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Abstract

Instead of slip-stacking, an alternate method of doubling the linear intensity of the
Fermilab Main Injector is discussed. This method makes use of rf barriers to transfer
12 booster batches from the Fermilab Booster to the Main Injector in 12 consecutive
booster cycles, totaling 800 ms. After that, adiabatic capture of the beam into 53 MHz
buckets can be accomplished in about 10 ms. Because the beam is debunched during
the injection process and no rf voltage is required, the beam loading voltages in the rf
cavities are small can be eliminated by a combination of counterphasing and mechanical
shorts.
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1 INTRODUCTION

In the Fermilab Run IIa, the Fermilab Main Injector is supposed to deliver one booster batch

of 5.0 × 1012 protons (84 bunches each containing 6 × 1010 protons) to the target for the

production of anti-protons in a 1.5 s acceleration cycle [1]. In the Run IIb upgrade [2], the

number of protons delivered will be doubled. The method to accomplish this is through

slip-stacking two booster batches [3]. At the injection total energy of E = 8.938 GeV, the

Main Injector has a circumference in time of T0 = 11.13 µs, which is exactly 7 booster

batches long. The acceleration cycle time in Run IIb will be increased to 2.0 s. This cycle

time should be long enough to load the Main Injector with 6 booster batches each of length

Tb = 1.59 µs, slip-stack one batch to be used for anti-proton production, and extract the

other 5 batches for the NuMI neutrino experiment. This cycle is sketched in Fig. 1.

double single single single single singleempty

p

production expt. expt. expt. expt. expt.

-

Density:

Usage: NuMI NuMI NuMI NuMI NuMI

Figure 1: The Main Injector in Run IIb accelerates 5 single-density booster batches for the
NuMI neutrino experiment, and one double-density booster batch for anti-proton production. One
booster-batch length is left empty for the kickers. At the injection energy of E = 8.939 GeV,
one booster-batch length is Tb = 1.59 µs and the revolution period of the Main Injector is
T0 = 7Tb = 11.13 µs.

Slip stacking had been studied extensively at the CERN Proton Synchrotron (CPS) to

double the number of protons per bunch for the production of anti-protons. However, due to

the high loss and large increase in final longitudinal and horizontal emittances, the method

had never been used in production runs [4]. The main disadvantage of this project is that

it involves rf manipulations of intense beams at very low rf voltages resulting in a severe

beam loading situation. At Fermilab, we plan on correcting the beam loading with direct

rf feedback around the rf cavities in the Main Injector. Simulations show that very large

loop gains are needed to remove the beam loading to a sufficient level. The large loop gains,

however, are associated with a number of stability issues.

An alternative way to double the density of the proton bunches is through the use of rf
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Table I: Some injection parameters of the Fermilab Main Injector.

Nominal total energy E (GeV) 8.9383

Relativistic γ/β 9.326/0.99448

Transition gamma 21.8

Slip factor η −0.008915

Revolution period T0 (µs) 11.1339

Length of booster batch Tb = T0/7 (µs) 1.5906

Booster repetition rate (Hz) 15

barrier waves. First, inject two booster batches into the Main Injector. Second, introduce

two barriers at the ends of the two-batch region. Third, squeeze the barriers to compress

the two-batch region to a one-batch length resulting in doubling the longitudinal intensity.

Fourth, capture the compressed double-density batch into 53 MHz rf buckets. Finally, fill

the next 5 booster lengths with one booster batch each. The result is a double-density

batch in the first section for anti-proton production followed by 5 single-batch sections for

NuMI neutrino experiment. This method of increasing beam density using barriers has

been studied theoretically by Machida [5] and Ng [6], and experimentally at the Brookhaven

Alternating Gradient Synchrotron [7]. However, this method has the disadvantage of being

too time consuming. In order not to increase the longitudinal emittance of the beam, the

bunch compression by barrier squeezing has to be adiabatic. The barrier movement speed

Ṫ2 must be very much less than one half the maximum phase-drifting speed of the particles

with the largest fractional momentum offset, or [6]

|Ṫ2| � 1

2
|ηδ| , (1.1)

where η is the slip factor and T0 the revolution period of the accelerator ring. Thus, for the

compression of a booster-batch length Tb, the time required becomes

Barrier squeezing time � 2Tb

|ηδ| . (1.2)

Using the Main Injector parameters in Table 1, even with a maximum fractional momentum

half spread of δ = 3.39 × 10−3, the barrier squeezing time must be very much larger than

0.36 s. This will lengthen the Main Injector acceleration cycle significantly and is therefore

unacceptable.

Another method of doubling beam density by barriers was introduced by Griffin [8].

This is a momentum stacking method which does not require adiabatic bunch compression.
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As a result, injection from the Fermilab Booster can proceed batch by batch at the booster

cycling rate, and all the 6 batches can have their density doubled in 12 booster cycles. After

that the beam will be captured adiabatically into 53 MHz buckets in about 10 ms before

acceleration takes place. The whole accelerator cycle should be well within the proposed

2 s. In this paper, we are going to examine this method in detail. Some simulations will be

presented.

2 THE INJECTION METHOD

Let us start with a booster batch of protons of length Tb and full fractional momentum

spread ∆. This batch, denoted by 1 in Fig. 2(a), is injected into the Main Injector at a

negative momentum offset, so that the highest fractional momentum offset† is δi1 and the

lowest fractional momentum offset is δi2 = δi1−∆. The longitudinal position of the injection

is so chosen that the right side of the batch just touches the left side of a square barrier

(denoted by B) of width T1 and magnitude V , which is moving to the left at the speed

of Ṫ2 = Tb/(2Tc) where Tc is the booster-cycle time. The momentum offset of the batch

injection is so chosen that the proton of highest energy on the left side of the batch will drift

to the right at the speed of 1
2
Tb per booster cycle or −Ṫ2. Thus, after one booster cycle,

another batch marked 2 in Fig. 2(b) can be injected again with its right edge touching the

left side of the barrier. In other words, at every booster cycle, a new booster batch can be

injected with the injection point moved half a booster-batch length to the right. The linear

beam density can therefore be doubled.

The only parameter here is the size of the barrier, which is so chosen that after the

booster batch emerges from the barrier, the highest and lowest energies of the batch become

symmetric about the nominal energy of the accelerator ring. This is necessary because we

need to place another stationary barrier on the right side of the moving barrier in order to

limit the longitudinal motion of the protons after passing through the moving barrier so as

to guarantee empty spaces along the Main Injector for successive batch transfer from the

Booster. It will be shown in the Appendix that the injection method described here just

depends on the integrated size of the barrier and is independent of its shape. As a result,

we denote the size of the barrier by V T1 and barrier of any shape can be used. However, for

†We denote by the subscript 1 the particle at the upper right corner of the batch and 2 the particle at
the lower right corner of the batch
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Figure 2: (color) (a) A booster batch (marked 1) is injected at negative momentum offset with
the right edge just touching a left-moving barrier (marked B). The vertical arrows are spaced one
booster-batch length Tb. (b) After a booster cycle, the barrier moves by half a booster-batch length
while all particles in batch 1 drift past the left edge of the barrier. After exiting the barrier, the
batch has maximum and minimum momenta, δf1 and δf2, symmetric about the on-momentum
particles. A second booster batch (marked 2) is now injected.

the ease of derivation, we continue to assume a rectangular barrier.

The mathematic determination of V T1 is as follows. Let us start from the time when

the proton at the upper right corner of the batch enters the barrier. After n turns into the

barrier, the fractional momentum offset is

δn1 = δi1 + n∆δ , (2.1)

where

∆δ =
eV

β2E
(2.2)

is the fractional momentum gained by the particle encountering the barrier per turn, e is

the proton charge, E is the on-momentum energy of the protons in the Main Injector, βc

4



is the particle longitudinal velocity, and c is the velocity of light. Suppose this proton exits

the barrier in the N1 turns. Its phase drift in time‡ towards the right is∫ N1

0

ηT0(δi1 + n∆δ)dn , (2.3)

where η is the slip factor and T0 is the revolution period. At this moment, the barrier has

moved towards the left by the phase NṪ2T0. Because the width of the barrier is T1, we must

have

T1 − N1Ṫ2T0 =

∫ N1

0

ηT0(δi1 + n∆δ)dn . (2.4)

The turn number N1 therefore satisfies the quadratic equation

N2
1 + 2N1

δi1 − Ṫ2/|η|
∆δ

− 2T1

ηT0∆δ
= 0 . (2.5)

Noting that the Main Injector is below transition at injection, the solution is

N1 = −δi1 − Ṫ2/|η|
∆δ

−

√√√√(δi1 − Ṫ2/|η|
∆δ

)2

− 2T1

|η|T0∆δ
. (2.6)

We see that the first term on the right is positive while the last term in the square root

is negative. Thus both ± signs before the square root should give a positive turn number

N1. However, when the barrier width goes to zero (T1 → 0), number of turns to clear the

barrier also goes to zero (N1 → 0). Since δi1 − Ṫ2/|η| < 0, this validates the choice of the

negative sign. Substituting into Eq. (2.1), we obtain the final fractional momentum offset of

the proton concerned,

δf1 = δi1 + N1∆δ =
Ṫ2

|η| −

√√√√(δi1 − Ṫ2

|η|

)2

− 2T1∆δ

|η|T0

. (2.7)

The final fractional momentum offset of the proton with the lowest energy is also given

by Eq. (2.7) when the substitutions of the subscripts i1 → i2 and f1 → f2 are made. In

order that final momentum spreads of the protons to be symmetric about the nominal energy

E, we require δf1 = −δf2, or

Ṫ2

|η| −

√√√√(δi1 − Ṫ2

|η|

)2

− 2T1∆δ

|η|T0
= −


 Ṫ2

|η| −

√√√√(δi2 − Ṫ2

|η|

)2

− 2T1∆δ

|η|T0


 . (2.8)

‡We denote the phase drift as time arrival ahead of some on-momentum particle. Because the Main
Injector at injection is below transition or η < 0, the phase drift or arrival time is positive for a negative-
momentum-offset particle.
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Now we substitute for δi1 = −Ṫ2/|η|, δi2 = δi1 − ∆, and express everything in terms of

2Ṫ2/|η|. The above equation simplifies to§

1 −√
1 − A =

√
(∆̄ + 1)2 − A , (2.9)

where ∆ = ∆̄(2Ṫ2/|η|),
A =

2T1∆δ

|η|T0

(
η

2Ṫ2

)2

, (2.10)

which is proportional to V T1, the size of the barrier. We can readily obtain

A =
1

4
(1 + ∆̄)2(∆̄ + 3)(∆̄ − 1) , (2.11)

or

V T1 =
|η|3β2ET0

32eṪ 2
2

(2δi1 − ∆)2

(
2δi1 − ∆ − 4Ṫ2

|η|

)(
∆ − 2Ṫ2

|η|

)
. (2.12)

3 CRITICAL MOMENT

Obviously, a larger initial fractional momentum spread ∆ of the beam will lead to a larger

final fractional momentum spread. However, when the initial fractional momentum spread

is large enough, protons with the highest momentum can acquire so much energy from the

moving barrier that their drifting speeds to the left exceed the speed of the moving barrier.

The result is that these particles will not be able to emerge from the moving barrier and this

injection method fails. This happens when

Ṫ2 < |η|δf1 , (3.1)

where δf1 is given by Eq. (2.7), or the expression under the square root of Eq. (2.7) becomes

negative. This gives us the critical size of the moving barrier

(V T1)c =
|η|β2ET0

2e

(
2Ṫ2

|η|

)2

. (3.2)

The same can be inferred by squaring Eq. (2.9) to give

√
1 − A = 1 − (1 + ∆̄)2

2
, (3.3)

§Every normalized variable carries a bar.
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and notice that the left side is positive semi-definite while the right side can be negative.

This leads to the critical value of A = 1 which is the expression given by Eq. (3.2) and the

corresponding maximum normalized ∆̄c =
√

2− 1. Thus the maximum allowable initial full

fractional momentum spread of the beam is

∆c =
(√

2 − 1
) 2Ṫ2

|η| . (3.4)

For the Main Injector, these critical numbers are (V T1)c = 3.1421 kV-µs and ∆c = 0.001109.

The critical half energy spread of the batch is therefore ∆E 1
2
c = ∆cβ

2E/2 = 4.900 MeV.

4 GENERALIZED METHOD

In order to incorporate initial full momentum spread of the beam larger than the critical

value of ∆c = 0.001109, the obvious way is to let the barrier move to the left at a higher

speed. Let the barrier move to the left at the speed xTb for each booster cycle of Tc = 1/15 s

so that Ṫ2 = xTb/Tc (x = 1
2

in Sec. 2 and 3). To ensure injection for each booster cycle, an

injected batch must clear the left edge of the moving barrier in a booster cycle. Therefore,

protons in the batch with top energy must drift to the right at the speed of yTb/Tc = yṪ2/x,

with x + y = 1. In other words, these top-energy protons at injection must have fractional

momentum offset given by

δi1 = − yṪ2

x|η| . (4.1)

The derivation proceeds in the same way as in Sec. 2. These protons have final fractional

momentum offset given by Eq. (2.7) and the equation for the determination of V T1 is again

given by Eq. (2.8). Substituting for the value of δi1 given by Eq. (4.1) and normalizing

everything with respect to 2Ṫ2/|η|, we obtain, instead of Eq. (2.9),

1 −
√

1

4x2
− A =

√(
1

2x
+ ∆̄

)2

− A , (4.2)

where A is still given by Eq. (2.10). Squaring, we get

2

√
1

4x2
− A = 1 − ∆̄

x
− ∆̄2 . (4.3)

To ensure that the right side will not become negative, we obtain the critical condition

∆̄ <

√
1

4x2
+ 1 − 1

2x
. (4.4)
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Putting back the normalization factor 2Ṫ2/|η| = 2xTb/(|η|Tc), we obtain the critical full

fractional momentum spread of the beam

∆c =

(√
x2 +

1

4
− 1

2

)
2Tb

|η|Tc

. (4.5)

Conversely, given a full fractional momentum spread ∆, the speed of the moving barrier

must be faster than xTb/Tc where

x =

√
|η|Tc∆

2Tb

( |η|Tc∆

2Tb

+ 1

)
. (4.6)

For example, given the barrier moving rate x, and given an initial full momentum spread

∆ < ∆c, what is the required V T1 for the moving barrier? This can be obtained by continuing

the solution of Eq. (4.3). The final answer is

V T1 =
T0T

2
b β2E

2|η|T 2
c

4x2A =
T0T

2
b β2E

2|η|T 2
c

[
1 − ∆̄2

][ (
1 + x∆̄

)2 − x2
]

. (4.7)

The critical size of the moving barrier can be obtained easily from Eq. (4.3):

A =
1

4x2
. (4.8)

Since A is given by

A =
2T1∆δ

|η|T0

( |η|
2Ṫ2

)2

=
2T1∆δ

|η|T0

( |η|Tc

Tb

)2
1

4x2
, (4.9)

the critical size of the moving barrier is independent of x and remains given by

(V T1)c =
T0T

2
b β2E

2e|η|T 2
c

, (4.10)

which is 3.1421 kV-µs for the Main Injector.

At the critical condition, the injection energy offset ∆Ei1 = δi1β
2E and final half energy

spread ∆Ef1 = δf1β
2E are plotted in Fig. 3 as functions of initial half energy spread ∆E 1

2
i.

As the initial half energy spread increases, the critical speed of the barrier increases. The top-

energy particles will be drifting at the same speed as the barrier and therefore the final half

energy spread increases. On the other hand, the drifting of the batch at injection decreases,

so does the initial energy offset at injection. For a given barrier speed Ṫ2 = xTb/Tc, the
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Figure 3: At the critical condition, the initial energy offset at injection ∆Ei1 = δi1β
2E and final

half energy spread ∆Ef1 = δf1β
2E versus the initial half energy spread of the booster batch.

Figure 4: (color) Given a barrier speed, the plot shows the critical initial half energy spread of the
booster batch ∆E 1

2
i, the initial energy offset ∆Ei1, and the final half energy offset ∆Ef1.
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critical injection energy offset ∆Ei1, critical initial half energy spread ∆E 1
2
i, and critical final

half energy spread ∆Ef1 can be looked up in Fig. 4. Thus, if the initial half energy spread

∆E 1
2
i is very small, we can perform the injection with a very slow speed for the moving

barrier. This allows us to inject at every xTb along the accelerator ring and we can obtain

x−1-fold stacking in the momentum space. The final energy spread will therefore increase

by x−1 folds.

5 EMITTANCE AND LINEAR DENSITY

When the injection barrier is moving to the left at xTb per booster cycle, the position of

injection along the accelerator ring slips to the left by xTb for each injection or for each

booster cycle. This means that we can inject in the length xTb a whole batch of length Tb.

Or we can inject in the length Tb, 1/x batches. Therefore the ratio of emittance by this

method and the original emittance is

re =
δf1 × 1
∆
2
× 1

x

. (5.1)

Here, we assume circumference of the accelerator ring is infinitely long so that injection

can be continued forever. The final momentum offset δf1 is still given by Eq. (2.7) with

δi1 = −yṪ2/(x|η|). Normalizing with respect to 2Ṫ2/|η|, we obtain

δ̄f1 =
1

2
−
√

1

4x2
− A . (5.2)

With the help of Eq. (4.3), this gives

δ̄f1 =
∆̄

2x
(1 + x∆̄) . (5.3)

The emittance-growth ratio becomes

re = 1 + x∆̄ = 1 +
|η|Tc∆

2Tb
. (5.4)

It is interesting to see that this emittance growth is independent of x, or the speed at which

the barrier moves; but it depends strongly on the initial momentum spread of the beam.

The increase in emittance is evident in the lower plot of Fig. 2. We see that although the

top-right corner of a batch is always connected to the top-left corner of a following batch,
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there is always a gap between the bottom-right corner of a batch and the bottom-left corner

of the following batch. This gap constitutes the increase in emittance because it will produce

a triangular space between two consecutive batches after they exit the moving barrier, (see

Figs. 6 to 8 below).

Another important number is the final linear density. When the barrier is moving to the

left at the speed of xTb per booster cycle, we can inject a batch at every length xTb rather

than at every Tb without the barrier. Thus, the ratio of linear density with barrier to the

linear density without barrier is

rd =
1

x
. (5.5)

For example, the linear density is doubled when x = 1
2
. For this reason, we should choose

the lowest barrier moving speed allowable by the initial momentum spread of the batch. In

other words, given ∆, we should stick to the critical x given by Eq. (4.6) and the critical size

(V T1)c for the barrier given by Eq. (4.10).

Given an initial half energy spread of the booster batch, the slowest speed Ṫ2 = xTb/Tc

of the moving barrier and the emittance increase re − 1 are plotted in Fig. 5. We see that

in order to keep the barrier speed at Ṫ2 = Tb/(2Tc) or x = 1
2
, the half energy spread of

the booster batch should not exceed ∆E 1
2
i = 4.90 MeV. We also see that the longitudinal

emittance increases linearly with ∆E 1
2
i as indicated by Eq. (5.4).

6 APPLICATION TO MAIN INJECTOR

At the extraction of the Fermilab Booster, a booster bunch has a bunch area of A = 0.10 eV-s.

Since there are hB = 84 bunches at 53 MHz rf in the batch, if they are debunched adiabati-

cally, the half energy spread is only

∆E =
hBA
Tb

= 2.64 MeV . (6.1)

However, time-consuming adiabatic debunching in the Booster is not possible because the

Booster is a 15 Hz rapid-cycling machine. As a result, the rf voltage Vrf must be lowered

gradually after transition crossing to a small value near extraction. This process can also

encounter problems, because the accelerating bucket will become smaller and beam loss can

occur.
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Figure 5: The slowest or critical speed of the moving barrier and the longitudinal emittance
increase versus the half energy spread of the booster batch.

The half energy spread of a booster bunch is

∆E =

√
ωsAβ2E

πη
, (6.2)

where

ωs = ω0

√
hηVrf

2πβ2E
(6.3)

is the angular synchrotron frequency and ω0/(2π) = 1/Tb is the Booster revolution frequency.

At extraction, the energy E of a particle together with its Lorentz factors are the same as

those for the Main Injector at injection and are listed in Table I. The Booster has a transition

gamma of γt = 5.6; the slip factor at extraction is therefore η = 0.02087. Thus if the rf voltage

can be lowered to Vrf = 10 kV, the half energy spread of the bunch becomes ∆E = 5.47 MeV.

This is still larger than the critical half energy spread of ∆E 1
2
c = 4.900 MeV, if we would

like the barrier to move at the speed given by x = 1
2
.

Another method of reducing the half energy spread is to introduce higher harmonic

cavities into the Booster rf system so that the bunch can be made more rectangular like.
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The rf wave becomes

V (θ) = Vrf [sin θ − r sin mθ] , (6.4)

where θ is the rf phase, m the higher harmonic multiple and −rVrf the voltage of the higher

harmonic cavity. If we let r = 1/m, the rf potential becomes quartic at small amplitude. The

bunch is therefore lengthened with its energy spread lowered. For a A = 0.11 eV-s bunch

at Vrf = 9.725 kV, the half energy spread is reduced [9] from ∆E = 5.43 MeV to 5.0 MeV

with the introduction of a m = 3 higher harmonic cavity. For a A = 0.10 eV-s bunch at

Vrf = 4.8 kV, the half energy spread is reduced from ∆E = 4.56 MeV to 3.7 MeV with the

introduction of a m = 2 higher harmonic cavity.

The momentum spread of the booster bunch can also be reduced in the Booster before

extraction using a bunch rotation by one quarter of a synchrotron oscillation. At this mo-

ment, longitudinal coupled-bunch instabilities are observed near extraction. Bunch rotation

of an oscillating bunch will not necessarily produce a bunch of smaller momentum spread.

Thus, the coupled-bunch instabilities must be cured by either de-Qing the offensive driv-

ing higher-order modes inside the booster cavities and/or repairing the longitudinal damper

which has not been working properly at the present. We are confident that the half en-

ergy spread of a booster batch can be made below the critical ∆E 1
2
c = 4.900 MeV before

extraction.

6.1 SIMULATIONS

We perform simulations of this injection method from the Booster to the Main Injector with

the intention of doubling the linear particle density. Thus, we require the barrier movement

of 1
2
Tb per Booster cycle or x = 1

2
, or Ṫ2 = Tb/(2Tc) = 1.193× 10−5. The half energy spread

of the booster batch is assumed to be ∆E 1
2
i = 4.900 MeV initially, exactly the critical value,

for such barrier moving speed. Particles with the highest energy are injected with the offset

of ∆Ei1 = −Ṫ2β
2E/|η| = −11.8285 MeV so that, before entering the moving barrier, they

drift at the same speed as the moving barrier but in the opposite direction. The moving

barrier is at its critical value of V T1 = 3.1421 kV-µs as given by Eq. (4.10).

From these information, particles with the lowest energy are injected with offset ∆Ei2 =

∆Ei1 − 2∆E 1
2
i = −21.6276 MeV. After exiting the moving barrier, the final energy off-

sets of particles with the highest and lowest energies are, respectively, ∆Ef1 = −∆Ei1 =

11.8285 MeV and ∆Ef2 = −∆Ef1 = −11.8285 MeV. These are tabulated in Table II. Thus,
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the energy spread has been increased by the factor ∆Ef1/∆E 1
2
i = 11.8285/4.8995 = 2.419

and half of this, that is 1.209, is the ratio of the final longitudinal emittance to the initial

longitudinal emittance.

Table II: Some parameters in the simulations of this injection method from Fermilab Booster to
Main Injector.

Ṫ2 = Tb/Tc 1.193 × 10−5

Half energy spread ∆E 1
2
i (MeV) 4.900

Injection energy offset

top of bunch ∆Ei1 (MeV) −11.8285

bottom of bunch ∆Ei1 (MeV) −21.6276

Final half energy spread ∆Ef1,f2 (MeV) ±11.8285

Moving barrier V T1 (kV-µs) 3.142

Minimum reflection barrier V T1 (kV-µs) 0.7855

It is advisable to have the barrier voltage as high as possible, so that its width can

be made narrow to allow for more space for injection. We choose T1 = 1.0 µs so that

V = 3.1421 kV. We start by placing this barrier with its left edge at a position which we

denote by 6.5Tb along the Main Injector as illustrated in top plot of Fig. 6, where we also see

the first batch injected with energy offset at the position between 5.5Tb and 6.5Tb. Another

stationary barrier is placed with is right edge at the 7.0Tb point of the ring to block particles

with negative energies so that their energy become positive after reflection and drift to the

left so as to ensure space for new injections. From the Hamiltonian in Eq. (A.2) or Eq. (A.5),

the minimum size of this reflection barrier is

V T1 =
|η|T0∆E2

f1

2β2E
= 0.7855 kV-µs. (6.5)

To ensure that the barrier will catch all the right-drifting particles, we choose V T1 = 0.8 kV-

µs. We further choose its width as T1 = 0.25 µs so that V = 3.2 kV, and the barrier is

positioned between 6.75Tb and 7.0Tb. The stationary barrier is represented by a red-filled

box while the moving barrier is represented by an unfilled box with an arrow inside pointing

to the direction of its motion. After one booster cycle, we see in the bottom plot of Fig. 6

that all the particles of the first batch go past the left edge of the moving barrier and some

are reflected by the stationary barrier. At this moment, a second batch is injected in the

region between 5.0Tb and 6.0Tb. We alternate the color of successive batches so that their
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Figure 6: (color) Top: First batch (black) is injected between 5.5Tb and 6.5Tb with the right side
touching the left side of the moving barrier, illustrated as an unfilled box with an arrow. Bottom:
After one booster cycle, all particles in the first batch have just cleared the left side of the moving
barrier, which is at 6.0Tb. The second batch (red) is now injected between 5.0Tb and 6.0Tb. Moving
barrier has width T1 = 1.0µs and strength V = 3.1421 kV. Vertical dashed lines are spaced at Tb.
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trajectories can be followed easily. The six vertical dashes lines divide the circumference of

the Main Injector into 7 regions each of which is of length Tb or one booster-batch long. Two

thousand macroparticles are used to simulate each booster batch.

Successive batch injection continues. The situation of one booster cycle after the injec-

tion of the 12th batch between 0.0Tb and 1.0Tb, or 12 booster cycles after the injection of the

first batch, is shown in the top plot of Fig. 7. We need to wait until another booster cycle

later, the bottom plot, to allow all the particles to drift inside the designated momentum

spread. This is now the time to perform adiabatic capturing and acceleration. Thus an

injection time of 13 booster cycles or 0.87 s will be required. We see empty spaces between

successive batches in both plots of Fig. 7, indicating an increase in longitudinal emittance.

The ratio of final emittance to initial emittance will be slightly larger than re = 1.209 given

by Eq. (5.4) because of the finite number of injections here. For the same reason, the ratio of

final linear density to initial linear density will be slight less than rd = 2.0 given by Eq. (5.5).

The simulation is repeated with the width of the moving barrier reduced to T1 = 0.5 µs;

the strength is therefore increased to V = 6.2842 kV. Because of the narrower width of the

barrier, at the injection of the first batch, the left side of the barrier can be placed at 6.7Tb,

correspondingly the first batch between 5.7Tb and 6.7Tb, without particle loss. Successive

batch injections are carried on in the same way. The top plot of Fig. 8 shows the situation of

one booster cycle after the injection of the 12th batch at position between 0.2Tb and 1.2Tb,

or 12 booster cycles after the injection of the first batch. Compared with the top plot of

Fig. 7, all particles are now inside the designated momentum spread. Adiabatic capture can

begin immediately. Thus, one booster cycle can be saved. However, the longitudinal spread

is contained within 6.2Tb, which is not much less than the ∼ 6.5Tb in the bottom plot of

Fig. 7. Thus the emittance ratio and linear-density ratio should be roughly the same as in

the case of the 1 µs moving barrier.

6.2 DISCUSSIONS

1. It is nontrivial to compute the initial positioning of the moving barrier relative to the

position of the stationary barrier. A sufficient condition is that a particle will not be

seeing the two barriers in the same revolution turn. This implies that a particle should

emerge from the moving barrier before entering into the stationary barrier. Particle

2 at the lower right corner of the batch will emerge first from the moving barrier. At
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Figure 7: (color) Continuing the injection from Fig. 6. Top: One booster cycle after the injection
of the 12th batch between 0.0Tb and 1.0Tb, or 12 booster cycles after the injection of the first batch.
Bottom: Another booster cycle later or 13 booster cycles after the injection of the first batch. All
particles are within the designated final momentum spread and adiabatic capture can begin.
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Figure 8: (color) Same as Fig. 7, but with the width of the moving barrier reduced to 0.5 µs and
strength increased to 6.2842 kV. At injection of first batch, left side of barrier was placed at 6.7Tb.
Top: One booster cycle after the injection of the 12th batch between 0.2Tb and 1.2Tb, or 12 booster
cycles after the injection of the first batch. Bottom: Another booster cycle later.
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the critical condition, it is easy to compute using Eq. (2.3) that it takes the particle

N2 = 3119 turns to pass through the moving barrier of width 1.0 µs. At this moment,

the barrier moves the left a distance N2Ṫ2T0 = 0.26Tb. Thus at the injection of the

first batch, the right side of the moving barrier should be 0.26Tb to the left side of the

left edge of the stationary barrier. Or, the left side of the moving barrier should be at

location [7 − 0.26 − (0.25 + 1.0)/Tb]Tb = 5.95Tb along the ring. But actually we can

place it at 6.5Tb without any particle loss. This is because we can allow the particle to

interact with both barriers in the same revolution turn, provided that no particle will

be energetic enough to penetrate the stationary barrier or to go outside the designated

final energy spread of the beam.

2. Barrier waves are usually used to confine a beam so that it will stay within a designated

region along the accelerator ring. The integrated sizes of the barriers need not be

accurate as long as they are large enough to confine the particles of the highest and

lowest energies. However, this is not true here. Although the injection process does

not depend on the shape of the moving barrier, its integrated size has to be accurate

in order to have the final positive and negative energy spreads be equal and opposite.

Otherwise, after reflection by the stationary barrier, the positive energy spread will be

modified, resulting possibly in an increase in the longitudinal emittance and particle

loss. Here, we would like to study the effect of such an error. The top plot of Fig. 9

shows the situation when V T1 is 10% larger than its critical value, while the width

of the barrier is kept at T1 = 0.5 µs. The plot shows the moment one booster cycle

after the injection of the 12th batch, and should be compared with the top plot of

Fig. 8. For a stronger moving barrier, most particles will emerge from the barrier at

higher energies. This is evident for the particles with the least energy in the batch.

We see a final negative momentum spread of δf2 = −1.206× 10−3, which is about 10%

less negative than the −1.344 × 10−3 in the top plot of Fig. 8. Actually, the negative

normalized final momentum spread is given by

δ̄f2 =
1

2
−
√(

1

2x
+ ∆̄

)2

− A , (6.6)

where the normalized initial full momentum spread is ∆̄ =
√

2− 1. Here, A is propor-

tional to V T1 and its critical value is 1/(4x2). Putting in x = 1
2

and A = 1.1, we arrive

at the 10% reduction as given by the simulation. For particles of the highest energies,

many of them will not be able to make their way out of the enhanced moving barrier,

resulting in beam loss. Some of the loss is evident in the plot at the location of the
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moving barrier. The total loss recorded is 2555. There are 2000 macroparticles in each

batch, giving a loss of 10.6%.

The situation of a reduction of V T1 by 10% from its critical value is shown in the

bottom plot of Fig. 9. Now all particles will emerge from the moving barrier earlier

and their energies are therefore reduced. According to Eq. (6.6), δ̄f2 will be 9.8%

more negative. The simulation gives 9.2%. We see that final momentum offset of

particles with the highest energy are affected most. According to Eq. (5.2), δ̄f1 will

be reduced by 63%, which agrees with the result of the simulation. However, the final

positive momentum spread is determined by the negative final momentum spread after

the reflection by the stationary barrier. Thus, the final momentum spread actually

increases by 9.8%, about the amount of the error in V T1. The loss recorded is 11, or

0.045%. This loss comes from the reflection by the stationary barrier. Some of these

particles have energies high enough that their left-drift velocities are higher than that

of the moving barrier. Eventually, some of these particles catch up with the moving

barrier and get lost.

3. This injection method requires only two barriers, one moving and one stationary. Un-

fortunately, they are of the same sign. In practice, one must also introduce barriers

of the opposite sign to cancel the charge accumulation. Therefore, space along the

ring must be available for their introduction. This may shorten the space available

for successive batch injections. Therefore, we may require narrow barriers (less than

0.5 µs) with high voltages (& 6 kV) to ensure the injection of 12 booster batches.

6.3 ADIABATIC CAPTURE

We want to examine the adiabatic capture of a coasting beam in the Main Injector at

injection. Here, we set the criterion that the relative change in bucket height or bucket area

Ab should be much slower than the synchrotron angular frequency ωs, or

ωs � 1

Ab

dAb

dt
. (6.7)

Bunch area is proportional to
√

Vrf and ωs is also proportional to
√

Vrf , where Vrf is the rf

voltage. Let a = ωs/
√

Vrf . Then

a � 1

2V
3/2
rf

dV

dt
, (6.8)
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Figure 9: (color) Plots showing the moment one booster cycle after the injection of the 12th batch.
Everything is the same as in the top plot of Fig. 8, except V T1 of the moving barrier is increased
by 10% in the top plot and decreased by 10% in the bottom plot. The width of the moving barrier
is kept fixed at T1 = 0.5µs.
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or

at � 1√
Vrf(t)

+ C , (6.9)

where C is a constant. We cannot start from Vrf = 0, because the constant C will become

infinite. So we start from Vrf = V1 at t = 0 and end at Vrf = V2 at t = t2, giving C = 1/
√

V1.

Define ωs1 as the initial angular synchrotron frequency (at Vrf = V1). Then

ωs1t �
√

V1

V (t)
+ 1 . (6.10)

If good adiabaticity requires the relative rate of change of bucket area to be 1/n of the

synchrotron angular frequency, we obtain the rf voltage curve√
Vrf(t)

V1
=

1

1 − ωs1t/n
. (6.11)

For example, if we start from V1 = 5 kV and end at V2 = 500 kV, the capture time will be

t2 = 23.28 ms when n = 10.

In the injection scheme discussed here, if the injected booster batch has a half energy

spread of 5 MeV, after exiting the moving barrier, the half spread becomes 12 MeV. We

want to capture the beam into buckets with rf harmonic h = 588. There are 3 variables: V1,

V2, and n. It appears that n has to be larger than 10. In fact n = 15 is a more appropriate

number. The final rf voltage cannot be too small because the initial half energy spread is

12 MeV already. The initial bunch area is 2∆Ef1T0/h = 0.4544 eV-s. For such a bucket

area, a rf voltage of Vrf = 268.3 kV is required. For this reason, we set V2 = 500 kV. This rf

voltage will establish a bucket with area 0.620 eV-s and half height 23.16 MeV. On the other

hand, a bunch of area 0.4544 eV-s will have half length 7.28 ns and half height 21.65 MeV.

Thus, V2 cannot be much less than 500 kV. Then, V1 becomes the only variable. The capture

time for a given V1 and V2 can be read off easily from Fig. 10. As an example, V1 = 20 kV,

V2 = 500 kV, and n = 15 lead to a capture time of 15.52 ms or 1393 turns. Changing n to

10 will reduce the capture time to 10.35 ms or 929 turns.

Simulations of adiabatic capture are performed from various initial rf voltage V1 to the

final V2 = 500 kV. The results are shown in Fig. 11 for the adiabaticity n = 10 and in Fig. 12

for the adiabaticity n = 15. It appears that the capture is acceptable even if we start with

rf voltage V1 = 50 kV. The capture time will be 5.6 ms at n = 10 and 8.4 ms at n = 15.

In Fig. 13, we give a closer look at the captures again from V1 = 20 kV to V2 = 500 kV at
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Figure 10: Plot of capture time in ms for various initial and final rf voltages V1 and V2 = 500 kV.
The relative rate of change of bucket area is taken as 1/n of the angular synchrotron frequency,
where n = 10 or 15.

adiabaticity n = 10 in the top plot and n = 15 in the bottom plot. We also superimpose as

solid blue curves the boundaries of the bunches with area 0.4544 eV-s that are matched to

the rf voltage of V2 = 500 kV. Particles outside the blue curves are considered lost eventually.

Here, we see a 6.0% loss for n = 10 and only 3.0% loss for n = 15. We can conclude that an

adiabatic capture time of ∼ 10 ms will be quite adequate using n = 15.

7 BEAM LOADING

Because of the high beam current, beam loading voltage induced in the Main Injector rf

cavities can become a serious problem. In fact, beam loading represents the most serious

problem in slip-stacking. A bunch at the 53 MHz rf voltage (harmonic h = 588) containing

6.0×1010 protons carries a charge of q = 9.61 nC. If the bunch is short, it can be approximated

by a macroparticle, which will induce a total instantaneous beam loading voltage Vb0 =

qNcωrRL/QL = 5.5 kV across the gaps of Nc = 18 cavities, where RL = 500 kΩ, QL = 5000,

and ωr/(2π) = 52.7 MHz are, respectively, the loaded shunt impedance, loaded quality

factor, and resonant frequency of each cavity. For a batch of 84 such bunches injected into
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Figure 11: Plot of a 53 MHz bunch in the longitudinal phase space after adiabatic capture starting
from various initial rf voltage V1 to the final V2 = 500 kV. Adiabaticity is fixed at n = 10 and the
initial bunch area is 2×12×11.134/588 = 0.4544 eV-s. At V2 = 500 kV, final half bunch height is
21.65 MeV and half width 7.28 ns.
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Figure 12: Plot of a 53 MHz bunch in the longitudinal phase space after adiabatic capture starting
from various initial rf voltage V1 to the final V2 = 500 kV. Adiabaticity is fixed at n = 15 and the
initial bunch area is 2×12×11.134/588 = 0.4544 eV-s. At V2 = 500 kV, final half bunch height is
21.65 MeV and half width 7.28 ns.
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Figure 13: (color) Adiabatic capture starting from V1 = 20 kV to V2 = 500 kV with adiabaticity
n = 10 in the top plot and n = 15 in the bottom plot. The solid blue curve in each plot represents
the boundary of the bunch of 0.4544 eV-s (initial area) matched to the rf voltage of V2. Particles
outside the curve may be lost eventually. The loss is 6.0% for n = 10 and reduces to 3.0% at
n = 15.
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the Main Injector, a beam loading voltage of 5.46 kV is induced in the rf cavities at the

passage of the first bunch. This beam loading voltage increases to 444 kV after the passage

of the last bunch. Thus the difference in beam loading voltages experienced by the last

and first bunches is 439 kV. Taking into account of the finite lengths of the bunches, this

difference becomes 388 kV when steady state is reached. During normal operation, the total

rf voltage at injection is 1.2 MV. If the designed synchronous phase φs = 0 is synchronized

to the middle bunch of the batch, the rf phase errors introduced become ∆φs = ±9.18◦ for

the first and last bunches. Eventually, the longitudinal emittances of the bunches will be

increased up to 18%, which is considered still tolerable.

During slip-stacking, although the bunch density is doubled, the beam loading voltage

may not increase at all. This is because in order to allow two series of buckets to stay within

the momentum aperture of the ring, the bucket height must be reduced to a minimum and

the bunches are therefore lengthened to a size that almost fills up the buckets [10]. As a

result, the rf voltage must be kept at the low value of ∼ 64 kV, which is almost 7 times

less than the difference in beam loading voltages seen by the first and last bunches. The rf

phase errors of the bunches now become so large that the most beam particles will be driven

out of the buckets. The following methods have been proposed to control the beam loading

voltage in slip-stacking [11]:

1. Tuning all cavities to the nominal 8 GeV frequency.

2. Using only 2 or 4 of the cavities to produce the required rf voltage and de-Qing the

remaining cavities. One simple technique that may de-Q the cavities by a factor of 3 is to

turn off the screen voltage to reduce the tube plate resistance.

3. Feed-forward the signal of the wall current monitored at a resistive-wall gap to the cavity

drivers. Experience at the Main Ring expects to achieve a 10-fold reduction in the effective

wall current flowing into the cavities.

4. Feedback on all the cavities. A signal proportional to the gap voltage is amplified,

inverted, and applied to the driver amplifier. Based on experience in the Main Ring and

results achieved elsewhere, a 100-fold reduction can be achieved.

In the present continuous multiple injection scheme using barriers, the booster bunches

contained in the batches before injection will be made very long in the booster so that

the momentum spread can be reduced. These bunches start to debunch immediately after

injected into the Main Injector. For a completely uniformly distributed beam, there is no

53 MHz rf component and therefore no beam loading at all. Here, although the distribution

is not uniform (see, for example, Fig. 8), the 53 MHz rf component of the beam current at
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any moment of the injection is found to be less than 0.25% of twice the dc beam current,

implying that the beam loading voltage will be reduced at least 400 times.

Actually no rf voltage is required in this injection scheme. There are two controls in the

Main Injector rf system. The 18 cavities can be separated into two groups. As a result, the

gap voltage in each cavity need not be small at all, because counterphasing can be employed

to arrive at zero rf voltage with the tiny beam loading voltage taken into account. On the

other hand, counterphasing cannot be performed in slip-stacking in order to avoid low gap

voltages, because the two rf controls have already been used in generating the two series of

buckets of slightly different rf frequencies.

Of course, counterphasing of 18 cavities may not be the best method in this continuous

injection scheme, because it is very difficult to control the phases of the cavities in order to

arrive at exactly zero rf voltage. Another method is to turn off the rf drive and mechanically

short the cavity gaps. The Main Injector is presently equipped with fast mechanical shorts,

which can be inserted in 100 ms and removed in 50 ms [12]. The ideal method may be a

combination of both counterphasing and mechanical shorts. First, the rf drive of 16 cavities

is turned off and shorts are inserted. Second, counterphasing is used for the two remaining

cavities to arrive at zero rf voltage with the consideration of the tiny beam loading voltage

included. Further fine adjustment can be implemented using a fast low-level feedback.

8 CONCLUSION

We discuss in detail a method to double the linear beam density of the Fermilab Main Injector

using barrier waves. The injection is continuous and no extra time is required except for

the final adiabatic capture, which can be accomplished in about 10 ms. In contrast to slip-

stacking, rf manipulations of intense beams at very low cavity gap voltages can be avoided

and beam loading does not appear to be a problem.
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Appendix

In this appendix, we are going to show that the injection process discussed in this paper

depends only on the integrated barrier voltage and does not depend on the shape of the

barrier. Thus, whenever V T1 appears, we can make the substitution

V T1 =

∫
V (τ)dτ , (A.1)

where V (τ) is a general barrier wave.

The Hamiltonian describing the longitudinal motion of a particle of charge e interacting

with a stationary barrier wave can be written as

H = −1

2
|η|δ2 − e

β2ET0

∫ τ

0

V (τ ′)dτ ′ , (A.2)

so that the equations of motion are

dτ

dt
= −|η|δ , (A.3)

dδ

dt
=

eV (τ)

β2ET0

. (A.4)

Here, δ and τ are, respectively, the fractional momentum offset and arrival time advance of

the particle. For simplicity, we have also restricted ourselves to operation below transition.

The particle has initial fractional momentum offset δi1 at time t = 0 when it starts

entering the barrier. Then from the Hamiltonian

1

2
|η|δ2

i1 =
1

2
|η|δ2(τ) − e

β2ET0

∫ τ

0

V (τ ′)dτ ′ . (A.5)

We can also start from the equations of motion,

d

dt

dτ

dt
= −|η|eV (τ)

β2ET0
. (A.6)

Multiplying by 2dτ/dt,

d

dt

(
dτ

dt

)2

= −2|η|eV (τ)

β2ET0

dτ

dt
, (A.7)

(
dτ

dt

)2

=

(
dτ

dt

)2

i1

−
∫ τ

0

2|η|eV (τ ′)
β2ET0

dτ ′ . (A.8)
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Substituting the phase equation, we obtain again

δ2(τ) = δ2
i1 −

∫ τ

0

2eV (τ ′)
|η|β2ET0

dτ ′ . (A.9)

Now the barrier is moving at the rate Ṫ2 to the left. When the particle is at time advance

τ , it is seeing the barrier wave at time advance τ̃ = τ + Ṫ2t. The Hamiltonian changes to

H = −1

2
|η|δ2 − e

β2ET0

∫ τ+Ṫ2t

0

V (τ ′)dτ ′ , (A.10)

and the energy equation becomes

dδ

dt
=

eV
(
τ + Ṫ2t

)
β2ET0

. (A.11)

Let us go to the rest frame of the barrier. The phase advance for the particle becomes τ̃ and

the phase equation is

dτ̃

dt
=

dτ

dt
+ Ṫ2 = −|η|

(
δ − Ṫ2

|η|

)
. (A.12)

We can write the energy equation as

d

dt

(
δ − Ṫ2

|η|

)
=

eV (τ̃)

β2ET0
. (A.13)

In other words, in the rest frame of the moving barrier, the Hamiltonian becomes

H = −1

2
|η|δ̃2 − e

β2ET0

∫ τ̃

0

V (τ ′)dτ ′ , (A.14)

where

τ̃ = τ + Ṫ2t ,

δ̃ = δ − Ṫ2

|η| (A.15)

are the new canonical variables. We therefore have the solution

δf1 − Ṫ2

|η| = −

√√√√(δi1 − Ṫ2

|η|

)2

− 2

|η|T0β2E

∫ τf

0

V (τ ′)dτ ′ , (A.16)
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where τf is the total width of the barrier and δf1 is the fractional momentum offset of the

particle on exiting the barrier. Here, the negative sign in front of the square root sign has

been chosen, because as τf → 0, on must have δf1 → δi1, noting that δi1 < 0. Equation (2.7)

is just a special case of Eq. (A.16) when the barrier is of square shape. Starting from

Eq. (2.7), we see that V T1 comes about as one variable. Thus, the replacement in Eq. (A.1)

can be made in all the equations that follow.
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