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Longitudinal phase space tomography is developing rapidly into a practical diag-
nostic technique. The numerical code written by Hancock, Lindroos, and Kosciel-
niak [2] at CERN constructed a distribution function from a collection of changing
beam profiles using a tracking function that included space charge effects. Montag,
D’Imperio, Kewisch and Lee [6] wrote their own code and obtained remarkable im-
ages of an instability that developed during rebucketing at RHIC. Schlarb [7] described
a procedure used at DESY, based on a thesis of Geitz [1], for reconstruction of trans-
verse distributions. More recently, Huening [4] constructed longitudinal tomographic
images to study wake field effects at the Tesla Test Facility.

When a longitudinal distribution is in equilibrium, one profile should be sufficient
to reconstruct it. C.-Y. Tan developed a numerical procedure for doing this when the
bucket is stationary (non-accelerating). [8] The procedure can be modified to work on
nonstationary (accelerating) buckets. [5] In either case one obtains a lower triangu-
lar linear system of equations which must be inverted, not an unusual occurrence in
tomographic problems.

The purpose of this paper is to present an analytical expression for obtaining an
equilibrium distribution function from a beam profile, an integral transform whose nu-
merical implementation is equivalent to inverting that triangular system of equations.
In the first section, we go through a simple exercise to set up the solution; in the second,
we extend the exercise to longitudinal phase space. The final section contains a few
generally edifying comments.

1 A simple yet helpful exercise

We begin by reviewing a simple exercise, so as to reduce notational complexity later.
Suppose that a distribution in the Euclidean plane depends only on radius, say,

Prob[ (X,Y) ∈ D ] =
∫

D
dxdy f(r2) ,

whereX andY are random real variables,D is a (Borel) subset ofR2, and, of course,
r2 = x2 +y2. Consider the projections at fixed values ofx.

g(x) ≡
∫ ∞

−∞
dy f(r2) = 2

∫ ∞

0
dy f(r2) .
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Becausedx= 0,

dy=
r
y

dr =
r√

r2−x2
dr ,

and we can writeg(x) as,

g(x) = 2
∫ ∞

|x|
rdr

f (r2)√
r2−x2

=
∫ ∞

x2
du

f (u)√
u−x2

, (1)

with, of course,u = r2.
This is much like an integral equation motivated by one of those “bead on a friction-

less wire” problems: Suppose that a mass drops in a constant gravitational field along a
contrained path, expressed as the set of points{(y(z),z) | z∈ (0,∞)}. You measure the
time,τ(h), that it takes for the bead to reachz= 0 when it is dropped from the altitude
z= h. From the functionτ(h), is it possible to determiney(z)?

The answer, yes, was determined by the Norwegian mathematician, Niels Henrik
Abel in 1823, about one year before he proved the impossibility of solving, “in closed
form,” polynomial equations of degree greater than four. The problem is expressed as
an integral equation by using conservation of energy:

1
2

mv2 +mgz= mgh ⇒ v =
√

2g(h−z)

which means that

τ(h) =
∫ τ(h)

0
dt =

∫
ds
v

=
∫ h

0
dz

ds/dz√
2g(h−z)

, (2)

whereds is diffential arc length along the path. The (by now) well known inversion1

of Eq.(2) can be found in most textbooks on integral equations, such as [9].

ds
dz

=
√

2g
π

(
τ(0)√

z
+
∫ z

0
dh

τ′(h)√
z−h

)
. (3)

Onceds/dz is known, the task of findingy(z) has been reduced to quadrature.
The connection between Eq.(1) and Eq.(2) is accomplished by changing the inte-

gration coordinate:
uv= 1 ⇒ udv+vdu= 0 .

so that, after a little algebra, Eq.(1) is rewritten as follows.

|x|g(x) =
∫ 1/x2

0
dv

(
f (1/v)
v3/2

)
1√

1/x2−v

1There are other ways of expressing the answer.
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Notice that multiplication by|x| unfortunately suppresses the strongest part of the sig-
nal. This is now in the same form as Eq.(2), as can be seen via substitutions.2

z↔ v

h↔ 1/x2

ds/dz√
2g

↔ f (1/v)
v3/2

τ(h) = τ(1/x2) ↔ |x|g(x)

The inversion can then be written immediately from Eq.(3) using the same substitu-
tions.

f (1/v)
v3/2

=
1
π

∫ v

0
d(1/x2)

d(|x|g(x))
d(1/x2)

· 1√
v−1/x2

In dropping the extra term, we have assumed (sensibly) that limx→∞ |x|g(x) = 0. To
simplify a little, notice that

d(1/x2)
d(|x|g(x))
d(1/x2)

= d(|x|g(x)) = dx
d(|x|g(x))

dx
≡ dx(|x|g(x))′

so that, upon choosingx > 0,

f (1/v)
v3/2

=
1
π

∫ 1/
√

v

∞
dx

(xg(x))′√
v−1/x2

.

As a final step, we go back and usev = 1/u = 1/r2 to express this as follows.

r2 f (r2) =
1
π

∫ r

∞
dx

(xg(x))′√
1− (r/x)2

(4)

Abel’s equation was first applied to tomography by Radon, as Allan Cormack, who
shared the Nobel Prize in 1979 for inventing the CAT scan, noted in his acceptance
speech.

“[T]his seemed like a problem which would have been solved before, prob-
ably in the 19th century, but again a literature search and enquiries of math-
ematicians provided no information about it. Fourteen years would elapse
before I learned that Radon had solved this problem in 1917. Again I had
to tackle the problem from the beginning. The solution is easy for ob-
jects with circular symmetry... One has Abel’s equation to solve, and its
solution has been known since 1825. [sic]”

2One possible source of concern is whether it is necessary forτ(h) to be monotonically increasing, as is
suggested by the physics problem. Fortunately, this is not the case: it is sufficient thatτ(h) be continuous.[3]
Physically, continuity precludes the possibility that the path possesses a roller coaster like dip, which, in turn,
assures existence of the functiony(z).
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2 Extension to longitudinal phase space

We will now extend this result to our problem of determining an equilibrium distribu-
tion in longitudinal phase space. For convenience, we write the Hamiltonian model
(a) using coordinates centered at the synchronous phase and energy and (b) shifted so
thatH = 0 at the point of synchrony. Because of (a), in the corresponding map model,
the kick imparted to a particle would change its energy according to,

∆E = eV sin(ϕs+ ϕ) ,

where, as usual,ϕs is the synchronous phase, andeV > 0 is the maximum possible
energy imparted by the cavity. A Hamiltonian satisfying our two conditions is then
written,

H = −1
2

αW2 +eV · (cos(ϕs+ ϕ)−cosϕs+ ϕsinϕs)

≡ −1
2

αW2 + U(ϕ;ϕs) , where (5)

α =
h
2π

((
ω
pc

)2

·E ·
(

1
γ2 − 1

γ2
t

))
s

, and

W = (E−Es)(2π/ωs) = (E−Es)τs

The subscriptsalways stands for “evaluated at the point of synchrony.” The “potential”
functionU is effectively defined by Eq.(5).

The continuous signal is modeled as the function,3

S(ϕ) =
∫ ∞

−∞
dW f(ϕ,W) =

∫ ∞

−∞
dWg(H(ϕ,W)) = 2

∫ 0

−∞
dWg(H(ϕ,W)) .

We have used the equilibrium condition,∂ f/∂t = 0, to write explicitly that the value of
f depends only on the value ofH: f = g◦H. f (or g) is the distribution function that
we seek, and I’ve used the symmetry ofH to reduce the region of integration.

We are usingϕ to parametrize the signal. However, it is recorded as a function
of time, t, whereϕ = ωrf(t − ts). To make matters worse, shortly we will want to use√

U(ϕ) as the parametrization coordinate. To avoid a confusing jumble of terminology
– an all but impossible task, under the circumstances – we introduce notation,

S(ϕ) ≡ SΦ(ϕ) ≡ ST(t) ≡ SU(
√

U) ,

and anticipate using the appropriate representation as needed.
We have reduced the domain of integration overW to one for which the maps

W 7→ H andH 7→W would be one-to-one. Thus, over this domain — i.e.,W ∈ (−∞,0)
— H can be used as a legitimate coordinate.4 Accordingly, change integration coordi-

3An integration over a small “bin width,”∆ϕ, is subsumed in the definition ofS.
4Of course, we could just as well have chosenW ∈ (0,∞) and obtained equivalent results.
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nate fromW to H.

S(ϕ) = 2
∫

Γ
dH

(
∂W
∂H

)
ϕ

g(H)

= 2
∫

Γ
dH

(
− 1

αW

)
g(H) ,

The range of integration,Γ, depends on whether we are above or below transition. It
will be written explicitly below.

Now use Eq.(5) to substitute forW.

(αW)2 = −2α(H −U )

Over our domain,W ∈ (−∞,0), W < 0, and

above transition: α < 0, 1/αW > 0, and 0≤ U(ϕ) ≤ H(ϕ,W).
below transition: α > 0, 1/αW < 0, and H(ϕ,W) ≤ U(ϕ) ≤ 0.

whereU andH are evaluatedinside the separatrix. We then write,5

above transition :SU(
√

U) = 2
∫ U(ϕ;ϕs)

∞
dH(−1/αW)g(H)

= 2
∫ ∞

U
dHg(H)/

√
(−2α)(H −U)

below transition : SU(
√−U) = 2

∫ U(ϕ;ϕs)

−∞
dH(−1/αW)g(H)

= 2
∫ U

−∞
dHg(H)/

√
(−2α)(H −U)

= 2
∫ ∞

−U
d(−H)g(−(−H))/

√
(2α)((−H)− (−U))

In order to writeS in terms ofcoordinate
√

U, we use only half the signal. The maps
ϕ 7→ U andU 7→ ϕ are one-to-one over restricted domains that do not include the fixed
points.

Both of these equations are of the correct form for application of Eq.(1),provided
we use the fact that both S and g vanish outside the separatrix.We only need to make

5I am using the symbolH to represent (a) the Hamiltonian function and (b) a real-valued coordinate.
While this may be a little confusing, context should separate the two meanings.
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the substitutions:

above transition : x↔
√

U
u = r2 ↔ H

f (u) ↔ g(H)/
√−2α

g(x) ↔ SU(
√

U)
below transition : x↔√−U

u = r2 ↔−H

f (u) ↔ g(−(−H))/
√

2α
g(x) ↔ SU(

√−U)

An application of Eq.(4) then yields the results, above transition,

Hg(H)/
√−2α = −1

π

∫ ∞
√

H

d(
√

U)√
1−H/U

d

d(
√

U)

(√
U SU(

√
U)
)

=
1
π

∫ ϕ1(H)

∞

dϕ√
1−H/U

d
dϕ

(√
U SΦ(ϕ)

)
. (6)

Obviously, a corresponding expression can be written below transition. The lower limit
is a bit formal. It actually need extend no farther than the separatrix, sinceS= 0 outside
the separatrix.ϕ = ϕ1(H) is the point at which the orbit whose Hamiltonian has value
H intersects theW = 0 axis.

3 A few comments

Eq.(6) is our principal result. It provides a linear filter from which to construct an equi-
librium distribution function from the profile signal. Notice that:

(a) The value of the distribution function at the point of synchrony,g(0), is left unde-
termined, apart from continuity:

g(0) = lim
H→0

g(H).

This is true as well when one inverts the signal numerically rather than analytically. It
is a general issue in tomography.

(b) Remember:H is just a number in the integrand. In particular, it satisfies,H < U(ϕ)
within the range of integration. This doesnot contradict the inequalities written on the
previous page, which refer toH as a function.

(c) In the intermediate steps I used the fact thatU was convex, up or down, between
the stable fixed point and the separatrix. However, in the answer’s final form, that con-
dition does not appear explicitly.

(d) Apart from convexity of the potential – which is guaranteed inside a separatrix –
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U can be arbitrary. It is certainly not necessary to assume that it provides a pure sinu-
soidal field.

(e) Only half the signal is used. Breaking the signal into two parts, on each side of the
synchronous phase, and processing them separately should give identical results. (This
is not the same as claiming thatSΦ(ϕ) = SΦ(−ϕ), which will certainly not be the case,
in general.) This can serve to check (i) that we have identifiedts or, equivalently,ϕs

correctly from the signal and (ii) our key assumption that the distribution is in equilib-
rium is valid.

(f) Another check can be done by finding the cumulative distribution as a function
of action coordinate,I , rather than the Hamiltonian,H: say,G(I). This is possible if
the distribution is in equilibrium. If acceleration is adiabatic,G(I) should not change
throughout the ramp, since action is an adiabatically invariant coordinate.

(g) The square root singularity will be annoying when it comes down to numerical in-
tegration, but it can be handled. For example, it can be removed via an integration by
parts. Using,

1√
1−H/U

=
√

U√
U −H

=
2
√

U
dU/dϕ

d
dϕ

(
√

U −H) ,

we get,

Hg(H)/
√−2α =

1
π

∫ ∞

ϕ1(H)
dϕ

√
U −H

d
dϕ

(
2
√

U
dU/dϕ

(
d

dϕ
(
√

US(ϕ))
))

.

This removes the square root singularity, but now requires taking two derivatives of the
signal. A better numerical trick may be to introduce subtractions and cutoffs.

Hg(H)/
√−2α =

1
π

∫ ϕ1(H)

∞

dϕ√
1−H/U

( · · · )

=
1
π

∫ ϕ1(H)

∞

dϕ√
1−H/U

[
( · · · )− ( · · ·)|ϕ=ϕ1(H)

]
+

1
π

∫ ϕ1(H)

∞

dϕ√
1−H/U

( · · · )|ϕ=ϕ1(H) .

The first integrand has no singularity; the second can be handled with a cutoff.

1
π

∫ ϕ1(H)

∞

dϕ√
1−H/U

=

(
1
π

∫ ϕ1(H)−ε

∞

dϕ√
1−H/U

+
1
π

∫ ϕ1(H)

ε

dϕ√
1−H/U

)
,

whereε is chosen sufficiently small so that we can approximate 1−H/U ∝ (ϕ−ϕ1(H))+O((ϕ−ϕ1(H))2).
We reserve further discussion of numerical issues for another time.[5]
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