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Abstract

The energy loss of a coasting beam circulating inside the Recycler Ring has been
measured to be 1.14 meV per particle per revolution turn. Theoretical estimation is
made on the various loss contributions coming from synchrotron radiation, parasitic
mode loss, and ionization of the residual gas. Fitting the final beam energy distribution
with the aid of the Landau distribution is also performed. The results lead us to believe
that the energy loss is dominated by ionization of the residual gas.
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1 INTRODUCTION

The energy loss of a coasting beam circulating inside the Recycler Ring was measured by

Sergei Nagaitsev and Martin Hu on August 2, 2003. The injected beam having an intensity of

2×1011 protons and emittances of 20 πmm-mr were first scraped to about 10 πmm-mr and an

intensity of 0.876×1011 to safeguard aperture limitation. This coasting beam was allowed to

circulate in the Recycler Ring with all the rf cavities turned off but not shorted. The Schottky

signals were monitored with a longitudinal 1.75 GHz Schottky detector. The frequency shift

of the 1.75 GHz revolution harmonic line after one hour was found to correspond to a shift of

the revolution frequency of 0.032 Hz (from 89813.227 at 12:29 to 89813.195 Hz at 13:30) as

depicted in Fig. 1. With the transition gamma of the Recycler Ring γt = 19.968, proton total

energy† E = 8.91564 GeV, this amounts to an energy loss per particle of ∆E = 0.37 MeV/hr

or U = 1.14 meV per revolution turn. The experiment was repeated on August 13 using a

coasting beam of a weaker intensity of 1 × 1010 protons to reduce emittance increase due to

intra-beam scattering. Roughly the same energy loss was obtained. The energy loss comes

from three sources, [1, 2] synchrotron radiation, the parasitic mode loss from the coupling

impedance of the vacuum chamber, and the interaction of the beam particle with the residual

gas. The purpose of this report is to estimate the various losses and compare the results

with experimental measurement.

2 RADIATION LOSS

The Recycler Ring is made up of permanent dipoles with a field strength of 0.145 T. At

the total energy of 8.91564 GeV, the momentum is 8.8665 GeV/c and the magnetic rigidity

is Bρ = 29.58 Tm. The bending radius is therefore ρ = 203.97 m. The energy loss per

particle per turn due to synchrotron radiation into free space is

Us =
e2Z0cβ

3γ4

3ρ
= 0.00024 meV , (2.1)

where β and γ are the Lorentz parameters, e is the proton charge, c is the velocity of light,

and Z0 ≈ 377 Ω is the free-space impedance. Confined inside a vacuum chamber, this loss

will be further reduced. [3] However, since this loss is so tiny compared with the loss obtained

from experimental measurement, it can safely be neglected.

†In order that the circumference of the Recycler Ring is C = 3319.41865 m, 7/13.25 times that of the
Tevatron with a mean radius of 1 km, the kinetic energy has to be 7.977365 GeV at the revolution frequency
of 89813.195 Hz.
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Figure 1: Digitized Schottky signals of the 19485th revolution harmonic (1.75 GHz). Comparison
of the center of the initial signal at 12:29 (left) and that of the final signal at 13:30 (right) gives a
shift of the revolution frequency of 0.032 Hz.

3 PARASITIC MODE LOSS

The dc component of a beam is static because there is no time dependency.‡ As a

result, electric field and magnetic field in the Maxwell equations are separated. There is no

more Faraday’s law. Thus, the static magnetic field of the beam’s dc component does not

induce any electric field on the surface or inside the wall of the beam pipe. In other words,

there is no image current corresponding to the dc component of the beam, resulting in zero

energy loss. For the dc component, what is present in the wall of the beam pipe is just static

(nonmoving) image charges.

In the time domain, each particle induces an image pulse of rms width [4]

σt =
b√

2γβc
(3.1)

in the wall of the beam pipe, where b is the radius of the beam pipe in the cylindrical

‡One may argue that the dc component is also time varying because the revolution frequency of the beam
is changing. However, this change is extremely slow, only 0.032 Hz in an hour.
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approximation. Suppose for simplicity that all particles have the same revolution period T0.

If the nth particle induces an image pulse current in(t) = i0(t − tn), where t = tn is the

arrival time of the particle at a particular point of the ring (0 ≤ tn < T0), the total image

current on the beam pipe becomes

I(t) =
N∑

n=1

in(t) − idc , (3.2)

where N is the total number of charged particles in the beam. In above, idc denotes the dc

component of the beam and its subtraction is a reflection of its inability to induce image

current. In the frequency domain, the spectrum of the image current is,

Ĩ(ω) =




0 ω = 0 ,
N∑

n=1

ĩn(ω) ω 6= 0 ,
(3.3)

where ĩn(ω) = ĩ0(ω)e−iωtn and ĩ0(ω) is the Fourier transform of i0(t). It is clear that

〈Ĩ(ω)〉 = 0 , (3.4)

because a perfect coasting beam should not have any nonzero frequency component. How-

ever, the expectation of the square is nonvanishing. Actually, we have

〈|Ĩ(ω)|2〉 =
N∑

n=1

〈|̃in(ω)|2〉 = N〈|̃i0(ω)|2〉 . (3.5)

An image pulse has a frequency distribution [4]

ĩ0(ω) =

∫ T0

0

i0(t)e
−iωtdt =

e

I0(x)
, (3.6)

where I0 is the modified Bessel function of order zero and x =
√

2σtω. The parasitic mode

loss per particle per turn is therefore

∆E = − 1

2π

∫ ∞

−∞

∣∣̃i(ω)
∣∣2 Re Z

‖
0(ω) dω = −e2

π

∫ ∞

0

Re Z
‖
0(ω)

I0(x)2
dω , (3.7)

where Z
‖
0 (ω) is the longitudinal monopole coupling impedance of the Recycler Ring. When

there is a small spread in revolution frequency in the beam particles, Eq. (3.7) gives the

mean energy loss per particle per turn. The presence of the impedance perturbs the image
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pulse i0(t) of the single particle and alters its frequency distribution ĩ0(ω). However, this

effect is of higher order and is therefore neglected in Eq. (3.7)

We notice that first, the parasitic mode loss is a single-particle effect that a particle is

affected only by its own wake, and second, the parasitic mode loss receives contribution from

very high frequencies because of the tiny size of the image pulse. The single-particle effect

of this problem has been verified experimentally at the CERN ISR, where the energy loss of

coasting beams at 31.4 GeV/c with intensity varying for almost 4 orders of magnitude, from

4 mA to 32 A, was monitored and the per particle loss was found to be practically the same.

The Recycler Ring has an elliptic beam pipe of major and minor diameters 3.806′′ and

1.75′′. If we take the average and let b = 3.528 cm be the radius of the effective cylindrical

approximate, the rms length of the image pulse is σt = 8.78 ps (2.62 mm)§ according to

Eq. (3.1), and its rms frequency spread is 1/(2πσt) = 18.11 GHz. Thus the knowledge of

the coupling impedance up to several tens GHz will be required. It is extremely difficult

to compute the coupling impedance up to these frequencies, because every variation of the

vacuum chamber of the size of a millimeter has to be taken into account.

Lots of theoretical work have been performed to understand the behavior of the coupling

impedance at high frequencies. It has been concluded that if the vacuum chamber is not

composed of periodic cavities, the impedance at high frequencies comes mostly from the

variation in cross section of the vacuum chamber. Then, the diffraction model should apply

and coupling impedance Z
‖
0 should roll off as 1/

√
ω at high frequencies. [5] Experimental

verification has been made at the CERN ISR by monitoring the energy loss of a coasting beam

§One may raise the following paradox: Within one rms image-pulse length of the Recycler Ring (σt =
8.78 ps or 2.62 mm), there are on the average 6.91×104 particles for the coasting beam of intensity 0.876×1011

employed in the present experiment. The image pulse of each particle, after deducting the dc part, will be
composed of waves exp[ns/R − ω(t − t0)] going around the ring. For these 6.91 × 104 particles that are
clustered within the 2.62 mm, their waves will add up coherently for wavelength longer than 2.62 mm,
because their times of arrival (or phases) t0 will differ by less than 8.78 ps, in the same way as the occurrence
of coherent synchrotron radiation in wavelengths longer than the bunch length. The solution to the paradox
is simple. The waves moving around the ring in a particular frequency are generated not only by the 6.91×104

particles clustered within the 2.62 mm. If we look at the waves of a particular frequency at a particular
location around the ring, we will be seeing in total 0.876 × 1011 waves generated by all the 0.876 × 1011

particles in the coasting beam. Since these 0.876 × 1011 particles have completely random phases, these
waves tend to cancel each other, which is just Eq. (3.4). The only component that can add up to a nonzero
value is the dc component, which is not present in the image current. The situation in coherent synchrotron
radiation is quite different. Only those particles inside the short bunch contribute.
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with its momentum centered at 3.6 GeV/c, 15.4 GeV/c, and 31.4 GeV/c. [6] As a result,

we would like to introduce a simple impedance model for the Recycler Ring: in addition

to the resistive wall impedance, there is a real part of the impedance which has a constant

Z
‖
0/n = (Z/n)c below the cutoff frequency of fc = ωc/(2π) = 2.405c/(2πb) = 3.25 GHz, and

the impedance rolls off as 1/
√

ω above cutoff as illustrated in Fig. 2. Or,

Re
Z

‖
0

n
=




(
Z

n

)
c

ω < ωc ,

(
Z

n

)
c

(ωc

ω

)3/2

ω > ωc .

(3.8)

Z||
0

Z||
0

n

ωωω ω

−1/2
−3/2(ω/ω )

(ω/ω )

cc

c
c

Re Re

Figure 2: Schematic drawing of the simple impedance model to be used in the estimation

of parasitic mode loss, showing the ω−1/2 asymptotic behavior of Re Z
‖
0 at high frequencies

and constant Re Z
‖
0/n below cutoff frequency.

3.1 Sources of Impedance

Let us discuss the sources of the impedance (Z/n)c below and around the cutoff frequency:

(1) Resistive Wall

With the resistivity of the stainless steel beam pipe ρss = 7.4 × 10−7 Ω m, the real part of

the beam pipe resistance at revolution frequency is

Re Z
‖
0

∣∣∣
1

=
1

b

√
Z0ρssRβ

2
= 7.580 Ω . (3.9)

This impedance increases as
√

ω. The per particle energy loss obtained by integrating

Eq. (3.7) gives Uwall = 0.00714 meV. In reality the resistive wall impedance departs from the
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√
ω behavior when ωb/(2

√
2γβc) ∼ 1 or f ∼ 36.2 GHz and rolls off. Because the contribution

is small, a perfect
√

ω behavior has been assumed in the integration.

(2) Bellows

The bellows of the Recycler Ring are shielded and each of them is assumed to be a small

cavity of width ` ∼ 1 cm and depth d ∼ 1 cm. The contribution to the real part of the

longitudinal impedance is [8]

Re Z
‖
0 =

Z0

2π3/2b

√
c`

ω
, (3.10)

according to the diffraction model. Taking b = 3.528 cm as the radius of the equivalent

cylindrical beam pipe, we obtain, for 516 such shielded bellows,

Re Z
‖
0 ≈ 6000

√
ωc

ω
Ω, (3.11)

where ωc/(2π) = 3.25 GHz is the cutoff frequency. Assuming that the impedance follows the

1/
√

ω behavior back to cutoff frequency, this is equivalent to having Re Z
‖
0/n ≈ 0.167 Ω at

the cutoff frequency.

(3) RF Barriers

The four rf barrier cavities have a total shunt impedance 200 Ω which is visible to the beam

only from revolution harmonic 1 to 500. In other words, Re Z
‖
0/n decreases linearly from

200 Ω at the revolution harmonic 1 to 0.4 Ω at harmonic 500 and vanishes afterwards. This

contribution is in the frequency region less than 50 MHz, way below the cutoff frequency and

should not affect (Z/n)c near cutoff. Actually the total energy loss to the rf barrier cavities

per particle can be computed easily from Eq. (3.7) and is equal to 2 × 500 × 200 e2f0 =

2.88 × 10−6 meV, which is negligible compared with the measured energy loss.

(4) Beam Position Monitors

The beam position monitors (BPM) in the Recycler Ring are of the rectangular split-can

type, each of length ` = 12′′. If we approximate them by the two-end terminated BPM’s of

the Tevatron, the real part of the impedance is

Re
Z

‖
0

n
= 2MZc

(
φ

2π

)2
sin2 ω`/c

n
, (3.12)

where M = 410 is the number of BPM’s and Zc = 50 Ω is the termination impedance. The

covering angle of each half can be approximated by φ = π. This Re Z
‖
0/n has a maximum

of 4.26 Ω at fm = 182.5 MHz and its envelope decreases as 1/ω. At the cutoff frequency

1.3 GHz, Re Z
‖
0/n is at most 0.283 Ω.
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(5) Pump Ports

Each pump port has a longitudinal opening of length ` = 5′′ and height h = 1.05′′ at the

outside edge of the elliptical beam pipe, which has a horizontal width w = 3.806′′. The

electromagnetic waves of the beam particle, which has a high rms frequency of 18.11 GHz,

will be diffracted at the upstream edge of the pump port. From the high-frequency energy

loss due to diffraction at a cavity of length ` in a circular beam pipe of radius b, we can

arrive at an expression for the real part of the longitudinal impedance, [8]

Re Z
‖
0 =

Z0

2π3/2b

√
c`

ω
, (3.13)

Here, we can view the pump port connecting to the pump housing as a cavity with opening

angle φ ∼ 2h/w = 0.55 rad. Taking b ≈ 2/w, we obtain the impedance

Re Z
‖
0 =

Z0

π3/2w

φ

2π

√
c`

ω
. (3.14)

With 600 pump ports, we obtain the real part of the impedance as

Re Z
‖
0 = 3980

√
ωc

ω
Ω, (3.15)

where ωc/(2π) = 3.25 GHz is the cutoff frequency. Assuming that the impedance follows the

1/
√

ω behavior back to the cutoff frequency, this is equivalent to having a Re Z
‖
0/n = 0.110 Ω

at the cutoff frequency, showing that the contribution of the pump ports to the observed

energy loss is unimportant.

From the above discussion, it is reasonable to assume (Z/n)c = 1 Ω or less near the

cutoff frequency. The parasitic mode loss per particle can now be obtained by substituting

the impedance of Eq. (3.8) into Eq. (3.7). We arrive at Upm = 0.056 meV per turn, where

about 83.3% of the contribution come from above cutoff. Thus the parasitic mode loss

amounts to only about 5% of the observed energy loss. Of course, it is also possible that

the coupling impedance of the Recycler Ring is much larger than our estimation above.

As we have stated earlier, every millimeter of the vacuum chamber needs to be taken into

account to arrive at a credible estimate of the coupling impedance. It can happen that many

small variations of the vacuum chamber may accumulate to give a large contribution to the

coupling impedance at high frequencies that does not show up at low frequencies. In other

words, the impedance model of Eq. (3.8) may fail because Re Z
‖
0/n does not roll off as early

as the cutoff frequency.
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4 INTERACTION WITH RESIDUAL GAS

Moderately relativistic charged particles other than electrons lose energy in residual gas

primarily by ionization. The mean rate of energy loss per target thickness is given by the

Bethe-Bloch equation,¶ [9]

−dE

dx
=

Kz2

β2

Z∗

A∗

[
1

2
ln

2mec
2β2γ2εmax

I2
− β2 − δ

2

]
, (4.1)

where

εmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(4.2)

is the maximum kinetic energy which can be imparted to a free electron of mass me in a single

collision from the projectile of mass M , charge ze, and Lorentz parameters β and γ. In above,

Z∗ and A∗ are, respectively, the total atomic number and molecular weight of the residual gas

species. The quantity I is the mean excitation energy, which is about [2] 19.2 eV for H2, 82 eV

for N2, and 95 eV for O2. The parameter K/A = 4πNAr2
emec

2/A = 0.307075 MeV g−1 cm−2

for A = 1 g mol−1, where NA is Avogadro number and re is the classical radius of electron.

The second term β2 is the spin effect of the electron and proton. The last term in Eq. (4.1) is

called the density-effect correction and is important only at very high energies and residual

gas density. Under the latter conditions,

δ

2
→ ln

~ωp

I
+ ln βγ − 1

2
, (4.3)

with ~ωp being the quantum plasma energy. Effectively, Eq. (4.3) says that at such high

energies and density, the ionization energy I in the denominator of the argument of the

logarithmic function in Eq. (4.1) is replaced by ~ωp and the logarithmic rise, ln(β2γ2), in

energy loss is replaced by the slower rise ln(βγ). At the Recycler energy and the Recycler

vacuum pressure, this correction term can be neglected.

The vacuum pressure of the Recycler is believed to be 0.5 nTorr. The volume of one

mol of gas at standard temperature (273.15◦K) and pressure (760 Torr) is 2.2413 m3. At

room temperature (300◦K) and 0.5 nTorr, this becomes 3.741 × 1010 m3. The density is

ρ = 5.384 × 10−5 µg/m3 for H2, 7.538 × 10−4 µg/m3 for N2, 8.614 × 10−4 µg/m3 for O2.

The Recycler Ring has a circumference of C = 3319.42 m. Thus the material traversed per

revolution turn is ∆x = ρC = 0.179 µg/m2 for H2, 1.651 µg/m2 for N2, 2.860 µg/m2 for

¶Conventionally, dx, a unit of target thickness is measured in mass per unit area or path length ` multiplied
by density of matter ρ.
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O2. The energy loss per turn is then Ui = ∆x dE/dx = 0.08 meV for H2, 0.50 meV for N2,

0.57 meV for O2. If we take the residual gas composition stated in Ref. [2] for the CERN

SPS, i.e., 64.1% H2, 27.5% N2, and 8.4% O2 by partial pressure‖ (or 11% H2, 66% N2, and

23% O2 by density), the energy loss per turn is 0.24 meV. The residual gas mixture in the

Recycler Ring is believed to be composed of 90% H2 and 10% CO by partial pressure (or

39.1% H2 and 60.9% CO by density). The energy loss at a vacuum pressure of 0.5 nTorr

amounts to only 0.122 meV per turn. This is to be compared with the measured energy

loss of 1.144 meV. If we want to match the loss to the measured energy loss, the vacuum

pressure would have to be 7.17 nTorr if pure H2, 1.14 nTorr if pure N2, 1.01 nTorr if pure

O2, 2.42 nTorr for the mixture of 64.1% H2, 27.5% N2, and 8.4% O2 by partial pressure, or

4.68 nTorr if the mixture is 90% H2 and 10% CO by partial pressure. This is summarized

in Table I.

Table I: Second row: energy loss per turn due to ionizing residual gas at vacuum pressure of
0.5 nTorr if the residual gas is pure H2, pure N2, pure O2, the gas mixture used at SPS consisting
of 64.1% H2, 27.5% N2, and 8.4% O2 by partial pressure (or 11% H2, 66% N2, and 23% O2 by
density), [2] the possible mixture at the Recycler consisting of 90% H2 and 10% CO by partial
pressure (or 39.1% H2 and 60.9% CO by density), Third row: Vacuum pressure if the energy loss
per turn, 1.144 meV, derived from experiment measurement is completely due to ionization of
residual gas.

H2 N2 O2 SPS Recycler

Mixture Mixture

Energy loss Ui (meV) 0.08 0.50 0.57 0.24 0.12

at 0.5 nTorr

Vacuum pressure (nTorr) 7.17 1.14 1.01 2.42 4.69

if Ui = 1.144 meV

5 LANDAU DISTRIBUTION

Bethe-Bloch formula in Equation (4.1) gives the mean rate of energy loss of a particle

per matter thickness∗∗ x through ionization. The spread in energy loss ε after traversing a

‖This the same as by number of molecules.
∗∗By thickness, we actually mean path length multiplied by density.
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thickness x, on the other hand, follows the Landau distribution [10]

f(x, ε)dε =
ϕ(λ)

ξ
dλ , (5.1)

where

ϕ(λ) =
1

2πi

∫ σ+i∞

σ−i∞
euλ+u ln u du , (5.2)

with σ being some positive number. The above states that the distribution is characterized

by only one parameter λ, which is called the Landau parameter and is defined as

λ =
ε

ξ
− 1 + β2 + C −

[
ln

2mec
2β2γ2ξ

I2
− δ

]
, (5.3)

where C = 0.577215 . . . is Euler’s constant,

ξ =
Kz2Z∗

2β2A∗ x (5.4)

is a measure of the energy loss, and K is the parameter in the Bethe-Bloch formula [Eq. (4.1)].

The Landau distribution, depicted in Fig. 3 is not symmetric; it carries a long tail towards

the side of larger energy loss. The Landau distribution is valid provided that the energy loss

is much less than the maximum energy loss (ε � εmax) and the matter traversed is thin. This

can also be characterized by the parameter [11] κ = ξ/εmax. When κ > 0.01, deviation from

Landau distribution starts to become important. For a beam circulating in the Recycler

Ring for one hour at vacuum chamber pressure 3 nTorr, we obtain ξ = 6.60 × 10−3 MeV

(see below) assuming the gas mixture in the last column of Table I. The maximum energy

transfer is found to be εmax = 91.3 MeV according to Eq. (4.2), leading to κ = 7.22 × 10−5,

which is indeed small enough for the Landau distribution to apply.

5.1 Application to the Recycler Ring

Parasitic mode loss is quite different from energy loss due to ionization of the residual gas.

The former corresponds to just a shift of the frequency/energy distribution curve of the

beam, while the latter corresponds to, in addition to a shift, a change in the shape of the

distribution, which becomes skew towards larger energy loss as determined by the Landau

distribution. This difference may help us to understand whether most of the energy loss

comes from the residual gas ionization or not.

(1) Adding Data Points

We first try to digitize the initial Schottky frequency distribution curve of the 19485th
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Figure 3: The Landau distribution ϕ(λ). The distribution is skew and has a long tail for larger
energy loss (larger λ). The distribution peaks at λ = −0.223 and has a full-width-at-half-maximum
of λFWHM = 2.6.

harmonic depicted in Fig. 1. There are only 141 data points in this curve which spans a

spread of 40 kHz. Thus consecutive data points are separated by the Schottky frequency

∆f = 40/140 = 0.286 kHz or revolution frequency ∆f0 = 0.0147 Hz. The frequency

distribution is transformed into energy distribution according to

∆E

E0

= −β2

η

∆f0

f0

(5.5)

where η = −0.08511 is the slip parameter (transition gamma being 19.968) and the mean

revolution frequency is taken as 89813.227 Hz. This initial beam energy distribution is shown

in Fig. 4 in red. We see that it spans an energy spread of ∼ 24 MeV and the 141 data points

are separated by δE = 0.1670 MeV. Taking ξ = 6.60 × 10−3 MeV, the separation in values

of the Landau parameter is δλ = 25.3, which is very much larger than the full-width-at-half-

maximum of the distribution. This implies that these 141 data points are not fine enough

to map out the beam energy distribution after losing energy to the residual gas. To remedy

this, we add more points in between by interpolation, and increase the total number of data

points to 14001. Now the separation between data points becomes δE = 1.67 × 10−3 MeV

and the separation in values of Landau parameter becomes δλ = 0.253.
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Figure 4: (color) Purple curve: initial beam energy distribution centered at zero. Black curve:
final beam energy distribution peaked at −0.370 MeV as indicated by the black vertical bar above
the distribution.

The final frequency distribution in Fig. 1 is converted to energy distribution in the same

way. Data points are also added to a total of 14001. The result is shown in Fig. 4 as the

black curve. The vertical black bar points to the peak of the final distribution.

(2) Treating Many Residual Gas Species

The Landau parameter λ defined in Eq. (5.3) is for only one type of matter in the target.

Here, in the vacuum chamber, we usually have more than one species of residual gas. The

definition of λ therefore requires extension.

For convenience, let us define a reduced gas density

ρ̄ =
∑

i

ρiZ
∗
i

A∗
i

, (5.6)

where ρi is the density of the ith residual gas having total atomic number Z∗
i and molecular

weight A∗
i . We then redefine the energy loss variable ξ by

ξ =
Kz2

2β2
ρ̄` , (5.7)
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where ` is the total path length traversed by the beam particle. In that case, the mean

energy loss by a particle traversing the path length ` becomes, according to the Bethe-Bloch

formula,

∆E = ξ
∑

i

ρiZ
∗
i

ρ̄A∗
i

[
ln

2mec
2β2γ2εmax

I2
i

− 2β2 − δi

]
. (5.8)

Following the derivation of the Landau distribution, it will be straightforward to arrive at

λ =
ε

ξ
− 1 + β2 + C −

∑
i

ρiZ
∗
i

ρ̄A∗
i

[
ln

2mec
2β2γ2ξ

I2
i

− δi

]
, (5.9)

which serves as the new Landau parameter when there are more than one species of residual

gas. The above can also be written as

λ =
ε − ε̄

ξ
(5.10)

with

ε̄ = ξ

{
1 − β2 − C +

∑
i

ρiZ
∗
i

ρ̄A∗
i

[
ln

2mec
2β2γ2ξ

I2
i

− δi

]}
. (5.11)

Notice that ε̄ does not correspond to the most probable energy loss. This is because the

Landau distribution peaks at λ = −0.223 instead of zero. It is important to see that ξ plays

the role of a measure of the energy loss and determines the variation of λ from one data

point to the next. Also ξ increases with the target thickness and becomes larger when gases

with higher atomic number Z∗ are present.

(3) Computing New Energy Distribution

We start from the population†† Ni of one energy offset data ∆Ei (1 ≤ i ≤ 14001). These

particles will lose energy and scatter into energy offsets ∆Ej ≤ ∆Ei. The increase in

population at ∆Ej is given by

∆Nj =
ϕ(λij)

ξ
NiδE , (5.12)

where δE = 0.00167 MeV is the spacing of the energy distribution data points, and

λij =
∆Ei − ∆Ej − ε̄

ξ
. (5.13)

Here, we assume the same mixture of residual gas as depicted in the last column of Table I,

i.e., with 90% H2 and 10% CO by partial pressure. For example, at the vacuum pressure

††Actually, the ordinates of Fig. 1 are measured in dBm which is defined as 10 log10Ni/N0, where Ni is
the population at the ith point and N0 is a scale factor.
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of 3.0 nTorr, we obtain ξ = 6.60 × 10−3 MeV and ε̄ = 0.128 MeV. The computed energy

distribution at 3.0 nTorr is shown as a green curve in Fig. 5 to be compared with the

experimental one in black. Some points at noise level have been added both above 12 MeV
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−68.5
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A
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itu
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m
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Expt: Final
3.0 nTorr
5.0 nTorr
7.0 nTorr

Figure 5: (color) Black curve: final beam energy distribution peaked at −0.370 MeV (vertical bar).
The computed energy distribution curves are depicted as green at 3.0 nTorr, red at 5.0 nTorr, and
blue at 7.0 nTorr. Deviations from the experimental final beam energy distribution are mostly due
to increase in longitudinal emittance due to intra-beam scattering.

and below −12 MeV. This addition ensures that particles can be scattered into the energy

region just below 12 MeV and scattered away from the region just above −12 MeV. We

repeat the computation for different vacuum pressures. The other curves in the figure are at

5.0 nTorr in red and 7.0 nTorr in blue.

Although we do see the computed distribution curves get shifted towards lower energy

and exhibit left-right asymmetry, it appears that not one of them can fit the experimental

curve well. The main reason is that there had been an increase in longitudinal emittance

due mostly to intra-beam scattering in the one hour during which the beam was stored. If
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the increase in longitudinal emittance is included in the computation, the agreement should

have been much better because the computed distribution curves will spread out more and

have their peaks lowered. For this reason, we should consider the best fit as the one with the

shift of its peak less than that of the experimental curve (because there may be an additional

shift coming from the parasitic mode loss), and at the same time, with its left and right sides

at equal distance from the left and right sides of the experimental curve. It is obvious that

the blue curve at 7.0 nTorr may have been shifted too asymmetric towards lower energy. For

the green curve at 3.0 nTorr, although the energy shift is not as much as the experimental

measured value, it does not exhibit as much asymmetry as the experimental curve. The best

fit appears to the one near vacuum pressure 5.0 nTorr, from which we can conclude that

the contribution of the parasitic mode loss must not be important. This determination is in

quite good agreement with our conclusion in the last section that complete domination of

energy loss through ionization of the residual gas requires a vacuum pressure of 4.69 nTorr.

However, we think the determination made here via the Landau distribution should be more

trusted because the energy distribution of the beam is no longer left-right symmetric after

a long storage becoming skew towards higher energy loss. As a result, the peak of the

distribution need not correspond to the mean energy shift of the beam, and the amount of

shift towards lower energy is not well determined.

(4) Results at Lower Intensity

In order to reduce emittance growth due to intra-beam scattering, the experiment was re-

peated on August 25 using a coasting beam of a much lower intensity, 0.088× 1011 protons.

The first 1.75 GHz Schottky distribution was taken at 11:41 and is depicted in the left plot

of Fig. 6. The beam was monitored every 15 minutes. The last measurement was made at

12:27 and is depicted in the right plot. The distribution peaks at the revolution frequency

of 89813.266 Hz at the beginning and drops to 89813.242 Hz at the end of the 46 min stor-

age. This amounts to a revolution frequency shift of 0.031 Hz per hour or a per particle

energy loss of 0.36 MeV/hr, agreeing quite well with the first experiment. We superimpose

the initial and final distributions in energy offset in Fig. 7. We see that the beam is much

narrower in energy distribution as compared with the distributions in the first experiment

in Fig. 1 or Fig. 4. However, we still see a small spread of the beam after 46 min starting

the energy offset of ∆E ∼ +2 MeV; but this has been much smaller than those in the earlier

experiment where the beam is an order of magnitude higher in intensity.

Since the energy loss to ionization of the residual gases is beam-intensity independent,

the analysis goes through just as before. Starting from the initial distribution, we computed
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Figure 6: Digitized 1.75 GHz Schottky signals at the low intensity of 0.088 × 1011 protons. Com-
parison of the center of the initial signal at 11.41 (left) and the peak of the final signal at 12:27
(right) gives a shift of the revolution frequency of 0.024 Hz or 0.031 Hz per hour.
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Figure 7: (color) Initial beam energy distribution (purple) centered at zero versus final beam
energy distribution (black) peaked at −0.275 MeV as indicated by the black vertical bar above the
distributions.
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the final energy distribution of the beam when the vacuum pressure was 3.0 nTorr, 4.5 nTorr,

and 6.0 nTorr, with the results depicted in Fig. 8 as, respectively, a green, red, and blue

curves. The final measured distribution is shown alongside in black. Here, we continue to

assume a gas mixture as mentioned in the last column of Table I, i.e., 90% H2 and 10% CO by

partial pressure. Although the theoretical predicted curves do not match the experimental

measurement exactly, we do find the best fit is at about 4.5 nTorr vacuum pressure and that

explains nearly all the energy down-shift of the distribution, implying that the contribution

due to parasitic mode loss has to be minimal.
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Figure 8: (color) Black curve: final beam energy distribution peaked at −0.275 MeV (vertical bar).
The computed energy distribution curves are depicted as green at 3.0 nTorr, red at 4.5 nTorr, and
blue at 6.0 nTorr. Deviations from the experimental final beam energy distribution are mostly due
to increase in longitudinal emittance due to intra-beam scattering.
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6 CONCLUSION

We have made estimation of different sources of energy loss of a coasting beam circulating

in the Recycler Ring. We find the loss due to synchrotron radiation is negligibly small because

the energy of the beam particles is not high enough. We find that the parasitic mode loss

amounts to about 5% of the observed energy loss when we assume a diffraction model with

Re Z
‖
0/n = 1 Ω near the cutoff frequency of 3.25 GHz. Although the mean energy loss due to

ionization of residual gas is determined to be the largest, however, it can only explain about

11% of the observed energy loss if we assume the vacuum pressure to be 0.5 nTorr when

the residual gas is a mixture of 90% H2 and 10% by partial pressure. We actually require a

vacuum pressure of 4.7 nTorr, if all the observed energy loss is completely due to ionization

of the residual gas. It is very plausible that the vacuum gauges in the Recycler Ring are

not properly calibrated or located at inappropriate positions. We also try to compute the

beam energy distribution according to the Landau distribution. The result does not fit

the experimental distribution curve well because there has been an increase in longitudinal

emittance due possibly to intra-beam scattering during the one-hour storage. However, we

do find out that the best fit corresponds to a vacuum pressure around 5 nTorr and the

contribution of the parasitic mode loss has to be very small. Newer experimental results

at about one tenth the former beam intensity are also analyzed. The fitting of the energy

distribution improves by very much because the increase in the longitudinal emittance has

been very much smaller. The result also points to a vacuum pressure around 4.5 nTorr with

insignificant contribution coming from the parasitic mode loss.
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