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Abstract
The longitudinal and transverse damping dynamics for the optical stochastic cooling is studied.
An important necessary condition for transverse phase space damping in the optical stochastic
cooling (also applicable in the microwave stochastic cooling) with the transit-time method is de-
rived. An optimal laser focusing condition for laser-beam interaction in the correction undulator
is also obtained. The amplification factor and the output peak power of the laser amplifier are
found to differ substantially from earlier publications. The required laser amplification power can

be large for hadron colliders at very high energies.
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I. INTRODUCTION

The stochastic cooling, invented by S. van der Meer in 1968, has been first experimentally
demonstrated at the Intersecting Storage Ring (ISR) at CERN, and used for anti-proton
cooling and collection facilities. The success of the stochastic cooling leads to many new
discoveries in particle physics [1, 2].

Applications of the stochastic cooling to high energy storage rings encounter a number
of difficulties. First, since the phase space areas of beams in high energy accelerators are
adiabatically damped, the stochastic cooling method becomes less efficient. Furthermore,
since the bunch length (o) is shorter in high energy storage colliders, the cut-off frequency
(~ i) for the coherent signal is extended upward into the GHz region. The Schottky signal
has often been contaminated by the coherent beam signals [3]. Without a good Schottky
signal, it would be difficult to carry out the stochastic cooling.

High energy charged particles emit photons in dipoles. The photon emission is a random
process. Using the photons instead of microwave signals in beam cooling would solve the
problem of coherent signal contamination, and may dramatically enhance the cooling rate.
The optical stochastic cooling (OSC) was proposed by Mikhailichenko and Zolotorev [4], in
which a quadrupole wiggler and a longitudinal kicker system at a high dispersion location
were applied to damp betatron and synchrotron motions via the synchro-betatron coupling.
Subsequently, Zolotorev and Zholents applied the transit-time method, which is a traditional
method in stochastic cooling, to optical stochastic cooling [5]. The scheme of a typical optical
stochastic cooling and formula related to damping were also derived in Ref. [5].

In general, a high energy charge particle emits synchrotron radiation in a synchrotron.
The critical angular frequency is w. = %730/ p, where v is the relativistic Lorentz factor, c is
the speed of light, and p is the bending radius. The number of photons emitted per revolution
is N, = bray/V/3, where a = ¢*/(4meghe), q is the charge of the particle, € is the electric
permittivity of free space, and h is the Planck constant divided by 27. In an undulator with
planar magnetic field, the wavelength of the undulator radiation is A = A\, (2 + K?)/(4v?)
with an angular bandwidth of Aw|pwam = w/Ny, where N, is the number of undulator
period, K = ¢By\,/(2mmc) is the undulator strength parameter, B, is the undulator field
strength, and ), is the undulator wavelength. The number of photons, emitted within the

solid angle A\/(NyA,) and bandwidth Aw|pwiwm, is N, = 7€a[JJ]? where £ = K?/(2 + K?),



and the factor [JJ] = Jo(3¢) — J1(5€). The emitted photon can be amplified and used to
give proper kick in energy and betatron coordinates. With a proper choice of the beam
parameters, the phase space volume of the beam can be damped.

Although the basic principle of the optical stochastic cooling has been published in 1994,
the requirements of the beam cooling section have not been fully analyzed. In particular,
there are deficiencies in an earlier paper [5] on the beam transport properties in the derivation
of the optical stochastic cooling. This paper is intended to derive the necessary conditions
for the beam transport system for the optical stochastic cooling with transit-time method,
and study the OSC cooling dynamics. In section II, the principle of transit-time method
of optical stochastic cooling is briefly introduced. In section III, the damping rates and the
transfer matrix condition of equal decrements are derived. In section IV, the amplification
factor, an optimal optical focusing condition for the inverse free electron laser, and the peak

output power requirement are discussed. The conclusion is given in Sec. V.

II. TRANSIT-TIME METHOD OF OPTICAL STOCHASTIC COOLING

A typical stochastic cooling system consists of a pickup, an amplifier, and a kicker [1, 2].
The optical stochastic cooling includes two undulators, a particle beam bypass, and an
optical amplifier. A schematic drawing of this insertion can be found in Fig. 1 of Ref. [5].

The electromagnetic (EM) wave radiated by a charged particle in the first undulator is
amplified by the optical amplifier, while the particle travels in the beam-bypass. The ampli-
fied EM wave and the particle are brought together to interact in the second undulator. This
will change the particle’s energy. The amount of energy change depends on the magnitude
of the EM wave and the relative phase between the particle’s and the EM wave’s transit
times from the first to the second undulators.

We consider a test particle with a momentum deviation §; = AP;/P, and the betatron
phase space coordinates (z;, 2;). In the Frenet-Serret coordinate system, the path length of

the test particle in the bypass section is [6]
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where , 5 and Z form a curvilinear coordinate system with a horizontal bending radius p,

the coordinates  and z are the deviations from a reference orbit, and s is the longitudinal



coordinate along the reference orbit. We have also assumed 7’ < 1 and 2’ < 1 to obtain the
last approximate equality. For a bypass with planar geometry, the transverse displacement
of an orbiting particle is given by & = x,(s) + Mi1(s, s1)x1 + Mia(s, s1)x) + D(s)d, where x;
and x| is the betatron phase space coordinates at sy, M1 (s, s1) and Mja(s, s1) are transport
matrix elements of the Hill's equation, z.,(s) is the closed orbit around the reference orbit,
and D(s) is the dispersion function. The path length for an i-th particle in the bypass region
becomes

gi :€0+$i1[1+3§';1[2+(5ilp, (2)

where x;1, 2}, are the conjugate phase space coordinates for the i-th particle at the location

s1, and the integrals Iy, I, and Ip are
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where the integrals are carried out from the first undulator at s; to the second undulator at
so via the particle beam bypass.

In the first undulator, a test particle radiates an EM wave propagating in the s-direction:
& = &ysin(ks — wt + ¢;) with electric field amplitude & and phase ¢;. The wave number
and frequency are k = 2w /) and w = ke. This radiation propagates to the optical amplifier,
while the particle follows the bypass and traverses it in a time At; = ¢;/ 3¢, where (¢ is the
speed of the particle.

The time Aty required for radiation to pass all the way between undulators, including
the amplifier delay, must be constrained and maintained by a feedback system to yield the
condition ¢y — cAty = (n+ i)/\, where n =0,1,2,---, and the £ sign depends on the beam
transport property in the bypass. The test particle arrives at the second undulator with a

time delay 6(At) = At; — Aty and with a phase shift

relative to the phase of the electric field at zero crossing. For simplicity, hereafter, we use
x;, x5, and d; as the betatron phase-space coordinates and fractional off-momentum variable
of the i-th particle at the first undulator location. In the second undulator, the particle
interacts with the electric field of its own radiation. The fractional change of its momentum
is [7]:

0P/ P = —[sgn(Ip)] Gsin(Ag), (5)
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where sgn(Ip) is the sign of Ip, G = gq & NyAK[JJ]/(2¢yP) is the amplitude of the frac-
tional momentum gain-factor, ¢ is the magnitude of the particle charge, N, is the number
of undulator periods, ¢ is the amplification factor of the optical amplifier, and dF; is the
amount of the momentum change related to the coherent longitudinal kick Aéd; = 6 P;/P.

Let Dy and Dj be the dispersion function and its derivative at the second undulator.
The changes of the particle betatron coordinates at the exit of the second undulator are
Ax;y = —Dy(0P;/P) and Azl, = —D,(6P;/P), where z;; and z}, are the phase space
coordinates of the i-th particle at the second undulator location.

Thus, after passing the entire cooling insertion, the test particle has received coherent
longitudinal and transverse kicks that are proportional to a linear combination of the par-
ticle’s momentum deviation and betatron deviations. We will see in the next section that a
proper choice of the parameters of the bypass lattice makes it possible to use these kicks to

simultaneously damp transverse and longitudinal oscillations.

III. COOLING RATES

We have so far considered the interaction of a test particle with the EM wave of its own
radiation. However, each particle also interacts with the EM waves emitted by other particles
in a sample within a distance less than N \. These interactions constitute the incoherent
component of the kick received by the particle. Assume that a test particle interacts with
Nj electromagnetic waves (including its own wave) in a sample. The change of the particle’s

momentum at the exit of the cooling insertion becomes

dic = 6; — [sgn(Ip)] GZ sin(A¢; + vy5) (6)

J

where ¢, is the relative momentum of the i-th particle after the longitudinal kick, N is the
number of particles in the sample, ¢;; = A¢; — A¢;, and sgn(Ip) is the sign of the integral
Ip.

A. Longitudinal effects

Hereafter, we assume that Ip > 0 with a proper phase shift. A test particle interacts with

the electromagnetic waves radiated from the sample of N, particles. We have to evaluate



the ensemble average of the quadratic change:
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Using the fact that (sin®(Ag; + ;) = % for a random sample of N, particles, the ensemble
average of the second term is
N, ]
(G*D _sin(A¢; +1)]%) = §G2NS ,

J

which contributes to heating. The ensemble average of the coherent kick term is

(—26,G Z;VS sin(A¢; + ;) = (—26;G sin(A¢;)); i.e.,
(—20,G'sin(A¢y)) = — {2@ / 6eik($h+x/h+5lf’)p(m,Px,é)ddexdé}, (7)
where §{- -} stands for the imaginary part. The distribution function is given by
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with = and P, = 82’ + ax as the normalized betatron phase space coordinates at the first
undulator location sy, and § as the fractional off-momentum coordinate. The integral can

be carried out easily, and the longitudinal damping decrement becomes

(62 — 62) —w G*N,
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where
1
“= §k2[(51[12 =21 11y + 1136, + I503] (10)

is a measure of the total thermal energy of the beam. The optimal momentum gain-factor

and the maximum damping decrement are
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B. Transverse effects

As the particle gains or loses energy by its interaction with the electric field of itself and

its sampling partners, the corresponding momentum closed orbit is also modified. Thus



the betatron phase space coordinates are changed as well. This may generate heating and

cooling effect to the beam. The change of transverse betatron coordinates are (for Ip > 0)

N,

Li2e = T42 + DQG Z SIH(A¢Z + w”) y (12)
J
Ns

e = Thy + DyG Y sin(Agi + ) , (13)

J

where (x;2, }y) and (22, }y,.) are the betatron phase space coordinates of the i-th particle
before and after correction at the second undulator location, and Dy, D) are the values of
the dispersion function and its derivative at the second undulator location.

Now we transform the phase space coordinates into the normalized phase space coordi-
nates (z, P, = (.2’ + a,x). The change of the invariant action of the betatron phase-space
coordinates is foAe; = P2y + 15, — (P2, + 22%), where (35 is the betatron amplitude at the

second undulator location and ¢; is twice the action of the i-th particle. We find

N N

BoAe; = +2P,inPprG Z Sin(A¢; + Vy;) + 220Dy G Z sin(Ag; + ;)
J J

2
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where P,jo = [otiy + anzye is the normalized betatron coordinate for the i-th particle at the
second undulator location, Ppy = (2D} + asDs is the normalized dispersion phase space
coordinate at the second undulator location, 3, and sy are the values of the (5, and «, at
the second undulator location, and Hy = é(D% + P3,) is the value of the H-function at s,.

The ensemble average of the quadratic terms is %GQNS@HQ, which contributes to quan-
tum fluctuations like that of synchrotron radiation damping. The ensemble average of the
coherent kick is given by (K1) = (2Pi2PpoG Zjv sin(A¢; + ;) & (2P0 PpG sin(Ag;)),
and (Kp) = (22,0DG Zjvs sin(A¢; + i) = (225D2G sin(A¢;)); i.e.,

<K01> =& {QG/PDQPMQ 6ik(m[1+x,[2+5[D)p(I, Px, 5)dl’dpxd6} s (15)
(Ko) = S {QG / Dy D) 0, P, §)dndPods (16)

The distribution function, shown in Eq. (8), is a function of the phase space coordinates at

the first undulator. The ensemble average is equivalent to integrating over the phase space
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coordinates of the ensemble at the location of the first undulator, while x;5 and P,;» are the
phase space coordinates of the particle at the second undulator location. Expressing x; and

P,i» in terms of x and P, at the first undulator location, we obtain the relative transverse

cooling
})2 2 ]32 2 2]V
= _< z2¢ T T - ( w2 T .]72)> = 2GkI e — G"N/H, : (17)
029 2€,
where
« «
I, = —é {Pm |:((52M21 + oo Myy) — —1(ﬂ2M22 + 062M12)> (I — —1[2)
Ba B B
1 aq aq 1
+—5 (B2 Mz + 062M12)12} + D, l(Mn — —Mp)([; — =—15) +—2M12]2] } . (18)
Ioh B B Ibh

The transverse cooling requires the condition I, > 0 (for Ip > 0). This is an important
condition for the design of the bypass optics.

If the betatron phase space coordinates are properly chosen, the coherent kicks will also
produce coherent cooling to the transverse emittance. The necessary condition is 7, > 0.
The optimal gain factor and the maximum damping decrement for the transverse cooling
are

2k‘llex
G, =
N,Hy ©

—Uu

2K TTe, o,

= 19
max NSH2 ( )

, Q|

Making a constraint of —I with reflection symmetry for the bypass insert and having the
undulators placed at the betatron waists (o = ap = 0 = D) = 0), as that of Ref. [5], we
obtain I, = DsI;. Our resulting damping decrements does not agree with Eq. (6) of Ref. [5].

C. Stochastic Cooling Dynamics

The cooling process can be expressed as

de,, _QGk‘]lex . G? N, H,

A i 20
dt T, © 2T, (20)
do? 2GkIpo? _, G*N;

_ u 21
dt 7, ¢ Tan (21)

where Tj is the revolution period. The momentum gain-factor GG is set by the laser ampli-
fier [8]. If the optimal gain factors for the momentum and transverse cooling are the same,

we can set the laser gain factor to obtain an optimal momentum gain-factor. The condition
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for equal optimal gain-factors is IpHy0s = I €,. In this case, the ratio of the damping
decrements becomes as/ay = Ip/I,. However, if I, # I, the equal gain condition can not

be fulfilled at all time.

1. Cooling Dynamics for equal decrements

For the equal decrement condition, the particle bypass line should be designed with the
condition: I, = Ip. The beam will maintain the equilibrium condition with €, = H20§. Let

G be an initial gain factor. The equation of damping dynamics becomes

du QG()]{}]D _ G(Q)NSU
27 u 22
dt T, 2Ty (22)
where
1
v = §k2[(ﬂ1[12 — 20&1[1]2 + ’}/1[22)7'[2 + [%] . (23)

The equilibrium emittance is reached when du/dt = 0. Figure 1 shows the right hand side
of Eq. (22). Note that cooling is possible when ueq < u < ug,, Where e is the equilibrium
thermal energy and wuy, is the cooling threshold energy. The initial laser power gain should

be adjusted so that the beam condition falls within the cooling limit.

2. The optimal gain factor

The optimal gain factor G for the cooling equation with equal decrement is

o%kIp _,
Gopt = ’U—]Vs ue . (24)

With this optimal gain factor, that depends on the lattice and beam conditions, the cooling

equation becomes

du 2k21% ,
— = ———=ue " 25
it~ oNT, (25)
The solution of the damping equation is
uo 62u 2k2]2
—du = D¢ 26
ué w2 T ONT, (26)

where uq is the initial value of u in Eq. (10), and u < ug during the beam cooling process.

Figure 2 shows the integral of the left-hand side of Eq. (26) assuming that ug = 3.0. As time
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FIG. 1: The cooling dynamical function for a fixed gain Gy with GoNgsv/4kIp = 0.1 (used only for
an illustrative example), is shown as a function the parameter u. Note that beam cooling occurs
only when u < w,, and the cooling stop when u = ueq is reached. In this case, cooling appears
to be possible for u < wy, &~ 3.6. However, the sinusoidal nature of the momentum kick in Eq. (5)

renders this parametric region not applicable.

increases, the corresponding emittance function u can be obtained from the graph. Note
that when the beam is sufficiently cold with u < 1, the cooling process will behave like u ~ %
at the optimized gain factor.

It appears that at the optimized gain factor, a hot beam could be very efficiently cooled.
However, the OSC takes place through Eq. (5), which is proportional to sin(Ag¢;), and the
correction will be in the wrong direction if the phase shift |A¢;| > m/2. Thus, for a large
thermal energy, like uy = 3, only the part of the beam sufficiently close to the on-momentum
particle will be cooled while the rest will be heated instead. To ensure OSC, we must make

sure that all the particles in the beam (usually 95% is assumed) be within the 7/2 phase

shift. Since a bypass can be designed with very small I; and I5, this phase shift requirement

10
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FIG. 2: The integral of Eq. (26) with ug = 3 is shown as a function of u with optimal gain factor.
The resulting thermal energy parameter u can be obtained from this graph with the value given

by the right hand side of Eq. (26).

translates into
2

U= uy =~ %(/{IDU(;)Q < 2—8 : (27)
As a result, OSC at optimum gain factor is rather inefficient because the emittance of a
cold beam decreases inversely with the cooling time. As will be seen below, OSC at small
gain turns out to be more efficient. Although the cooling represented by Eq. (25) is not
exponential, an initial cooling time can nevertheless be defined by

u NSTO €2u0
Teool = — ~
: du/dt|,_,, 4w

(28)

for an optimum gain factor.

3. One dimensional optical stochastic cooling dynamics

If the second undulator location is designed to be non-dispersive, i.e., Dy = Ppy = 0,

the betatron cooling and heating vanish. The optical stochastic cooling is a one-dimensional
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momentum cooling device. This will simplify the cooling bypass design. Let u, = %kQ(ﬁl I—

201 1 15 + v112)e, and us = %kQI,%ag. The damping equation becomes

dug 2GkIp _ g G?N,k*I%
— = " o4 —— = 29
dt T, ¢ T (29)
The optimal gain is
4 —u —u,
Gopt = ~ k[De Tyse " (30)
At the optimal gain, the cooling dynamics equation becomes
d 4
% = -~ Toe*%wuge*%é. (31)

Note that the longitudinal damping rate is reduced by the factor e=2“= of the thermal energy
of the transverse plane. The longitudinal cooling rate can be increased by a reduction of the
transverse thermal energy wu,, which can be made zero by the additional design constraints
of I1 = 0 and I, = 0. The dynamical evolution of the one-dimensional OSC is similar to
that of the equal-decrement cooling dynamics discussed in earlier sections.

When the bypass optics is designed such that Iy = I, = 0, i.e., u, = 0, we obtain a
one-dimensional optical stochastic cooling with

dus  2GkIp G2N K213

— = ey = 32
dt T, ¢ T (32)
The optimal gain is
4 —u,
Gopt = mu(;e s, (33)

Since the phase shift condition requires 2v/6kIpos < 7 or us < w2 /48, the condition for a

maximum optimal gain with us = 1 assumed in Ref. [5] is incorrect.

IV. AMPLIFICATION FACTOR

The total energy of the photon emission in the first undulator is
W1 == 16052A10AtR = L7'('5]6(]2[(](]]2 (34)
2 o1 Amey ’

where & is the peak electric field amplitude produced in the first undulator, A; is the cross-

section area of the coherent radiation [9], and Atgr = NyA/c is the duration of the radiation

pulse. We also use the fact that a particle with a charge ¢ emits about ;ngﬁ[J J]2 coherent

photons at the energy hw during one pass of the undulator.
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The input and output peak powers of the laser amplifier are

. Wy 1,

P = —LN, = Z¢E2AcN,,

VT Ay e T gt

Py =g, (35)

where ¢? is the power gain from the laser amplifier,

Ny A
2\/6007

is the number of particles in a sample within a bandwidth of Aw|pwam = w/N,. Here,

Ns = Np

(36)

we have assumed 100% photon transmission in the optical amplifier, and assume that the
bandwidth of the laser amplifier is larger than that of the undulator radiation.
The peak electric field at the second undulator depends on the amplifier gain factor and

focusing property through conservation of energy:; i.e.,
522142 = 92512141 ) (37)

where & and A, are the peak electric field amplitude and the photon beam area at the
waist [9], presumably at the mid-point, of the second undulator. The momentum gain-

factor GG is given by
q(E)aNy A K[JJ]
2cyP ’

where the average electric field that the charged particle sees in the second undulator is

G:

(38)

2 L/2 d
(E)2a= % S — (39)

L)y 1+ (s/B)
where L = N_J\, is the length of the second undulator and g, is the betatron amplitude
function for the photon beam at the waist.
For a given momentum gain factor, the peak power becomes

NS(Eb/Q)2

=g
2 ZoENL[JJ]?

Fa, (40)

where Fj is the beam energy, 7 is the impedance in vacuum,

B Ag/A;

- 5
8 [In(A/45 + /T+ (A0/4)7)]

Ay = 27102 is the rms photon beam area at the waist of the second undulator [9], and Ay =

NyAA /4. Minimum laser amplifier occurs when As = 0.3012A0, where F» = 0.1132 [10].

F

(41)
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The average laser power is equal to the peak power multiply the duty factor; i.e.,

_ anbQ\/éo'r _ 2 (Ev/q)* NempA

() To ZoE[JI2 C

Fa, (42)

where n; is the number of bunches, ¢, is the rms bunch length in time, and C is the
circumference of the storage ring. Note that the average power is proportional to the total

number of particles in the storage ring.

A. Laser power for optimal gain

Substituting the optimal gain of Eqs. (24) or (30) into Eq. (40), we obtain the output

peak power of the laser amplifier given by

. Ny (Ey/q)? (2kIp _\’
P = u 4
2= 2N, \ow, ¢ ) T2 (43)

Since the cooling rate is inversely proportional to N, the peak power for an optimized
cooling of N, particle is also inversely proportional to N,. Because of the stability condition
of u < m2/48, the peak power is highly reduced.

Figure 3 shows the peak power versus 7 (beam energy) for proton storage rings at optimal
gain. The laser wavelength is taken to be A = 1 um and each undulator has N, = 10 periods.
Most parameters correspond to the Tevatron: Ng = 2.7 x 10! particles, oy = 0.37 m, and
o5 = 1.3 x 10~%. With the Tevatron revolution period of Ty = 20.1 us, the initial cooling
time is 57 s given by Eq. (28). The magnetic field of the undulator varies from 1 to 10 T.

For a fixed laser wavelength and the undulator magnetic field, the undulator parameter

is obtained by solving the cubic equation:

mwmc

from which the undulator period A, can be solved and plotted in Fig. 3. The self consistent

(By/a)? | (B/q)?
13 K2

solution gives K ~ ~2 at low energies and Py ~ ~ 7%; i.e., it requires a
large laser power to compensate the small coherent radiation flux for hadron beams at low
energies. At high beam energies, £ — 1 and the output power increases as 72 instead. The

position of the minimum laser power can be easily calculated to be

427 mc
Ymin = \/7 . (45)
3v3 \ gBuA
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FIG. 3: The peak laser amplifier power vs v for an optimal gain in the optical stochastic cooling
for a proton storage ring (TEVATRON). The parameters for the Tevatron are oy = 0.37 m,
os = 1.3 x 1074, ny, = 36 bunches, each containing Ng = 2.7 x 10'! particles, E, = 1 TeV, the
mean radius of the TEVATRON of 1000 m, and B, = 10 T. The initial cooling time is given by

Eq (28) with ug = 72 /48 or Teeol ~ 57 s.

The Tevatron at 1 TeV happens to be near the minimum of the power-vs-gamma curve and
is therefore favored by OSC [11]. The undulator period of A\, = 1.93 m (B, = 6 T) is long
enough for superconducting undulators. RHIC lies on the left side of the minimum and has
its output amplifier power scale as y~2(m/q)*. VLHC lies on the right side of the minimum
and has its output power scale as (mvy/q)?.

Figure 4 is a similar plot for electron rings. Because of the small electron mass, there
is no need to consider high magnetic field undulators and we set the magnetic field at

B, = 1 T. The bunch parameters are Ng = 1.0 x 10'*, 6, = 1 ¢cm, and o5 = 1.3 x 1074
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FIG. 4: The peak laser amplifier power vs v for optimal gain in the optical stochastic cooling for
electron storage rings. The parameters for the electron storage ring are o, = 1 cm, o5 = 1.3 x 1074,

Ng =1.0 x 10", and B, = 1.0 T.

Besides laser wavelength A = 1 pum, we also include A = 5, 20, and 100 pm, where the
corresponding numbers of sampling particle are N, = 2.0 x 107, 1.0 x 10, 4.1 x 10%, and
2.0 x 107 respectively. The initial cooling time for the optimal gain given by Eq. (28) is
Teool = L.8N/Ty, which depends on the revolution period Tj.

When A =1 pm, the minimum peak power occurs at ypin = 76.3 or E, = 39.0 MeV; i.e.,
nearly all electron storage rings lie on the right side of the minimum. However, because of
the (m/q)? factor, the output power of the amplifier is very much reduced. That does not
implies that OSC favors electron rings of high energies because the radiation damping rate
increases rapidly with energy. To be effective, the OSC cooling rate, discussed in the last

paragraph, has to be faster than the radiation damping rate of the electron ring.
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Now, we consider a possible example of converting the [IUCF Cooler Ring to an electron
ring and OSC is applied at the Ti-Saphire laser wavelength A = 0.78 pym with N, = 10 and
Au = 5 cm. Setting an initial cooling time of 0.10 s, we find N, = 1.92 x 10°. Since the
bunch length is 3.6 cm with the rf system, we find the number of particles in a bunch is
Ng = 4.36 x 10°. At E, = 500 MeV, the required laser peak power is P =39 W. The peak
power is much larger than that of Fig. 4 because the number of the sampling particle is
much smaller in this example. The natural horizontal emittance and the OSC-equilibrium
emittance are plotted in Fig. 5 as functions of beam energy. Other parameters used in
the plots are ring circumference C' = 85.03 m, bending radius p = 2.44 m, momentum
compaction a, = 0.04938, rf harmonic h = 15, and a bucket-to-bunch-height ratio of 40. We
also note that the OSC damping is almost or more than an order of magnitude when the
electron energy is below 500 MeV. However, at higher energies, OSC damping is completely
inefficient because the rapidly increasing radiation damping rates. As a whole, applications
of OSC to low energy electron storage rings can be useful for attaining high brightness

electron beams.

B. Laser Power for Low Gain Regime

At an optimal gain, the laser power requirement is usually high (see Fig. 3), and the
damping dynamics is not necessarily the most favorable for beam cooling. It would be useful
to consider the OSC in the low gain regime. As an example, we consider the longitudinal
cooling in the low-gain regime. The incoherent heating term is now small and can be
neglected. The damping equation becomes

dus  2GkIp
dt Ty

e "ruse™ M. (46)

Since us < 72/48 is small, the damping is almost exponential and becomes more so as the
cooling proceeds and will continue until the cooling force is balanced by the heating forces
coming from rf noise, intra-beam scattering, etc. This is highly in contrast with the cooling
at optimum gain-factor discussed in Sec. II1.C.2, where the cooling process becomes more
and more inefficient as the beam is cooled. With wu, = 0, the cooling time is

u
€5

cool ~ — 1 . 4
Teool = 5GkIp " 47)

17



104 E T T T T T T T T T T T T T T T T | T T T T E
Z 5

3 g ®
10° = x 0 E
~ E X o =
£ - . o i
10 — X —
\l:/ E X o ;
) C X ]
(@) L (@] i

o X
I 10! = o —
S E 3
o— L -
E C o ]
= B i
0 |_ |
107 E o E
o X Natural Emittance ]
i O Equilibrium Emttance ]
10—1 1 Q 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1

0.00 0.25 0.50 0.75 1.00 1.2

Energy (GeV)
FIG. 5: The equilibrium electron emittance for a cooling time of 0.1 s is shown as a function of
the electron beam energy.

The resulting peak power is

. T 2 N.(E 2 2ug
P, = ( 0 ) s ( b/q2) € Fs ’ (48)
Tcool ZONug[JJ] (QKID)2

The average power of the laser amplifier is

= () (8) 10

where C' is the circumference of the storage ring. Note that the average power depends on
the total number of particles n,/Ng in the ring and the square of the energy over charge
(Ev/q)*.

Figure 6 shows the average power requirement versus cooling time in the low gain regime,
where the undulator parameters are A = 1.0 um, N, = 10, and the undulator magnetic
field varying from 1 T to 10 T. The corresponding beam parameters are o, = 0.37 m,
os = 1.3x107*, n;, = 36 bunches each containing Ng = 2.7 x 10" protons at £, = 1 TeV for

the Tevatron whose mean radius is 1 km, while o, = 2.0 ns, 05 = 1.0x 1073, n, = 60 bunches
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FIG. 6: The laser amplifier power in the low gain regime for Tevatron at 1 TeV and RHIC at
100 GeV/amu. The laser wavelength is A = 1u, and the undulator parameters are N, = 10
with the magnetic field strength B, listed in the graph. The corresponding beam parameters are
oy = 0.37 m, o5 = 1.3 x 107%, ny, = 36 bunches, each containing Ng = 2.7 x 10! particles, at
E, = 1 TeV for the TEVATRON, and o, = 2 ns, 05 = 1.0 x 1073, n; = 60 bunches, each containing
Np = 1.0 x 10? particles, E, = 100 GeV /nucleon for gold ion, and the circumference of 3833.85 m
for RHIC.

each containing Ng = 1.0 x 10% gold ions (A = 197 and Z = 79) at E}, = 100 GeV /nucleons
for RHIC whose circumference is 3833.85 m. We see that for a cooling time of 1200 s which
is fast enough to counteract intra beam scattering, the average output power for Tevatron is
only 16 W when superconducting undulators at B, = 6 T is used. On the other hand, the
average output power for RHIC is more than 1000 times larger. Because 7 is one order of
magnitude smaller than that of the Tevatron, the undulator period becomes A\, = 2.3 cm,

two orders of magnitude smaller. This implies that superconducting undulators may not be
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FIG. 7: The laser amplifier power in the low gain regime for RHIC at 100 GeV /amu with the laser
wavelength of A = 10u and the undulator parameters are N, = 10. The magnetic field strength
B, is listed in the graph. The corresponding beam parameters are o, = 2 ns, o5 = 1.0 x 1073,
np = 60 bunches, each containing Ng = 1.0 x 10° particles, £, = 100 GeV /nucleon for gold ion,

and the circumference of 3833.85 m.

used and only 1 T undulators are possible. The output power for the RHIC application is
therefore increased by at least one more order of magnitude.

Note that when the laser wavelength is chosen to be A = 1 um for RHIC, the undulator
period is A, = 2.3 cm, which may be difficult to attain a high field undulator magnet. The
undulator strength parameter K becomes very small, and the required laser amplification
power becomes very large (see Fig. 6). If there is a longer wavelength high bandwidth laser,
e.g. A = 10um, the undulator period becomes 23 c¢m, and the required laser amplification
power will be greatly reduced as shown in Fig. 7. Although it may still require 80 W of
laser amplification power to attain a 1 hr cooling time (for B, = 6 T), this is dramatically

improved in comparison with the 1000 W requirement shown in Fig. 6.

20



V. CONCLUSION

In this paper, we derived a necessary condition for the transverse phase space damping in
the optical stochastic cooling. We have also explored the damping rates, the amplification
factor, cooling dynamics, and the required peak and average output power of the laser. We
derived an optimal laser focusing condition for the charged particle beam and the laser beam
interaction in an undulator. With the available optical amplifiers at the present, it is rather
impractical to use the optical stochastic cooling method to cool proton and heavy ion beams
at very high energies. However, we find that the cooling method may be beneficial to low
energy electron beams, and around 1 TeV proton beam energy.

We also point out the difficulties of OSC with the optimal gain condition. At the optimal
gain, the required laser power is usually very large. As the beam is cooled, it is difficult to
change the charged particle optics for a larger kIp to compensate the decrease in emittances.
The best solution is to cool beams in the low gain regime, where the heating term may be
negligible. For Tevatron, it seems to be feasible to use the Ti-Saphire A = 0.78 pum for OSC
at 1 TeV. One needs a shorter wavelength broadband laser for VLHC, and a long wavelength
broadband laser for RHIC.

In actual implementation of the OSC, one should also consider the efficiency of laser
pumping and optical transmission, the linearity of the laser amplification, noise, etc. These
problems should be fully analyzed if there is a realistic project to carry out experimental

tests.
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If we assume that the photon beam be distributed as bi- Gaussian radially but uniformly along

the longitudinal s-direction, the total energy of the photons can be written as

2 2
Wo = Wo/As exp (_:1:_ — Z—> drdzAs,

210 ,0, 202 202

where the energy density is ¢g€? = (Wp/As)/(2n0,0,). Here £ is the peak field at r = 0.
Now, we can write Wy = ¢g€2AAs, i.e. the effective photon beam area is A = 270 0. For a
photon beam with cylindrical symmetry, we find A = 27o2.

The emittance of the photon beam, A/(47), may substantially differ from the emittance of
the charged particle beams, e.g. 3.3 nm for Tevatron at 1 TeV and 16 nm for RHIC beam at
100 GeV/amu. The efficiency of the cooling may be reduced by the overlap area between the
charged particle and the photon beams. The optimal energy gain at the second undulator for
the charged particle beams is equivalent to the minimum in the laser power.

At high energy, the self-consistent solution of A = A\, (2 + K?)/(47?) and K = qBy\,/(27rmc)
leads to a conclusion that the peak power of the laser amplifier is proportional to 72 of Eq. (43).

The minimum power requirement occurs at ymin ~ 1.14/mmc/(¢BuA).
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