x.

§As will be shown in Eq. (2.94) and Fig. 4 below, the behavior of the transverse dipole impedance is very
similar for a beam inside a cylindrical beam pipe. However, Re Z⊥

1 for the cylindrical beam pipe goes to zero
at low frequencies linearly rather than as

√
kb here.
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Figure 3: The real and imaginary parts of the vertical dipole impedance (top) and horizontal
impedance (bottom) are shown as functions of kb for a beam in between two parallel plates separated
by 2b = 10 cm with wall conductivity σc = 0.5 × 107 (Ω-m)−1 (stainless steel). While both parts
decrease with frequency as (kb)−1/2, the imaginary parts reach finite values at kb = 0 and the real
part decreases to zero at zero frequency. Re ZV

1 goes to zero as
√

kb. and Re ZH
1 goes to zero much

slower.



20

this low-energy behavior may be important for the VLHC. [5] The low-frequency limit of the

inductance is called bypass inductance after Vos. [3] This is a geometric effect of the beam

pipe and is determined by the loop of image currents flowing in the walls of the beam pipe

in the dipole mode and are referred to as differential currents. The bypass inductance just

comes from the flux linking this differential current loop. We will go over this concept in

Sec. 2.2.2 below.

For the laminated magnets that we are going to discuss later, the effective surface

impedance per square is much larger than that of a smooth metallic wall because the image

current has to go around each lamination. As we shall see in Sec. 3 below, the effective

surface impedance per square does not follow a
√
k-dependency, the bend-around frequency

is not given by Eq. (2.55). We shall show that the bend-around takes place at a much higher

frequency (� 100 MHz) so that the negative betatron lines close to the zero frequency are

no longer strong enough to drive any transverse coupled-bunch instabilities.

For the horizontal dipole impedance, we first compute the horizontal Lorentz force acting

on a particle at x. The Fourier transform of the force is,¶ via Faraday’s law,

F̃H = e(Ẽx − Z0H̃y) = −jeη

k
Ẽz , (2.59)

and the horizontal force itself is

FH(x) = −
∫ ∞

0

2dη sin ηx
jeη

k
Ẽz . (2.60)

For a dipole beam I∆, we differentiate with respect to x to get the corresponding horizontal

force F ′
H

acting on the particle‖

F ′
H

= −∆
∂FH

∂x

∣∣∣
x=0

= −jeI∆R
2πk

∫ ∞

0

dη

(
η2 cosh2 ηa

{ } cosh2 ηb
+

η2 sinh2 ηa

{ } sinh2 ηb

)
. (2.61)

where the expression for Ẽz in Eq. (2.45) has been used and { } denote the denominators

involving the next order of R/Z0. The horizontal dipole impedance per unit longitudinal

length is therefore

ZH
1

L
= −F ′

H/e

jI∆
=

R
2πk

∫ ∞

0

dη

(
η2 cosh2 ηa

{ } cosh2 ηb
+

η2 sinh2 ηa

{ } sinh2 ηb

)
, (2.62)

¶Here FH is related to sin ηx because it is derived from Ex and Hy and is proportional to ∂Ẽz/∂x.
‖dσ(x)/dx gives a positive bump at x < 0 and a negative bump at x > 0. Thus, to create a dipole beam,

we need I∆ = −∆Idσ(x)/dx. This can also be verified by integrating −xIdσ(x)/dx. Notice that for the
vertical dipole impedance, we use dσ(y−a)/da in Eq. (2.66) below to create the dipole source, and the same
negative sign will be required if we differentiate with respect to y instead.
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which reduces to, for a centered beam,

ZH
1

L
=

R
2πk

∫ ∞

0

dη
η2sech 2ηb

1− jRη

Z0k
tanh ηb

. (2.63)

The result is

ZH
1

L
==


πR

24kb3
|λcb| � 1 ,

πZ0

16b2

[
f(k) + j

]
|λcb| � 1 ,

(2.64)

where∗∗ limk→0 f(k) = 0. Here, we also see a bend-over of the inductive part to a constant

and the real part to zero, when the frequency is low enough. The real and imaginary parts

of ZH
1 are shown in the bottom plot of Fig. 3. We see that they have similar behavior as

those of ZV
1 . The bend-over frequencies are also similar. However, at low frequency ReZH

1

approaches zero much slower than ReZH
1 .

It is not strange to find a nonvanishing horizontal dipole impedance when the infinite

plates have horizontal translational symmetry. The horizontal dipole impedance is propor-

tional to the horizontal force acting on a beam particle, which is the witness, due to the

dipole motion of the center of the beam, which is the source. We see first that there is no

more translational symmetry in the presence of the dipole current and second that this force

is independent of the horizontal offset of the witness particle. This also explains why the

incoherent horizontal tune shift due to images is nonzero. On the other hand, the coherent

tune shift due to images vanishes, because it describes the force acting on the center of the

beam by the dipole motion of the center of the beam.

Sometimes, the beam may be at a large offset a from the center of the parallel-plate gap.

To derive the vertical dipole impedance of such an offset beam, we try to create a dipole at

∗∗If we just pick out the R-dependent term in the denominator of Eq. (2.63), it is easy to show that
ZH

1 /L = jπZ0/(16b2). Thus the real part goes to zero as k → 0. To compute f(k) or the way Re ZH
1 going

to zero is not so simple. We have from Eq. (2.63),

ZH
1

L
=

Z0

2π

∫ ∞

0

dη
η sech 2ηb

tanh ηb

√
k√

χ η tanh ηb
+ j

(
2 +

√
k√

χ η tanh ηb

)
(

1 +

√
k√

χ η tanh ηb

)2

+ 1

(2.65)

If we set k = 0 in the denominator, we find the real part of the integral diverges as η−2. This divergence
should not occur if we do the integral first before letting k → 0 in the denominator.
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y = a by a vertical offset ∆. The vertical force due to the dipole current I∆ is derived from

the vertical force in Eq. (2.56) by

F ′
V

e
= ∆

∂FV

∂a

∣∣∣
y=a

=−jeI∆R
k

∫ ∞

0

dη σ̃η cos ηx

[
η2 sinh ηa sinh ηy

{ } cosh2 ηb
+

η2 cosh ηa cosh ηy

{ } sinh2 ηb

]
,

(2.66)

where the higher orders in R are represented by { }. For a pencil beam at y = a, the vertical

dipole impedance is therefore

ZV
1

L
= −F ′

V
/e

jI∆
=

R
2πk

∫ ∞

0

dη

η2sech 2ηb sinh2 ηa

1 − jRη

Z0k
tanh ηb

+
η2csch 2ηb cosh2 ηa

1 − jRη

Z0k
coth ηb

 . (2.67)

which reduces to that of an on-axis dipole in Eq. (2.66). We have the same k−1/2 behavior

here for low frequencies. After some critical frequency, the inductive part approaches a finite

value at zero frequency while the real part rolls off to zero according to
√
k. For such an

offset beam, the longitudinal impedance is

Z
‖
0

L
= −Ez

I

∣∣∣
y=a

= R
∫ ∞

0

dη

[
cosh2 ηa

cosh2 ηb
+

sinh2 ηa

sinh2 ηb

]
. (2.68)

From Eq. (2.56), we learn that the beam m is also experiencing a vertical force and therefore

a vertical monopole impedance

ZV
0

L
= −FV /e

jI

∣∣∣
y=a

=
R

2πk

∫ ∞

0

dη

[
η sinh ηa cosh ηa

cosh2 ηb
+

η sinh ηa cosh ηa

sinh2 ηb

]
. (2.69)

However, in order for the closed orbit to be stable at a large offset, there must be some

external force to counteract this vertical force. As a result this vertical monopole impedance

will not be important.

2.1.5 EFFECTIVE SURFACE IMPEDANCES PER SQUARE

Instead of going into the detail of a surface, we can define the effective surface impe-

dances per square as

Ez = ±RzHx and Ex = ∓RxHz . (2.70)

where Ex, Ez, Hx, and Hz are the components of the electric and magnetic fields on the

surface of the upper/lower plate. Physically, we can imagine Hx at the upper surface sets up

a current per width inside the surface in the z-direction and therefore a Ez at the surface.
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Similarly, Hz at the surface sets up a current per width inside the surface in the −x-direction

and therefore a −Ex at the surface. In this way, the ratios Ez/Hx and −Ex/Hz just give

the surface impedances per square Rz and Rx. We distinguish the surface impedances per

square in the z-direction and x-direction, because the surface may have different impedances

in different direction. This is especially true for a laminated surface. The impedance is large

across the cracks of the laminated surface, and is small in the perpendicular direction.

Let us apply this concept to the offset beam traveling between two resistive metallic

plates. The field components, given by Eqs. (2.36) to (2.38), are evaluated at the plate

surfaces y = ±b, and then substituted into the boundary conditions in Eq. (2.70). We

obtain four equations in four unknowns Aη, Āη, Bη, and B̄η. The solution gives

Aη =
−ρ1σ̃η

2ε0

(
coth ηb− tanh ηb

)
cosh ηa

Z0

Rz
coth ηb+ j

(
k

η
− η

k

)
+

Rx

Z0
tanh ηb

,

Āη =
−ρ1σ̃η

2ε0

(
coth ηb− tanh ηb

)
sinh ηa

Z0

Rz
tanh ηb + j

(
k

η
− η

k

)
+

Rx

Z0
coth ηb

.

(2.71)

Noting that
jλc

k
= − Z0

Rx,z

, (2.72)

the solution agrees with the exact solution up to the next order in λc. We also notice that,

up to this order in λc, the term involving Rx/Z0 in Eq. (2.71) can be neglected. Thus only

the surface impedance per square in the direction of the beam plays a role in the coupling

impedances.

2.2 CYLINDRICAL BEAM PIPE

2.2.1 ON-AXIS BEAM

The resistive wall impedances seen by a beam inside a cylindrical beam pipe have been

derived in great detail by Chao.[2] Here, we just repeat the derivation in MKS units with the

addition of giving the coupling impedances for a beam with a large offset. A particle beam

of linear charge density ρ1 traveling inside the beam pipe at an offset a at the azimuthal
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angle θ = 0 has its charge density and current expanded as azimuthal harmonics

ρ(r, θ, z, t) =
∞∑

m=0

ρ̄m and �J =
∞∑

m=0

�Jm . (2.73)

Here

ρ̄m =
Im

πam+1(1 + δm0)
δ(r − a) cosmθ ej(ωt−kz) ,

�Jm = βcρmẑ ,

(2.74)

where Im = ρ1a
m is the m-multipole of the linear charge density. To simplify the derivation,

the particle beam velocity is assumed to be c. The field components are written in terms of

their multipole components, with an overhead tilde,
(
Er, Ez, Hθ

)
=

∞∑
m=0

cosmθ
(
Ẽr, Ẽz, H̃θ

)
,

(
Hr, Hz, Eθ

)
=

∞∑
m=0

sinmθ
(
H̃r, H̃z, Ẽθ

)
,

(2.75)

where the choice of cosmθ and sinmθ are chosen according to the charge and current mul-

tipoles. The Maxwell’s equations inside the beam pipe (r < b) are

1

r

∂(rẼr)

∂r
+

m

r
Ẽθ − jkẼz =

Imδ(r − a)

ε0πam+1(1 + δm0)
,

1

r

∂(rH̃r)

∂r
− m

r
H̃θ − jkH̃z = 0 ,

−m

r
Ẽz + jkẼθ + jkZ0H̃r = 0 ,

−jkẼr − ∂Ẽz

∂r
+ jkZ0H̃θ = 0 ,

∂Ẽθ

∂r
+

m

r
Ẽr + jkZ0H̃z = 0 ,

m

r
Z0H̃z + jkZ0H̃θ − jkẼr = 0 ,

−jkZ0H̃r − ∂Z0H̃z

∂r
− jkẼθ = 0 ,

∂Z0H̃θ

∂r
− m

r
Z0H̃r − jkẼz =

Imδ(r − a)

ε0πam+1(1 + δm0)
.

(2.76)

From these 8 equations, we first obtain two for the longitudinal components followed by two
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for the radial components and another two for the azimuthal components:

∂Ẽz

∂r
= −m

r
Z0H̃z ,

∂Z0H̃z

∂r
= −m

r
Ez ,

1

r

∂(rẼr)

∂r
− m

r
Z0H̃r =

Imδ(r − a)

ε0πam+1(1 + δm0)
+ jk

(
1 +

m2

k2r2

)
Ẽz ,

1

r

∂(rZ0H̃r)

∂r
− m

r
Ẽr = jk

(
1 +

m2

k2r2

)
Z0H̃z ,

Z0H̃θ = Ẽr +
jm

kr
Z0Hz ,

Ẽθ = −Z0H̃r − jm

kr
Ẽz .

(2.77)

The monopole mode (m = 0) is very special and deserves a special treatment. We find

that (H̃z, H̃r, Ẽθ) have nothing to do with the beam and are totally separated from (Ẽz, Ẽr,

H̃θ). As a result, we can set (H̃z, H̃r, Ẽθ) = 0. The solution becomes very simple:

Ẽz = A0 , r < b ,

Ẽr = Z0H̃θ =


jkr

2
A0 , r < a ,

jkr

2
A0 +

ρ1

2πε0r
, a < r < b ,

(2.78)

where A0 is a parameter dependent on the wave number k. Inside the metallic wall of the

beam pipe (r > b), the Maxwell’s equations become

1

r

∂

∂r

(
r
∂Ẽz

∂r

)
=

(
λ2

c +
m2

r2

)
Ẽz ,

1

r

∂

∂r

(
r
∂H̃z

∂r

)
=

(
λ2

c +
m2

r2

)
H̃z ,

Ẽr =
1

Z0σc

(
m

r
Z0H̃z +

∂Ẽz

∂r

)
,

Ẽθ = − 1

Z0σc

(
m

r
Ẽz +

∂Z0H̃z

∂r

)
,

Z0H̃r = −Ẽθ − jm

kr
Ẽz ,

Z0H̃θ = Ẽr − j

k

∂Ẽz

∂r
,

(2.79)
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where λ2
c = jkZ0σc. For the monopole mode, we have

Ẽz = A0
K0(λcr)

K0(λcb)
,

Ẽr = A0
jk

λc

K ′
0(λcr)

K0(λcb)
,

Z0H̃θ = A0
jλc

k

[
−K ′

0(λcr)

K0(λcb)
+

k2

λ2
c

K0(λcr)

K0(λcb)

]
,

(2.80)

where the continuity of Ẽz across r = b has been used. In above, K0 is the modified Bessel

function of order zero and the fields decay inside the metallic wall as eλc(b−r) since Re λc > 0.

Continuity of H̃θ gives

A0 =

ρ1

2πε0b
jλc

k

[
−K ′

0(λcb)

K0(λcb)
− k2b

2λc
− k2

λ2
c

] = −
ρ1cR
2πb

−K ′
0(λcb)

K0(λcb)
+

R
Z0

jkb

2
+

R2

Z2
0

, (2.81)

where the denominator has been written in the order of decreasing importance and the

impedance per square, R = λc/σc has been used. Thus the monopole coupling impedance

per unit length of beam pipe is

Z
‖
0

L
= − Ẽz

ρ1c
=

R
2πb

1

−K ′
0(λcb)

K0(λcb)
+

R
Z0

jkb

2
+

R2

Z2
0

, (2.82)

When |λcb| � 1 or the skin-depth is very much less than beam pipe radius, the asymptotic

behavior of the modified Bessel functions can be used, namely, for any order m,

−K ′
m(λcb)

Km(λcb)
= 1 +

1

2λcb
+ O(|λcb|−2) . (2.83)

The impedance becomes, for kb � 1 � |λc|b,

Z
‖
0

L
= − Ẽz

ρ1c
=

R
2πb

1

1 − R
Z0

(
j

2kb
− jkb

2

) . (2.84)

When the frequency is so low that |λcb| � 1,

K ′
0(λcb)

K0(λcb)
=

1

λcb ln(λcb/2)
, (2.85)
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and the impedance becomes

Z
‖
0

L
= −j

Z0k

2π
ln

λcb

2
, (2.86)

which goes to zero as k → 0.

Thus, for a smooth metallic wall when the skin-depth is much less than the pipe radius,

it is safe to drop all higher order terms in R/Z0 to obtain Z
‖
0/L = R/(2πb).

For the higher azimuthal modes (m > 1), the longitudinal magnetic field is nonzero and

is related to the longitudinal electric field. We write for r < b,{
Ẽz = Amr

m ,

Z0H̃z = −Amr
m ,

(2.87)

where Am is a coefficient for the mth azimuthal mode depending on the wavenumber k. Now

the radial components can be solved by noting that they must behave like rm−1, rm+1, and

r−(m+1). The result is∗

Ẽr =


jkAmr

m+1

2(m + 1)
+

rm−1

2

[
jmAm

k
+ Bm − Im

πε0a2m

]
, r < a ,

jkAmr
m+1

2(m + 1)
+

rm−1

2

[
jmAm

k
+ Bm

]
+

Im

2πε0rm+1
, a < r < b ,

Z0H̃r =


− jkAmr

m+1

2(m + 1)
+

rm−1

2

[
−jmAm

k
+ Bm − Im

πε0a2m

]
, r < a ,

−jkAmr
m+1

2(m + 1)
+

rm−1

2

[
−jmAm

k
+ Bm

]
− Im

2πε0rm+1
, a < r < b .

(2.88)

∗From the two equations for the radial fields in Eq. (2.77), Ẽz ∼ rm and H̃z ∼ rm imply that Ẽr and H̃r

must have components in rm−1 and rm+1. However, Ẽr and H̃r may also contain other powers of r which
cancel each other. The only possibility turns out to be r−m−1. Thus Ẽr = e1rm−1 + e2rm+1 + e3r−m−1 and
Z̃0Hr = h1rm−1 + h2rm+1 − e3r−m−1 when a < r < b, while Ẽr = ē1rm−1 + ē2rm+1 and Z̃0Hr = h̄1rm−1 +
h̄2rm+1 when r < a. The two equations determine e1 = ē1 = jkAm/[2(m+1)], h1 = h̄1 = −jkAm/[2(m+1)],
and e2−h2 = ē2− h̄2 = jmAm/k. The continuity of H̃r and discontinuity of Ẽr lead to two conditions, thus
leaving one constant undetermined which we denote by Bm.
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The azimuthal components are

Ẽθ =


jkAmr

m+1

2(m + 1)
+

rm−1

2

[
−jmAm

k
− Bm +

Im

πε0a2m

]
, r < a ,

jkAmr
m+1

2(m + 1)
+

rm−1

2

[
−jmAm

k
−Bm

]
+

Im

2πε0rm+1
, a < r < b ,

Z0H̃θ =


jkAmr

m+1

2(m + 1)
+

rm−1

2

[
−jmAm

k
+ Bm − Im

πε0a2m

]
, r < a ,

jkAmr
m+1

2(m + 1)
+

rm−1

2

[
−jmAm

k
+ Bm

]
+

Im

2πε0rm+1
, a < r < b .

(2.89)

In above, Bm is a new parameter to be determined. Inside the metallic wall of the beam

pipe (r > b), the exact solution of the longitudinal field components is

Ẽz = −Z0H̃z = Amb
mKm(λcr)

Km(λcb)
, (2.90)

where Km is the modified mth order Bessel function of the second kind. Thus all the

fields decay into the wall of the beam pipe as eλc(b−r). Although Ẽz and H̃z appear to be

independent in Eq. (2.79), however, they are connected through their continuities across the

metallic surface into the vacuum area. The transverse components are:

Ẽr = −Ẽθ =
jk

λc

[
K ′

m(λcr)

Km(λcb)
− m

λcr

Km(λcr)

Km(λcb)

]
Amb

m ,

Z0H̃θ = −
[(

jλc

k
− jk

λc

)
K ′

m(λcr)

Km(λcb)
+

jkm

λ2
cr

Km(λcr)

Km(λcb)

]
Amb

m ,

Z0H̃r =

[
−
(
jkm

λ2
cr

+
jm

kr

)
Km(λcr)

Km(λcb)
+

jk

λc

K ′
m(λcr)

Km(λcb)

]
Amb

m .

(2.91)

Continuities of Ẽθ and H̃θ give

Am =

Im

πε0b2m+1

−jλc

k

K ′
m(λcb)

Km(λcb)
− jkb

1 + m
+

jm

kb

. (2.92)

The continuity of H̃r is redundant. The longitudinal coupling impedance per unit length of

the mth azimuthal mode experienced by the beam becomes

Z
‖
m

L
= − Ẽz(r)

cImrm
=

R
πb2m+1

1

−K ′
m(λcb)

Km(λcb)
+ j

R
Z0

(
kb

1 + m
− m

kb

) , (2.93)
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where cIm = ρ1ca
m is the mth multipole of the beam current. From Panofsky-Wenzel

theorem, the transverse coupling impedance per unit length is† ‡

Z⊥
m

L
=

Z
‖
m

kL
=

R
πb2m+1

1

−K ′
m(λcb)

Km(λcb)
+ j

R
Z0

(
kb

1 + m
− m

kb

) . (2.94)

For frequencies that are very low or very high,

−K ′
m(λcb)

Km(λcb)
=


m

λcb
|λcb| � 1 ,

1 |λcb| � 1 .
(2.95)

We have

Z⊥
m

L
=

Z
‖
m

kL
=


Z0

2mπb2
|λcb| � 1 ,

R
πkb2m+1

λcb| � 1 .

(2.96)

For the dipole mode (m = 1), in which we have special interest, we can work out the behavior

of Re Z⊥
1 when the frequency is low. Since

−K ′
1(x)

K1(x)
=

1 + x2 ln x

x
, |x| � 1 , (2.97)

Z⊥
1

L
=

Z0

2πb2

[
j − 1

2
kb2Z0σc ln(kb2Z0σc)

]
, kb2Z0σc � 1 . (2.98)

With the stainless steel conductivity σc = 0.5× 107 (Ω-m)−1 and the beam pipe radius

b = 5 cm, the critical frequency occurs at

kb =
1

Z0σcb
= 1.06× 10−8 or fc = 10.1 Hz . (2.99)

The transverse dipole impedance is plotted in Fig. 4 from kb = 10−12 to 102 or frequency

f = 0.01 to 101 GHz. At high frequencies, we clearly see the (kb)−1/2 behavior. At low fre-

quencies, the imaginary part becomes constant while the real part decreases to zero linearly.

†It is clear that the term kb/(1 + m) in the denominator can only be important at very high frequencies.
We find that it does not affect the plots in Fig. 4 even up to kb ∼ 10 (f = 10 GHz). Thus this term can
safely be deleted.

‡In Eq. (2.75) of Ref [2], the high-frequency expansion of K ′
m(λcb)/Km(λcb) has already been made. Thus

it cannot be used in the limit of low frequencies. In fact, if this limit were made blindly, one would obtain
instead Z⊥

1 /L = Z0/(mπb2), which is a factor of 2 too large.
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Figure 4: The real and imaginary parts of the transverse dipole impedance are
shown as functions of kb for a beam pipe with radius b = 5 cm and wall conductivity
σc = 0.5 × 107 (Ω-m)−1 (stainless steel). While both parts roll off as (kb)−1/2 at
high frequencies, the imaginary part approaches a constant at low frequencies and
the real part falls to zero linearly.

The change of behavior takes place around kb ∼ 10−8 and 10−7 or f ∼ 10 to 100 Hz. For

a better conducting beam pipe wall, this change will take place at even lower frequencies.

For this reason, this change of behavior is unimportant in the presence of a beam pipe with

smooth resistive walls.

2.2.2 BYPASS INDUCTANCE

Consider a current I flowing in the z-direction displaced by x = a as illustrated in the

left plot of Fig. 5. When the metallic wall of the cylindrical beam pipe is a perfect conductor,

the image current in the wall can be computed using the method of images. For a beam

current I at an offset a on the x-axis, the magnetic field at the wall of the beam pipe can be

made tangential with the positioning of an image current −I on the x-axis b2/a away from

the center, as illustrated in Fig. 6. From the tangential magnetic field, the surface current
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Figure 5: (a) A current I at an offset a on the x-axis of a perfectly conducting cylindrical beam
pipe creates surface image current J(θ) on the inner surface of the beam pipe. For the dipole-mode
image current, the uniform monopole image current is subtracted. (b) The image current in an
element ∆(θ)bdθ at P produces a magnetic field at a point on the x-axis at a distance x from the
origin.

density in the wall is found to be

Kz(θ) =
b2 − a2

b2 + a2 − 2ba cos θ

Ib

2πb
, (2.100)

where Ib = −I is the total image current in the metallic wall of the beam pipe flowing also

in the positive z-direction. The normalization can be checked easily by integrating over the

azimuthal angle θ. Since we are only interested in the dipole part of the image current, the

monopole part, i.e., Kz(θ) with offset a = 0, must be subtracted, giving

Kz(θ) − Ib

2πb
=

Ib

2πb

2a(b cos θ − a)

b2 + a2 − 2ba cos θ
≈ Iba

πb2
cos θ , (2.101)

where the last quantity is the dipole image current density and is denoted by ∆Kz(θ). The

total image current in one side (−π/2 < θ < π/2) of the beam pipe is

Id =

∫ π/2

−π/2

∆Kz(θ)bdθ =
2Iba

πb
, (2.102)

which is negative flowing in the positive z-direction. Of course, there is also a current −Id

flowing in the positive z-direction between π/2 < θ < 3π/2. This set of currents forms a

dipole loop, and we called them the differential currents.

The dipole image current ∆Kz(θ) sets up magnetic field inside the beam pipe. We are

after this magnetic field on the x-axis (−b < x < b). By symmetry, the magnetic field there
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Figure 6: For a current I at an offset a on the x-axis, an image current −I at a distance b2/a from
the center is required so that the magnetic field at any point P is tangential to the wall surface of
the cylindrical beam pipe.

is in the vertical direction and is given by

Hy(x) = −
∫ π

−π

∆Kz(θ)bdθ

2πα
cosφ , (2.103)

where, as illustrated in the right plot of Fig. 5, α is the distance between the point x and the

image surface current element ∆Kz(θ)bdθ at Point P, and φ is the angle between the vector

α and the x-axis. Point P is at a horizontal distance b cos θ−x from the point of observation

on the x-axis, and α2 = b2 sin2 θ+ (b cos θ− x)2 = b2 + x2 − 2bx cos θ. Notice that the image

currents in all the four quadrants contribute to Hy in the same direction. This is expected

because the image current just forms a loop. We can therefore write

Hy(x) = − Iba

π2b

∫ π

0

(b cos θ − x) cos θ

b2 + x2 − 2bx cos θ
dθ = − Iba

2πb2
, (2.104)

which is independent of x as expected from a dipole source. The magnetic flux density is

By = µ0Hy and the flux per longitudinal length linking the x-axis is

Φy =

∫ b

−b

Bydx = 2bBy = −µ0Iba

πb
= −µ0

2
Id . (2.105)

Thus the inductance per longitudinal length facing the loop of differential currents (Id at

one side and −Id at the other side) is

L =
µ0

2
, (2.106)

which, in fact, is the result of the geometry of the system. We can therefore consider that

the image current Ib and the differential current Id are related through a mutual inductance
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Figure 7: Left: Representing by an equivalent circuit, by offsetting the beam, the image current
Ib generates, through a mutual inductance M, a differential current Id, which sees a inductance
L = µ0/2. Right: When the wall of the beam pipe is not perfectly conducting, the different current
sees, in addition to the inductance L, also an impedance Z.

M as illustrated in the left equivalent circuit of Fig. 7. From

jωM(Ib − Id) = jω(L−M)Id , (2.107)

it is easy to solve for the mutual inductance

M
L =

Id

Ib
. (2.108)

The horizontal force due to the image current acting on a charge in the beam is

Fx = e(Ex − βcBy) , (2.109)

where v = βc. The horizontal dipole impedance coming from this magnetic image is

Z⊥
1

L
= −(Fx/e)mag

jIaβ
=

cBy

jIa
= −j

Z0

2πb2
, (2.110)

recalling that I = −Ib. This represents the familiar contribution from the magnetic image.

The contribution of the electric image is just the same but is of opposite sign and is multiplied

by the factor β−2. The contribution of the self-force can also be included, because a beam

of radius a0 offset infinitesimally will have the dipole-mode current flowing along the edge of

the beam in exactly the same distribution as Eq. (2.100) with Ib replaced by I and b replaced

by a0. Combining the electric- and magnetic-image contributions as well as the self-force

contribution, one obtains
ZH

1

L
= −j

Z0

2πγ2β2

(
1

a2
0

− 1

b2

)
, (2.111)
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which is usually referred to as the transverse dipole space-charge impedance, where γ is the

ratio of total energy to rest energy of the beam particles.

In the presence of wall resistivity, the differential currents, Id and −Id, see in addition

to the inductance per length L, an additional impedance per length Z. Now Eq. (2.102)

no longer holds because it is derived from the method of images into a perfectly conducting

circular metallic wall. Nevertheless, Eq. (2.108), the relation between the inductance L and

the mutual inductance M is still valid. Since we are still after the dipole mode,

∆Kz(θ) =
Id

2b
cos θ and

∫ π/2

−π/2

∆Kz(θ)bdθ = Id (2.112)

must hold. For a transverse width w and a longitudinal length L, the wall current is

w∆Kz(θ), and the impedance is RL/w. For a length L in the z-direction, the voltage

difference created is given by

V (θ) = 2
RL

w
w∆Kz(θ) , (2.113)

or

V (θ) =
RLId

b
cos θ , (2.114)

where the factor of 2 comes about because there is a negative surface current flowing on one

side of the beam pipe and a negative surface current current flowing on the other side. The

peak value occurs at θ = 0, giving

V̂

L
=

RId

b
= 2π

Z
‖
0

L
Id , (2.115)

where the expression for the longitudinal monopole impedance per unit length

Z
‖
0

L
=

R
2πb

(2.116)

up to the lowest order in R has been used. In the equivalent circuit on the right plot of

Fig 7, this peak voltage per unit length is just equal to the differential current Id multiplied

by the impedance Z represented in the circuit, thus giving a relation between Z and Z
‖
0 , or

Z = 2π
Z

‖
0

L
. (2.117)

On the other hand, the peak electric field at the wall of the beam pipe is

Êz = −RHθ = R∆Kz(0) =
RId

2b
, (2.118)
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according to the definition of surface impedance per square, where Hθ is the azimuthal

component of the magnetic field at the wall of the beam pipe. The horizontal Lorentz force

per unit charge acting on the beam particle is

Fx

e
= Ex − vBy = − v

jω

∂Ez

∂x
. (2.119)

For the dipole mode, Ez is linear§ in x at θ = 0; we therefore have

Fx

e
= − vRId

2jωb2
. (2.120)

The horizontal dipole impedance is

ZH
1

L
= −Fx/e

jIaβ
= − cRId

2ωb2Ia
= −cπ

ωb

Id

Ia

Z
‖
0

L
. (2.121)

We need to derive the differential current Id as related to I in the presence of wall resistivity.

From the equivalent circuit depicted in the right plot of Fig. 7, it is easy to get

jωM(Ib − Id) = [jω(L−M) + Z] Id . (2.122)

Using the inductance per length L and mutual inductance per length M derived in Eqs. (2.106)

and (2.108), we obtain
Id

Ib
=

2a

πb

jωL
jωL + Z , (2.123)

and the ratio approaches the perfectly-conducting-wall limit when the wall resistivity Z → 0.

Noting that Ib = −I, the horizontal dipole impedance is finally written as

ZH
1

L
=

2c

ωb2

jωL
2π

Z
‖
0

L

jωL
2π

+
Z

‖
0

L

=
2c

ωb2

jωµ0

4π

Z
‖
0

L

jωµ0

4π
+

Z
‖
0

L

, (2.124)

where Eq. (2.117), the relation between Z and Z
‖
0 , has been used. We see that when the

frequency is not too small, we recover the usual Panofsky-Wenzel-like relation

ZH

1 ≈ 2c

ωb2
Z

‖
0 . (2.125)

However, when the frequency is small, the horizontal dipole impedance approaches

ZH
1

L
≈ j

Z0

2πb2
, (2.126)

§we can see this linearity in Eq. (2.87). For the two parallel plate, Eq. (2.36) does not show this linearity.
This explains why we are not able to derive the bypass inductance for the parallel plates using this method.
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which agrees with our low-frequency result in the previous section. The critical frequency

occurs when
ωZ0

4πc
=

∣∣∣∣∣Z‖
0

L

∣∣∣∣∣ , (2.127)

or

ω =
2c

b

|R|
Z0

. (2.128)

Let us try to understand the expression for the transverse dipole impedance. The

transverse dipole impedance is essentially the voltage across the wall impedance Z in the

right plot of Fig. 7 per dipole beam current Ia. The voltage across the wall resistivity is just

ZId. But we need to transform Id to Ib because the impedance is the voltage seen by the beam

current −Ib not the differential current Id. All the essence of the bend-around frequency lies

in the transformation from the differential current Id to the dipole beam current, and the

transformation is given by Eq. (2.123). However, at high frequencies, this ratio is just

Id

Ib
≈ 2a

πb
, (2.129)

which is the same ratio in the absence of the wall resistivity, according to Eq. (2.102).

This result is easy to understand because the differential current will be smaller if the beam

offset is smaller. We see that the inductance L does not even show up because high-frequency

current finds it difficult to flow through an inductance. The transverse impedance is therefore

just Z, the wall resistivity, multiplied by the factor c/(πωb2), exactly the same as the usual

Panofsky-Wenzel-like relation, aside from a constant. The situation is quite different at low

frequencies, the no-wall-resistivity transformation ratio of Eq. (2.129) needs modification,

because low-frequency current finds it easier to flow through an inductance L rather than

the wall impedance Z. Equation (2.123) gives

Id

Ib
≈ 2a

πb

jωL
Z , (2.130)

making the differential current very small. The voltage across the wall impedance Z is

now independent of Z, and becomes proportional to jωL. In short, the transverse dipole

impedance is given totally by the geometric effect.

The above picture can be simplified by avoiding the differential current Id and referring

to the beam current I or its image Ib directly. The second factor in Eq. (2.124) represents

an inductance L/(2π) in parallel with the longitudinal monopole impedance Z
‖
0/L. The

transverse dipole impedance per unit length is just this parallel impedance multiplied by the
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factor 2c/(ωb2). Thus we can imagine the dipole current flowing through this parallel circuit

instead, as is illustrated in Fig. 8. We call the inductance, L/(2π), an inductive bypass,

because, at low frequencies, the image current flows through this bypass instead of the wall

impedance Z. On the other hand, at high frequencies, the inductive bypass exhibits high

reactance and the image current flows through Z
‖
0 instead.

Wall impedance

Z
‖
0/L

Ib

L/(2π) = µ0/(4π)

Inductive bypass

Figure 8: The image current sees an inductive bypass per unit length L/(2π) = µ0/(4π) in parallel
with the longitudinal monopole wall impedance per unit length Z

‖
0/L. At low frequencies, the

image current mostly flows through the bypass inductance, while at high frequencies, it mostly
flows through the wall impedance.

2.2.3 OFF-AXIS BEAM

When the beam is at a large offset a from the center of the cylindrical beam pipe, the

computation of the impedances experienced requires the knowledge of the longitudinal fields,

which can be obtained by summing all the azimuthal modes, for example

Ez =

∞∑
m=0

Amr
m cosmθ ,

Z0Hz = −
∞∑

m=0

Amr
m sinmθ , (2.131)

with the coefficients Am given by Eq. (2.81) and (2.92). Since the offset can be comparable

to the radius of the beam pipe, all azimuthal modes become important. Because the above
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summations are nearly impossible, the expansion into azimuthal modes is not very helpful.

We are going to solve for the fields experienced by the beam using the method of perturba-

tion. The beam induces surface current on the surface of the beam pipe, which generates

longitudinal electric field through wall resistivity. This resistivity-generated longitudinal

electric field acts back on the particle beam, from which the impedances experienced can be

computed. The only disadvantage of this method is that the result gives us only the lowest

order in the surface impedance per square. Since only the lowest order of the perturbation

is included, the results will not reflect the correct behavior at low frequencies. For example,

the bend-around of the transverse impedance will be omitted.

The image current in the cylindrical wall of the beam pipe was given by Eq. (2.100) in

the previous section using the method of images. Here we rewrite it as

Kz(θ; a) = − I

2πb

1 − g2

1 + g2 − 2g cos θ
, (2.132)

where g = a/b represents the beam offset. The electric field generated at the wall surface is

Ez(θ; a) = RKz(θ; a) (2.133)

where R is the surface impedance per square. Elsewhere, the longitudinal electric field

Ez(r, θ; a) satisfies [
∇2

⊥ + k2 − k2β2
]
Ez(r, θ; a) = 0 . (2.134)

With the particle beam velocity equal to c, this is just the Laplace equation in two-dimension.

The solution is

Ez(r, θ; a) =
∞∑

m=0

fmr
m cosmθ . (2.135)

When r = b, Ez must satisfy the boundary value of Eq. (2.133), from which coefficient fm

can be determined. The series can be summed easily to give

Ez(r, θ; a) = −RI

2πb

1 − (gr′)2

1 + (gr′)2 − 2(gr′) cos θ
, (2.136)

where the short-hand notion r′ = r/b has been used. At the beam position, r′ = g and θ = 0,

Ez = −RI

2πb

1 + g2

1 − g2
. (2.137)

Therefore the longitudinal impedance for unit length due to the cylindrical resistive wall is

Z‖

L
= − R

2πb

1 + g2

1 − g2
. (2.138)
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This expression can be checked by computing the average power consumed at the wall per

unit length
P

L
=

1

2

∫ 2π

0

1

σc(bδcdθ)
|Kzbdθ|2 , (2.139)

which equals 1
2L

ReZ‖|I|2 as expected.

The horizontal impedance can be derived by generating a dipole current I∆ when the

beam is shifted horizontally by a small amount ∆. The longitudinal electric field due to the

resistivity of the wall by this dipole is obtained through differentiation of Eq. (2.136):

E ′
z(r, θ) =

∂Ez(r, θ; a)

∂a
∆ =

RI∆r′

πb2
2gr′ − [1 + (gr′)2] cos θ

[1 + (gr′)2 − 2(gr′) cos θ]2
. (2.140)

The horizontal deflecting Lorentz force on a charge on the x-axis is

FH

e
= E ′

r − Z0H
′
θ = − 1

jk

∂E ′
z

∂r
=

RI∆

jkπb3
1 + gr′

(1 − gr′)3
, (2.141)

where Faraday’s law has been used. The horizontal impedance per unit length is therefore

ZH

L
= −FH/e

jI∆
=

R
πkb3

1 + g2

(1 − g2)3
. (2.142)

This same ZH can also be obtained by equating the average power consumed by the beam

dipole per unit length
P

L
=

1

2L
k|I∆|2 Re ZH (2.143)

to the average power consumed at the wall per unit length

P

L
=

1

2

∫ 2π

0

1

σc(δcbdθ)

∣∣K ′
zbdθ

∣∣2 , (2.144)

where K ′
z(θ), the surface current density due to the horizontal dipole current, is obtained by

differentiating Eq. (2.132) with respect to a, i.e.,

K ′
z(θ) =

∂K(θ; a)

∂a
∆ . (2.145)

The vertical impedance experienced by the beam can be derived by shifting the beam

vertically upward by the amount ∆, thus creating a vertical dipole current I∆. This can

be accomplished by differentiating the resistivity-generated electric field in Eq. (2.136) with

respect to θ. The longitudinal electric field due to the vertical dipole is then

E ′
z(r, θ) =

∂Ez(r, θ; a)

∂θ

∆

r
=

RI∆g

πb2

[
1 − (gr′)2

]
sin θ[

1 + (gr′)2 − 2(gr′) cos θ
]2 . (2.146)
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The vertical Lorentz force acting on a particle is

FV

e
= E ′

θ + Z0H
′
r = − 1

jkr

∂E ′
z

∂θ
=

RI∆g

πb3

[
1 − (gr′)2

]{[
1 + (gr′)2

]
cos θ − 2gr′

}[
1 + (gr′)2 − 2(gr′) cos θ

]3 , (2.147)

where Faraday’s law has been used. With this force evaluated at the dipole, we obtain the

vertical impedance per unit length

ZV

L
= −FV /e

jI∆
=

R
πkb3

1 + g2(
1 − g2

)3 , (2.148)

which is exactly the same as the horizontal impedance ZH in Eq. (2.142). The same ZV can

be obtained by equating the average power consumed by the beam dipole per unit length

P

L
=

1

2L
k|I∆|2 ReZV (2.149)

to the average power consumed at the wall per unit length

P

L
=

1

2

∫ 2π

0

1

σc(δcbdθ)

[
K ′

z(θ)bdθ
]2

, (2.150)

where K ′
z(θ), the surface current density due to the vertical beam dipole, is obtained by

differentiating Eq. (2.132) with respect to θ, i.e.,

K ′
z(θ) =

∂Kz(θ; a)

∂θ

∆

a
. (2.151)

3 CRACK IMPEDANCE

3.1 PARALLEL-FACE MAGNET

In former sections, we have derived the impedances experienced by the beam in terms of

the surface impedance per square R. Here, we are going to compute this surface impedance

per square for the laminated surface. First let us consider the parallel-face laminated magnet,

which consists of laminations from y = ±b to y = ±d extending to infinity in the x-direction.

The beam is considered to be a sheet current flowing in the z-direction at y = 0. This

simplifies the problem because it has been reduced to two-dimensional. We further assume

the laminations to be shorted at the far ends at y = ±d. The laminations are to have

thickness τ (called region 2) and separated by cracks of width h (called region 1). One of



41

d
b

beam
region 2

y

−h/2

h/2

region 1

z

Figure 9: A sheet current (−∞ < x < ∞) flows in the z-direction at y = 0. The x-direction is
pointing out of the paper. A crack with two adjacent laminations shorted at the y = d is shown.

the cracks is shown in Fig. 9, where the x-axis is pointing out of the paper and the plane

z = 0 is at the center of the crack. We wish to compute the longitudinal electric field across

the crack. We will be using the typical properties of the laminations and cracks as listed in

Table II.

Table II: Some typical properties of the laminations and cracks.

crack lamination

Width or thickness h = 0.000375′′ τ = 0.025′′

Relative magnetic permittivity µ1r = 1 µ2r = 100

Relative dielectric ε1r = 4.75 ε2r = 1

Conductivity σc1 = 1.0× 10−3 (Ω-m)−1 σc2 = 0.5 × 107 (Ω-m)−1

Notice that the longitudinal electric field satisfies the Laplace equation(∇2 − ω2µε
)
Ez(y, z) = 0 , (3.1)

where the electric permittivity ε should be replaced by

ε → ε

(
1 +

σc

jωε

)
(3.2)

in order to include conductivity. Since electromagnetic fields have to decay inside the lami-

nations, we choose
∂2 �E

∂z2
= g2 �E ,

∂2 �H

∂z2
= g2 �H , (3.3)
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with g real and positive. Notice that we have the same g for both �E and �H , because one

can be obtained from the other through an application of curl. The Laplace equation now

becomes (
∂2

∂y2
+ q2

)
Ez = 0 . (3.4)

with

q2 = ω2µε+ g2 . (3.5)

Since q is now nonzero, the transverse field components can be obtained by
Ey =

1

q2

∂2Ez

∂y∂z
,

Hx =
jωε

q2

∂Ez

∂y
.

(3.6)

The fields in regions 1 and 2 are written as

Region 1:

|z| < h/2


Ez = A cosh(g1z)

[
sin(qy) + α cos(qy)

]
,

Ey =
g1A

q
sinh(g1z)

[
cos(qy)− α sin(qy)

]
,

Hx =
jωε1A

q
cosh(g1z)

[
cos(qy)− α sin(qy)

]
,

Region 2:

|z| > h/2


Ez = B e−g2|z|

[
sin(qy) + α cos(qy)

]
,

Ey = −g2B

q
sgn(z) e−g2|z|

[
cos(qy)− α sin(qy)

]
,

Hx =
σ2cB

q
e−g2|z|

[
cos(qy)− α sin(qy)

]
.

(3.7)

Some comments are in order:

1. Region 2 is the lamination with µ2r = 100, ε2r = 1, and σ2c = 0.5 × 107 (Ω-m)−1. We

have

ε2 → ε2

(
1 +

σ2c

jωε2

)
, (3.8)

where the second term in the bracket decreases from unity only when ω/(2π) reaches

0.9 × 1017 Hz. Thus the first term can be neglected, which amounts to neglecting the

displacement current. Hence we have Hx in the last line the substitution

ε2 → σ2c

jω
. (3.9)



43

2. Because Ey and Hx have to be continuous across the surfaces at z = ±h/2, the y-

dependency should be the same in the two regions. Thus we have the same arguments

qy of sine and cosine in the two regions and the same constant α for their ratios.

3. Because the beam current is flowing in the z-direction, Ez is even in z. The image

current is flowing into the crack along the upstream lamination wall at z = −h/2 in

the positive y-direction, but flowing out of the crack along the downstream lamination

wall at z = h/2 in the negative y-direction. Therefore Ey should be odd in z.

4. This field assignment assumes that the fields do not penetrate through the lamination.

In other words, the skin-depth δ2c is less than the the lamination thickness τ . As a

result, the model is valid when the frequency

f � c

πZ0σ2cµ2rτ 2
= 1.26 kHz , (3.10)

which is only a small fraction of the revolution frequencies of the Fermilab machines

as listed in Table III. Thus the approximation made so far should be valid in a very

wide range of frequencies

1.26 kHz � f � 106 GHz . (3.11)

Table III: Revolution frequencies of Fermilab machines.

Rev. Freq. (kHz)

Booster at 400 MeV (K.E.) 450.796

Main Injector at 8 GeV (K.E.) 89.816

Tevatron at 150 GeV 47.713

Now let us give an estimate of the parameters q, k1,2, and g1,2. We have

q2 = k2
1 + g2

1 ,

q2 = k2
2 + g2

2 ,

k2
1 = ω2µ1ε1 ,

k2
2 = ω2µ2ε2 = − 2j

δ2
2c

, (3.12)
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where δ2c =
√

2/(ωµ2σ2c) is the skin-depth into the lamination. Notice that

k2
1

k2
2

= − ω

jcZ0σ2c

ε1r

µ2r
→ j

2

3
× 10−9 when

ω

2π
= 1 GHz . (3.13)

If the lamination were perfectly conducting, we would expect g1 = 0. We therefore expect

g1h � 1. Since Ez must vanish when y = d, we can solve for

α = − tan qd . (3.14)

Thus, qd ∼ O(1). We have at 1 GHz with ε1r = 4.75,

k2
1 = 2068 m−2 , k2

2 = − 2j

δ2
2c

= 3.95× 1012 m−2 . (3.15)

In addition, with the crack width h = 0.000375′′,

g2
1 � 1

h2
= 1010 m−2 , q2 ∼ O

(
1

d2

)
∼ O(100) m−2 . (3.16)

Since |k2|2 � |q|2, we expect

g2
2 ∼ −k2

2 =
2j

δ2
2c

or g2 =
1 + j

δ2c

. (3.17)

This root is chosen to ensure decay inside the lamination. Continuities of Ey and Hx across

z = h/2 give
A

B
= − g2e

−g2h/2

g1 sinh(g1h/2)
=

σ2ce
−g2h/2

jωε1 cosh(g1h/2)
. (3.18)

We get

g1 tanh(g1h/2) = −jωε1g2

σ2c

, (3.19)

or, for g1h � 1,

g2
1 = −j2ωε1g2

σ2ch
= (1 − j)k2

1

µ2

µ1

δ2c

h
. (3.20)

We have evaluated up to 1 GeV, the parameters |q2|, |k2
1|, |k2

2|, |g2
1|, and |g2

2| according to the

properties of the laminations and crack medium listed in Table II. The results are plotted

in Fig. 10. Here, we see clearly how much |k2
2| and |g2

2| are larger than |q2| and |g2
1|. The

smallest is |k2
1|.

We are now in the position to define the crack surface impedance Rc per square:

Rc

Z0
=

Ez(b)

Z0Hx(b)
= − jq

ε1rk

sin qb cos qd− sin qd cos qb

cos qb cos qd + sin qd sin qb
=

jq

ε1rk
tan q(d− b) . (3.21)
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Figure 10: Plot of |q2|, |k2
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2 |, showing that |g2
2 | ∼ |k2

2 | � |g2
1 | ∼ |k2| � |k2

1 |.

This quantity has a physical meaning, because Hx(b) is equal to the surface current per

width flowing into the crack at y = b while hEz(b) represents the potential produced across

the crack at y = b. Part of the time the particle beam is seeing the cracks and part of the

time seeing the edges of the laminations. The surface impedance per square for the latter is

given by
R

L

Z0

=
1 + j

σ2cδ2cZ0

= (1 + j)kδ2cµ2r , (3.22)

where k = ω/c. The surface impedance per square of the laminated wall in the z-direction

is therefore obtained by the weighted average,

Rz =
Rcτ + R

L
h

τ + h
. (3.23)

As will be shown below, the lamination part of the impedance is very much less than the

crack part, and we can approximate

Rz =
R

L
h

τ + h
, (3.24)

which is to be substituted in Eqs. (2.48), (2.58), (2.62), (2.64), (2.67), and (2.69) for the

evaluation of the different impedances experienced by the beam. In the next subsections,
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we are going to study the behavior of the crack surface impedance at different frequency

regimes in order to have a better understanding of its physical meaning.

3.1.1 LOW-FREQUENCY BEHAVIOR

From Eqs. (3.12) and (3.20),

q2 = k2
1

[
1 + (1 − j)

µ2δ2c

µ1h

]
=

ω2

c2
µ1rε1r

[
1 + (1 − j)

µ2δ2c

µ1h

]
. (3.25)

As ω → 0, δ2c → ω−1/2, ε1r → ω−1. Thus q2 → √
ω. The crack impedance per square

becomes
Rc

Z0
→ jcq2

ωε1r
(d− b) = (1 + j)

δ2cω

hc
µ2r(d− b) . (3.26)

Note that ε1r gets cancelled. In other words, Rc behaves as (1 + j)
√
ω in exactly the same

way as the impedance due to skin depth into the laminations. This result is not unexpected,

because the impedance going in and out of a width w of a crack via the lamination skin-depth

is
Imp of 1 crack

Z0
=

2

Z0

∫ d

b

(1 + j)

δ2rσ2r

dy

w
= (1 + j)

ωδ2cµ2r

wc
(d− b) , (3.27)

where the factor 2 before the integral sign appears because the current flows into the crack

along the surface of one lamination and flows out along the surface of the next lamination.

The crack impedance per square is obtained by multiplying the above impedance by w and

dividing by the crack width h, arriving at exactly the expression in Eq. (3.26).

We can use the low-frequency approximation of the crack impedance to estimate a bend-

around frequency for the transverse dipole impedance of the laminated magnet. First, the

surface impedance per square of the laminated wall in the z direction is, from Eq. (3.23),

Rz ≈ Rch/τ , where Rc is given by Eq. (3.26). Then, using Eq. (2.48), the criterion in

Eq. (1.3) translates into

1 ≈ |1 + j|2δ2cµ2r

τ

d− b

b
, (3.28)

which is equivalence of Eq. (1.6) when the laminated magnet wall has parallel-face cross-

section. With b = 5 cm and d − b = 10 cm, and the other parameters as given by Table II,

the bend-around frequency is roughly 400 MHz. This estimation has been too high because

we have used the low-frequency approximation of Rc in a situation where the frequency is

not too low.
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3.1.2 HIGH-FREQUENCY BEHAVIOR

From Eq. (3.25), we see that

lim
ω→∞

q = lim
ω→∞

k1 =
ω

c

√
ε1r , (3.29)

where ε1r = 4.75 is the dielectric constant¶ of the medium filling the crack. Thus the crack

impedance per square approaches

Rc

Z0

→ j√
ε1r

tan q(d− b) . (3.30)

One may be afraid of blowups at high frequencies when the tangent in Eq. (3.30) is equal

to odd multiples of π/2, because the argument q(d− b) becomes almost real. However, this

does not happen because the imaginary part of q2 in Eq. (3.25) decreases very slowly as

ω−1/2. For example, when the frequency reaches 1 × 106 GHz, Imq still remains ∼ 0.5% of

Re q. Since Re q ∼ √
ε1rω/c, Imq(d− b) is a large negative number which damps out all the

resonances. In fact,

tan q(d− b) =
tan[Re q(d− b)] + j tanh[Imq(d− b)]

1 − j tan[Re q(d− b)] tanh[Imq(d− b)]
→ −j , (3.31)

even when ω/(2π) � 200 MHz because tanh[Imq(d − b)] → −1. As a result, the crack

impedance per square approaches the limit ε
−1/2
1r Z0 ∼ 173 Ω.

Since we are not interested in frequencies reaching tens or hundreds GHz’s, we would

like to study the behavior of the crack impedance per square when the second term (the

δ2c term) in Eq. (3.25) dominates or when |g1|2 � |k1|2. Numerically, this occurs when the

frequency is f � 100 GHz. Substitution into Eq. (3.21) leads to

Rc

Z0

=
√

1 + j

√
µ2r

ε1r

√
δ2c

h
, (3.32)

where tan q(d−b) ≈ −j has been used. Thus in this range of frequencies, the crack impedance

per square rolls off as ω−1/4.

3.1.3 LAMINATIONS VERSUS CRACKS

The particle beam is seeing both the cracks and the edge of the laminations. As fre-

quency increases, the crack surface impedance per square Rc decreases slowly as ω−1/4 (for

¶The conductivity dependent part rolls off as f � 3.8 MHz because the medium in the crack is almost
an insulator.
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ω/(2π) � 100 GHz), while the lamination surface impedance per square R
L

increases as ω1/2

because the skin-depth becomes smaller and smaller. At some frequency, the contribution

of the lamination surface impedance will dominate over the crack surface impedance. This

occurs when
1 + j

δ2cσ2c

τ >
√

1 + j

√
µ2r

ε1r

√
δ2c

h
h , (3.33)

where the the left side is R
L

weighted by the lamination thickness τ and the right side is Rc

from Eq. (3.32) weighted by the crack width h. It is easy to re-express this as

ω3/4 >
2c√
1 + j

√
h

ε1rτ 2

(
Z0σ2c

2cµ2r

)1/4

. (3.34)

This critical frequency is ω/(2π) ≈ 58.8 GHz. Since we are not interested in such high

frequencies, it is safe to neglect R
L

and write the weighted surface impedance Rz as in

Eq. (3.24).

The comparison with R
L

raises another problem. Why would Rc not increase as fre-

quency just as what happens with R
L
? Physically, the image current flows across a crack in

two ways. One is to flow into the crack along the surface of one lamination and come back

along the surface of the next lamination. The other way is to flow across the crack directly

as displacement current. The process can be represented by a resistor plus an inductor in

parallel with a capacitor. As frequency increases, it will become harder and harder to flow

along the laminations because the skin-depth becomes thinner and thinner (or the equiva-

lent resistor and inductor become larger and larger). Thus more and more current will flow

across the crack as displacement current (or going through the equivalent capacitor). For

this reason, the reactive impedance of the crack behaves capacitively at high frequencies.

The crack surface impedance per square Rc of a beam inside a Booster D-magnet

is computed and its real and imaginary parts are shown in Fig. 11 as solid curves. The

combined-function magnet is approximated as parallel-face, with a gap 2b = 2.25′′ and total

height 2d = 12′′. Other properties of the laminations and cracks are listed in Table II. We

see that both the real and imaginary parts of the crack surface impedance behave as
√
ω

at low frequencies. There is a first broad resonance at ω/(2π) ≈ 33 MHz and a second one

at 140 MHz. These resonances are heavily damped because of the resistive nature of the

laminations. The imaginary part first starts out as inductive, but becomes capacitive after

the first broad resonance, verifying that the image current crosses the crack as displacement

current at high frequencies. The dashed curves represent the crack surface impedance per

square for an annular laminated magnet discussed in the next section.
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Figure 11: Crack surface impedances per square Rc for parallel-face magnet (solid) and annular
magnet (dashed) with laminations shorted at d = 6.0 in from the beam and pole faces separated
by 2b = 2.25 in.

3.2 ANNULAR-RING MAGNET

A Lambertson magnet can be approximated by a laminated annular-ring magnet of

inner radius b and outer radius d where the laminations are assumed to be shorted. The

particle beam is at the center of the annular magnet during acceleration and storage, and

will be shifted to near the laminated surface for injection and extraction. In the Sec. 2.2,

we have computed the impedances experienced by the beam at the center axis and also at

a large offset in terms of the surface impedance per square. In this section, we are going

to derive the surface impedance per square. This surface impedance was first derived by

Snowdon [6] and later by Gluckstern [7]. We merely include the derivation here with our

comments for the sake of completeness. There are also derivations of this impedance by

considering the crack as a radial transmission line. [8, 9] The results are comparable.

The sketch of the beam passing one crack of the laminated surface is shown in Fig. 12.
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Figure 12: A pencil beam current flows in the z-direction along the axis of the annular magnet
seeing one crack of the laminated surface at r = b with adjacent laminations shorted at r = d. The
θ-direction is out of the paper.

The beam flows along the axis of the annular magnet in the z-direction. The cylindrical

symmetry of the problem results in azimuthal-angle-independent longitudinal electric field

Ez and azimuthal magnetic field Hθ at the inner cylindrical surface of the laminated annular

magnet, thus simplifying the derivation of the crack surface impedance per square. The crack

is named region 1 while the adjacent laminations are named region 2. The derivation follows

closely that for the parallel-face laminated surface, except that we are using the cylindrical

coordinates. The equation satisfied by Ez is

1

r

∂

∂r

(
r
∂Ez

∂r

)
+ q2Ez = 0 , (3.35)

where q2 = k2 + g2 with k2 = ω2µε and g defined by Eq. (3.3) as the decrement in the z-

direction. The radial solution is Bessel functions of order zero with argument qr. We choose

H
(2)
0 and H

(1)
0 to represent outgoing and incoming waves. Thus we can write the solution in
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regions 1 and 2 as‖

Region 1:

|z| < h/2


Ez = A cosh(g1z)

[
H

(2)
0 (qr) + αH

(1)
0 (qr)

]
,

Er = −g1A

q
sinh(g1z)

[
H

(2)
1 (qr) + αH

(1)
1 (qr)

]
,

Hθ =
jωε1A

q
cosh(g1z)

[
H

(2)
1 (qr) + αH

(1)
1 (qr)

]
,

(3.36)

Region 2:

|z| > h/2


Ez = B e−g2|z|

[
H

(2)
0 (qr) + αH

(1)
0 (qr)

]
,

Er =
g2B

q
sgn(z) e−g2|z|

[
H

(2)
1 (qr) + αH

(1)
1 (qr)

]
,

Hθ =
σ2cB

q
e−g2|z|

[
H

(2)
1 (qr) + αH

(1)
1 (qr)

]
.

(3.37)

All comments for the field assignment for the parallel-face laminated surfaces apply here as

well. Actually, all the parameters q, k1,2, g1,2, A, and B are exactly the same in the two

situations. However, the parameter α, determined by Ez = 0 at r = d, is

α = −H
(2)
0 (qd)

H
(1)
0 (qd)

. (3.38)

The crack surface impedance per square Rc becomes

Rc

Z0
= − Ez(b)

Z0Hθ(b)
=

jqc

ε1rω

H
(2)
0 (qb)H

(1)
0 (qd) −H

(1)
0 (qb)H

(2)
0 (qd)

H
(2)
1 (qb)H

(1)
0 (qd) −H

(1)
1 (qb)H

(2)
0 (qd)

=
jqc

ε1rω

J0(qb)N0(qd)−N0(qb)J0(qd)

J1(qb)N0(qd)−N1(qb)J0(qd)
, (3.39)

where H
(1),(2)
n = Jn ± jNn has been used.

3.2.1 LOW-FREQUENCY BEHAVIOR

The only difference here from the parallel-face laminations is the factor containing Bessel

functions. The small argument expansions of the Neumann functions are

N0(x) → 2

π
ln

x

2
and N1(x) → − 2

πx
, (3.40)

The numerator of the Bessel function part becomes (2/π) ln(d/b) while the denominator

becomes 2/(πkb). Thus the crack impedance per square becomes

Rc

Z0
→ (1 + j)

ωδ2cb

ch
µ2r ln

d

b
. (3.41)

‖With the time-varying convention ejω , H
(2)
m represents the outgoing wave and H

(1)
m represents the in-

coming wave.
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We get back the parallel-face result when the annular width of the lamination (d−b) is much

less than the inner radius b. Since ln(1 + x) < x, the crack surface impedance per square at

low frequencies for an annular laminated magnet should be less than that for a parallel-face

magnet. In most cases, however, (d − b)/b > 1. As an example, the Booster D-magnet has

x = (d − b)/b = 4.33 (b = 1.125′′, d = 6′′), and ln(1 + x)/x = 0.386. In other words, if

we approximate the Booster D-magnet as annular with radius b equal to the half-gap and d

equal to the half-height, the crack surface impedance will be smaller than the parallel-face

model by the factor 0.386 at low frequencies. This is verified in Fig. 11 where the real and

imaginary parts of the crack impedance are plotted as dashed curves. Although we see in

both cases the same ω1/2 behavior at low frequencies, the broad resonance peaks are much

lower and occur at higher frequencies.

Using Eq. (3.41), the bend-around frequency can be estimated in exactly the same way

as the parallel-face magnet. Instead of Eq. (3.28), we obtain∣∣∣∣(1 + j)
2δ2cµ2r

τ
ln

d

b

∣∣∣∣ ∼ 1 , (3.42)

which reduces to Eq. (1.6). The Tevatron Lambertson magnet at location F0 can be ap-

proximated as annular in shape with b = 1.25′′ and d = 6′′. With the properties of the

laminations listed in Table II, the bend-around frequency is estimated as ∼ 250 MHz. The

actual computation in Sec. 3 gives ∼ 100 MHz.

3.2.2 HIGH-FREQUENCY BEHAVIOR

The large argument expansions of the Bessel functions are

H
(1),(2)
0 (x) →

√
2

πx
e±j(x−π/4) and H

(1),(2)
1 (x) →

√
2

πx
e±j(x−3π/4) . (3.43)

Thus the crack impedance per square becomes

Rc

Z0
=

jkc

ε1rω

e−jk(b−d) − ejk(b−d)

e−j[k(b−d)−π/2] − ej[k(b−d)−π/2]
=

jkc

ε1rω
tan k(d− b) . (3.44)

which is exactly the general result for parallel-face laminated surfaces We therefore expect

the crack surface impedances to differ somewhat at low frequencies but agree exactly at high

frequencies. We see such similar high-frequency behavior in Fig. 11.
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4 APPLICATIONS

4.1 FERMILAB BOOSTER

The Fermilab Booster consists of 48 F -magnets and 48 D-magnets. Each magnet has

a length < = 113.741′′. We approximate the magnets as parallel-face, having a vertical

gap of 2b = 1.64′′ for the F ’s and 2b = 2.25′′ for the D’s. Total height of each magnet is

2d = 12′′. The total longitudinal impedance seen by a centered beam is shown in the top

plot of Fig. 13 in solid curves, where the contribution of all the 96 magnets are included.

Besides the first broad resonance of ∼ 45 kΩ, the real part is roughly ∼ 25 kΩ rolling off

slowly. At low frequencies, we see that its increase deviates from the square root of frequency.

The imaginary part first starts off inductively because the image current goes around each

lamination. However, it becomes capacitive above ∼ 50 MHz because the cracks behave as

capacitance and displacement current just jumps across the cracks. We also approximate

the magnets as annular rings with inner and outer radii b = 1.125′′ and d = 6′′. The results

are shown in the same plot as dashed curves. They tend to be smaller in value than the

parallel-faced approximation. For example, the first resonance peak is not so pronounced.

This tendency is expected because the image current spreads out more uniformly in the

annular-ring approximation.

The longitudinal impedance of the booster laminated magnets has been measured by

Crisp and Fellenz [11] by stretching a wire through the magnet with the ends matched to

50 Ω via L-pads. The attenuation of transmission, S21, was measured. The derivation of

the longitudinal impedance depends on the model used. A transmission-line model gives

Re Z‖
0 reaching an asymptotic value of ∼ 37 kΩ, whereas we obtain 18 to 20 kΩ in the

computed results of Fig. 13. The rise at low frequencies is similar, with the exception

that the measurement does not show the broad peak near 50 MHz; it only shows a smaller

peak around 200 MHz. The measured ImZ
‖
0 appears to be always inductive, without a

transition into capacitive as demonstrated by the field-theoretical computation. In any case,

we are still glad to see the extent of agreement between theory and measurement, because

we need to understand that there are discrepancies in the both methods. The annular-ring

approximation of the laminations is far from reality. Even the parallel-face approximation

is arguable because the Booster magnets are gradient magnets. On the other hand, the wire

in the experimental measurement disturbs the electromagnetic fields in the system. [12] For

example, the longitudinal electric field in the monopole mode is a constant A inside the
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annular-ring system. With a wire of radius r0, the longitudinal electric field is modified to

Ẽz(r) = A

[
1 − ln(r/b)

ln(r0/b)

]
r0 < r < b , (4.1)

where b is the inner radius of the annular ring. For the higher-order azimuthal modes, the

rm behavior of the longitudinal electric field is modified to

Ẽz(r) = A

[
rm − r2m

0

rm

]
r0 < r < b , (4.2)

Thus the wire seems to perturb the wake-field pattern profoundly. In conclusion, we are

content in getting the theory and measurement to agree.

4.1.1 Microwave Instability

The revolution frequency of the Fermilab Booster at the injection kinetic energy of

400 MeV is 450.8 kHz and increases to 628.7 KHz at the extraction kinetic energy of 8 GeV.

In the lower plot of Fig. 13, we show Z
‖
0/n of the 96 laminated Booster magnets at the booster

extraction energy. Here we see the ω−1/2 behaviors of the impedances at low frequencies.

The first broad resonance of the real part in the top plot translates into Re Z‖
0/n ∼ 0.55 kΩ

around 40 kHz, but it rolls off to less than ∼ 140 Ω above 100 MHz. Let us estimate the

single-bunch microwave stability of the Booster with a bi-parabolic distribution. The bunch

area is around A = 0.1 eV-s. If ∆̂E is the half energy spread, the half time spread is

τ̂ = A/(π∆̂E) and the peak current is

Ipk =
3eNb

4τ̂
, (4.3)

with Nb representing the number of protons in the bunch. The maximum allowable impe-

dance for stability is given by the Keil-Schnell criterion [10]∣∣∣∣∣Z‖
0

n

∣∣∣∣∣ � |η|E
eIpkβ2

(
∆E

E

)2

FWHM

=
8|η|(A/e)∆̂E

3πeNbβE
. (4.4)

In above, we have used the fact the (∆E)FWHM =
√

2∆̂E for the bi-parabolic distribution.

The transition gamma for the Booster is γt = 5.446. We try to evaluate this limit at

extraction when the total particle energy is E = 8.938 GeV at the bunch intensity of Nb =

6 × 1010. With a half energy spread of ∆̂E = 8 MeV, the half bunch length is τ̂ = 3.98 ns

and the peak current is Ipk = 1.81 A. The slip factor is η = 0.0227. This gives the stability

threshold budget of |Z‖
0/n| = 181 Ω. In order to drive microwave instability, the perturbing
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ripples must have wavelengths much shorter than the total length of the bunch 2τ̂ ∼ 8 ns,

or the perturbing frequencies f � 1/(2τ̂) = 125 MHz. We see in the figure that ReZ‖
0/n <

120 Ω and
∣∣ ImZ

‖
0/n

∣∣ < 5 Ω in this frequency range, indicating that the Booster single

bunch should be stable. At the injection kinetic energy of 400 MeV, the slip factor is

η = −0.4578. At the same bunch area and half energy spread, the stability threshold

increases to |Z‖
0/n| = 47500 Ω. Actually, the bunch length is much longer at injection.

However, the stability near transition is still questionable because the slip factor will be very

much smaller.

4.1.2 Transverse Coupled-Bunch Instabilities

The vertical dipole impedance of the booster laminated magnets is shown in Fig. 14.

We see that, as expected, the imaginary part approaches the bypass inductive reactance

ZV

1 → πZ0

16

(
L

F

b2
F

+
L

D

b2
D

)
= 36.2 MΩ/m (4.5)
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Figure 14: Real and imaginary parts of the vertical dipole impedance ZV
1 of the booster laminated

magnets are shown as solid curves in the parallel-plate approximation with plate. Also plotted in
dashes are the real and imaginary parts of the transverse dipole impedance Z⊥

1 in the annular ring
approximation. The radii have been taken as half the plate-separation.
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at low frequencies independent of the properties of the laminations, where 2b
F ,D and L

F ,D

represent the pole-face gap and total length of 48 F or D magnets. The real part rolls off to

zero at zero frequencies. Unlike the situation of a smooth beam-pipe wall, the bend-around

occurs at the much higher frequency around 80 MHz. This reflects the fact that the surface

impedance per square is very much larger than that for a smooth beam-pipe wall. This

agrees approximately with the prediction of Eq. (1.6). The bend-around of ReZV
1 leads to

a very different contribution to the transverse coupled-bunch instabilities. If it were not for

this bend-around, ReZV
1 would reach, according to the ω−1/2 behavior, 4056 MΩ/m at the

most dangerous betatron line at the n ≈ −1/2 harmonic or f = −313.9 kHz, where we have

chosen the vertical betatron tune to be νβ ≈ 6.5. At an intensity of Nb = 6× 1010 per bunch

and M = 84 bunches, the growth rate given by

1

τ
=

eMIbc

4πνβE
ReZV

1 F
′ , (4.6)

where the form factor is F ′ = 0.811 for Sacherer’s sinusoidal distribution, would lead to a

growth rate of τ−1 = 7.42 × 105 s−1 or a growth time of 1.36 µs or 0.846 revolution turns

(about 6.7 times faster at injection). Now Re ZV
1 is bounded by its peak of 28.5 MΩ/m at

77 MHz. When this value is substituted into Eq. (4.6) instead, the growth rate drops to

τ−1 = 5400 s−1 or a growth time of 0.19 ms or 120 revolution turns. The actual growth rates

will be much less than this because unlike the narrow peak-like contribution of the ω−1/2

contribution near zero frequency, this peak of Re ZV
1 is very broad so that the damping

contribution at positive frequency will nearly cancel the growing contribution at negative

frequency. In short, Re ZV
1 of a laminated magnet will not contribute to transverse coupled-

bunch instabilities because of the high bend-around frequency of Re ZV
1 . In this sense,

transverse coupled-bunch growths will become less in unshielded laminated magnets than

if the laminated surface is shielded by a smooth metallic beam pipe. The main reason is

that the image current flows through the bypass inductance at low frequencies rather than

around each lamination.

However transverse coupled-bunch instabilities have been reported in the Fermilab

booster although they have never been a serious problem. This is because the laminated

magnets cover only about 60% of the ring. In between the magnets there are beam pipes.

The booster is 24-fold symmetric. In each period, the beam pipe in the 6-m long straight sec-

tion between the D-magnets is of diameter 2.25′′, the beam pipe in the 1.2-m short straight

section between the F-magnets is of diameter 4.25′′, and the two 0.5-m straights joining a

D-magnet to a F-magnet is of radius 2.25′′. Assuming these beam pipes are made of stainless
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steel with conductivity σc = 0.5×107 (Ωm)−1, they contribute to the longitudinal impedance

Z
‖
0 = (1 + j)0.609

√
n Ω , (4.7)

according to Eq. (2.48) and vertical transverse impedance

ZV

1 = (1 + j)
0.122√

n
MΩ/m , (4.8)

according to Eq. (2.58). Since Z
‖
0/n rolls off with frequency, the longitudinal impedance of

the beam pipe will not lead to any beam instability. The transverse impedance, however,

will contribute to transverse coupled-bunch instabilities. According to Eq. (4.6), the worst

vertical instability at the present vertical betatron tune 6.8 will have a growth rate of 221 s−1

(growth time 4.53 ms) at the injection kinetic energy of 400 MeV. The growth rate decreases

in the ramp and becomes 39.1 s−1 (growth time 25.6 ms) when reaching the extraction

kinetic energy of 8 GeV. The growth time of the worst mode during the ramp is shown in

Fig. 15. The integrated total growth during the ramp is 3.25, or a total growth in amplitude

e3.25 = 25.8. Because of the short ramp period, the growth is not too large. Landau

Figure 15: Growth time of the worst vertical coupled-bunch instability of the Booster driven by
the resistive-wall impedence of the beam pipe is shown increasing nearly linearly with the kinetic
energy of the beam. The vertical betatron tune is assumed to be 6.8.
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damping of the instability is possible by the introduction of a betatron angular frequency

spread using octupoles or sextupoles, with the spread larger than the growth rate. Damping

by chromaticity is not efficient, because of the large slip factor at injection when the growth

rate is fastest. Another way to reduce the growth is to change the vertical betatron tune to

one with a smaller residual tune. For example, with the vertical tune of 6.4, the growth rate

at any moment will be reduced by
√

0.6/0.2 = 1.73 times.

4.1.3 Transverse Head-Tail Instabilities

Although laminated magnets will not drive transverse coupled-bunch instabilities, the

large broad real part of the transverse impedance can drive transverse head-tail instabilities.

This will be a single-bunch effect and the mth head-tail mode corresponds to transverse

oscillation of the bunch with |m| nodes along its longitudinal length, not including the

ends.† Without any damping mechanism included, the growth rate of mode m is

1

τm

= − 1

1 + m

ecIb

4πEω0νβ

∫ ∞

−∞
dω Re Z⊥

1 (ω)hm(ω − ωξ)

= − 1

1 + m

ecIb

4πEω0νβ

∫ ∞

0

dω Re Z⊥
1 (ω)

[
hm(ω − ωξ) − hm(ω + ωξ)

]
, (4.9)

where hm(ω) is the power spectrum of the bunch normalized according to

τ
L

2π

∫ ∞

−∞
dω hm(ω) = 1 . (4.10)

The chromatic shift in angular betatron frequency ωξ is defined as

ωξ =
ξω0

η
, (4.11)

with ξ being the chromaticity. It is so defined that ωξτL
amounts to the betatron phase

difference in betatron oscillation between the head and tail of the bunch. It is clear that

there will not be any excitation when the chromaticity is equal to zero. The growth rate will

be proportional to chromaticity when chromaticity is small. Mode m = 0 is called the rigid

dipole mode where the whole bunch is oscillating transversely as a whole. Modes m = ±1

are called the π-modes or dipole modes, where the head and tail are 180◦ out of betatron

phase.

†Here we use m to classify the head-tail modes. However, this is different from the m used earlier, which
denotes the azimuthal configuration of the cylindrical beam pipe.
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Figure 16: Power spectra hm(ω) for modes m = 0 to 3 at zero chromaticity. The power spectra of
modes m = −1, −2, and −3 are exactly the same as those of m = 1, 2, and 3.

For an illustration, let us use Sacherer’s sinusoidal modes with eigen-longitudinal linear

density

ρm(τ) ∝


cos

(|m| + 1)πτ

τ
L

m = 0, ± 2, · · · ,

sin
(|m| + 1)πτ

τ
L

m = ±1, ± 3, · · · ,
(4.12)

The power spectrum turns out to be

hm(ω) =
4(|m| + 1)2

π2

1 + (−1)m cosπy

[y2 − (|m| + 1)2]2
, (4.13)

with y = ωτ
L
/π, and the 4 lower modes are shown in Fig. 16 at zero chromaticity. In the

presence of a positive/negative chromaticity, the power spectrum just shifts to higher/lower

frequencies when the slip factor η > 0. Notice that modes m and −m are positive and

negative sidebands of a betatron line. Although their power spectra appear exactly the
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same, both of them must be considered because they do not have symmetry property with

respect to zero frequency.

Let us use the transverse impedance of the Booster laminated magnets in the annular

model computed in Fig. 14. At the extraction kinetic energy of 8 GeV, the full bunch length

is roughly τ
L

= 7.96 ns. The growth rates for the bunch intensity of Nb = 6 × 1010 are

computed as functions of chromaticity for modes m = 0, ± 1, ± 2, and ±3, and the

results are shown in the top plot of Fig. 17. In order to have the maximum growth rate

for mode m = 0, we need to shift the center of the m = 0 power distribution in Fig. 16

to ∼ −150 MHz, where the center of the the broad peak of Re Z⊥
1 resides (Fig. 14). This

requires a chromaticity of ξ ∼ −5.5 with η = 0.0227, and is exactly what we see in Fig. 17.

Notice that, unlike the head-tail instabilities driven by the ω−1/2 transverse resistive-wall

impedance near zero frequencies, where we have either mode m = 0 very unstable and the

modes m = ±1 very stable or vice versa depending on the sign of the chromaticity, here

the Re Z⊥
1 that drives the head-tail oscillations is at a much higher frequency. As a result,

we can have both the m = 0 and m = ±1 stable or unstable. The maximum growth rate

for this rigid dipole mode is 1/τ0 = 7.55 × 103 s−1 or minimum growth time 0.132 ms. To

avoid the instabilities of this mode and also modes m = ±1, the chromaticity is set to

positive above transition. Now the higher modes m = ±2, ± 3, · · · become unstable.

The maximum growth rates without damping are, respectively, 0.346 × 103 s−1 (or growth

time 2.89 ms) for m = ±2 and 0.162 × 103 s−1 (or growth time 6.17 ms) for m = ±3.

The stabilities of these modes can be understood as follows. Consider modes m = ±2 and

place the power spectra of Fig. 16 on top of the real part of the transverse impedance in

Fig. 14. At full bunch length τ
L

= 7.96 ns, we find the positive- and negative-frequency power

spectra just lie outside the broad resonance of Re ZV
1 centered around 150 MHz. We now

increase the chromaticity from zero to positive. The power spectra move to the right with

the negative-frequency power spectrum moving into the resonance at negative frequency and

the positive-frequency power spectrum moving out of the resonance at positive frequency,

resulting in more contribution from Re ZV
1 at negative frequency. This mode is therefore

unstable. The positive- and negative-frequency power spectra of modes m = ±3 are further

apart than modes m = ±2. To have these modes unstable, larger shift of the power spectra

to the right or higher chromaticity is required. On the other hand, when the power spectra

of modes m = ±1 are overlayed onto Re ZV
1 , the positive- and negative-power spectra lie

inside the broad resonances of Re ZV
1 at positive and negative frequencies. An increase

of chromaticity to positive will move the negative-frequency power spectrum more out of
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Figure 17: Top: Vertical head-tail growth rates are shown for the lower head-tail azimuthal modes
m = 0, ± 1, ± 2, ,±3 of the Fermilab Booster bunches at the extraction kinetic energy of 8 GeV
as functions of chromaticity ξ, with full bunch length τ

L
= 7.96 ns. The driving force comes from

the laminated magnets in the annular-ring approximation. m = 0 is the rigid dipole mode and
m = ±1 is the π mode. Bottom: The same are shown at the injection kinetic energy of 400 MeV.
The full bunch length is assumed to be τ

L
= 25.4 ns.
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the broad resonance of Re ZV
1 at negative frequency and move the positive-frequency power

spectrum into the broad resonance at positive frequency, resulting in more contribution from

the positive-frequency broad resonance, making these modes stable.

So far we have assumed that the azimuthal head-tail modes are valid eigenmodes describ-

ing the various ways the bunch is oscillating. These modes are separated by the synchrotron

frequency at zero beam intensity. The driving force which is proportional to the beam in-

tensity, however, leads to a coherent frequency shift for each mode. If the shifts are large

enough, two modes will merge into a new mode that is stable and another that is unstable.

This is called the transverse mode-coupling instability. When this happens, we can no longer

employ azimuthal mode number to identify the modes.

In exactly the same way that the growth rates are derived in Eq. (4.9), the frequency

shift of the azimuthal head-tail mode m is

∆ωm = − 1

1 + |m|
ecIb

4πEω0νβ

∫ ∞

0

dω ImZ⊥
1 (ω)

[
hm(ω − ωξ) + hm(ω + ωξ)

]
. (4.14)

The results are shown as tune shifts in Fig. 18. The synchrotron tune near extraction is

0.005 when the rf voltage is 500 kV and will be smaller at lower rf voltage. We see that

the head-tail mode m = 0 is shifted by very much, although the higher modes are not much

Figure 18: Coherent tune shifts of the vertical head-tail azimuthal modes m = 0, ± 1, ± 2, ± 3
as functions of chromaticity of the Fermilab Booster at the extraction kinetic energy of 8 GeV.
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shifted. One may wonder whether the m = 0 mode will be shifted downward by so much that

it may collide with mode m = −1 starting an instability. However, we must also notice that

the incoherent space-charge tune shift is large, according to the formula for a bi-Gaussian

transverse distribution,

∆νmax
spch =

3Ntrp

2γ2βε
N
B

(4.15)

can be large also, where ε
N

= 2.7 × 10−12Nt πmm-mr is the 95% normalized emittance

of the Booster as measured by Ankenbrandt and Holmes, [14] Nt is the total number of

protons in the Booster, and B is the single-bunch bunching factor. Assuming a Gaussian

longitudinal profile at extraction, the Booster bunch that we considered above has a rms

length στ = τ
L
/(2

√
6) = 1.62 ns, and the bunching factor is B =

√
2πστhf0 = 0.215, where

h = 84 is the rf harmonic. The maximum tune shift is ∆νmax
spch = −0.0140 near extraction.

While the transverse space-charge force shifts every mode downward coherently, it will not

shift mode m = 0 at all, because this mode is rigid and the wake-field pattern of the space-

charge force moves with the bunch. The coherent space-charge tune shifts of the other modes

are roughly of the same order of the incoherent space-charge tune shift. Thus both modes

m = 0 and −1 are shifted downward but by different forces, the former by the impedance

of the vacuum chamber while the latter by the space-charge force. For this reason, these

two modes will not collide with each other so easily. [13] This justifies why the azimuthal

head-tail modes are good eigenmodes in this study.‡

The incoherent space-charge tune shift is important also when Landau damping is ad-

dressed. The distribution density of incoherent space-charge tune shift is depicted in Fig. 19.

It shows that [15, 17] the average shift is 〈∆νspch〉 = 0.633∆νmax
spch = −0.0089 and the rms

shift is ∆νrms
spch = 0.168∆νmax

spch = 0.0019. Thus the tune spread due to space-charge will not

cover the coherent lines of the unstable azimuthal modes and, as a result, will not provide

any Landau damping. The instabilities of these modes can be damped, however, by a tune

spread driven by either sextupoles or octupole. The required spread for damping should be

at least |〈∆νspch〉| − ∆νrms
spch = 0.0065.

We see in Eq. (4.12) that the head-tail growth rates are inversely proportional to the

beam energy. One may expect the head-tail growths would be very much larger at the

Booster injection energy of 400 MeV. However, the revolution frequency is f0 = 392 kHz

‡This conclusion holds for the Booster also at the injection energy of 400 MeV. The coherent tune shifts
are −0.0454, −0.00773, −0.00199, and −0.00056 for the azimuthal head-tail modes m = 0, ± 1, ± 2, and
±3, and are almost constant in the chromaticity between −10 and 10. On the other hand, the maximum
incoherent space-charge tune shift is ∆νmax

spch = −0.068.
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Figure 19: Distribution density of particles in a coasting beam with bi-Gaussian transverse dis-
tribution with incoherent space-charge tune shift ∆νspch, in units of the maximum |∆νmax

spch|, where
∆νmax

spch is the maximum space-charge tune shift or that of a particle at the center of the beam
center with infinitesimal betatron oscillation amplitude. The average space-charge tune shift is
〈∆νspch〉 = 0.633∆νmax

spch, and the rms space-charge tune spread is ∆νrms
spch = 0.168∆νmax

spch.

and the slip factor is η = −0.3919 at injection (versus f0 = 629 kHz and η = 0.0227

at extraction). To shift the center of the power spectrum to the broad peak of Re Z⊥
1 near

−150 MHz will require a chromaticity of ξ = 132. As a result, the growth rates at injection in

Fig. 17 only show the parts linear in chromaticity and do not become very high at reasonable

chromaticities of |ξ| < 10.

At injection, the bunching factor is B ≈ 0.49 corresponding to a full bunch length of

τ
L
≈ 25.4 ns. The maximum space-charge tune shift is, according to Eq. (4.15), ∆νmax

spch =

0.38. On the other hand, the coherent tune shift for the head-tail modes are roughly −0.052,

−0.034, −0.021, and −0.013, respectively, for modes m = 0, ± 1, ± 2, ± 3, and are nearly

independent of chromaticity. Since the incoherent tune shift is so far away from the coherent

tune shifts, it is nearly impossible to rely on sextupole or octupole tune spread to damp

the head-tail instabilities. Luckily, because of the long bunch length, the power spectra for

modes |m| ≤ 3 are of lower frequency than the broadband resonance of the impedance of the

lamination magnets. Thus, with a negative chromaticity, the only unstable head-tail modes
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are |m| ≥ 4. If the chromaticity is small enough negatively, the growth rates of these modes

will be small also. For example, with ξ = −2, the growth rate of modes m = ±4 are only

∼ 15 s−1 (or growth time 67 ms), which is quite tolerable.

The energy region where head-tail instabilities might become more severe is near tran-

sition crossing, when the slip factor is small. To circumvent this, the chromaticity must be

kept negative below transition and controlled to be less and less negative as transition cross-

ing is approached. Right at transition, the chromaticity is made positive but small and can

be increased gradually afterwards. Small chromaticity near transition will lead to smaller

instability growth rates. Theoretically, all head-tail modes are stable at zero chromaticity.

4.2 FERMILAB TEVATRON

4.2.1 Lambertson Magnets

Lambertson magnets are employed for injection into and extraction out of an accelerator

ring. There are three Lambertson magnets at location F0 of the Tevatron, and the cross-

section of one is shown in Fig. 20. During injection, the beam is at first in the rectangular

region, where it moves vertically in the presence of the horizontal magnetic field. The beam

later enters into and circulates inside the 2.5′′ high by 4′′ wide field-free region. Each of these

F0 Lambertson magnets is of length L = 126′′. Lambertson magnets do not have conventional

vacuum pipes. They are constructed of laminations, which are electrically connected at their

outer edge, by welding them to index bars or rods. Since the particle beam is in the field-

free region, during ramping and storage, we simulate the laminations as annular rings having

inner radius b = 1.25′′ and outer radius d = 6′′. The thickness of each lamination is 0.0375′′.

For all other properties, such as crack width, electric permittivity, conductivity, and magnetic

permeability, those tabulated in Table II will be used. The transverse dipole impedance for

one such F0 Lambertson magnet is computed and the result is shown in Fig. 21. The

vertical dipole impedance of the F0 Lambertson magnet has been measured by Crisp and

Fellenz [16]. The impedance was determined directly from the attenuation measured along

two parallel wires driven differentially. The wires, separated by ∆ = 1.0 cm, form a TEM

balanced transmission line. Each end was matched to 100 Ω with resistive L-pads and driven

with a 100 Ω broadband 180◦ hybrid splitter. A network analyzer was used to measure the

transmission coefficient S21 through the device. The transverse impedance is determined
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Figure 20: A cross-sectional drawing of the Lambertson magnet at Tevatron F0. The measurements
are in inches.

from

ZV

1 = − c

ω∆2
2Zc lnS21 , (4.16)

where the characteristic impedance was Zc = 518 Ω. There are agreements and disagreements

between the theory-computed and the measured results. The imaginary part of S21 is roughly

πω/(8ωc) with ωc/(2π) = 1 GHz. This gives ImZV
1 ≈ 0.19 MΩ/m at zero frequency,

agreeing very well with the theoretical πZ0L/(16b
2) in Eq. (2.56). The computed value of

Re ZV
1 ≈ 0.01 MΩ/m at 1 GHz also agrees with measurement. In fact, these two values

depend critically on the inner radius of the field-free region. The agreement between theory

and measurement just indicates that b = 1
2

′′
is the correct choice of the inner radius in the

annular-ring model. The broadband region of ReZV
1 does not agree so well. Figure 21 shows

Re ZV
1 close to 0.1 MΩ/m at 50 to 150 MHz. However, the measurement shows only about
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Figure 21: Vertical dipole impedance of a Tevatron F0 Lambertson magnet with the particle beam
centered inside the field-free region.

0.02 MΩ/m, and we do not understand the discrepancy.

There had been also an older type of Lambertson magnets at the Tevatron location C0,

for extracting the beam for fixed-target experiment. Since the fixed-target operation has

been terminated, three such magnets at C0 had been removed. The cross-section of one

such magnet is shown in Fig. 22. When these Lambertson magnets were first installed, some

Tevatron bending dipoles had been removed because of space limitation. To compensate the

loss of bending, the Lambertson magnets had been operating in the reverse order. In normal

beam circulation, the Tevatron beam must pass through the 1′′ high rectangular field region.

The beam is kicked into the 2′′ by 3.5′′ free-free region during an extraction. We model

this magnet as parallel-face with a vertical gap of 2b = 1′′ and assume that the laminations

are shorted at a distance of d = 6′′ above and below the center line of the 1′′ rectangular

field region. The length of this C0 magnet is L = 218′′ consisting of 5812 laminations each

of thickness 0.0375′′. Other properties are taken from Table II. The computed vertical

impedance is shown in Fig. 23. Comparing with Fig. 21 for the F0 Lambertson magnet, the

vertical impedance is roughly 15 times larger. This is due mainly to the smaller half gap b

and the longer magnet length L. Notice that the transverse impedance scales as L/b3. The
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Figure 22: A cross-sectional drawing of the Lambertson magnet at Tevatron C0. The measure-
ments are in inches.
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Figure 23: Vertical dipole impedance of a C0 Lambertson magnet with the particle beam circu-
lating inside the 1′′ high rectangular field region (see Fig. 22).
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measured result of Crisp and Fellenz agrees with ImZV
1 at zero frequency and ReZV

1 at high

frequencies. Again the computed Re ZV
1 of the broad peak near 100 and 200 MHz is about

two times larger than the corresponding measurement.

4.2.2 Transverse Head-Tail Instabilities

Before the Fermilab shutdown in January of 2003, there were three C0 Lambertson mag-

nets and 4 F0 Lambertson magnets. In addition the vacuum chamber, which is 6 cm by 6 cm

square with rounded corner, also contributes a sizable amount of transverse impedance at

low frequencies. Assuming the vacuum chamber to be made of stainless steel with resistivity

7.4 × 10−7 Ω-m, the wall impedance is found to be [18]

ZV

1 = [sgn(ω) + j]27.66|n + νβ|−1/2 MΩ/m. (4.17)

Including the resistive wall and the Lambertson magnets, the total vertical dipole impedance

seen by the Tevatron beam is computed and its real and imaginary parts are shown in Fig. 24.

Using the power spectra depicted in Fig. 16, the growth and damping rates for the head-tail

modes m = 0, ±1, ±2, ±3, ±4, and ±5 in a Tevatron bunch of intensity Nb = 2.6 × 1011

at 150 GeV are computed as functions of chromaticity. The results are shown in Fig. 25,

for rms bunch length σ� = 90, 80, 70, and 60 cm. Only positive chromaticity is shown.

The stability of the head-tail modes can be incurred in exactly the same way explained

in the previous subsection. At the rms bunch length σ� = 90 cm, mode m = 0 just has

its positive- and negative-frequency parts of the power spectrum lying exactly on top of the

broad resonances of Re ZV
1 at both positive and negative frequencies when the chromaticity is

zero. Thus this mode remains stable when the chromaticity is increased or decreased slightly.

However, modes m = ±4 and ±5 have their positive- and negative-frequency parts of the

power spectra farther apart and therefore become unstable when the chromaticity is shifted

to positive. On the other hand, modes m = ±1 and ±2 have their positive- and negative-

frequency parts of the power spectra closer together and therefore become stable when the

chromaticity is shifted to positive. When the bunch length becomes shorter, the bunch

spectrum spreads out to higher frequencies. Thus positive- and negative-frequency parts of

the power spectrum becomes relatively farther apart. Thus at σ� = 80 cm, all modes |m| ≥ 3

are unstable, while the lower modes are stable. When σ� = 60 cm, modes m = ±2 have their

positive- and negative-frequency parts of the power spectrum lying exactly on top of the

broad resonances of ReZV
1 at both positive and negative frequencies when the chromaticity

is zero. The mode is therefore just stable when the chromaticity changes slightly. The higher

modes are unstable at positive chromaticity and the lower modes are stable.
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Figure 24: The real and imaginary parts of vertical dipole impedance experienced by a Tevatron
beam before the shutdown in January 2003. Only the contributions of the resistive wall and
the Lambertson magnets have been included. Here we see both the broadband contribution of
the C0 magnets near 100 to 200 MHz and the the ω−1/2 contribution of the resistive wall at
lower frequencies. Notice that the inductive behavior of the smooth vacuum chamber cancels the
capacitive behavior of the Lambertson cracks at high frequencies.

At the bunch intensity of 2.6× 1011, the normalized rms emittance is ε
N

= 3× 10−6 πm

at the injection energy of 150 GeV and the rms bunch length has been σ� = 0.90 cm. The

linearized incoherent space-charge tune shift for a bunch with tri-Gaussian distribution is

∆νmax
spch =

NbrpR

2
√

2πγ2βε
N
σ�

= −0.001158 . (4.18)

On the other hand, the coherent tune shift of the head-tail mode m = 0 driven by the

Lambertson magnets and the resistive-wall impedance is −0.73 × 10−3 at zero chromaticity

and is much smaller for the higher-order head-tail modes, especially at large chromaticity.

Thus the space-charge tune spread cannot supply any Landau damping to the growth of

these modes. Tune spread for Landau damping must be supplied by sextupoles or octupoles,

and must be of the order of the space-charge tune shift. The synchrotron tune is 0.0018 at

the rf voltage of 1 kV. However, the azimuthal head-tail modes remain as good eigenmodes

because modes m = 0 and −1 will not merge because while the wall impedance shifts the
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Figure 25: The growth and damping rates of head-tail modes m = 0, 1, 2, 3, 4, and 5 are shown as
functions of chromaticity. The Tevatron bunch has an intensity of Nb = 2.6× 1011 at the injection
energy of 150 GeV. Various rms bunch lengths, 90, 80, 70, and 60 cm, have been assumed.

m = 0 mode downward, the transverse space-charge force shifts m = −1 mode downwards

also. In fact, no transverse coupled-mode instability has ever been reported in the Tevatron.

4.2.3 Measurements by Invanov, Burov, and Tan

Before the January shutdown in 2003, the Tevatron did suffer from transverse single

bunch instabilities, resulting in beam loss. Ivanov and Scarpine [21] made systematic mea-

surement of the instabilities at various values of the vertical and horizontal chromaticities.

The measurement data had been analyzed by Crisp [20], Alexahin et al [17], and Ivanov [19].

In one of the data, the vertical chromaticity was reduced to ξy = −2 to induce instability.

The transverse displacement of the beam was monitored by a wideband 1-m long stripline

beam-position monitor (BPM) in the Tevatron during proton injection for store 1841. Fig-
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Figure 26: Difference signals registered at the Tevatron 1-m stripline beam-position monitors
in 8 consecutive revolution turns. The signals reveal an unstable m = 0 head-tail mode. A
contamination of the m = ±1 modes may also be present because of the left-right asymmetry of
the signal envelope.

ure 26 shows 8 A − B difference-signal traces in 8 consecutive turns. The striplines first

register at the upstream termination the difference signal of the bunch as it crosses the up-

stream gap and then register the negative signal of the beam after it is reflected back from

the downstream end. The time lag between the positive and negative signals is 6.7 ns. In

other words, for a long beam (τ
L
� 6.7 ns), the stripline termination registers the derivative

of the transverse beam displacement. Thus it is not easy to interpret the difference signal,

especially when there is present a nonzero chromaticity. Viewed in a wideband capacitive

pickup, the envelope of the difference signals exhibits m nodes for the head-tail mode m,

independent of the chromaticity. This is illustrated in Fig. 27. Because of the differential

nature of the stripline BPM, we should see no node for mode m = 0, 2 nodes for m = ±1,

3 nodes for m = ±2, etc. Thus definitely, the difference signals in Fig. 26 reveal the m = 0

mode. A closer examination reveals that the envelope is not exactly left-right antisymmet-

ric,§ with the right side going to zero less slowly than the left side. The asymmetry appears to

§The envelope of the signals is not left-right symmetric because the beam is not exactly equidistant from
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m = ±1 m = ±2 m = ±3 m = ±4 m = ±5m = 0

Figure 27: Plot showing the envelopes of vertical oscillation of head-tail modes m = 0 to ±5 of
a bunch, as registered in difference signals in a wideband capacitive pickup. We see that mode m

has |m| nodes along the longitudinal length.

be real, because the sum signals during these 8 consecutive turns do show an antisymmetry.

An explanation will be the presence of more than one head-tail mode, because two head-tail

modes evolve differently and they add up differently at different times. According to our

analysis in Fig. 25, modes m = ±1 should be excited also. However, their growth rates are

only about 1
3

the growth rate of the m = 0 mode at chromaticity ξy = −2. Simulation shows

that a 5 to 10% of the m = ±1 modes will produce the asymmetric signals in Fig. 26.

In the experiment of Ivanov, Burov, and Tan [21], the vertical chromaticity was lowered

gradually to induce vertical instability. When the chromaticities were reduced from ξx = 7.9

and ξy = 7.6 to ξx ∼ ξy ∼ 6, the beam with an intensity of 2.6 × 1011 went unstable with

about half the particles lost. The final beam with the intensity of 1.03 × 1011 had a stable

longitudinal beam profile as depicted in the top-left plot of Fig. 28. The result is interpreted

as follows. When the bunch became unstable, it oscillated vertically as head-tail modes

m = ±2. As shown in Fig. 27, the envelope of this mode has 3 peaks, which got scraped as

the instability developed. Because of the particles lost at the peaks, the final stable bunch

exhibits 3 rings in the longitudinal phase space with deficient particle density, and this is

the beam profile observed. The vertical chromaticity was further reduced to ξy = −4.7, the

bunch was again unstable with a sizable beam loss. The beam intensity was reduced to

0.34 × 1011 before stability was established again. The new stable beam profile is shown in

the top-right plot of Fig. 28. We can see particle density missing at the middle, implying

that the instability excited belongs to the m = 0 mode. Similar experiment was repeated

with a stable beam of intensity 2.65× 1011. When the chromaticities were reduced to ξx ∼ 6

and ξy ∼ 3, vertical instability occurred with very large amount of beam loss. The bunch

regained stability when its intensity was reduced to 0.7 × 1011. The beam profile, shown in

the bottom plot of Fig. 28 exhibits particle deficiency at 4 locations, implying that the mode

the top and bottom striplines.
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Figure 28: Longitudinal beam profiles of Tevatron bunch after undergoing a vertical instability
accompanied by beam loss. Top-left: Chromaticities reduced to ξx ∼ ξy ∼ 6, and intensity reduced
from 2.6×1011 to 1.03×1011. Particle deficiency at the beam center and also at both sides indicates
an excitation with 3 peaks or the m = ±2 modes. Top-right: Chromaticities reduced to ξx = 5.8,
ξy−4.7, and intensity reduced from 0.75×1011 to 0.34×1011. Particle deficiency at the beam center
only indicates an excitation with one peak or the m = 0 mode. Bottom: Chromaticities reduced
to ξx ∼ 6, ξy ∼ 2 to 3, and intensity reduced from 2.65 × 1011 to 0.7 × 1011. Particle deficiency at
4 locations along the beam but not at the center indicates an excitation of 4 peaks or the m = ±3
modes.
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of excitation has 4 peaks. According to Fig. 27, this corresponds to the head-tail mode¶

m = ±3.

The C0 Lambertson magnets are no longer of any use because the Tevatron will not be

operated in the fixed-target mode anymore. They were removed during the January 2003

shutdown. As was mentioned before, the transverse impedance dropped by a factor of ten.

The transverse impedance was further reduced in the summer of 2003, when shielding liners

were installed inside the F0 Lambertson magnets so that the beam would only be seeing

the laminations partially. Now the Tevatron can be operated at rather low chromaticities

without encountering the transverse head-tail instabilities.

4.3 FERMILAB MAIN INJECTOR

The Fermilab Main Injector does many jobs. It receives proton beams from the booster,

accelerates them to 150 GeV, coalesces about 7 to 11 bunches into a super bunch to be

injected into the Tevatron. Another job is to accelerate proton beams to 120 GeV to be

extracted to hit a target for antiproton production. It also receives antiprotons from the

Fermilab Antiproton Accumulator and accelerates them to 150 GeV, coalesces them into

super bunches to be injected into the Tevatron. With the introduction of the Recycler

Ring, antiprotons are transferred into the Recycler Ring for storage, accumulation, and

cooling. When required, these antiprotons are transferred back into the Main Injector to

be accelerated and to be injected into the Tevatron for collision. To accomplish all these

jobs, there are many Lambertson magnets in the Main Injector. They are listed in Table IV.

The Lambertson magnets at locations MI22 and MI32 that communicate with the Recycler

Ring are made of permanent magnets and have a 3′′ beam pipe through the field-free region.

Since the beam does not see any laminations, they can be neglected in our discussion here.

The old Main Ring Lambertson magnet at location MI20 is of length 2.4 m and we consider

it as similar to the Tevatron F0 Lambertson magnet which is of length 2.8 m. Thus there

are altogether 36.0 m of Tevatron F0 Lambertson magnets. The Main Injector beam pipe

is of elliptical shape, 5.31 cm full height by 12.3 cm full width under vacuum, and made of

stainless steel. The transverse dipole impedances are [22]

ZV

1 = (1 + j)17.3/
√
n MΩ/m ,

ZH

1 = (1 + j)8.55/
√
n MΩ/m , (4.19)
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Table IV: The Lambertson magnets in the Main Injector.

Location Number Type Function

MI10 1 Old Main Ring Injection of 8 GeV p from Booster

MI22 2 Permanent magnet Extraction of 8 GeV p̄ from MI to Recycler

MI32 2 Permanent magnet Injection of 8 GeV p̄ from Recycler to MI

MI40 3 Tevatron F0 p abort

MI52 3 Tevatron F0 120 GeV p to p̄ production

120 GeV p to switch yard

150 GeV p to Tevatron

Injection of 8 GeV p̄ from Accumulator

Injection of 150 GeV p̄ from Tevatron

MI60 3 Tevatron F0 Extraction of 120 GeV p TO NuMI

MI62 3 Tevatron F0 Extraction of 150 GeV p̄ to Tevatron

Notice that the Main Injector transverse impedance is only about one third that of

the Tevatron. This is because the Main Injector contains only F0 Lambertson magnets but

not C0 Lambertson magnet. We recall that the transverse impedance of a F0 Lambertson

magnet is less than one tenth the transverse impedance of a C0 Lambertson magnet.

At injection, a 6 × 1010 proton bunch has a bunch area typically 0.1 eV-s. With a rf

voltage of 1 MV, the synchrotron tune is νs = 5.47 × 10−3. This gives a 95% half bunch

length of 2.42 ns and a 95% half energy spread 13.2 MeV. Thus the spectra of the m = ±1

modes peak roughly at

f ∼ ± 2

2τ
L

= ±206 MHz , (4.20)

according to the illustration in shown in Fig. 16. Thus all the higher modes m = ±1, ±
2, ± 3, · · · lie at frequencies higher than the broad resonance of the Main Injector vertical

dipole impedance depicted in Fig. 29. A negative chromaticity shifts the rigid mode m = 0

to stability but leaves all the other modes unstable. For example the growth rates of the

head-tail modes m = ±1 have the maxima of 31.7 s−1 when the chromaticity is near −7.0,

as depicted in the top plot of Fig. 30

Assuming a tri-Gaussian distribution and a normalized 95% emittance of 20 πmm-mr,

the maximum incoherent space-charge tune shift is, according to Eq. (4.18), ∆νmax
spch = −0.109.

¶We do not understand why Ref. [21] addresses this mode as m = ±1.



78

0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)

  0

  1

  2

  3

  4

Z
1V

 (
M

Ω
m

) 

Real Z1

V

Im Z1

V

Main Injector Vertical Dipole Impedance

Figure 29: The real and imaginary parts of vertical dipole impedance experienced by a Main
Injector beam. Only the contribution of the resistive wall and the Lambertson magnets have been
included. Here we see both the broadband contribution of the Lambertson magnets near 100 to
200 MHz and the the ω−1/2 contribution of the resistive wall at lower frequencies.

The mean value is 〈∆νspch〉 = −0.069 and the rms value is ∆νrms
spch = 0.018. On the other

hand, the coherent tune shifts of modes m = ±1 are −0.0002. Thus, one needs a tune

spread from sextupoles or octupoles of the order of 0.05 for Landau damping. Such large

tune spreads are impractical. Luckily, the growth rates are small. If the negative chromaticity

is further reduced to −2, the growth rates become only 13.3 s−1. The growth rates of the

higher azimuthal modes are much smaller.

Slip-stacking is under study hoping to double the intensity of the proton bunches des-

tined for antiproton production. [23] In order for two Booster bunches to fit within the

momentum aperture of the Main Injector, the lowest rf voltage is desired. Experimental

investigation has been performed with the rf voltage of 62 kV. At the bunch area of 0.1 eV-s,

one bunch has a total width of τ
L

= 10.54 ns and half energy spread ∆E = 6.27 MeV. At

the time when two bunches slip-stack, the intensity becomes doubled at 12 × 1010 and the

maximum incoherent space-charge tune shift is ∆νmax
spch = −0.168. Again, it is impractical

to compensate such large space-charge tune shift by sextupole- or octupole-generated tune
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Figure 30: Top: Vertical head-tail growth rates are shown for the lower head-tail azimuthal modes
m = 0, ± 1, ± 2, ,±3 of the Fermilab Main Injector bunches at the injection kinetic energy of
8 GeV as functions of chromaticity ξ, with 95% bunch area of 0.1 eV-s and rf voltage 1 MV. The
driving force comes from the Lambertson magnets and the resistive wall impedance of the beam
pipe. Bottom: The same for slip-stacking operation at rf voltage 62 kV.
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spread in order to achieve Landau damping. Luckily, because of the long bunch length, mode

m = 0 will be stable at negative chromaticity as depicted in the lower plot of Fig. 30, and,

at the same time, the growth rates of the higher head-tail modes are slow. For example,

modes m = ±1 have maximum growth rates of 7.6 s−1 at chromaticity ξ = −2.5, modes

m = ±2 have maximum growth rates of 22.9 s−1 at chromaticity ξ = −7.0, modes m = ±3

have maximum growth rates of 25.9 s−1 at chromaticity ξ = −11.5, and modes m = ±4 have

growth rates of 24.2 s−1 at chromaticity ξ = −15.0. If the negative chromaticity is set at a

low value, say ξ = −2, the growth rates of modes m = ±1, m = ±2, m = ±3, and ±4 are,

respectively, 7.6, 7.9, 4.4, and 3.1 s−1, which are quite tolerable.

5 CONCLUSIONS

We have derived the monopole and dipole impedances experienced by a beam inside a

laminated magnet. The method consists of first deriving the resistive-wall impedances in

terms of the surface impedance per square R, which we define as the ratio of the longitudinal

electric field to the transverse magnetic field at the surface. The surface impedance R is then

derived by a weighted average of the surface impedance of the edges of the laminations and

the impedance across the cracks between two adjacent laminations. We have considered two

types of laminated magnets: the parallel-face magnets, which approximate the combined-

function magnets of fast-ramping boosters, and the annular-ring magnets which approximate

the Lambertson magnets. We are going to list some general properties of the impedance of

a laminated magnet.

1. The crack surface impedance can be viewed as a capacitor in parallel with the series

combination of a resistor plus an inductor. The impedance seen by the image current

going up and down the laminations flanking a crack is represented by the resistor

and the inductor. On the other hand, the image current can also jump across the

crack as displacement current in just the same way as an ac current flowing across

a capacitor. Thus the resistor and inductor dominate at low frequencies while the

capacitor dominates at high frequencies. In between there are resonances when the

depth of the crack, (d− b), becomes an integral number of half-wavelengths. However,

they are heavily damped by the conductivity of the laminations and the conductivity

of the medium in the crack, so that usually only the first one or two are visible.

2. The dipole impedance of laminated magnet is very different from the monopole im-

pedance. The beam current drives a differential dipole image current which sees an
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inductive impedance because of the geometry of the system and is called the bypass

inductance. In the presence of wall resistivity in the beam pipe or laminations of a

magnet, what the beam sees is the bypass inductance in parallel with the surface im-

pedance per square of the laminated magnet. At high frequencies, the beam, being

difficult to flow through the bypass inductance, sees only the wall impedance. How-

ever, when the frequency is low enough, the beam is seeing the bypass inductance only

and no real resistive part at all. The frequency at which the real part of the dipole

impedance turns around to go to zero is important. For the smooth walls of a beam

pipe, the bend-around frequency is usually much less than the revolution frequency

and will not have any effect on the beam. For the large surface impedance per square

of the laminated magnet, the bend-around frequency can be around 100 MHz. First,

the laminated magnet will not contribute to the ω−1/2 behavior of the transverse dipole

impedance at low frequencies that drives transverse coupled-bunch instabilities. Sec-

ond, there will be a broadband dipole impedance near 100 MHz that drives transverse

head-tail instabilities.

3. The surface impedance per square of a laminated magnet consists of the weighted

average of the crack surface impedance Rc and the surface impedance R
L

of the edges

of the laminations. At high frequencies R
L

dominates because it increases as ω1/2 due

to the smaller skin-depth and the ω−1/4-roll-off of Rc. However, R
L

usually takes over

at so high a frequency (∼ 60 GHz) that we do not have any interest.

4. The behavior of the impedance for a laminated parallel-face magnet is very similar to

that for a laminated annular magnet. However, with the same magnet opening 2b and

the same depth of the cracks (d− b), the impedance at low frequencies is usually much

larger for parallel-face magnet than annular-ring magnet. This is because the image

current flowing along the laminations fans out radially in the annular laminations and is

therefore seeing a lower impedance. At high frequencies, there is no difference between

the two models.

5. The impedance of a laminated magnet is independent of the crack width h at low

frequencies but is proportional to the crack width at high frequencies. This is be-

cause at low frequencies the image current flows up and down the laminations flanking

the cracks and the impedance is just proportional to the number of laminations. At

high frequencies, however, the capacitive effect of the cracks dominates. The wider

the cracks the smaller the capacitance and therefore the higher the impedance. This

domination starts becoming obvious even at the first broad peak.



82

6. The conductivity of the medium in the crack has damping effect on the resonant

peak. There is not much change if the conductivity is reduced further from σ1c =

1×10−3 (Ω-m)−1. However, if it is increased to 1×10−2 (Ω-m)−1, the first broad peak

will be damped by a factor of two and the second peak will hardly be visible. Further

increase in σ1c will have the resonant peaks damped out completely. The influence in

the impedance at high frequencies and the ω1/2-low-frequency region is small.

7. The dielectric constant ε1r of the medium in the crack increases the capacitance of

the crack and therefore lowers the impedance at high frequencies. It was determined

in Eq. (3.32) that the impedance should behave like ε
−1/2
1r at high frequencies. As

expected, it does not affect the ω1/2-low-frequency region. However, its effect becomes

important even at the first broad resonance.

8. The relative magnetic permeability µ2r affects mostly the low-frequency behavior of

the impedance because the image current goes around the laminations at a skin-depth.

Thus Z
‖
0 ∼ µ

1/2
1r at low frequencies but does not perturb the high-frequency behavior

by very much.

9. The higher the conductivity of the lamination σ2c, the smaller the skin-depth and

therefore the larger the impedance. Roughly speaking, Z
‖
0 ∼ σ

1/2
1c at low frequencies

but does not perturb the high-frequency behavior very much. As the conductivity

increases, the resistivity of the laminations becomes less important and the cavity

effect of the cracks dominates. For, example, when σ2c � 1010 (Ω-m)−1, the resonant

effect of the cavity-like cracks becomes more evident according to tan q(d − b) when

its argument is equal to odd multiples of π/2 for the parallel-face case or the zeroes

of combination of Bessel function for the annular-ring case. The impedances will be

small except at the resonances.

Applications have been made to the laminated magnets in Fermilab Booster, and the

Lambertson magnets of the Tevatron and the Main Injector. Let us list some important

features of the laminated magnets on the particle beam.

1. For a ring like the Fermilab Booster which consists of only laminated magnets, there

will not be any ω−1/2-behaved transverse dipole impedance at low frequencies, because

the bend-around frequency of Re Z⊥
1 is of the order of 100 MHz. In other words,

there will not be any transverse coupled-bunch instabilities driven by the resistivity of
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the laminated magnets. This explains why transverse coupled-bunch instabilities have

never recorded in the Fermilab Booster, although they exist in nearly all accelerator

rings.

2. The broadband transverse dipole impedance which occurs near 100 MHz is responsible

for the transverse head-tail instabilities. Depending on how close the beam is from the

laminations, this driving broadband impedance can be very large. An example is the

former C0 Lambertson magnets of the Fermilab Tevatron.

3. The excitation of the transverse head-tail modes driven by the smooth resistive walls of

a beam pipe is different from that driven by lamination magnets. In the former, if the

rigid mode m = 0 is stable, all the higher modes will be unstable, if the chromaticity

is slightly positive/negative above/below transition. For laminated magnets, whether

the higher modes are stable or not depends on the length of the particle bunch. For

example, if the bunch is long enough so that the power spectra of the m = ±1 modes

are at lower frequency than the ∼ 100 MHz broadband impedance, these m = ±1

modes will be stable also. However, if the bunch is so short that the power spectrum

is at higher frequency than the broadband impedance, these modes will be unstable.
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