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Chapter 1

WAKES AND IMPEDANCES

1.1 Wake Fields

A positively charged particle at rest has static electric �eld going out radially in all

directions. In motion with velocity v, magnetic �eld is generated. As the particle velocity

approaches c, the velocity of light, the electric and magnetic �elds are pancake-like, the

electric �eld is radial and magnetic �eld azimuthal (the Li�enard-Wiechert �elds) with

an open angle of about 1=, where  =
p
1� v2=c2. It is interesting to point out that

no matter how far away, this pancake is always perpendicular to the path of motion.

In other words, the �elds move with the test particle without any lagging behind as

illustrated in Fig. 1.1. Such a �eld pattern is, of course, the steady-state solution of the

problem.

When placed inside a perfectly conducting beam pipe, the pancake of �elds is

trimmed by the beam pipe. A ring of negative charges will be formed on the walls

of the beam pipe where the electric �eld ends, and these image charges will travel at

the same pace with the particle, creating the so-called image current. If the wall of

the beam pipe is not perfectly conducting or contains discontinuities, the movement of

the image charges will be slowed down, thus leaving electromagnetic �elds behind. For

example, when coming across a cavity, the image current will ow into the walls of the

cavity, exciting �elds trapped inside the cavity. These �elds left behind by the particle

are called wake �elds, which are important because they inuence the motion of the

particles that follow.
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1-2 1. WAKES AND IMPEDANCES

Figure 1.1: Schematic drawing of pan-cake electromagnetic �elds emitted by an

ultra-relativistic particle traveling with velocity v. The pan-cake is always perpen-

dicular to the path of the particle and travels in pace with the particle no matter

how far away the �elds are from the particle. There is no violation of causality be-

cause �elds at points A and B come from the particle at di�erent locations. Fields

from A are from A0 at a time OA0=v ago, while �elds at B from point B0 at a time

OB0=v ago.

In addition to the wake �elds, the electromagnetic �elds seen by the beam particle

consist of also the external �elds from the magnets, rf, etc. The electric �eld ~E and

magnetic ux density ~B can be written as

( ~E; ~B) seen by
particles

= ( ~E; ~B) external, from
magnets, rf, etc.

+ ( ~E; ~B) wake
�elds

(1.1)

where

( ~E; ~B) wake
�elds

(
/ beam intensity

� ( ~E; ~B)external :

Note that the last restriction, which is certainly not true in plasma physics, allows

wake �elds to be treated as perturbation. This perturbation, however, will break down

when potential-well distortion is large. In that case, the potential-well distortion has

to be included into the non-perturbative part. What we need to compute are the wake

�elds at a distance z behind the source particle and their e�ects on the test or witness

particles that make up the beam. The computation of the wake �elds is nontrivial. So

approximations are required.
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1.2 Two Appromixations

v

��������
��������
��������

��������
��������
��������

witness

source
z

s

Figure 1.2: Schematic drawing of of a witness particle at a distance z behind the

some source particle in a beam. Both particles are traveling along the direction s

with velocity ~v.

At high energies, the particle beam is rigid and the following two approximations

apply:�

(1) The rigid beam approximation, which says that the beam traverses the discon-

tinuity of the vacuum chamber rigidly and the wake �eld perturbation does not a�ect

the motion of the beam during the traversal of the discontinuity. This is a good ap-

proximation even in the presence of synchrotron oscillations, because the longitudinal

distance between two beam particles changes negligibly in a revolution turn relative to

the circumference of the accelerator ring. This implies that the distance z of the test

particle behind some source particle as shown in Fig. 1.2 does not change.

(2) The impulse approximation. Although the test particle carrying a charge q sees

a wake force ~F coming from ( ~E; ~B), what it cares is the impulse

�~p =

Z 1

�1

dt ~F =

Z 1

�1

dt q( ~E + ~v � B) (1.2)

as it completes the traversal through the discontinuity at its �xed velocity ~v. Note

that MKS units have been used in Eq. (1.2) and will be adopted throughout the rest

of the lectures. We will therefore be coming across the electric permitivity of free

space �0 = 107=(4�c2) farads/m and the magnetic permeability of free space �0 =

�This approach to the Panofsky-Wenzel Theorem was presented by A.W. Chao at the OCPA Accel-

erator School, Hsinchu, Taiwan, August 3-12, 1998.
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4� � 10�7 henry/m. These two quantities are related to the free-space impedance Z0

and velocity of light c by

Z0 =

r
�0

�0
= 2:99792458� 40� = 376:730313 Ohms ;

c =
1p
�0�0

= 2:99792458� 108 m=s : (1.3)

Both ~E, ~B, and ~F are diÆcult to compute even at high beam energies. However,

the impulse �~p has great simplifying properties through the Panofsky-Wenzel (P-W)

theorem, which forms the basis of wake potentials and impedances.

1.3 Panofsky-Wenzel Theorem

Maxwell equations for a particle in the beam are:8>>>>>>>>>><
>>>>>>>>>>:

~r� ~E =
�

�0
Gauss's law for electric charge;

~r� ~B � 1

c2
@ ~E

@t
= �0�c�ŝ Ampere's law;

~r� ~B = 0 Gauss's law for magnetic charge;

~r� ~E +
@ ~B

@t
= 0 Faraday's & Lenz law:

(1.4)

We have replaced the current density with ~j = �c�ŝ where � is the charge density of

the beam. The beam particle velocity j~vj = �c will be treated as a constant, which is

the result of the rigid-beam approximation, and is certainly true at high energies when

� � 1. Note that we have been denoting the s-axis as the direction of motion of the

beam, while reserving z as the distance the witness particle is ahead the source particle.

For a circular ring, the s-axis constitutes the axis of symmetry of the vacuum chamber.

Together with the transverse coordinates x and y, they form an instantaneous right-

handed Cartesian coordinate system. Thus, the above wake �elds ~E and ~B as well as

wake force ~F are function of x; y; s; t. From the rigid beam approximation, the location

of the test particle, s, is not independent, but is related to t by s = z + �ct, where

z is regarded as time-independent and the location of the source particle is given by

ssource = �ct. Since we are looking at the �eld behind a source, z is negative.



1.3 Panofsky-Wenzel Theorem 1-5

The Lorentz force on the test particle of charge q is ~F = q( ~E + �cŝ� ~B). Here the

rigid-beam approximation has also been used by requiring that the test particle has the

same velocity as all other beam particles. It follows that

~r� ~F =
q�

�02
� q�

c

@Es

@t
; (1.5)

~r� ~F = �q
�
@

@t
+ �c

@

@s

�
~B : (1.6)

We are only interested in the impulse

�~p (x; y; z) =

Z 1

�1

dt ~F (x; y; z+�ct; t) ; (1.7)

i.e., the integration of ~F along a rigid path with z being held �xed. Applying the curl

to both sides,

~r��~p (x; y; z) =

Z 1

�1

dt
h
~r� ~F (x; y; s; t)

i
s=z+�ct

; (1.8)

" "
this ~r refers this ~r refers

to x; y; z to x; y; s

we obtain for the right side,

Right Side = �q
Z 1

�1

dt

��
@

@t
+ �c

@

@s

�
~B(x; y; s; t)

�
s=z+�ct

= �q
Z 1

�1

dt
d ~B

dt
= �q ~B(x; y; z+�ct; t)

���1
t=�1

= 0 : (1.9)

We therefore arrive at relation
~r��~p = 0 ; (1.10)

which is the P-W theorem. It is important to note that so far no boundary conditions

have been imposed. The P-W theorem is valid for any boundaries ! The only needed

inputs are the two approximations: the rigid-bunch approximation and the impulse

approximation. The P-W theorem even does not require � = 1. It just requires � � 1

so that � can remain constant. Thus, the P-W theorem is very general.

The P-W theorem can be decomposed into a component parallel to the ŝ and one

perpendicular to ŝ. The decomposition is obtained by taking dot product and cross

product of ŝ with Eq. (1.10):
~r�(ŝ��~p) = 0 ; (1.11)
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@

@z
�~p? = ~r?�ps : (1.12)

Equation (1.11) says something about the transverse components of �~p, which becomes,

in Cartesian coordinates,
@�px
@y

=
@�py
@x

: (1.13)

On the other hand, Eq. (1.12) relates �~p? and �~pz, that the transverse gradient of

the longitudinal impulse is equal to the longitudinal gradient of the transverse impulse.

Thus, the P-W theorem strongly constraints the components of �~p.

There is an important supplement to the P-W theorem, which states:

� = 1 �! ~r?��~p? = 0 : (1.14)

Proof:

~r��~p =

Z 1

�1

dt
h
~r� ~F (x; y; s; t)

i
s=z+ct

= �q

c

Z 1

�1

dt

�
@Es

@t

�
s=z+ct

= q

Z 1

�1

dt

�
@Es

@s

�
s=z+ct

=
@

@z
�ps ;

where we have used the fact that the longitudinal component of the wake force is in-

dependent of the magnetic ux density. For the second last step, use has been made

of
@

@t
Es(s; t) =

d

dt
Es(s; t)� ds

dt

@

@s
Es(s; t) : (1.15)

It is important to note that 4�q�=2, the space charge term of ~r� ~F in Eq. (1.6) has

been omitted because � = 1.

1.4 Cylindrically Symmetric Chamber

When the beam of cylindrical cross section is inside a cylindrically symmetric vacuum

chamber, naturally cylindrical coordinates will be used. Some di�erential operators in

the cylindrical coordinates are listed in Table 1.16. The P-W theorem, Eq. (1.10), and

the supplemental theorem, Eq. (1.14), become [2]
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Table 1.1: Di�erential operators in the cylindrical coordinates. Here ~A is a vector

and � is a scalar.

~r � ~A =
1

r

@

@r
(rAr) +

1

r

@A�

@�
+
@As

@s
;

~r� ~A = r̂

�
1

r

@A�

@s
� @A�

@s

�
+ �̂

�
@Ar

@s
� @As

@r

�
+ ŝ

�
1

r

@(rA�)

@r
� 1

r

@Ar

@�

�
;

r2� =
1

r

@

@r

�
r
@�

@r

�
+

1

r2
@2�

@�2
+
@2�

@s2
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

@

@r
(r�p�) =

@

@�
�pr ;

@

@z
�pr =

@

@r
�ps ;

@

@z
�p� =

1

r

@

@�
�ps ;

@

@r
(r�pr) = � @

@�
�p� (� = 1) :

(1.16)

Now, this set equations for �~p becomes surprisingly simple. It does not contain any

source terms and is completely independent of boundaries, which can be conductors,

resistive wall, dielectric, or even plasma. This result solely arises from the Maxwell

equations plus the two approximations.

There is no loss of generality by letting �pz � cosm� with m � 0. Then, we get

�ps = �~ps cosm� �! �pr = �~pr cosm� and �p� = �~p� sinm� ; (1.17)

where �~ps, �~pr, and �~p� are �-independent. The set of equations for �~p becomes8>>>>>>>>>><
>>>>>>>>>>:

@

@r
(r�~p�) = �m�~pr ;

@

@z
�~pr =

@

@r
�~ps ;

@

@z
�~p� = �m

r
�~ps ;

@

@r
(r�~pr) = �m�~p� (� = 1) :

(1.18)
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From the �rst and last equations, we must have, for m = 0,

�~p� = 0 and �~p� = 0 ; (1.19)

otherwise they will be proportional to r�1 which is singular at r = 0. From the same

two equations, we get, for m 6= 0,

@

@r

�
r
@

@r
(r�~pr)

�
= m2�~pr ; (1.20)

and therefore

�pr(r; �; z) � rm�1 cosm� : (1.21)

Now the whole solution can be written as, for all m � 0,8><
>:

v�~p? = �qImWm(z)mrm�1
�
r̂ cosm� � �̂ sinm�

�
;

v�ps = �qImW 0
m(z)r

m cosm� :

(1.22)

In above, Wm(z) is called the transverse wake function of azimuthal m and W 0
m(z)

the longitudinal wake function of azimuthal m. They are related because of the P-W

theorem. The wake functions are functions of one variable z only, and are the only

remaining unknown. They must be solved with boundary conditions. Recall that the

complicated Maxwell-Vlasov equation that involves ~E, ~B, and sources has been reduced

drastically to solving just for Wm.

More comments about Eq. (1.22) are in order. The original solution in the top line

of Eq. (1.22) was for m 6= 0 only. However, we can always de�ne a W0(z) which is

the anti-derivative of W 0
0(z) so that the solution holds for all m. Although W0(z) has

no physical meaning, yet it will be helpful in discussions below. In Eq. (1.22), q is the

charge of the test particle and Im is the electric mth multipole of the source particle. For

a source particle of charge e at an o�set a from the axis of the cylindrical beam pipe,

Im = eam. Thus, W 0
m has the dimension of force per charge square per length(2m�1)

or Volts/Coulomb/m2m, while Wm has the dimension of force per charge square per

length2m or Volts/Coulomb/m2m�1. The negative signs on the right sides arise just from

a convention. For example, we want the longitudinal wake W 0m(z) to be positive when

the impulse acting on the test particle is decelerating.

Recall that we have been looking at the wake force on a particle traveling at s = z+vt

behind a source particle traveling at s = vt. Thus z < 0. When v ! c, causality has to
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be imposed that Wm(z) = 0 when z > 0. For our discussions below, we will continue to

use v instead of c in most places, because we would like to derive stability conditions and

growth rates also for machines that are not ultra-relativistic. However, strict causality

will be imposed as if the velocity is c.

Immediately behind a source particle, the test particle should receive a retarding

force, otherwise a particle will continue to gain energy as it is traveling down the vacuum

chamber in direction violation of the conservation of energy. This implies thatW 0
m(z) > 0

when jzj is small, recalling that theW 0
m(z) is de�ned in Eq. (1.22) with a negative sign on

the right side. This is illustrated in Fig. 1.3. It will be proved later in Chapter 7.5 that

Figure 1.3: The longitudinal wake W 0
m(z) vanishes when z > 0 and is positive

de�nite when jzj is small. The transverse wake Wm(z) starts out from zero and goes

negative as jzj increases.

a particle sees half of its own wake. For the transverse wake Wm(z), it starts out from

zeroy and goes negative as jzj increases, as required by the P-W theorem. Thus, when

the source particle is deected, a transverse wake force is created in the direction that it

will deect particles immediately following in the same direction of the deection of the

source. Again, special attention should be paid to the negative sign on the right side of

the de�nition ofWm(z) in Eq. (1.22). The transverse wake Wm vanishes at z = 0 implies

that a particle will not see its own transverse wake at all. This leads to the important

conclusion that a shorter bunch will be preferred if the transverse wake dominates, and

a longer bunch will be preferred if the longitudinal wake dominates.

When m = 0 or the monopole, we have �p? = 0 while �ps is independent of (r; �)

and depends only on z. Thus, particles in a thin transverse slice of the beam will see

yAlthough it can not be proved that Wm(0) = 0, however, most wakes do have this property.
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Figure 1.4: All particles in a vertical slice of the beam see exactly the same

monopole wake impulse (m = 0) from the source according to the slice position

z behind the source. This longitudinal variation of impulse e�ect on the slices can

lead to longitudinal microwave instability.
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Figure 1.5: Kicks for all the particles in the slice from the dipole wake impulse

also have the same magnitude; however, the longitudinal kicks point to forward or

backward direction depending on whether the particles are above or below the axis

of symmetry.

the same impulse in the s-direction according to the dependence of W 0
0 on z, as shown

in Fig. 1.4. This impulse can lead to self-bunching or microwave instability.

For m = 1, we have from Eq. (1.22) that �p? is independent of (r; �) but depends

on z only. All particles in a vertical slice of the beam su�er exactly the same vertical

kick from the dipole wake impulse (m = 1) which depends only on how far the slice is

behind the dipole source, as is shown in Fig. 1.5. Such an impulse can lead to the tilting

of the tail of the bunch into a banana shape; it can also cause beam breakup. On the

other hand, the dipole longitudinal impulse �ps (m = 1) is proportional to the o�set in

the x-direction.
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For the sake of convenience, many authors do not like to work with a negative z

for the particles that are following. There is another convention that Wm(z) = 0 when

z < 0. This does not change the physics and the direction of the wake forces will not

be changed. Thus, instead of Fig. 1.3, we have Fig. 1.6 instead. A price has to be paid

Figure 1.6: This is a di�erent convention that the wake functions Wm(z) vanish

when z < 0. Since the physics is the same, the wake functions are the same as

in Fig. 1.3 and just the direction of z has been changed. In this convention, the

interpretation W 0
m(z) � �

d

dz
Wm(z) is required.

for this convention. We must interpret the connection between the longitudinal and

transverse wakes as

W 0
m(z) � � d

dz
Wm(z) : (1.23)

This convention will be used for the rest of the lectures.z Fortunately, we will not be

using Eq. (1.23) much below, because most longitudinal instabilities are driven dom-

inantly by the monopole longitudinal wake W 0
0 and most transverse instabilities are

driven dominantly by the dipole transverse wake W1.

zThe readers should be aware of yet another convention in the literature that the wake functions

Wm(z) and W 0
m(z) are de�ned in Eq. (1.22) without the negative signs on the right sides. As a result,

the wake functions will have just the opposite signs of what are depicted in Fig. 1.6.
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1.5 Coupling Impedances

Beam particles form a current, of which the component with frequency !=(2�) isx

I(s; t) = Îe�i!(t�s=v), where Î may be complex. This current component at location

s and time t will be a�ected by the wake of the preceding beam particles that pass the

point s at time t�z=v with the charge element I(s; t�z=v)dz=v. The total accelerating
voltage seen (or energy gained per unit test charge) will be

V (s; t) = �
Z 1

�1

Îe�i![t�(s+z)=v]W 0
0(z)

dz

v
= �I(s; t)

Z 1

�1

ei!z=vW 0
0(z)

dz

v
: (1.24)

Thus, we can identify the longitudinal coupling impedance of the vacuum chamber as

Z
k
0(!) =

Z 1

�1

ei!z=vW 0
0(z)

dz

v
: (1.25)

This de�nition is the same as the ordinary impedance in a circuit. However, we have

here much more than in a circuit because the current distribution can possess higher

multiples.

When the current is displaced transversely by a from the axis of symmetry of the

beam pipe, the deecting transverse force acting on a current particle is obtained by

summing the charge element I(s; t�z=v)dz=v passing s at time t�z=v,

hF?
1 (s; t)i = �qa

`

Z 1

�1

Îe�i![t�(s+z)=v]W1(z)
dz

v
= �qa

`
I(s; t)

Z 1

�1

ei!z=vW1(z)
dz

v
;

(1.26)

where hF?
1 (s; t)i is the transverse force averaged over a length ` covering the discontinuity

of the vacuum chamber, and is therefore equal to v�p?=`, with �p? being the transverse

impulse studied in the previous sections. For an accelerator ring or storage ring, this

length is taken to be the ring circumference C. We identify the transverse coupling

impedance of the vacuum chamber as

Z?
1 (!) =

i

�

Z 1

�1

ei!z=vW1(z)
dz

v
: (1.27)

xWe are going to use the physicist convention (except in Chapter 7.5) of denoting the frequency

dependence by e
�i!t, which leads to the results that the capacitive impedance is positive imaginary

while the inductive impedance is negative imaginary. The opposite is true in the engineering convention

of ej!t.
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In both Eqs. (1.24) and (1.26), the lower limits of integration have been extended to

�1, because the wake functions vanish when z < 0. From Eq. (1.26), it is evident that

we can also compute the transverse impedance by integrating the wake force averaged

over one turn according to

Z?
1 (!) = � i

q�I0a

Z C

0

F?
1 (s; t) ds ; (1.28)

where Ia represents the dipole source current. Since Re Z?
1 (!) > 0 implies an energy

loss, the force leads the displacement Ia by �
2
, and hence the factor �i in Eq. (1.28).

The Lorentz factor � = v=c is a convention.

Inversely, the wake functions can be written in terms of the impedances:

Wm(z) = � i�

2�

Z 1

�1

Z?
m(!)e

�i!z=vd! ; (1.29)

W 0
m(z) =

1

2�

Z 1

�1

Zk
m(!)e

�i!z=vd! ; (1.30)

where the path of integration in both cases is above all the singularities of the impedances

so as to guarantee causality.

Note that the longitudinal impedance is mostly the monopole (m = 0) impedance

and the transverse impedance is mostly the dipole (m = 1) impedance, if the beam pipe

cross section is close to circular and the particle path is close to the pipe axis. They

have the dimensions of Ohms and Ohms/length, respectively. The impedances have the

following properties:

1: Z
k
0(�!) = [Z

k
0 (!)]

� and Z?
1 (�!) = �[Z?

1 (!)]
� : (1.31)

2: Z
k
0(!) and Z?

1 (!) are analytic with poles only in the lower half !-plane:{ (1.32)

3: Zk
m(!) =

!

c
Z?
m(!) ; (1.33)

for cylindrical geometry and each azimuthal harmonic includingk m = 0 :

4: Re Zk
0 (!) � 0 and Re Z?

1 (!) � 0 when ! > 0 ; (1.34)

if the beam pipe has the same entrance cross section and exit cross section.

5:

Z 1

0

d! ImZ?
m(!) = 0 ; and

Z 1

0

d!
ImZ

k
m(!)

!
= 0 : (1.35)
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The �rst follows because the wake functions are real, the second from the causality

of the wake functions, and the third from the Panofsky-Wenzel theorem [1] between

transverse and longitudinal electromagnetic forces. Re Zk
m(!) � 0 is the result of the

fact that the total energy of a particle or a bunch cannot be increased after passing

through a section of the vacuum chamber where there is no accelerating external forces,

while Re Z?
m(!) � 0 when ! > 0 follows from the Panofsky-Wenzel theorem. The �fth

property follows from the assumption that Wm(0) = 0.

For a pure resistance R, the longitudinal wake is W 0
0(z) = RÆ(z=v). At low frequen-

cies, the wall of the beam pipe is inductive. This wake function is W 0
0(z) = LÆ0(z=v),

where L is the inductance.

For a nonrelativistic beam of radius a inside a circular beam pipe of radius b, the

longitudinal space charge impedance for m = 0 is��

Z
k
0 (!) = i

!

!0

Z0

22�

�
1 + 2 ln

b

a

�
; (1.36)

where Z0 =
p
�0=�0 � 377 
 is the impedance of free space, �0 and �0 are, respectively,

the magnetic permeability and electric permitivity of free space, !0=(2�) is the revolution

frequency of the beam particle with Lorentz factors  and �. Although this impedance is

capacitive, however, it appears in the form of a negative inductance. The corresponding

wake function is

W 0
0(z) = �Æ0(z=v) 1

!0

Z0

22�

�
1 + 2 ln

b

a

�
: (1.37)

The m = 1 transverse space charge impedance for a length ` of the circular beam pipe

is

Z?
1 (!) = i

Z0`

2�2�2

�
1

a2
� 1

b2

�
; (1.38)

and the corresponding transverse wake function is

W1(z) =
Z0c`

2�2

�
1

a2
� 1

b2

�
Æ(z) : (1.39)

An important impedance is that of a resonant cavity. Near the resonant frequency

!r=(2�), the mth multipole longitudinal impedances can be derived from a RLC-parallel

��This expression will be derived in Chapter 3. Here, the space charge force is seen by beam particles

at the beam axis. If the force is averaged over the cross section of the beam with a uniform transverse

cross section, the �rst term in the brackets becomes 1

2
instead of 1.
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circuit:

Zk
m(!) =

Rms

1 + iQ

�
!r

!
� !

!r

� ; (1.40)

where the resonant angular frequency is ! = (LmCm)
�1=2 and quality factor is Q =

Rms

p
Cm=Lm. Here, for the mth multipole, the shunt impedance Rms is in Ohms/m2m,

the inductance in henry/m2m, and the capacitance in farad-m2m. The transverse impe-

dance can now be obtained from the P-W theorem of Eq. (1.33):

Z?
m(!) =

c

!

Rms

1 + iQ

�
!r

!
� !

!r

� : (1.41)

Another example is the longitudinal impedance for a length ` of the resistive beam

pipe:

Z
k
0(!) = [1� i sgn(!)]

`

2�b�cÆskin
; (1.42)

where b is the radius of the cylindrical beam pipe, �c is the conductivity of the pipe wall,

Æskin =

s
2c

Z0�r�cj!j ; (1.43)

is the skin depth at frequency !=(2�), and �r is the relative magnetic permeability of

the pipe wall. The transverse impedance is

Z?
1 (!) = [1� i sgn(!)]

`c

�!b3�cÆskin
; (1.44)

and is related to the longitudinal impedance by

Z?
1 (!) =

2c

b2!
Z
k
0 (!) : (1.45)

The above relation has been used very often to estimate the transverse impedance from

the longitudinal. However, we should be aware that this relation holds only for resistive

impedances of a cylindrical beam pipe. The monopole longitudinal impedance and the

dipole transverse impedance belong to di�erent azimuthals; therefore they should not

be related. An example that violates Eq. (1.45) is the longitudinal and transverse space

charge impedances stated in Eqs. (1.36) and (1.38).

More expressions for impedances resulting from various types of discontinuity in the

vacuum chamber are reprinted from the Handbook of Accelerator Physics and Engineer-

ing [3] in the following pages.
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3.2.5 Explicit Expressions of Impe-
dances and Wake Functions
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General Remarks and Notations:
W ′

m denotes mth azimuthal longitudinal wake function as a function of distance z for
z<0. When z>0, W ′

m(z)=0 and W ′
m(0)= lim

z→0−
W ′

m(z). Similar for transverse wake Wm.

The mth azimuthal longitudinal impedance Z
‖
m(ω) =

∫
e−iωz/vW

‖
m(z)dz/v is related

to the transverse impedance of the same azimuthal Z⊥
m(ω) =

∫
e−iωz/vW⊥

m(z)idz/(βv) by
Z

‖
m = (ω/c)Z⊥

m (valid when m �= 0). In many cases, β=v/c has been set to 1.
Unless otherwise stated, round beam pipe of radius b is assumed. C = 2πR is the ring

circumference and n is the revolution harmonic. Z0 ≈ 377 Ω is the free-space impedance.
ε0 and µ0 are the free-space dielectric constant and magnetic permeability.

Description Impedances Wakes

Space-charge: [1]
beam radius a in a
length L of perfectly
conducting beam
pipe of radius b.

Z
‖
0

n
= i

Z0L

2Cβγ2

[
1 + 2 ln

b

a

]

Z⊥
m�=0 = i

Z0L

2πβ2γ2m

[
1

a2m
− 1

b2m

] W ′
0 =

Z0cL

4πγ2

[
1 + 2 ln

b

a

]
δ′(z)

Wm�=0 =
Z0cL

2πγ2m

[
1

a2m
− 1
b2m

]
δ(z)

Resistive Wall: [1]
pipe length L, wall
thickness t, conduc-
tivity σc, skin depth
δskin.

Z
‖
m

L
=

ω

c

Z⊥
m

L
=

Z0c/(πb2m)

[1+sgn(ω)i](1+δm0)bc
√

σcZ0c
2|ω| − ib2ω

m+1 + imc2
ω

t�δskin=
√

2c/(|ω|Z0σc), |ω|�cχ/b, χ = 1/(Z0σcb)

For t � δskin and
b/χ � |z| ≈ c/|ω| �
bχ1/3.

Z‖
m =

ω

c
Z⊥

m

Z‖
m =

1−sgn(ω)i
1 + δ0m

L

πσcδskinb2m+1

Wm=− c

πb2m+1(1+δm0)

√
Z0

πσc

L

|z|1/2

W ′
m=− c

2πb2m+1(1+δm0)

√
Z0

πσc

L

|z|3/2

For t� δskin or very
low freq., and b/χ�
|z| ≈ c/|ω|�

√
bt.

Z
‖
0

L
= −iZ0tω

2πbc
,

Z⊥
1

L
= −iZ0t

πb3
W ′

0

L
=−Z0tc

2πb
δ′(z),

W1

L
=−Z0tc

πb3
δ(z)

Z
‖
0 =2Zc

[
φ0

2π

]2[
2 sin2ωL

c
−i sin

2ωL
c

]

Z⊥
1 =

[
Z

‖
0

ω

]
pair

c

b2

[
4
φ0

]2

sin2 φ0

2

W ′
0=2Zc c

[
φ0

2π

]2
[δ(z)− δ(z+2L)]

W1=
8Zc c

π2b2
sin2φ0

2
[H(z)−H(z+2L)]

A pair of strip-line
BPM’s: [2] lengthL,
angle each subtend-
ing to pipe axis φ0,
forming transmis-
sion lines of charac-
teristic impedance
Zc with pipe.

The strip-lines are assumed to terminate with impedance Zc at
the upstream end.

Heifets inductive im-
pedance: [3] low freq.
pure inductance L.
Z

‖
0 rolls off as ω−1/2.

Z
‖
0 = − iωL

(1−iωa/c)3/2

−→ −iωL as a → 0

W ′
0 =

c2L
a
√
πaz

[
1 +

2z
a

]
ez/a

−→ c2Lδ′(z) as a → 0

Pill-box cavity at
low freq.: length g,
radial depth h + b,
where g ≤ h � b [6].

Z
‖
0 = −i

ωZ0

2πcb

[
gh− g2

2π

]

Z⊥
1 = −i

Z0

πb3

[
gh− g2

2π

]
W ′

0 = −Z0c

2πb

[
gh− g2

2π

]
δ′(z)

W1 = −Z0c

πb3

[
gh− g2

2π

]
δ(z)
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Description Impedances Wakes

Pill-box cavity at
low freq.: length g,
radial depth h + b,
where h � g � b
[6].

Z
‖
0 = −i

ωZ0h
2

π2cb

[
ln

2πg
h

+
1
2

]

Z⊥
1 = −i

2Z0h
2

π2b3

[
ln

2πg
h

+
1
2

]
W ′

0=−Z0ch
2

π2b

[
ln

2πg
h

+
1
2

]
δ′(z)

W1=−2Z0ch
2

π2b3

[
ln

2πg
h

+
1
2

]
δ(z)

Pill-box cavity:
length g, radial
depth d. At
freq. ω � c/b,
diffraction model
applies [1].

Z‖
m =

[1 + sgn(ω)i]Z0

(1+δm0)π3/2b2m+1

√
cg

|ω|

Z‖
m =

ω

c
Z⊥

m

Wm = − 2Z0c
√

2g
(1+δm0)π2b2m+1

|z|1/2

W ′
m =

Z0c
√

2g
(1+δm0)π2b2m+1

|z|−1/2

Optical model: [7]
A series of cavities
of periodic length
L. Each cavity
has width g, high
Q resonances of
freq. ωn/(2π) and
loss factor k

(m)
n for

azimuthal mode m.

ReZ‖
m =

N∑
n=1

πk(m)
n δ(ω − ωn) +

2πC
SV

G(ν̄)F (ν)
(1+δm0)b2m

H(ω− ωN )

W ′
m =

N∑
n=1

2k(m)
n cos

ωnz

c
+

2C
SV

G(ν̄)
(1+δm0)b2m

∫ ∞

ωN

dωF (ν) cos
ωz

c

where CSV = 2Z0j
2
m1/(π

2ζ2β) ≈ 650 Ω for m = 0 and 1650 Ω for
m = 1, jm1 is first zero of Bessel function Jm, ζ = 0.8237.

G(ν̄)= ν̄2K2
1(ν̄), F (ν)=

√
ν+1

(ν+2
√
ν+2)2

, ν̄=
ωb

βγc
, ν=

ω

ωSV

=
4b2ω

ζ2c
√
gL

Formulas for com-
putation of W ′

m.
erfc(x) is the
complementary
error function.

∫ ∞

ω̂
dωF (ν) cos

ωz

c
= ωSV F̃0(z/c)−

∫ ω̂

0
dωF (ν) cos

ωz

c

F̃0(x) =
∫ ∞

0
dωF (ν) cosωx =

π

4
(1 + 4x)e2xerfc(

√
2x) −

√
πx

2

Resonator model for
the mth azimuthal,
with shunt imp.
R

(m)
s , resonant freq.

ωr/(2π), quality
factor Q [1].

Z‖
m =

R
(m)
s

1 + iQ (ωr/ω − ω/ωr)

Z⊥
m =

c

ω

R
(m)
s

1 + iQ (ωr/ω − ω/ωr)

Wm =
R

(m)
s c ωr

Qω̄r
eαz/c sin

ω̄rz

c

where α = ωr/(2Q)
ω̄r =

√
|ω2

r − α2|

Res. freq.
ωmnp/(2π) and
shunt impedance
(Rs)mnp of a pill-box
cavity for nth radial
and pth longitudi-
nal modes. Radial
depth d and length
g. xmn is nth zero of
Bessel function Jm

[8].

ω2
mnp

c2
=

x2
mn

d2
+

p2π2

g2

[
Rs

Q

]
0np

=
Z0

x2
0nJ

′2
0 (x0n)

8c
πgω0np




sin2 gω0np

2βc × 1
1 + δ0p

p even

cos2
gω0np

2βc
p odd

[
Rs

Q

]
1np

=
Z0

J ′
1
2(x1n)

2c2

πgd2ω2
1np




sin2 gω1np

2βc p �= 1 and even

cos2
gω1np

2βc p odd
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Description Impedances Wakes

Z
‖
0

n
= −i

Z0g

2πR
lnS

Z⊥
1 = −i

Z0g

πb2
S2 − 1
S2 + 1

W ′
0 = −Z0cg

2π
lnS δ′(z)

W1 = −Z0cg

πb2
S2 − 1
S2 + 1

δ(z)

Low-freq. response
of a pill-box cavity:
[4] length g, radial
depth d. When
g � 2(d− b), replace
g by (d − b). Here,
S = d/b.

Effect will be one half for a step in the beam pipe from radius b
to radius d, or vice versa, when g � 2(d− b).

Iris of half ellipti-
cal cross section at
low freq.: width
2a, maximum pro-
truding length h [5].

Z
‖
0 = −i

ωZ0h
2

4cb

Z⊥
1 = −i

Z0h
2

2b3

W ′
0 = −Z0ch

2

4b
δ′(z)

W1 = −Z0ch
2

2b3
δ(z)

Pipe transition at
low freq.: tapering
angle θ, transition
height h. γ is Euler’s
constant and ψ is
the psi-function [6].

Z
‖
0=

ωb2Z⊥
1

2c
=−i

ωZ0h
2

2π2cb

{
ln

[
bθ

h
−2θ cot θ

]
+

3
2
−γ−ψ

(
θ

π

)
−π

2
cot θ− π

2θ

}

W ′
0 = −

∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣ c2δ′(z) , W1 = −
∣∣∣Z⊥

1

∣∣∣ cδ(z) , h cot θ � b

Pipe transition at
low frequencies with
transition height
h � b [6].

Z
‖
0 =

ωb2

2c
Z⊥

1 = −i
ωZ0h

2

2π2cb

(
ln

2πb
h

+
1
2

)

W ′
0 = −

∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣ c2δ′(z) , W1 = −
∣∣∣Z⊥

1

∣∣∣ cδ(z)
Z

‖
0 =

ω2µ2
0L

2x2
0

4a2Zk

Z⊥
1 =

cωµ2
0L

2

4a2Zk

W ′
0 = −c3µ2

0L
2x2

0

4a2Zk
δ′′0(z)

W1 = −c3µ2
0L

2

4a2Zk
δ′(z)

Kicker with window-
frame magnet [9]:
width a, height b,
lengthL, beam offset
x0 horizontally, and
all image current
carried by conduct-
ing current plates.

Zk = −iωL+Zg with L ≈ µ0bL/a the inductance of the windings
and Zg the impedance of the generator and the cable. If the kicker
is of C-type magnet, x0 in Z

‖
0 should be replaced by (x0 + b).

Traveling-wave kicker
with characteristic
impedance Zc for
the cable, and a
window magnet of
width a, height b,
and length L [9].

Z
‖
0 =

Zc

4

[
2 sin2 θ

2
−i(θ− sin θ)

]
, Z⊥

1 =
ZcL

4ab

[
1−cosθ

θ
−i

(
1− sinθ

θ

)]

W ′
0 =

Zcc

4

[
δ(z)−δ

(
z−Lc

v

)
−Lc

v
δ′(z)

]

W1 =
Zcv

4ab

[
H(z)−H

(
z−Lc

v

)
−Lc

v
δ(z)

]
θ = ωL/v denotes the electrical length of the kicker windings and
v = Zcac/(Z0b) is the matched transmission-line phase velocity of
the capacitance-loaded windings.

Electric and magnetic dipole
moments when wavelength� a:

2d=−2ε0
3

a3 2E , 2m=− 4
3µ0

a3 2BBethe’s electric and
magnetic moments of
a hole of radius a in
beam pipe wall [10].

2E and 2B are electric and magnetic flux density at hole when hole
is absent. This is a diffraction solution for a thin-wall pipe.
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Description Impedances Wakes

Z
‖
0 = −i

ωZ0

c

αe + αm

4π2b2

Z⊥
1 = −i

Z0(αe + αm)
π2b4

cos∆ϕ

W ′
0 = −Z0c

αe + αm

4π2b2
δ′(z)

W1 = −Z0c
αe + αm

π2b4
cos∆ϕ δ(z)

Small obstacle [5, 11]
on beam pipe, size
� pipe radius, freq.
below cutoff. αe

and αm are elec-
tric polarizability
and magnetic sus-
ceptibility of the
obstacle.

∆ϕ is the azimuthal angle between the obstacle and the direction
concerning Z⊥

1 and W1.

Polarizabilities for various geometry: beam pipe radius is b and wall thickness is t.

Elliptical hole: ma-
jor and minor radii
are a and d. K(m)
and E(m) are com-
plete elliptical func-
tions of the first and
second kind, with
m = 1−m1 and m1 =
(d/a)2. For long el-
lipse ⊥ beam, major
axis a � b, beam
pipe radius, because
the curvature of the
beam pipe has been
neglected here [12].

αe+αm =




πa3m2
1[K(m)−E(m))]

3E(m)[E(m)−m1K(m)]
πa3[E(m)−m1K(m)]

3[K(m)−E(m)]

m→1
=⇒
long

ellipse




πd4[ln(4a/d)−1]
3a

‖ beam
d � b

πa3

3 [ln(4a/d)−1]
⊥ beam
a � b

αe+αm

circular
=⇒
m→0

2a3

3
circular hole a = d � b

Above are for t � a, ×0.56 (circular) or ×0.59 (long ellipse) when
t ≥ a.
For higher frequency correction, add to αe + αm the extra term,

+
2πa3

3

[
11ω2a2

30c2

]
circular,



−πad2

3

[
ω2a2

5c2

]
‖ beam

long ellipse

+
2πa3

3

[
2ω2a2

5c2[ln(4a/d)− 1]

]
⊥ beam

long ellipse

Rectangular slot:
length L, width w.

αe + αm = w3(0.1814− 0.0344w/L) t � a, ×0.59 when t ≥ a

Rounded-end slot:
length L, width w.

αe + αm = w3(0.1334− 0.0500w/L) t � a, ×0.59 when t ≥ a

Annular-ring-shaped
cut: inner and outer
radii a and d = a+w
with w � d.

αe + αm =
π2d2a

2 ln(32d/w)− 4
− π2w2(a+ d)

16
t � d

αe + αm = πd2w − 1
2w

2(a+ d) t ≥ d

Half ellipsoidal pro-
trusion with semi
axes h radially, a
longitudinally, and d
azimuthally. 2F1

is the hypergeomet-
ric function.

αe + αm = 2πahd
[
1
Ib

+
1

Ic − 3

]

Ib =2F1

(
1, 1; 5

2 ; 1−
h2

a2

)
, Ic =2F1

(
1, 1

2 ;
5
2 ; 1−

a2

h2

)
, if a = d

αe + αm = πa3 if a = d = h ,
2πh3

3[ln(2h/a)− 1]
if a = d � h

αe + αm =
8h3

3

[
1 +

(
4
π
− π

4

)
a

h

]
if a � h = d

αe + αm =
8πh4

3a

[
ln

2a
h

− 1
]

if a � h = d
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Array of pill-boxes,
box spacing L, each
with gap width g,
beam pipe radius b.
Gluckstern-Yokoya-
Bane formula [15] at
high freq. to order
(kg)−1:

For each cavity of length L with k = ω/c,

Z
‖
0 =

iZ0L

πkb2

{
1 + [1 + i sgn(k)]

αL

b

√
π

|k|g

}−1

with k = ω/c. α = 1 when g/L � 1 and α = α1 = 0.4648 when
g/L = 1, the limiting case of infinitely thin irises. In general, with
Υ = g/L, α(Υ) = 1 − α1Υ1/2 − (1 − 2α1)Υ +O(Υ3/2) .

Z
‖
0 =

Z0cL

2πb2
∑

ω′=±ωr

[
πδ(ω−ω′)+

i

ω−ω′

]

Z⊥
1 =

2cL
b2ω

Z
‖
0

W ′
0(z) =

Z0cL

πb2
cos

ωrz

c

W1(z) =
2Z0L

πb4ωr
sin

ωrz

c

The above pill-box
array with radial
depth d generates a
single-frequency res-
onance impedance at

ωr = c

(
2L
bgd

)1/2

[16,

17].

The corresponding resonator per pill box has
R

(0)
s ωr

Q
=

Z0cL

πb2
.

Smooth toroidal b
and R = 1

2(a + b).
As the Lorentz
factor γ → ∞,
(ultra-relativistic
beam), a curvature
contribution remains
for the longitudinal
impedance [18].

Valid from zero frequency up to just below synchronous resonant
modes, i.e., 0 < ν <

√
R/h with ν = ωh/c,

Z
‖
0

n
= iZ0

(
h

πR

)2
{[

1− e−2π(b−R)/h− e−2π(R−a)/h

] [
1 − 3

(
ν

π

)2
]

+0.05179− 0.01355
(
ν

π

)2
}

+ ρ

≈ iZ0

(
h

πR

)2
[
A− 3B

(
ν

π

)2
]
.

where ρ is quadratic in ν. As (b−a)/h increases, ρ vanishes ex-
ponentially and A ≈ B ≈ 1. In general, A/B ≈ 1 implying ImZ

‖
0

changes sign (a node) near ν = π/
√

3.

Z
‖
0

n
=

iZ0L

4πRβγ2

[
1 + 2 ln

rw

a
+C‖

]
, Z⊥

1 =
iZ0L

2πβ2γ2

[
1
a2

− 1 − C⊥
r2
w

]Rf cage: beam of ra-
dius a surrounded by
a cylindrical cage or
array of N wires of
radius ρw, length L
at radial distance rw

from beam center.
Wire filling factor is
fw = Nρw/(πrw).
Formulas are valid at
low frequencies, 0 <
n<R/rw and N�1.

Without metallic beam pipe outside wire array or cage [19],

C‖ = − 2 ln(nrw/R) ln(πfw)
N ln(nrw/R) + ln(πfw)

, C⊥ = − 2 ln(πfw)
N − 2 ln(πfw)

With infinitely conducting metallic beam pipe, radius b > rw [20],

C‖ = 2 ln
b

rw
− 2N [ln(b/rw)]2

N ln(b/rw) − ln(πfw) + ln[1−(rw/b)2N ]

C⊥=
[1−(rw/b)2][(rw/b)2+(b/rw)2]{ln[1−(rw/b)2N ] − 2 ln(πfw)}

N [1−(rw/b)2] + [(rw/b)2+(b/rw)2] ln[1−(rw/b)2N ]− 2 ln(πfw)
A ceramic layer between the wires and metallic beam pipe has
negligible effect on the impedances.
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Wall roughness [13]
1-D axisymmetric
bump, h(z) or 2-D
bump h(z, θ). Valid
for low frequency
k = ω/c � (bump
length or width)−1,
h � b, pipe radius,
and |∇h| � 1.

1-D: Z
‖
0 = −2ikZ0

b

∫ ∞

0
κ|h̃(κ)|2dκ

with spectrum h̃(k) =
1
2π

∫ ∞

−∞
h(z)e−ikzdz

2-D: Z
‖
0 = −4ikZ0

b

∞∑
m=−∞

∫ ∞

−∞

κ2√
κ2 +m2/b2

|h̃m(κ)|2dκ

with spectrum h̃m(k) =
1

(2π)2

∫ 2π

0
dθ

∫ ∞

−∞
dz h(z, θ)e−ikz−imθ

Heifets and Kheifets formulas for tapered steps and tapered cavity at high frequencies [14].

Taper in from radius
h to b (<h), out from
radius b to h; taper-
ing angle α. Taper-
ing inefficient for a
bunch of rms length
σ, if 2(h−b) tanα �
σ. All formulas here
and below are valid
for positive k = ω/c
only.

ReZ‖
0 =±Z0

2π
ln
h

b
+

(
Z

‖
0

)
step

, ReZ⊥
1 =±Z0b

4π

(
1
b2

− 1
h2

)
+

(
Z⊥

1

)
step

{
+in

− out(
Z

‖
0

)
step

=
Z0

2π
ln
h

b
, tanα>

h−b

kb2
,

(
Z

‖
0

)
step

=
Z0

4
kb tanα, tanα� 1

kb(
Z⊥

1

)
step

=
Z0

4πb

[
1− 1

(1+kb)2 2F1

(
1, 3

2 , 3,
4bh

(b+h)2

)]
, tanα>

h−b

kb2
, kb�1

(
Z⊥

1

)
step

=
Z0b

4π

(
1
b2

− 1
h2

)
, tanα>

h−b

kb2
, kb�1, h�b

(
Z⊥

1

)
step

=
Z0

16b
(kb)3 tanα, tanα � 1

kb

Pill-box cavity: total
length g, radial depth
h without taper. Z

‖
0 =




(1 + i)Z0

2πb

√
g

kπ
g � kb2

− i
Z0

π
ln

h

b
g � kb2

Tapering angle α on
both sides, g � h. ReZ‖

0 = 2
(
Z

‖
0

)
step

, ReZ⊥
0 = 2

(
Z⊥

0

)
step

as given above
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1.6 Exercises

1.1. Prove the properties of the impedances in Eqs. (1.31)-(1.34).

1.2. Using a RLC-parallel circuit, derive the longitudinal impedance in Eq. (1.40) by

identifying R0s = R, !r = 1=
p
LC, and Q = R

p
C=L. Then show that the wake

function is W 0
0 = 0 for z < 0, and for z > 0,

W 0
0(z) =

!rR0s

Q
e��z=v

h
cos

�!z

v
� �

�!
sin

�!z

v

i
; (1.46)

with � = !r=(2Q) and �! =
p
!2
r � �2. Similarly, show that

W1(z) = �R1sv!r

Q�!r
e��z=v sin

�!z

v
; (1.47)

for z > 0 and zero otherwise.

1.3. Show that the wake functions corresponding to the longitudinal resistive wall im-

pedance of Eq. (1.42) and the transverse resistive wall impedance of Eq. (1.44) for

a length ` are, respectively,

W 0
0(z) = � �3=2c`

4�bz3=2

r
Z0�r
��c

; (1.48)

W1(z) = � �3=2c`

�b3z1=2

r
Z0�r
��c

; (1.49)

where b is the beam pipe radius, �c is the conductivity and �r the relative magnetic

permeability of the beam pipe walls. The above are only approximates and are

valid for b�1=3 � z � b=�, where � = 1=(b�cZ0). When z � b�1=3, W 0
0(z) should

have the proper positive sign.
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Chapter 2

LONGITUDINAL PHASE SPACE

2.1 Momentum Compaction

A bunch of charged particles has a spread of energy because of many reasons, for ex-

ample, random quantum excitation which changes the energy of the particles randomly

(for electrons and ultra-high energy protons only), intrabeam scattering which is just

Coulomb scattering among the particles, Touschek scattering [1] which is large-angle

Coulomb scattering which converts the transverse momentum of a particle into longi-

tudinal, and, most important of all, a means to counter collective instabilities through

Landau damping. In an accelerator ring or storage ring, particles with di�erent energies

have di�erent closed orbits, their lengths are given by

C = C0

�
1 + �0Æ +O(Æ

2)
�
; (2.1)

where Æ is the fractional spread in momentum and C0 is the orbit length of the so-

called on-momentum particle. The proportionality constant �0 is called the momentum-

compaction factor of the accelerator ring. The fraction momentum spread is related to

the lowest order fractional energy spread �E=E0 by

Æ =
�p

p0
�

1

�2
0

�E

E0

: (2.2)

where p0, E0, and v0 = �0c are the momentum, energy, and longitudinal velocity of the

on-momentum particle. The momentum-compaction factors of most accelerators and

2-1
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storage rings have the property that �0 > 0, implying that particles with larger energy

will travel along longer closed orbits with more radial excursions. A longer closed orbit

may imply relatively longer revolution period T . On the other hand, a higher energy

particle travels with higher velocity v and the period of revolution will be relatively

shorter. The result is a slip in revolution time �T (either positive or negative) every

turn with respect to the on-momentum particle. The particles inside the bunch will

therefore spread out longitudinally and the bunch will disintegrate unless there is some

longitudinal focusing force like the rf voltage. Since T = C=v, a slip factor � can be

de�ned by
�T

T0
=

�C

C0

�
�v

v0
� �Æ ; (2.3)

where T0 is the revolution period of the on-momentum particle. Thus, to the lowest

order in the fractional momentum spread, we have

� = �0 �
1

2
0

; (2.4)

where E0 = 0mc
2 and m is the rest mass of the particle. Higher orders of the slip factor

will be given in Chapter 18.

For most electron rings and high energy proton rings, the particle velocity v is

extremely close to c, the velocity of light, so that the revolution-time slip is dominated

by the increase in orbit length. We therefore have � � �0 and we call the operation above

the transition energy. For low-energy hadron rings, the velocity term may dominate

making � < 0 and we say the operation is below the transition energy, implying that

the velocity change of an o�-momentum particle is more important than the change in

orbit length. The higher-momentum particle, having a larger velocity, will complete a

revolution turn in less time than the on-momentum particle, resulting in a forward slip.

Obviously, transition occurs when the velocity change is just as important as the change

in orbit length, or � = 0. The transition energy is de�ned as Et = tmc
2 and t = �

�1=2
0

.

There are also rings, like the 1.2 GeV CERN Low Energy Antiproton Ring (LEAR)

and many newly designed ones [2] that have negative momentum-compaction factors or

�0 < 0. In these rings, lower momentum particles have longer closed orbits or larger

radial excursions than higher momentum particles. Negative momentum compaction

implies an imaginary t and the slip factor will always be negative, indicating that the

ring will be always below transition. Some believe that such rings will be more stable

against collective instabilities [3]. Design and study of negative momentum compaction

rings have been an active branch of research in accelerator physics lately [4].
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∆E∆E

τ
2

3

1

τ
2

3

1

(a) (b)

Figure 2.1: Three particles are shown in the longitudinal phase planes. (a) Initially,

they are all at the rf phase of 180Æ and do not gain or lose any energy. (b) One

turn later, the on-momentum particle, denoted by 2, arrives with the same phase

of 180Æ without any change in energy. The particle with lower energy, denoted by

1, arrives earlier and gains energy from the positive part of the rf voltage wave at

phase < 180Æ. The particle with higher energy, denoted by 3, arrives late and loses

energy because it sees the rf voltage wave at phase > 180Æ.

In order to have the particles bunched, a longitudinal focusing force will be required.

This is done by the introduction of rf cavities. Consider three particles arriving in the

�rst turn at exactly the same time at a cavity gap, where the rf sinusoidal gap voltage

wave is at 180Æ, as shown in Fig. 2.1a. All three particles are seeing zero rf voltage and

are not gaining any energy from the rf wave. The drawing of the rf voltage wave implies

that the rf voltage at the cavity gap was positive a short time ago and will be negative a

short time later. Assume that the ring is above transition or � > 0. One turn later, the

on-momentum particle, denoted by 2 in the �gure, arrives at the cavity gap at exactly

the time when the rf sinusoidal voltage curve is again at 180Æ and gains no energy. At

this moment, the positions of the three particles and the rf wave are shown in Fig. 2.1b.

The lower energy particle, denoted by 1, arrives at the gap earlier by �1, which we call

time slip. It sees the positive part of the rf voltage and gains energy. For the second

turn, it arrives at the gap earlier by �1 + �2, where �2 < �1 because the particle energy

has been raised in the second passage. This particle will continue to gain energy from

the rf every turn and its turn-by-turn additional time slip diminishes. Eventually, this



2-4 2. LONGITUDINAL PHASE SPACE

particle will have an energy higher than the on-momentum particle and starts to arrive

at the cavity gap later turn after turn, or its turn-by-turn time slip becomes negative.

Similar conclusion can be drawn for the particle, denoted by 3 in the �gure, that has

initial energy higher than the on-momentum particle. With the rf voltage wave, the

o�-momentum particles will oscillate around the on-momentum particle and continue to

form a bunch. In reality, the particles lose an amount of energy Us every turn due to

synchrotron radiation. This is compensated by shifting the rf phase slightly from 180Æ

to �s = sin�1(Us=Vrf), where Vrf is the rf voltage (the peak value of the rf wave), so that

the on-momentum particle will see the rf voltage at the phase �s when traversing the

cavity gap. This particle is also called the synchronous particle.

2.2 Equations of Motion

To measure the charge distribution in a bunch, we choose a �xed reference point s0 along

the ring and put a detector there. A particle in a bunch is characterized longitudinally

by � , the time it arrives at s0 ahead of the synchronous particle. We record the amount

of charge arriving when the time advance is between � and �+d� . The result is e�(�)d� ,

where �(�) is a measure of the particle distribution� and e is the particle charge. The

actual linear particle density per unit length is �(�) = �(�)=v, where v is the velocity

of the synchronous particle. Note that this charge distribution is measured at a �xed

point but at di�erent times. Therefore, it is not a periodic function of � . In one turn,

the change in time advance is

�� = ��T0Æ : (2.5)

The negative sign comes about because the period of a higher-momentum particle is

larger above transition (� > 0) and therefore its time of arrival slips. During that turn,

the energy gained by the particle relative to the synchronous particle is

�E = eVrf(sin�� sin�s)� [U(Æ)� Us] + ChF
k
0 i � C0hF

k
0si ; (2.6)

where the subscript s stands for synchronous particle. The �rst term on the right is

the sinusoidal rf voltage and the second term is the radiation energy. The third is the

average wake force de�ned in the previous section due to all beam particles ahead; it

can therefore be written as, according to Fig. 2.2,

�Note the change in notation. In Chapter 1, � represents charge density. From here on, � represents

particle number density so that
R
�(�)d� = Nb the total number of particles in the bunch. The charge

density becomes e�.



2.2 Equations of Motion 2-5

0 2 1

0 2 1

0 2 1

τ

τ

’

Time

Location  s

tail head

τ~

τ’~ v

v

0

0

ahead

ahead

Figure 2.2: Top: the synchronous particle 0 arriving at the location s at the ring.

Middle: test particle 2 arriving at s with a time advance � and seeing the wake

left by source particle 1 (bottom) arriving at s with a time advance � 0. Thus test

particle is z � v0(�
0� �) behind source particle. The total wake force acting on test

particle 2 is the superposition of the wake forces contributed by all particles in the

bunch with time advances � 0 � � .

hF
k
0 (�)i = �

e2

C

Z 1

�

d� 0�(� 0)W 0
0(�

0 � �) : (2.7)

Notice that we have written, for convenience, the wake function as a function of time

advance (� 0 � �) instead of distance z � v0(�
0 � �), with v0 denoting the velocity of the

synchronous particle. There is an approximation here because the particles inside the

bunch travel with slightly di�erent velocity. The error, which is less then �L�v, is small,

where �L is the total bunch length in time and �v is the maximum velocity spread in

the bunch. This is actually the rigid-bunch approximation. In the same approximation,

we do not distinguish between C and C0, the path length of an o�-momentum particle

and that of the synchronous particle. The signs in Eq. (2.7) and in front of hF
k
0
(�)i in

Eq. (2.6) can be checked by seeing whether there is an energy loss when substituting,

the wake of, for example, a real resistance W 0
0
(�) = RÆ(�). The synchronous phase �s

in Eq. (2.6) is a parameter chosen to balance the energy loss in a storage ring, or to

accomplish a designed rate of increase of energy in an accelerator. The average wake

force acting on the synchronous particle, hF
k
0si, can be obtained from Eq. (2.7) by letting

� = 0.
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The two equations of motion are related because the momentum spread is related

to the energy spread by Æ = �E=(�2
0E0), and the rf phase seen is related to the time

advance,

�� �s = �h!0� ; (2.8)

where !0=(2�) = 1=T0 is the revolution frequency of the ring for the synchronous particle

and h is the rf harmonic, which is the number of oscillations the rf wave makes during one

revolution period. The negative sign on the right side of Eq. (2.8) comes about because

when the particle arrives earlier or � > 0, it sees a rf phase earlier than the synchronous

phase �s (see Fig. 2.1). Writing as discrete di�erential equations, they become

d�

dn
= �

�T0
�2
0

�E

E0

; (2.9)

d�E

dn
= eVrf[sin(�s � h!0�)� sin�s]� [U(Æ)� Us] + C0

�
hF

k
0 i � hF

k
0si
�
: (2.10)

To simplify future mathematical derivations, a continuous independent variable is

needed instead of the discrete turn number n. Time is not a good variable here because

particles with di�erent energies complete one revolution turn in di�erent time intervals.

Even for one particle, its energy oscillates with synchrotron motion and so is the time

for consecutive revolution turns. We choose instead s, the distance measured along the

closed orbit of the synchronous particle, because the increase in s per revolution turn

is always the length of the closed orbity C0 of the synchronous particle, regardless of

the momentum o�set of the beam particle under consideration. This transition from

discrete turn number n to the continuum is a good approximation, because in reality it

takes a particle many (� 50 to 100 in electron rings and � 200 to 1000 in proton rings)

revolution turns to complete a synchrotron oscillation, and it takes the beam a large

number of turns for an instability to develop.

With � and �E as the canonical variablesz, the equations of motion for a particle

in a small bunch become
d�

ds
= �

�

v0�2
0E0

�E ; (2.11)

d�E

ds
=
eVrf
C0

h
sin(�s � h!0�)� sin�s

i
�
U(�E)� Us

C0

+ hF
k
0 (�; s)i � hF

k
0s(s)i : (2.12)

yIn subsequent chapters, the subscript `0' in C0, E0, v0, �0, 0, etc for the synchronous particle may

be omitted in order to simplify the notation.
zThis set of canonical variables should not be used if the accelerator is ramping. Instead the set

�=!0 and �E=!0 is preferred
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Although one may also use t = s=v0 as the independent variable, we want to emphasize

that this t is the time describing the synchronous particle and is not the time variable

for an o�-energy particle. Thus, the independent variable s is quite di�erent from the

time variable.

Let us �rst neglect the wake potential and also the small di�erence between the

energy lost by the o�-momentum particle U(Æ) and the energy lost by the on-momentum

particle Us. For small amplitude oscillations, the two equations combine to give

d2�

ds2
�

2��heVrf cos�s

C2
0
�2
0
E0

� = 0 : (2.13)

Therefore, the bunch particles are oscillating with the angular frequency !s0 = �s0!0,

where

�s0 =

s
�
�heVrf cos�s

2��2
0
E0

(2.14)

is called the synchrotron tune or the number of synchrotron oscillations a particle makes

in one revolution turn, and !s0 = �s0!0 the synchrotron angular frequency. The subscript

\0" indicates that these are the unperturbed small-amplitude values or with the wake

potential turned o�. The negative sign inside the square root implies that �s should

be near 180Æ in the second quadrant above transition (� > 0), but near 0Æ in the �rst

quadrant below transition (� < 0). Synchrotron motion is slow and the synchrotron tune

is usually of the order of 0.001 to 0.01. When the oscillation amplitude becomes larger,

the rf sine wave cannot be linearized. The focusing force is smaller and the synchrotron

tune �s for maximum phase excursion �̂ will become smaller as is shown in Fig. 2.3

according to

�s(�̂) =
��s0

2K(sin 1

2
�̂)

; (2.15)

where

K(x) =

Z �=2

0

dup
1� x2 sin2 u

(2.16)

is the complete elliptic integral of the �rst kind. This prediction has been veri�ed

experimentally at the Indiana University Cyclotron Facility (IUCF) Cooler Ring [5]. In

the small-amplitude approximation, we have �s(�̂) = �s0

�
1� 1

12
�̂2
�
. In other words,

there will be a spread in the synchrotron tune among the particles in the bunch, which

will be very essential to the Landau damping of the collective instabilities to be discussed

later. As the oscillation amplitude continues to increase, a point will be reached when
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Figure 2.3: Plot showing the synchrotron frequency decreasing to zero at the edge

of the rf bucket.

there is no more focusing provided by the rf voltage anymore. This boundary in the

� -�E phase space provides the maximum possible bunch area allowed and is called

the rf bucket holding the bunch. Any particle that goes outside the bucket will be

lost. The equation of motion is, in fact, exactly that of a pendulum, whose frequency

of oscillation decreases with amplitude. If we start the pendulum motion at its rest

position with too large a kinetic energy, the pendulum will no longer be in oscillatory

motion. It will wrap around the point of support performing librations instead. This

critical angular amplitude of the pendulum is ��, exactly the same for the rf bucket.

Figure 2.4 illustrates some stationary buckets (when the synchronous phase �s = 180Æ

above transition) and moving or accelerating buckets (when �s is between 90Æ and 180Æ).

The �gure also shows the trajectories of libration outside the buckets. The horizontal

axis is the rf phase (instead of the time advance used in Fig. 2.1); the trajectories
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therefore move clockwise (instead of counter-clockwise in Fig. 2.1).

If the radiation energy is neglected, the two equations of motion are derivable from

the Hamiltonian

H = �
�

2v0�2
0
E0

(�E)2�
eVrf
C0h!0

�
cos(�s� h!0�)� cos �s� h!0� sin�s

�
+ V (�) ; (2.17)

with the aid of the Hamiltonian equations

8>><
>>:

d�

ds
=

@H

@�E
;

d�E

ds
= �

@H

@�
:

(2.18)

The potential of the wake force is given by

V (�) =
e2

C0

Z �

0

d� 00
�Z 1

�1

d� 0�(� 0)W 0
0(�

0 � � 00)�

Z 1

�1

d� 0�(� 0)W 0
0(�

0)

�
: (2.19)

The second term in the squared brackets comes from hF
k
0si, the energy lost by the

synchronous particle due to the wake potential of the vacuum chamber. In Eq. (2.17),

the cos�s term is added to adjust the rf potential to zero for synchronous particles

(� = 0). For small-amplitude oscillations, the Hamiltonian simpli�es to

H = �
�

2v0�2
0E0

(�E)2 �
!2

s0�
2

0
E0

2�v0
� 2 + V (�) ; (2.20)

where !s0 = �s0!0, the synchrotron angular frequency for small amplitudes, is given by

Eq. (2.14).

In an electron ring, synchrotron radiation may provide damping to many collec-

tive instabilities. Because this damping force is dissipative in nature, strictly speaking

a Hamiltonian formalism does not apply. However, the synchrotron radiation damping

time is usually very much longer than the synchrotron period. The fast growing instabil-

ities will evolve to their full extent before the damping mechanism becomes materialized.

Here, we are interested mostly in studying those instabilities that grow within one radi-

ation damping time of the ring. For a time period much less than the radiation damping

time, radiation can be neglected and the Hamiltonian formalism therefore applies.
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Figure 2.4: The trajectories in the longitudinal phase space above the transition

energy. Top plot shows the stationary buckets when the synchronous phase �0 =

180Æ. Middle and lower plots show the moving or accelerating buckets when the

synchronous phases are, respectively, �0 = 150Æ and 120Æ. The moving buckets

shrink when the synchronous phase decreases from 180Æ towards 90Æ. Notice that

the horizontal axis is the rf phase (instead of arrival time in Fig. 2.1); the directions

of the trajectories are therefore clockwise above transition.
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2.3 Vlasov Equation

We would like to study the evolution of a bunch that contains, say, 1012 particles. The

Hamiltonian in Eq. (2.17) has to be modi�ed to include 1012 sets of canonical variables

in order to fully describe the bunch. The description of the motion of a collection of

1012 particles is known as the particle approach, and is often tackled in the time domain.

However, what are of interest to us are the collective behaviors of the bunch like the

motion of its centroid, the evolution of the particle distribution, etc. In other words, we

are studying here the evolution of various modes of motion of these collective variables.

For 1012 particles, there are 1012 modes of motion. However, we will never be interested in

those modes whose wavelengths are of the order of the separation between two adjacent

particles inside the bunch, because they correspond to motions of very high frequencies,

and those motions are microscopic in nature. What we would like to study are the

macroscopic modes of the bunch, or those having wavelengths of the same order as the

length of the bunch or the radius of the vacuum chamber. Sometimes, we may even

want to study modes with wavelengths one tenth or one hundredth of the bunch length

or beam pipe radius, but de�nitely not down to the microscopic size like the distance

between two neighboring beam particles. In other words, we go to the frequency domain

and look at the di�erent modes of motion of oscillation of the bunch as a whole. Our

interest is on those few modes that have the lowest frequencies or longest wavelengths.

This direction of study is known as the mode approach.

When collisions are neglected, the basic mathematical tool for the mode approach is

the Vlasov equation or the Liouville theorem [6]. It states that if we follow the motion of

a representative particle in the longitudinal or � -�E phase space, the density of particles

in its neighborhood is constant. In other words, the distribution of particles  (�;�E; s)

moves in the longitudinal phase space like an incompressible uid. Mathematically, the

Vlasov equation reads

d 

ds
=
@ 

@s
+
d�

ds

@ 

@�
+
d�E

ds

@ 

@�E
= 0 : (2.21)

In terms of the Hamiltonian, it becomes

@ 

@s
+ [ ;H] = 0 ; (2.22)

where [; ] denotes the Poisson bracket. Here, the time of early arrival � and the energy

o�set �E are the set of canonical variables chosen. The Poisson bracket is therefore

[ ;H] =
@ 

@�

@H

@�E
�

@ 

@�E

@H

@�
: (2.23)
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Together with the Hamiltonian equations of Eq. (2.18), Eq. (2.21) is reproduced.

If radiation is included in the discussion, one must extend the Vlasov equation to

the Fokker-Planck equation [7]

d 

ds
= A

@

@�E
(�E ) +

D

2

@2 

@�E2
; (2.24)

where A and D are related, respectively, to the damping and di�usion coeÆcients.

2.4 Coasting Beams

A coasting beam is not bunched. There is no rf voltage and therefore no synchrotron

oscillation. Thus, there is no synchronous particle. For the longitudinal position, we

can make reference with respect to a designated point in the accelerator ring. For the

energy o�set, we can make reference with respect to the average energy change for all the

on-momentum particles. Here, we cannot talk about bunch modes. Instead, the linear

density of an excitation of the beam can be described much better by an harmonic wave,

f1(�; t) � ein��
t ; (2.25)

where � is the azimuthal angle around the ring measured from a point of reference, n is

a revolution harmonic or n modulations of the longitudinal linear density when viewed

from the top of the accelerator ring at a �xed time t, and 
 is the angular velocity of the

wave. The harmonic n = 0 should be excluded because it will violate charge conservation

since the integral of f1 over the whole ring does not vanish when n = 0. The excitation

of Eq. (2.25) is a snap-shot view, similar to taking a picture of the beam above the

accelerator ring. Thus the linear density is a periodic function of � with period 2�. The

linear density can therefore be expanded as a Fourier series and the excitation f1(s; t) is

just a Fourier component. To describe a beam particle, we use the canonical variable z

and �E, where z = R� with R = C0=(2�) being the mean radius of the on-momentum

closed orbit. Here, z is just the longitudinal distance ahead of the point of reference at

time t and �E is the energy o�set. Since we are using snap-shot description, the real

time t can be used as the continuous independent variable. The equations of motion are

dz

dt
= �

��E

v0�2
0
E0

; (2.26)

d�E

dt
= �

U � Us

T0
+ v0hF

k
0
(z; t)i � v0hF

k
0s(t)i ; (2.27)
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where v0 and T0 are, respectively, the velocity and revolution period of the on-momentum

particle, hF
k
0 (z; t)i is the average longitudinal wake force acting on the beam particle

under consideration and hF
k
0s(t)i is the average of the average longitudinal wake force

acting on all the on-momentum particles. The subtraction of hF
k
0s(t)i is necessary, be-

cause sometimes the average wake force may have a dc resistive term and we do not

want to include it in our discussion since it is usually compensated, for example, by a

dc gap voltage. Otherwise, the beam will continue to lose energy and will not be able

to stay inside the vacuum chamber.

When synchrotron radiation is neglected, the equations of motion can be derived

from the Hamiltonian

H = �
��E

2v0�2
0E0

+

Z z

0

h
hF

k
0
(z0; t)i � hF

k
0s(t)i

i
v0dz

0 : (2.28)

For the beam distribution  (z;�E; t) in the longitudinal phase space, the Vlasov equa-

tion becomes
@ 

@t
+
dz

dt

@ 

@z
+
d�E

dt

@ 

@�E
= 0 ; (2.29)

where dz=dt and d�E=dt are given by the equations of motion. It is important to realize

that dz=dt is not the longitudinal velocity v of the particle having energy o�set �E.

Instead, it represents the phase slip (in length) per revolution period T0.
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2.5 Exercises

2.1. The Hamiltonian of Eq. (2.17) describes motion in the longitudinal phase space,

when the wake potential V (�) is not included. With the e�ects of the wake poten-

tial neglected, �nd the �xed points of the Hamiltonian above and below transition,

and determine whether they are stable or not. The separatrices are the contours

of �xed Hamiltonian values that pass through the unstable �xed points. They sep-

arate the region of libration motion from rotation motionx. Plot the separatrices.

2.2. The canonical variables �0 and �E0 evaluated at `time' s = 0 become �1 and �E1

at an in�nitesimal time �s later according to

�1 = �0 +
@H

@�E0

�s ; �E1 = �E0 �
@H

@�0
�s : (2.30)

Consider the small phase-space area element d�0d�E0 = Jd�1d�E1. Show that

the Jacobian J = 1 to the �rst order in �s, implying that the area surrounding a

given number of particles does not change in time, which is Liouville Theorem. It

is possible to prove J = 1 to all orders in �s using canonical transformation. See,

for example, H. Goldstein, Classical Mechanics, Addison-Wesley, Chapter 8-3.

2.3. Starting from the Hamiltonian in Eq. (2.17) with the synchronous phase �s = 0 or

� but in the absence of the wake potential, derive the synchrotron tune, Eq. (2.3), of

a particle having an rf phase amplitude �̂. Repeat the derivation for any arbitrary

synchronous phase.

xLibration implies periodic motion in the phase space, similar to a sine wave going from �1 to +1.

Rotation motion in phase space implies to-and-fro oscillatory motion.
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Chapter 3

POTENTIAL-WELL DISTORTION

3.1 Static Solution

The wake potential a�ects the particle bunch in two ways. Static perturbation changes

the shape of the bunch, while time-dependent perturbation can lead to instability of the

bunch. This is analogous to quantum mechanics, where time-independent perturbation

shifts the energy levels while time-dependent perturbation causes transition. In this

chapter, we are going to study stationary bunch distributions, or distributions inuenced

by the time-independent perturbation of the wake potential. This alteration of bunch

distribution is called potential-well distortion.

From the Vlasov equation depicted in Eq. (2.21), it is evident that the solution

for the stationary particle distribution  (�;�E) in the longitudinal phase space must

satisfy

[ ;H] = 0 ; (3.1)

or it is suÆcient that  is a function of the Hamiltonian,

 =  (H) : (3.2)

Recall that the Hamiltonian of a particle with small amplitude synchrotron oscillations

is

H = � �

2v�2E0
(�E)2 � !2

s0�
2E0

2�v
� 2 + V (�) ; (3.3)

3-1
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which describes the motion of a beam particle in the potential well

U(�) = �!
2
s0�

2E0

2�v
� 2 + V (�) ; (3.4)

where �E and � are the energy o�set and time advance of the beam particle, while the

synchronous particle has energy E0, velocity
� v = �c, bare synchrotron angular frequency

!s0, and slip factor �. Here, the potential-well contributed by the wake function is

[Eqs. (2.7), (2.12), and (2.18)],

V (�) =
e2

C0

Z �

0

d� 00
Z 1

� 00

d� 0�(� 0)W 0
0(�

0 � � 00) ; (3.5)

where C0 is the length of the designed closed orbit, W 0
0 is the longitudinal monopole

wake function, and �(�) is the linear particle density under the inuence of the wake.

When the e�ects of the wake potential is removed, this is just a parabolic potential well.

In the presence of the wake potential, the potential well is distorted and the distribution

of the beam particle in the longitudinal phase space is therefore modi�ed. As will be

seen below, a purely reactive wake potential, meaning that the coupling impedance is

either inductive or capacitive, will modify the parabolic potential in such a way that the

potential well remains symmetric. Correspondingly, the distorted particle distribution

will also be head-tail symmetric, assuming that the original particle distribution in the

rf potential along is symmetric. A wake potential with a resistive component, however,

will a�ect the symmetry of the parabolic potential well so that the bunch distribution

will no longer be head-tail symmetric.

3.2 Reactive Force

Consider a particle beam with linear density �(s; t) traveling in the positive s direction

with velocity v inside a cylindrical beam pipe of radius b with in�nitely-conducting walls.

The axis of the beam coincides with the axis of the beam pipe. The beam is assumed

to be rigid; therefore � = �(s � vt). We also assume at this moment that the beam is

uniformly distributed transversely within a radius a which does not vary longitudinally.

We are interested in the longitudinal electric �eld Es seen by the beam particles at the

axis of the beam. To compute that we invoke Faraday's law,

~r� ~E = � @

@t
~B ; (3.6)

�Here, we drop the subscript "0" for v and � for the sake of convenience.
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or in the integral form, I
~E �d` = � @

@t

I
~B �d ~A : (3.7)

In above, the closed path of integration of the electric �eld ~E is along two radii of the

beam pipe at s and s+ ds together with two length elements at the beam axis and the

wall of the beam pipe, as illustrated in Fig. 3.1. The area of integration of the magnetic

v

a

b

s+dss

Es

Figure 3.1: (color) Derivation of the space charge longitudinal electric �eld Es

experienced by a beam particle in a beam of radius a in an in�nitely conducting

beam pipe of radius b.

ux density ~B is the area enclosed by the closed path. Now, the left side of Eq. (3.7)

becomes

L. S. = Esds+
e�(s+ds�vt)

2��0

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
� e�(s�vt)

2��0

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
; (3.8)

while the right side

R. S. = � @

@t

�0e�(s�vt)v
2�

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
ds : (3.9)

Assumption has been made that the open angle 1= of the radial electric �eld is small

compared with the distance ` over which the linear density changes appreciably, or

b= � `. Here,  = E0=(mc
2) and m is the rest mass of the beam particle. In terms of

the the squared-bracketed expressions in Eqs. (3.8) and (3.9), we can de�ne

g0 = 2

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
= 1 + 2 ln

b

a
; (3.10)
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which is a geometric factor depending on the geometry of the beam and the beam

pipe, and it will deviate from Eq. (3.10) if we relax, for example, the restriction of the

transverse uniformity of the particle distribution. Combining the above, we arrive at

Es +
eg0
4��0

@�

@s
= v2

e�0g0
4�

@�

@s
; (3.11)

or

Es = � eg0
4��02

@�

@s
; (3.12)

which is the space charge force experienced by a particle in a beam. In the reduction

from Eq. (3.10) to Eq. (3.12), use has been made of the relation �0�0 = c�2.

The �rst application is a longitudinal harmonic wave

�1(s; t) / ei(ns=R�
t) ; (3.13)

perturbing a coasting beam of uniform linear density �0, where n is a revolution har-

monic, R is the radius of the accelerator ring, and 
 is the frequency of the wave. It will

be shown in Chapter 6 that 
 � n!0 = nv=R; the di�erence comes from the perturba-

tion of the coupling impedance. Thus, �1 is roughly a function of s � vt. Substitution

into Eq. (3.12) results in the voltage

V = �EsC0 =
ineZ0cg0

22
�1 (3.14)

seen by a beam particle per accelerator turn. The perturbing wave constitutes a per-

turbing current I1 = e�1v. Therefore, the space charge impedance per harmonic seen

is
Z
k
0

n

�����
sp ch

=
iZ0g0
22�

; (3.15)

which is to be compared with Eq. (1.36). From Eq. (3.12), the space charge force

experienced by a beam particle at position s and time t becomes

F (s; t) =
ie2v

2�

Zk
0

n

�����
sp ch

@�(s; t)

@s
: (3.16)

Since an inductive impedance can be viewed as a negative space charge impedance, we

can write the force due to a general reactive impedance as

F (s; t) =
ie2v

2�

Z
k
0

n

�����
reactive

@�(s; t)

@s
: (3.17)
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When the position of the beam particle is measured in terms of time advanced � ahead

of the synchronous particle, the particle linear distribution �(�; t), which is normalized

to the total number of beam particles, is related to �(s; t) by

�(s; t)ds = �(�; t)d� or
@�(s; t)

@s
=

1

v2
@�(�; t)

@�
: (3.18)

The reactive force exerted on a beam particle becomes

F (�; t) =
ie2

2�v

Zk
0

n

�����
reactive

@�(�; t)

@�
: (3.19)

Of course, the above expression can also be obtained by substituting the reactive wake

function

W 0
0(�) = Æ0(�)

"
i

!0

Z
k
0

n

#
reactive

(3.20)

directly into Eq. (2.7).

The second application is on potential-well distortion. For a bunch, the head has

a negative slope or @�=@� < 0, while the tail has a positive slope or @�=@� > 0. For a

space charge impedance, the head of the bunch is therefore accelerated and gains energy,

while the tail decelerated and loses energy. Below transition, the head arrives earlier

after one turn while the tail arrives later, resulting in the spreading out of the bunch.

The space charge force therefore distorts the rf potential by counteracting the rf focusing

force. On the other hand, an inductive force enhances the rf focusing. The opposite is

true above transition.

3.3 Haissinski Equation

For an electron bunch, because of the random quantum radiation and excitation, the

stationary distribution should have a Gaussian distribution in �E, or

 (�;�E) =
1p
2��E

exp

�
��E2

2�2
E

�
�(�) ; (3.21)

where �E is the rms beam energy spread determined by synchrotron radiation. Noting

Eq. (3.2) and the Hamiltonian in Eq. (3.3), we must have

 (�;�E) / exp

�
v�2E0

��2
E

H

�
: (3.22)
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The linear density or distribution �(�) is obtained by an integration over �E. Since

Hamiltonian H depends on �(�) [see, for example, Eqs. (2.19) and (2.20)], we �nally

arrive at a self-consistent equation for the linear density,

�(�) = �(0) exp

"
�
�
!s0�

2E0

��E

�2
� 2

2
+
e2�2E0

�T0�2
E

Z �

0

d� 00
Z 1

� 00

d� 0�(� 0)W 0
0(�

0 � � 00)

#
:

(3.23)

This is called the Haissinski equation [1], where the constant �(0) is obtained by nor-

malizing to the total number of particles in the bunch:Z
d��(�) = N : (3.24)

The solution will give a linear distribution that deviates from the Gaussian form, and

we call this potential-well distortion. Since the rf voltage is modi�ed, the angular syn-

chrotron frequency also changes from !s0 to the perturbed incoherent !s accordingly.

For a purely resistive impedance Z
k
0 (!) = Rs with the wake function W 0

0(z) =

RsÆ(z=v), the equation can be solved analytically giving the solution [3]

�(�) =

p
2=�e��

2=(2�2� )

�R��fcoth(�RN=2)� erf[�=(
p
2�� )]g

; (3.25)

where

�� =
j�j�E

�2!s0E0
; �R =

e2�2E0Rs

�T0�2
E

; (3.26)

and

erf(x) =
2p
�

Z x

0

e�t
2

dt (3.27)

is the error function. For a weak beam with j�RjN . 1, the peak beam density occurs

at

� =
�RNp
2�

�� : (3.28)

This peak moves forward above transition (�R > 0) and backward below transition

(�R < 0) as the beam intensity increases. This e�ect comes from the parasitic loss of

the beam particle which is largest at the peak of the linear density �(�) and smallest

at the two ends. Those particles losing energy will arrive earlier/later than the syn-

chronous particle in time above/below transition and the distribution will therefore lean

forward/backward. Such bunch pro�les are plotted in Fig. 3.2 for �RN = �10, �5, 0,
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Figure 3.2: Plot of bunch pro�les between �5 �s for �RN = �10, �5, 0, 5, and 10,

according to the solution of the Haissinski equation when the impedance is purely

resistive. These pro�les are normalized to ��
p
�=2 when integrated over � . It is

evident that the pro�le leans forward above transition (�R > 0) and backward below

transition (�R < 0).

5, and 10. In the plots, the linear densities are normalized to ��
p
�=2 when integrated

over � .

When the longitudinal impedance is purely inductive,W 0
0(z) = LÆ0(z=v), the double

integrals can be performed and the Haissinski equation becomes

�(�) = ke��
2=(2�2� )��L�(�) ; (3.29)

where k is a positive constant and �L = e2�2E0L=(�T0�
2
E
). The above can be rewritten

as

�(�)e�L�(�) = ke��
2=(2�2� ) : (3.30)

The right side is an even function of � and so must be the left side, �e�L�. Thus,

it appears that the distorted distribution � is also an even function of � . The linear

distribution will remain left-right symmetric. Thus, the reactive part of the impedance

will either lengthen or shorten the bunch, while the resistive part will cause the bunch

to lean forward or backward. When j�LjN . 1, we can iterate,

� � ke��
2=(2�2� )

�
1� k�Le

��2=(2�2� )
�
: (3.31)
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Without the impedance term, k in Eq. (3.29) represents the particle density at the center

of the bunch. Now for �L > 0, Eq. (3.31) says that e�ectively k becomes smaller. In

other words, the distribution spreads out, or the e�ective rms bunch length becomes

larger than �� . This is the situation of either a repulsive inductive impedance force

above transition or a repulsive capacitive force (L < 0) below transition. On the other

hand, for an attractive inductive force below transition or an attractive capacitive force

above transition, �L < 0. The bunch will be shortened.

For a general wake function, the Haissinski equation can only be solved numerically.

The equation, however, can be cast into the more convenient form (Exercise 3.2)

�(�) = � exp

"
�
�
!s0�

2E0

��E

�2
� 2

2
� e2�2E0

�T0�2
E

Z 1

0

d� 0�(�+� 0)

Z � 0

0

d� 00W 0
0(�

00)

#
: (3.32)

Notice that �(�) on the left side only depends on the � on the right side evaluated in

front of � . We can therefore solve for � at successive slices of the bunch by assigning

zero or some arbitrary value to � at the very �rst slice (the head) and some value to the

constant �. The value of � is varied until the proper normalization of � is obtained.

The longitudinal wake potential of the damping rings at the SLAC Linear Collider

(SLC) has been calculated carefully. Using it as input, the Haissinski equation is solved

numerically at various beam intensities. The results are shown as solid curves in Fig. 3.3

along with the actual measurements. The agreement has been very satisfactory [2].

3.4 Elliptical Phase-Space Distribution

An easier way to compute the bunch length distorted by the reactive impedance is to

consider the elliptical phase-space distribution

 (�;�E) =
3N j�jp�

2��2!s0E0�̂ 30

s
�̂ 20 �

�
�

�2!s0E0

�2

�E2 � �� 2 (3.33)

for an electron bunch, where �̂0 is the unperturbed half bunch length (in time advance).

The distribution vanishes when the expression inside the square root of Eq. (3.33) be-

comes negative. The maximum half energy spread d�E derived from Eq. (3.33),

d�E =
�2!s0E0�̂0

j�j ; (3.34)
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Figure 3.3: Potential-well distortion of bunch shape for various beam intensities for

the SLAC SLC damping ring. Solid curves are solution of the Haissinski equation

and open circles are measurements. The horizontal axis is in units of unperturbed

rms bunch length �z0, while the vertical scale gives y = 4�e�(z)=[V 0
rf (0)�z0]. The

beam is going to the left.

is exactly that given by the phase equation (2.11). The maximum half energy spread

is a constant determined by synchrotron radiation, while the half width of the bunch

derived from Eq. (3.33),

�̂ =
�̂0p
�

(3.35)

is determined by the parameter �. This distribution when integrated over �E gives the

normalized parabolic linear distribution

�(�) =
3N

p
�

4�̂ 30

�
�̂ 20 � �� 2

�
: (3.36)
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With the reactive wake function W 0
0(z) = LÆ0(z=v), the Hamiltonian of Eq. (2.20) can

therefore be written as a quadratic in �E and � :

H = � �

2v�2E0
(�E)2 � !2

s0�
2E0

2�v
� 2 � e2L

C0
�(�) : (3.37)

Substituting for the linear density �(�), the Hamiltonian becomes

H =
!2
s0�

2E0

2�v

"
�
�

�

�2!s0E0

�2

�E2 � � 2(1�D�3=2)

#
; (3.38)

where

D =
3e2N�vL

2!2
s0�

2E0C0�̂ 30
; (3.39)

and the constant term involving �̂0 has been dropped. To be self-consistent, the expres-

sion of  in Eq. (3.33) must be a function of the Hamiltonian. Comparing Eq. (3.33)

with Eq. (3.38), we arrive at

� = 1�D�3=2 (3.40)

or �
�̂

�̂0

�3

=

�
�̂

�̂0

�
+D : (3.41)

This cubic can be solved by iteration. First we put �̂ =�̂0 = 1 on the right side. If

D > 0, we �nd �̂ =�̂0 > 1 or the bunch is lengthened. If D < 0, it is shortened. The

former corresponds to either an inductive force above transition or a capacitive force

below transition. The latter corresponds to either an inductive force below transition

or a capacitive force above transition. This is illustrated in the �rst row of Fig. 3.4,

where we notice that the energy spread of the bunch is unchanged for various types of

perturbation.

For a proton bunch, the energy spread is also modi�ed but the bunch area remains

constant. The phase-space distribution has to be rewritten as

 (�;�E) =
3N j�j

2��2!s0E0�̂ 30

s
�̂ 20 �

1

�

�
�

�2!s0E0

�2

�E2 � �� 2 : (3.42)

Now we have (Exercise 3.6)

�̂ =
�̂0p
�

and d�E =
p
�d�E0 : (3.43)
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E∆E∆E∆

ELECTRON

RINGS τττ

E∆E∆E∆

τRINGS

PROTON
τ τ

D = 0 D > 0D < 0
Bunch shortening Bunch lengtheningUnperturbed

Figure 3.4: Potential well distortion of the bunch shape in the longitudinal phase

space. D > 0 corresponds to either an inductive perturbation above transition or

a capacitive perturbation below transition, while D < 0 implies either an inductive

perturbation below transition or a capacitive perturbation above transition. Top row

is for electron rings where the energy spread remains constant as a result of radiation

damping. Bottom row is for proton rings where the bunch area is constant.

Again comparing with the Hamiltonian, we arrive at the quartic equation�
�̂

�̂0

�4

= 1 +D

�
�̂

�̂0

�
: (3.44)

This is illustrated in the bottom row of Fig. 3.4.

3.5 Synchrotron Tune Shift

When the potential well is distorted, the frequency of oscillation will be changed also.

For an elliptical bunch distribution in the longitudinal phase space, the synchrotron

oscillation frequency shift can be easily extracted from the Hamiltonian in Eq. (3.38).

We get �
!s
!s0

�2

=

�
1 +

�!s
!s0

�2

= 1�D�3=2 : (3.45)
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As a �rst approximation, the synchrotron frequency shift �!s or synchrotron tune shift

��s is given by
�!s
!s0

=
��s
�s0

� �D
2
= � 3e2N�vL

4!2
s0�

2E0C0�̂ 30
; (3.46)

where !s0=(2�) is the bare or unperturbed synchrotron frequency and �s0 = !s0=!0 is the

bare or unperturbed synchrotron tune. We see that an inductive vacuum chamber will

lower/increase the synchrotron tune above/below transition. For the longitudinal space

charge self-force, the synchrotron tune will be shifted upward/downward above/below

transition. Notice that this is the tune shift for an individual particle and is called the

incoherent tune shift.

For a more general bunch distribution and a more general impedance, we resort to

the equations of motion [Eqs. (2.11) and (2.12)], from which we obtain

d2�

ds2
+
�2s0
R2

� = � �

v�2E0

h
hF k

0 (�; s)i � hF k
0 (0; s)i

i
: (3.47)

The wake force on the right side is

hF k
0 (�; s)i � hF k

0 (0; s)i = � e2

C0

Z 1

�1

d� 0�(� 0; s)

�
W 0

0(�
0 � �)�W 0

0(�
0)

�
: (3.48)

To obtain the synchrotron tune shift in the dipole mode, we linearize the wake force, or

hF k
0 (�; s)i � hF k

0 (0; ; s)i =
�
e2

C0

Z 1

�1

d� 0�(� 0; s)W 00
0 (�

0)

�
� : (3.49)

The synchrotron tune shift can therefore be read out easily as

��s
�s0

=
e2�R

4��2s0v�
2E0

Z 1

�1

d� 0�(� 0; s)W 00
0 (�

0) : (3.50)

As a check, let us substitute for the inductive wake potential W 0
0(�) = LÆ0(�). The

integral can be performed to get

��s
�s0

=
e2�RL

4��2s0v�
2E0

@2�

@� 2

����
�=0

: (3.51)

If we substitute for the parabolic bunch distribution of Eq. (3.36), we get back the tune

shift result obtained in Eq. (3.46).

If we average Eq. (3.47) over all the beam particles, we obtain the equation of motion

of the center-of-mass of the bunch and we can compute the coherent synchrotron tune
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shift of the bunch due to potential-well distortion. However, there is another contribution

to this coherent tune shift from the dynamic part of the perturbation which we are going

into later (see Sec. 9.1.1 below). This dynamic contribution will cancel the potential-well

contribution, resulting in no coherent synchrotron tune shift in the dipole mode when the

bunch intensity is weak and the wake is no longer than the bunch spacing. Physically,

this dipole mode is a rigid rotation of the bunch in the longitudinal phase space. The

wake �eld pattern, and therefore the potential-well distortion, moves with the bunch.

Thus, the motion of the bunch as a whole is not a�ected by the wake �eld at all. On the

other hand, the picture for incoherent motion is about a beam particle moving inside

the bunch with the bunch center at rest. An individual particle can therefore sample a

variation of the wake �eld while executing synchrotron oscillation. Thus, to demonstrate

the e�ect of space charge impedance or inductive impedance, the coherent quadrupole

mode of the synchrotron oscillation should be measured. If the incoherent synchrotron

tune is desired, a Schottky scan of the beam is necessary.

3.6 Potential-Well Distortion Compensation

Potential-well distortion can often be a serious problem in the operation of an accelerator

or storage ring. If the distortion opposes the rf bunching, a much larger rf voltage

and hence rf power will be required to counteract the distortion. Even when such

a higher compensating rf voltage is available, the rf bucket may have been so much

distorted that its useful area has very much been reduced. An example is the Los Alamos

Proton Storage Ring (PSR), which stores an intense proton beam at the kinetic energy

of 797 MeV. The ring has a transition gamma of t = 3:1, implying that the operation of

the ring is below transition. The longitudinal space charge force is therefore repulsive in

nature and tends to lengthen the bunch. This longitudinal repulsive force will counteract

the rf bunching force. We will study how serious the potential-well distortion is and a

possible way to cure the problem.

The PSR has a circumference of 90.2 m. It receives chopped proton beams from

a linac cumulatively in 1000 to 2000 turns. The beam is bunched by an rf buncher

to the desired length and is then extracted for experimental use. The rf buncher is

of rf harmonic h = 1, or there is only one bunch. The revolution frequency and the rf

frequency are both 2.796 MHz. A typical store consists of a bunch consisting of 3:2�1013
protons, of half length �̂ = 133:5 ns, occupying roughly two third of ring, and a half
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energy spread of d�E=E0 = 0:005. If space charge is neglected, to keep such a bunch

matched to the rf bucket, the synchrotron tune is

�s0 =
j�jd�E0

!0�2E0�̂
= 0:000402 ; (3.52)

and the required rf voltage is

Vrf =
2��2E0�

2
s0

ej�jh = 6:60 kV : (3.53)

Now let us estimate the space charge e�ect [4]. The 95% (or full) normalized transverse

emittance is 50 � 10�6 �m. From this and the ring lattice, the g0 factor has been

estimated to be

g0 = 1 + 2 ln
b

a
� 3:0 ; (3.54)

where a is the beam radius and b is the beam pipe radius. The longitudinal space charge

impedance is therefore  
Zk
0

n

!
spch

= i
Z0g0
22�

� i196 
 : (3.55)

According to Eq. (3.19), a particle with an arrival time � ahead of the synchronous

particle sees an electric �eld

Es spch = � e

2��c

�����Zk
0

n

�����
spch

d�

d�
; (3.56)

where �(�) is the linear particle density of the bunch and is normalized to the number

of particles in the bunch by integrating over � . This electric �eld comes from the

longitudinal space charge e�ect and is in the direction of the motion of the bunch. It is

positive in the head half of the bunch (� > 0) and negative in the tail half (� < 0). It

is therefore repulsive. Assume a parabolic distribution,

�(�) =
3N

4�̂

�
1� � 2

�̂ 2

�
; (3.57)

so that the electric �eld becomes linear in � . The particle will gain in a turn the potential

Vspch = Es spchC0 =
3eN

2!0�̂ 2

�����Zk
0

n

�����
spch

�

�̂
= 4:82

�

�̂
kV ; (3.58)
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according to its position in the bunch. This potential is of roughly the same size as the

rf voltage required if there is no space charge. Thus, in the presence of space charge, we

need to increase Vrf from 6.60 kV to approximately 6:60 + 4:82 = 11:42 kV; nearly 42%

of the rf voltage has been spent to counteract the space charge force. One must realize

that the rf buncher at PSR was capable to deliver only 12 kV in 1997. Although the rf

buncher has been upgraded to about 18 kV, there is also a goal to increase the beam

intensity to 5� 1013 protons as well. It is important to point out that rf compensation

to space charge can never be exact. The rf force is sinusoidal while the space charge

force is linear if the linear distribution is parabolic. Although the space charge force

may become sinusoidal-like if the unperturbed linear beam distribution is Gaussian, the

frequency content is still very di�erent from the rf focusing force.

3.6.1 Ferrite Insertion

It has been proposed that if ferrite rings (also called cores) are installed inside the vacuum

chamber, the proton beam will see an extra inductive impedance from the ferrite, and

hopefully this inductive impedance will cancel the capacitive space charge impedance of

the beam [5, 6]. Toshiba M4C21A ferrite rings are used, each having an inside diameter

di = 12:7 cm, outside diameter do = 20:3 cm, and thickness t = 2:54 cm. The relative

magnetic permeability is �0 � 70 at the PSR rotation frequency, 2.796 MHz. With nf
ferrite rings stacked together, the impedance per harmonic is

Z
k
0

n ferrite
= �iZ0!0tnf

2�c
�0 ln

do
di

= 2:93nf 
 : (3.59)

Thus, to cancel a space charge impedance per harmonic of � 300 
, about nf = 102

will be needed. Three ferrite inserts were assembled. Each consisted of a stainless-steel

pill-box cavity having an inner diameter of 20.3 cm and inner length of 75.5 cm, so

that 30 ferrite cores could be packed inside. To prevent charge buildup on the inner

surface of the cores, each of the cores were treated with a very thin (1 M
 per square)

conductive coating (Heraeus R8261) baked on the inner and outer surface. Additional

radial conducting `spokes' were added to provide conductivity from the inner surface to

the outer wall of the chamber. Solenoidal wiring was wound outside the stainless steel

container so that the magnetic permeability of the ferrite could be controlled.

Two such ferrite tuners or inserts were installed in the PSR in 1997. To study space

charge compensation caused by the installed inductance, two experiments, using di�erent
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bunch lengths, were completed. The designated charge con�gurations were injected into

the PSR and the longitudinal pro�les (bunch length and shape) were observed, digitized,

and recorded using signals from a wide-band wall current monitor at the end of each

625-�s injection period. The experiments were performed for two bunch lengths: � 50 ns

(half length) with 4:0 � 1012 particles and � 150 ns (half length) with 1:2 � 1013. The

rf voltage was set to 7 kV in both cases. The resulting waveforms are compared with

detailed particle tracking simulations in Fig. 3.5 for the two bunch lengths. The solid

curve in the top left plot represents the bunch shape with the full e�ect of the inserted

inductance (zero bias). The dotted curve corresponds to data with the e�ect of the

inductance diminished by 900-A dc bias. The di�erence of peak heights is about 16%.

Simulations performed with assumed injection momentum spread �p=p = 0:08% are

shown in the top right plot. They predict an rms bunch length of 19 ns, but increasing

to 22 ns when the ferrite bias current is raised to 900 A with the inductance reduced

to 34% of its unbiased value. We see that the experiment measurements are consistent

with the simulation predictions. Similar conclusion can be drawn for the long-bunch-

length situation shown in bottom plots of Fig. 3.5. We see that bunch lengths have been

reduced with the ferrite insertion, indicating that the space charge impedance has been

cancelled to a certain extent.

It is unfortunate that the change in synchrotron frequency could not be measured

to give another demonstration of the cancellation of space charge. This is mainly due to

the slow synchrotron oscillation in the PSR. During the whole accumulation and storage

time, the beam particles usually make less than one synchrotron oscillation. A similar

space charge compensation experiment had also been performed at the KEK PS Main

Ring, but with a much lower intensity of 2 to 9� 1011 protons per bunch [7]. The beam

kinetic energy was 500 MeV with a space charge impedance Z
k
0=n = i310 
. Instead of

ferrite, the inductor inserts or tuners were loaded with a Met-Glass-like material called

Finemet. Since the coherent synchrotron frequency in the dipole mode is not a�ected by

space charge, the coherent frequency of the quadrupole synchrotron oscillation was mea-

sured instead as a function of bunch intensity. The inductor tuners were not equipped

with biased current coil to control the permeability of the Finemet. In order to alle-

viate the e�ect of the Finemet when required, mechanical copper shorts were installed

across the inductor tuners instead. As shown in Fig. 3.6, with several inductor tuners

installed, the coherent frequency was less dependent on intensity without the mechanical

shorts than with the mechanical shorts, indicating that the space charge force had been

partially cancelled by the Finemet cores.
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Figure 3.5: Measured (left) and simulated (right) pulse shapes after 625 �s, for

injected pattern widths of 50 ns with 4:0 � 1012 protons (bottom) and 150 ns with

1:2 � 1013 protons In both cases, Vrf = 7:5 kV. Solid: no bias, dotted: 900-A bias

or a reduction of �0 by factor or 34%.
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Figure 3.6: Left: Measured frequency shifts of the quadrupole oscillations versus

beam intensity at KEK with and without Finemet insertion. Right: New KEK re-

sults of quadrupole oscillation frequency versus beam intensity with Finemet tuners

on, 1
3 on, and o�.

The second experiment at the PSR is to measure the onset of vertical instability

using a short-stripline beam-position monitor. With a 3:0�1013 proton beam stored, the

rf voltage was lowered until vertical instability was registered. This signal comes about

when the rf bucket is not large enough to hold the bunch so that some protons spill

out into the bunch gap. These protons in the gap trap electrons preventing them to be

cleared and causing a transverse e-p instability. Many previous performance points (blue

squares) are plotted in Fig. 3.7 as the required buncher voltage versus beam intensity.

The historical performance is roughly represented by the dashed line. The results of

this experiment are indicated by red triangles. It was found that less buncher voltage

was required to sustain the beam in the presence of the inductor inserts. For example,

at the highest intensity that could be reached during the experiment, 3 � 1010 protons

in the beam, only 6.9 kV was required, which amounted to a � 60% reduction of what

had previously been necessary to maintain stability. This result indicates that the space

charge impedance has been compensated to a certain extent by the ferrite cores installed

in the vacuum chamber. Thus, less rf voltage will be required to bunch the proton beam.

At the same time, it was found that the bunch gap was the cleanest ever observed.

This experiment, however, has far from being perfect. First, there are only a few

points measured (the red triangles in Fig. 3.7); the indication is therefore not very con-

vincing. Second, the bunch lengthening when the solenoidal bias was turned on had
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Figure 3.7: The performance of the PSR: the required buncher voltage plotted

against the intensity of the beam. The dashed line shows roughly the historical per-

formance before upgrade. The red triangles are results of the experiment discussed

here. For example, with the ferrite insertion without solenoidal bias, only 6.9 kV is

required to hold a bunch containing 3�1013 protons, which is about 1
3 less than the

historical value.

only been minimal and not spectacular (see Fig. 3.5), leaving behind the question of

the eÆciency about the inserts|how much space charge had actually been compen-

sated. Third and worst of all, a longitudinal instability had been observed, although at

the intensity of 3:2 � 1013 protons, this instability had been small and appeared to be

tolerable. Because of these and other reasons, the ferrite inserts were removed during

the upgrade. After the upgrade, when the machine was turned on, however, the per-

formance was very poor as is indicated by the dot-dashed line in Fig. 3.7. In order to

improve the performance, the inductor inserts were once again installed. But with the

upgraded beam intensity, the small longitudinal instability had become so intense that

the beam pro�les became heavily distorted and there was a considerable of beam loss.

This instability together with its eventual cure will be discussed in detail in Sec. 6.3.
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3.7 Exercises

3.1. Show that the geometric factor de�ned Eq. (3.10) for the longitudinal space charge

impedance becomes

g0 =
1

2
+ 2 ln

b

a
; (3.60)

when the longitudinal electric �eld opposing the beam is averaged over all the

beam particles. In above, b is the radius of the beam pipe and a is the transverse

radius of the beam.

3.2. Transform the Haissinski equation (3.23) according to the following:

(1) Notice that the integral over � 00 can be rewritten asZ �

0

d� 00 ! �
Z 1

�

d� 00 + constant ; (3.61)

where the constant can be absorbed into the normalization constant �(0) which

we rename by �.

(2) The integration in the � 0-� 00 space is in the 0Æ to 45Æ quadrant between the

lines � 00 = � and � 00 = � 0. Translate the � 0 and � 00 axes so that the region of

integration is now between the � 0-axis and the 45Æ line � 00 = � 0.

(3) Integrate over � 00 �rst from 0 to � 0; then integrate over � 0.

(4) Change the variable � 00 to � 0�� 00. Now the Haissinski equation takes the more

convenient form of Eq. (3.32), or

�(�) = � exp

"
�
�
!s0�

2E0

��E

�2
� 2

2
� e2�2E0

�T0�2
E

Z 1

0

d� 0�(�+� 0)

Z � 0

0

d� 00W 0
0(�

00)

#
:

(3.62)

3.3. The bunch in the Fermilab Tevatron contains N = 2:7 � 1011 protons and has

a designed half length of �̂ = 2:75 ns. The ring main radius is R = 1 km and

the slip factor is � = 0:0028 at the incident energy of E0 = 150 GeV. The rf

harmonic is h = 1113 and the rf voltage is Vrf = 1:0 MV. Assume a broadband

impedance centered at !r=(2�) � 3 GHz, quality factor Q = 1, and shunt impe-

dance Rs = 250 k
.

(1) Show that the frequencies that the bunch samples are much less than the res-

onant frequency of the broadband, so that the asymmetric beam distortion driven

by Re Zk
0 can be neglected.
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(2) Using only the inductive part of the impedance at low frequencies, compute

from Eq. (3.44) the equilibrium bunch length as a result of potential-well distor-

tion.

(3) Electron bunches are usually very short. If an electron bunch of rms bunch

length 2 cm is put into the Tevatron, show that its spectrum will sample the

resonant peak of Re Zk
0 and may su�er asymmetric distortion. Compute the asym-

metric factor �RN given by Eq. (3.25) and determine whether the asymmetry is

large or not.

3.4. From Eq. (3.41) for an electron bunch, show that there are two solutions for

the perturbed bunch length due to distortion by a capacitive impedance when

�2=33=2 < D < 0. Which one is physical? When D < �2=33=2, there is no solu-

tion. At this critical situation, the bunch shortening ratio is 3�1=2.

Hint: Transform Eq. (3.41) to

4x3 � 3x =
33=2

2
D (3.63)

and substitute for x = sin �. What is the right side in terms of �?

3.5. When the coupling impedance is purely resistive,

(1) derive the potential-well distorted linear distribution, Eq. (3.25).

(2) Show that when the intensity of the bunch is weak, the peak of the distribution

is given by Eq. (3.28).

Hint: Transform the Haissinski equation to a di�erential equation,

�0 +
�

�2
�

�� �R�
2 = 0 : (3.64)

Solve the equation and determine �(0).

3.6. Starting from Eq. (3.42), �lling in the missing steps, derive the quartic equation

(3.44) for the proton half bunch length under the inuence of a purely reactive

longitudinal impedance.
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Chapter 4

BETATRON TUNE SHIFTS

4.1 Static Transverse Forces

The vertical motion of a beam particle inside a beam obeys the equation of motion

dpy
dt

= Fext(y) + Fbeam(y; �y) ; (4.1)

where py = mdy=dt is the vertical momentum of the particle and m its rest mass�.

Since we want to study the motion of small vertical displacement y, the Lorentz factor

 can therefore taken out of the derivative. Here, Fext(y) is the force due to the magnets

outside the vacuum chamber and gives rise to betatron oscillations, while Fbeam(y; �y) is

the force coming from the electromagnetic �elds of the beam on the particle at y and

the beam vertical center at �y. For example, with quadrupole focusing,

Fext(y) =
B0
y

B�
y ; (4.2)

where B0
y = dBy=dx is the gradient of the quadrupole magnetic ux density and B�

the rigidity of the beam. For the sake of simplicity, this focusing can be assumed to be

uniform along the accelerator ring; we can therefore make the replacement

hFext(y)i �! �(�V0 !0)
2y ; (4.3)

�Here, we concentrate on the transverse motion of the beam particles and ignore their momentum

o�sets and synchrotron motion. Thus, the revolution period of every particle at every turn is the same.

This allows us to use the real time t as the independent variable.

4-1



4-2 4. BETATRON TUNE SHIFTS

where �V0 is the number of vertical oscillations the particle makes in a turn or what we

usually call the bare vertical betatron tune, while !0=(2�) is the revolution frequency.

Notice that the average of the external force is proportional to the impulse in one accel-

erator turn. Now the transverse equation of motion becomes

d2y

ds2
+

(�V0 )
2

R2
y =

hFbeam(y; �y)i
mv2

; (4.4)

where R is the average radius of the ring. In above, the rigid-bunch and impulse ap-

proximations have been applied to the Fbeam, and we have replaced d=dt by vd=ds with

v = �c being the velocity of the beam, c the velocity of light, and s the distance mea-

sured along the longitudinal path in the ring. In this chapter, we are going to study the

steady-state e�ects of the transverse wake potential on the beam. Therefore, there is no

explicit time dependency in hFbeami. As will be shown below, the steady-state e�ects of

the wake potential contribute to betatron tune shifts, while the time-dependent e�ects

may excite instabilities.

Since we are interested only in small amount of motion in the vertical direction, the

beam force can be Taylor expanded to obtain

d2y

ds2
+

(�V0 )
2

R2
y =

1

mv2

 
@hFbeami

@y

����
�y=0

y +
@hFbeami

@�y

����
y=0

�y

!
; (4.5)

The �rst term on the right side is proportional to the vertical displacement of the witness

particle; it therefore constitutes a shift of the vertical betatron tune �V0 to become �Vincoh.

When the shift is smally, we write (�Vincoh)
2 = (�V0 )

2 + 2�V0 ��
V

incoh with

��Vincoh = � R2

2�V0 mv2
@hFbeami

@y

����
�y=0

: (4.6)

Since this shift a�ects an individual beam particle, ��Vincoh is called the vertical inco-

herent tune shift. Thus, the incoherent tune shift can be computed by setting �y = 0 or

without any displacement of the center of the whole beam.

Let us come back to Eq. (4.5), the transverse equation of motion. We can write one

such equation for each beam particle. Perform an average by adding up these equations

and dividing by the total number of beam particles. The result is

d2�y

ds2
+

(�V0 )
2

R2
�y =

1

mv2

 
@hFbeami

@y

����
�y=0

�y +
@hFbeami

@�y

����
y=0

�y

!
: (4.7)

yWhen the tune shift is large ��V
incoh

on the left side of Eq. (4.6) should be replaced by

� (�V )
2

incoh
=(2�V0 ). The same applies to Eqs. (4.8), (4.13), (4.16), (4.19), etc.



4.1 Static Transverse Forces 4-3

This equation describes the vertical motion of the center of the beam, or the coherent

motion of the beam, which is just a simple harmonic motion. The vertical betatron tune

of the center of the beam, or the coherent vertical betatron tune of the beam, is now

�Vcoh = �V0 +��Vcoh. When the perturbation is small, the coherent tune shift becomes

��Vcoh = � R2

2�V0 mv2

 
@hFbeami

@y

����
�y=0

+
@hFbeami

@�y

����
y=0

!
: (4.8)

Because we keep only the linear terms of the Taylor expansion in Eq. (4.5), we have

included only the dipole parts of the wake force. As a result, these tune shifts should be

called dipole coherent tune shift and dipole incoherent tune shift.

Let us assume here that the vacuum chamber is completely smooth and in�nitely

conducting. Then the force on a beam particle from the beam comes from only two

sources: (1) electromagnetic interaction of the beam particle with all other beam par-

ticles in the beam, which we call self-force, (2) reection of electromagnetic �elds from

the walls of the vacuum chamber, which we call image forces.

4.1.1 Electric Image Forces

The image forces certainly depends on the geometry of the vacuum chamber. Let us

consider the simple case when the vacuum chamber consists of two in�nite horizontal

plates at location y = �h as illustrated in Fig. 4.1. The beam of say positive charges

is displaced by �y1 vertically and the witness particle is at y1. We wish to consider

the electric force on the witness particle coming from reection by the top and bottom

walls of the vacuum chamber. In order that the horizontal electric �eld at the top

wall vanishes, there must be an image of the beam with negative charges at position

y = 2h � �y1 or at a distance 2h � �y1 � y1 from the witness particle. In order that the

horizontal electric �eld at the bottom wall vanishes, this image will have another image

of positive charges from the bottom wall at y = �(4h � �y1) or 4h � �y1 + y1 from the

witness particle. This secondary image will have a third image of negative charges from

the top wall, a 4th image of positive charges from the bottom wall, etc.

Similarly, the beam has an image of negative charges �rst from the bottom wall at

y = �(2h+ �y1) or 2h+ �y1 + y1 from the witness particle. This image will form another

image of positive charges through the top wall with positive charges at y = 4h + �y1 or

4h+ �y1�y1 from the witness particle, etc. Summing up, the vertical electric �eld acting
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Figure 4.1: Illustration showing the electric forces from the images of a beam, o�

centered vertically by �y1, acting on a witness particle at location y1 inside the beam

between two in�nite horizontal conducting parallel plates separated vertically by

distance 2h.

on the witness particle is, according to Gauss's law in the cylindrical coordinates,

Ey =
e�

2��0

�
+

1

2h��y1�y1 �
1

2h+�y1+y1
+

1

6h��y1�y1 �
1

6h+�y1+y1
+ � � �

� 1

4h+�y1�y1 +
1

4h��y1+y1
� 1

8h��y1�y1 +
1

8h+�y1+y1
+ � � �

�
; (4.9)

where � is the linear particle density per unit length along the ring. Every two adjacent

terms are grouped together giving

Ey =
e�

2��0

�
+

2(�y1 + y1)

(2h)2 � (�y1 + y1)2
+

2(�y1 + y1)

(6h)2 � (�y1 + y1)2
+ � � �

+
2(�y1 � y1)

(4h)2 � (�y1 � y1)2
+

2(�y1 � y1)

(8h)2 � (�y1 � y1)2
+ � � �

�
: (4.10)
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Since we consider only small vertical motion, only terms linear in �y1+ y1 and �y1� y1 are

kept leading to

Ey =
e�

��0h2

�
(�y1 + y1)

�
1

22
+

1

62
+

1

102
+ � � �

�
+ (�y1 � y1)

�
1

42
+

1

82
+

1

122
+ � � �

��

=
e�

��0h2

�
(�y1 + y1)

�2

32
+ (�y1 � y1)

�2

96

�
: (4.11)

In the literature, there is a standard way to write these image contributions following

the work of Laslett [1, 2, 3]:

Ey =
e�

��0

�V1
h2
y1 and

e�

��0

�V1
h2

�y1 ; (4.12)

where �V1 and �V1 are called, respectively, the incoherent and coherent electric image

coeÆcients. For the situation of two parallel plates, we have �V1 = �2=48 and �V1 = �2=16.

Attention should be paid that in deriving the coherent image coeÆcient, y1 has been

replaced by �y1 in Eq. (4.9) or (4.10) or (4.11). According to Eqs. (4.6) and (4.8), the

coherent and incoherent vertical tune shifts due to electric images are:

��Vincoh = � Nr0R

��2�V0

�V1
h2

and ��Vcoh = � Nr0R

��2�V0

�V1
h2

; (4.13)

where we have replaced the linear particle density by � = N=(2�R) with N being the

total number of particles in the beam, and introduced the classical radius of the particle

r0 = e2=(4��0mc2).

Notice that there is a negative sign in front of each of the tune shift expressions

in Eq. (4.13). This implies that a positive image coeÆcient will contribute a downward

shifting to the betatron tune.

4.1.2 Magnetic Image Forces

Unlike the electric �eld that cannot penetrate the metallic vacuum chamber at any

frequency, the e�ect of the magnetic �eld is more complex. The magnet �eld has an

ac component and a dc component. The ac component has its component parallel to

the wall of the vacuum chamber converted into eddy current. In other words, the ac

magnetic �eld cannot penetrate the wall of the vacuum chamber. There the boundary

condition is B? = 0, or the magnetic ux density B is parallel to the wall of the vacuum



4-6 4. BETATRON TUNE SHIFTS

y
1y1

_
-4h +

y
1y1

_
2h - -

y
1

y1

_
2h + +

y
1y1

_
+4h -

y1

_

������
������
������

������
������
��������������������������������

��������������������������

y

4h

2h

-h

particle

Force on
witness witness particle

Distance from

4h

2h

h
in

out

in

in

out

1

Figure 4.2: Illustration showing the magnetic forces from the images of a beam, o�

centered vertically by �y1, acting on a witness current at location y1 inside the beam

between two in�nite horizontal conducting parallel plates separated vertically by

distance 2h. The normal components of the non-penetrating magnetic �elds vanish

at the plates. The beam or image currents owing into or out of the paper are

labeled \in" or \out".

chamber. To accomplish this, the �rst image from a boundary wall gives an image

current that ows in the opposite direction to that the beam. The total force from these

magnetic images acting on the witness charge current at position y1 is illustrated in

Fig. 4.2 and is expressed as

Fmag
y

e
= �e�0�v

2

2�

�
+

1

2h��y1�y1 �
1

2h+�y1+y1
+

1

6h��y1�y1 �
1

6h+�y1+y1
+ � � �

� 1

4h+�y1�y1 +
1

4h��y1+y1
� 1

8h��y1�y1 +
1

8h+�y1+y1
+ � � �

�
:

(4.14)
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There is the factor v2 outside the square brackets on the right side. One v comes

from the source beam current and the other v comes from the Lorentz force. It is

interesting to see that the factor outside the square brackets is equal to �e��2=(2��0).

Thus, the force due to the ac magnetic images are equal to the force due to the electric

images multiplied by the factor ��2. This leads to

Fmag
y

e
= � e��2

2��0h2

�
(�y1 + y1)

�2

32
+ (�y1 � y1)

�2

96

�
: (4.15)

Following Eq. (4.13), tune shifts due to ac magnetic images can be expressed as terms

of the former electric image coeÆcients �V1 and �V1 :

��Vincoh =
Nr0R

��V0

�V1
h2

and ��Vcoh =
Nr0R

��V0

�V1
h2

: (4.16)

There is always a dc part of the magnetic �eld that can penetrate the wall of the

beam pipe and lands on the pole faces of the magnet as if the vacuum chamber were

not there. The boundary condition on the magnet pole faces is now B? continuous and

Bk = 0. In order to accommodate this, all the image currents must ow in exactly the

same direction of the source beam, as illustrated in Fig. 4.3. The force on the witness

particle is now

Fmag
y

e
=

e�0�v
2

2�

�
+

1

2g��y1�y1 �
1

2g+�y1+y1
+

1

6g��y1�y1 �
1

6g+�y1+y1
+ � � �

+
1

4g+�y1�y1 �
1

4g��y1+y1
+

1

8g��y1�y1 �
1

8g+�y1+y1
+ � � �

�
;

(4.17)

where the magnetic pole faces are at y = �g or the magnets have a vertical gap 2g

between the poles faces. It is important to note the slight di�erence between Eqs. (4.14)

and (4.17). Here we obtain

Fmag
y

e
= +

e��2

2��0g2

�
(�y1 + y1)

�2

32
� (�y1 � y1)

�2

96

�
; (4.18)

as compared to Eq. (4.15). Following Laslett, we write the tune shifts due to dc magnetic

images as

��Vincoh = �Nr0R

��V0

�V2
g2

and ��Vcoh = �Nr0R

��V0

�V2
g2

; (4.19)
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Figure 4.3: Illustration showing the magnetic forces from the images of a beam, o�

centered vertically by �y1, acting on a witness current at location y1 inside the beam

between two in�nite horizontal parallel pole faces separated vertically by distance

2g. The parallel components of the penetrating magnetic �elds vanish at the pole

faces. Here, the beam and all image currents ow into the paper.

where �V2 and �V2 are called, respectively, the vertical incoherent and coherent dcmagnetic

image coeÆcients. For the special case of two parallel plates, they assume the values

�V2 = �2=24 and �V2 = �2=16.

There is also a set of horizontal image coeÆcients: �H1 , �
H

2 , �
H

1 , and �H2 . Because the

image forces acting on the witness particle come directly from the individual images, the

electric �eld and magnetic ux density from the images at the location of the witness

particle satisfy source-free Gauss's law, or ~r� ~E = 0 and ~r� ~B = 0. We therefore always

have

�H1 = ��V1 and �H2 = ��V2 : (4.20)

On the other hand, there is no de�nite relationship between the horizontal and vertical
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coherent electric image coeÆcients. In the special case of two parallel plates, it is obvious

that �H1 = 0 and �H2 = 0, which is the result of translational invariance. For a beam

pipe with circular cross section or square cross section, �H1 = 0 and �H2 = 0 because of

symmetry between the horizontal and vertical.

It is important to point out that electric and magnetic image coeÆcients are always

de�ned with reference to the square of the half vertical vacuum chamber h or the square

of the half vertical magnetic pole gap g, independent of whether we are talking about

the vertical or horizontal tune shifts. For the example of a rectangular beam pipe of

half height h and half width w, only h2 will enter into the denominators but never w2,

such as in Eqs. (4.13), (4.16), or (4.19). In the same way, for an elliptical beam pipe

of vertical radius b and horizontal radius a, the image coeÆcients will be de�ned with

reference to h = b but not a. It is because of such a dedicated reference that the relations

in Eq. (4.20) hold.

4.1.3 Space charge Self-Forces

The interaction of a beam particle with other beam particles in the beam depends on

the transverse distribution of the beam. Let us �rst consider a uniformly distributed

coasting beam of circular cross section and radius a. The witness particle at y = y1 � a

sees, in the y-direction, an electric forcez

F elect
y =

e2�

2��0a2
(y1 � �y1) ; (4.21)

and a magnetic force

Fmag
y = �e2�0�v

2

2�a2
(y1 � �y1) = � e2��2

2��0a2
(y1 � �y1) ; (4.22)

or a total force of

Fy =
e2�

2��02a2
(y1 � �y1) : (4.23)

where �y1 is vertical position of the center of the beam. This self-force is a space charge

force. According to Eq. (4.6), this self-force leads to a space charge tune shift of

��V;Hspch incoh = � Nr0R

2�3�2a2�V;H0

: (4.24)

zThe vertical electric and magnetic forces in Eqs. (4.21) and (4.22) are true for any particle at a

vertical distance y = y1 � a above the center of the beam and are independent of the particle horizontal

position.
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It is clear from Eq. (4.23) that the coherent space charge tune shifts in both transverse

directions are zero. This is understandable, because the center of the beam does not see

its own space charge force. We can also de�ne the self-�eld or space charge coeÆcients

in the vertical and horizontal directions, �V;Hspch =
1
2
, such that

��V;Hspch incoh = � Nr0R

�3�2�V;H0

�V;Hspch

a2
: (4.25)

The space charge coeÆcients take care of the transverse shape of the beam and how the

beam particles are distributed.

Now consider a beam with uniform transverse distribution but elliptical cross section

with vertical and horizontal radii aV and aH. In de�ning the space charge coeÆcients,

we follow the same convention of the Laslett image coeÆcients that the a2 in the de-

nominator of Eq. (4.25) is always a2
V
, independent of whether we are referring to the

vertical or horizontal space charge tune shift. The vertical and horizontal space charge

coeÆcients are then (Exercise 4.3)

�Vspch =
aV

aV + aH
and �Hspch =

a2
V

aH(aV + aH)
: (4.26)

These coeÆcients become 1
2
when aV = aH as expected.

We can also express the incoherent space charge tune shift in term of the normalized

emittance of the beam

�V;H
N

= �
a2
V;H

h�V;Hi ; (4.27)

where h�V;Hi is the average vertical/horizontal betatron function of the ring, which is

roughly equal to R=�V;H0 . Then, we have

��V;Hspch incoh = � Nr0

�2�
p
�V;HN

�p
�V;HN +

p
�H;V

N h�H;V i=h�V;Hi
�
B

: (4.28)

In the above, we have also introduced the single-bucket bunching factor B to take care

of the fact the the beam may be longitudinally bunched. The single-bucket bunching

factor is de�ned as

B =
Iav
Ipk

; (4.29)

where Iav and Ipk are, respectively, the current of a bunch averaged over a single rf

bucket and its peak current, or the average current to the peak current assuming that

all the buckets are �lled.
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We can also consider a beam with cylindrical cross section but with transverse

bi-Gaussian distribution,

f(x; y) =
�

2��2
e�(x

2+y2)=(2�2) ; (4.30)

where � is the rms transverse spread of the beam and � = N=(2�R) is the linear density.

A particle at y = y1 vertically above the center of the beam sees an electric force in the

y direction,

F elect
y =

e2

2��0y1

�

�2

Z y1

0

e�r
2=(2�2)rdr =

e2�

2��0y1

h
1� e�y

2

1
=(2�2)

i
: (4.31)

For small o�set, y1 � �, we have

F elect
y =

e2�

4��0�2
y1 : (4.32)

The magnetic force is the same but multiplied by ��2. The incoherent space charge

tune shift is therefore

��V;Hspch incoh = � Nr0R

4�3�2�2�V;H0

: (4.33)

Here, we can de�ne the 95% normalized transverse emittance �V;HN95 of the beam which

encloses 95% of the beam particles. This corresponds to a radius r95 given by

1

2��2

Z r95

0

e�r
2=(2�2)2�rdr = 95% ; (4.34)

which gives r95 �
p
6�. Thus

�V:H
N95 = �

r295
h�V;Hi � �

6�2

h�V;Hi : (4.35)

The space charge tune shift becomes

��V;Hspch incoh = � 3Nr0
2�2��V;H

N95B
: (4.36)

In general, if the beam has an elliptical cross section with vertical/horizontal rms

beam size �V;H , the space charge coeÆcients for a particular beam particle can be rep-

resented by

�Vspch =
f�V

�V + �H
and �Hspch =

f�2
V

�H(�V + �H)
; (4.37)
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where the form factor f comes about because each particle in a transverse slice of the

beam receives di�erent tune shifts. For the bi-Gaussian distribution, if we consider only

the particles at the center of the beam where the tune shifts are largest, f = 3. Thus

the tune shift is three times as large as the tune shift for a uniform distribution in

Eq. (4.28). This is because particles are mostly concentrated near the bunch center in a

bi-Gaussian distribution and the linear particle density at the bunch center is therefore

much larger. However, the tune shift for those particles with transverse o�sets will be

much smaller. If we make a rough model by assuming those particles within one sigma

of the beam core to have the maximum tune shift while those outside do not experience

any space charge force, we obtain some sort of average for the particles in the cross

sectional slice, f = 3
�
1 � e�1=2) = 1:180, which is only slightly larger than that for a

uniformly distributed beam.

It is important to point out that what we really care for is the spread in space charge

tune shift among the particles inside the beam, but not so much the maximum space

charge tune shift, because the latter can be corrected by changing the bare tune of the

machine. For a distribution of �nite extent, the space charge tune spread is always less

than the maximum space charge tune spread, which occurs at the center of the beam for

most distributions. For a transverse bi-Gaussian distribution that extend to in�nity, the

space charge tune shift of a particle in�nitely far away from the beam axis is zero, and

therefore the space charge tune spread is equal to the maximum space charge tune shift.

However, these particles are excluded from a realistic distribution which has a �nite

extent and this makes the space charge tune spread less than the maximum tune shift.

When the bi-Gaussian distribution is truncated more and more (by including only those

particles closer and closer to the beam center), the space charge tune spread becomes

smaller and smaller while the maximum space charge tune shift remains unchanged. For

a round beam, with bi-Gaussian distribution, �r = �H = �V and maximum excursion r,

the form factor f(r=�r) in Eq. (4.37) for betatron amplitude r is found to be

f(r=�r)

3
=

8�2
r

�r2

Z �=2

0

�
1� exp

�
� r2

2�2
r

sin2 �

��
d� =

1X
n=1

(2n)!

2(n!)3

�
� r2

8�2
r

�n�1

; (4.38)

which is depicted in Fig. 4.4. Consider a beam with a bi-Gaussian distribution truncated

at 2:5�r, we see that the particles at the edge of the beam have a space charge tune shift

� 40% of the maximum space charge tune shift. Thus the space charge tune spread

is equal to � 60% the maximum space charge tune shift. On the other hand, for the

uniform transverse distribution, the space charge tune shift is amplitude independent

and the spread is zero exactly.
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Figure 4.4: Plot of space charge tune shift of a particle with betatron amplitude r

as a fraction of the maximum space charge tune shift of a bi-Gaussian distributed

round beam with rms beam size �r.

We now understand that the space charge self-force of a bunch acting on the indi-

vidual beam particles constitutes vertical and horizontal tune spreads. Usually, people

say that large incoherent space charge tune spreads will encompass a lot of parametric

resonances in the �V -�H tune space and lead to instability. For this reason, the beam

intensities in low-energy synchrotrons are limited by the horizontal and vertical space

charge tune spreads. The common rule of thumb is that incoherent self-�eld tune spreads

should not exceed � 0:40. At the same time, the widths of important stopbands should

also be minimized by corrections made to the ring lattice. However, these self-�eld tune

spreads at injection have never been well-measured beam parameters. It is diÆcult to

measure because low-energy rings are usually ramped very rapidly. Thus, the self-�eld

tune spreads diminish very quickly as the energy of the beam increases. Most low-energy

rings that have large space charge tune spreads are ramped by resonators. To measure

the self-�eld tune spreads, we must disconnect the magnet winding currents from the

resonator so as to provide a longer interval for which the beam energy does not change.
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This is not always possible, because the beam will generally become unstable if it is

allowed to stay at such low energy for a long time. If the condition is available, however,

the tune spreads can be measured by a technique called rf knockout. A narrow band rf

signal is used to excite the beam. Those particles with the correct tune resonate with the

driving signal and are lost. Since only a small fraction of the beam resonates, this res-

onating frequency of rf signal corresponds to the incoherent tune of the beam. Another

way is to perform a Schottky scan which shows the tunes of individual particles. The

coherent tune shifts can be measured by the same rf knockout method. If the exciting

rf signal hits a coherent tune, the whole beam will be lost.

As we shall see in Chapter 5 that it is the coherent rather than the incoherent tune

shifts that determine the instability of a beam. In fact, this is quite reasonable. When

the bunch is oscillating at an integer coherent tune, we have the usual integer resonance.

This leads to an instability because all particles are performing betatron oscillations

with a tune component that is at an integer. The whole beam will become unstable.

Although the dipole coherent space charge tune shift vanishes because the beam moves

rigidly, there are other coherent motion of the beam, for example when the beam size

oscillates without the beam center being moved. Some of these modes will be derived

after introducing the envelope equation.

One may argue that if the incoherent tune spread covers an integer or half-integer

resonance, a small amount of particles are hitting the resonance, and this small amount

of the beam will be unstable. It will be shown in Chapter 5 that even this statement is

incorrect, because the space charge self-force vanishes when the incoherent motion of the

beam particles hit a resonance. Then why should we study the incoherent space charge

tune shift if the resonances have nothing to do with incoherent motion? The answer is:

the higher-multipole coherent space charge tune shifts depend on the incoherent space

charge tune shift. Thus, if the incoherent space charge tune shift can be controlled,

say by blowing up the transverse beam size, the higher-multipole coherent space charge

tune shifts will become smaller also. In this way, a higher intensity beam will be possible

before hitting the parametric resonances.
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4.2 Tune Shift for a Beam

In this section, we want to derive the general expressions of incoherent and coherent

tune shifts for a beam, unbunched or bunched, in terms of Laslett image coeÆcients

and the self-force coeÆcients. These expressions are complicated by the fact that the

magnetic �eld may or may not penetrate the vacuum chamber.

4.2.1 Image Formation

Let us recall how images of the beam are formed, in the walls of the vacuum chamber? or

in the magnetic pole faces? For the electric �eld, because the parallel component vanishes

on the walls of the vacuum chamber which we assume to be in�nitely conducting, images

will always be formed in the walls of the vacuum chamber. We therefore say that electric

�eld is always non-penetrating. In this discussion, penetrating or non-penetrating always

implies penetrating or non-penetrating the vacuum chamber.

The magnetic �eld is quite di�erent. All low-frequency magnetic �eld will penetrate

the vacuum chamber and form images in the magnet pole faces. If no magnet pole faces

are present, we assume that magnetic �eld will go to in�nity and will no longer a�ect the

test particle. All high-frequency magnetic �eld will not penetrate the vacuum chamber

and form images in the walls of the vacuum chamber.

Before proceeding further, there is an important rule that is worth mentioning. For

images in the wall of the vacuum chamber, we use the electric image coeÆcient �V;H1 or

�V;H1 , depending on whether it is incoherent or coherent. The electric image coeÆcients

are used not only for electric images but also for magnetic images. The only di�erence

is that, for magnetic images, we use ��2�V;H1 or ��2�V;H1 . This is because the actual

contribution of magnetic �eld from the images in the walls of the vacuum chamber is

exactly the same as the electric �eld. The factor �2 comes about because we need a

factor of � from the magnetic part of the Lorentz force and another factor of � from

the source which is the beam current. The negative sign comes about because the

magnetic force on a beam is always in opposite direction to the electric force. As for

images formed in the magnet pole faces, they can only be magnetic images, because

electric �eld cannot penetrate the vacuum chamber. Their contributions will be �2�V;H2

or �2�V;H2 , respectively, when the tune shifts are incoherent or coherent. Here we have

the same factor of �2. However, there is no negative sign, which is just a convention.
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In other words, one may consider the negative sign to have been absorbed into the

de�nition of �2�V;H2 or �2�V;H2 . We can also say that electric image coeÆcients are for

images in the walls of the vacuum chamber independent of whether the e�ect is electric or

magnetic, while magnetic image coeÆcients are for images in the magnet pole faces. All

these considerations are summarized in Table 4.1, where we also separate the coherent

tune shift in Eq. (4.8) into two parts: the dc part @hFbeami=@yj�y=0 when the beam is

stationary and the ac part @hFbeami=@�yjy=0 when the beam is oscillating.

Table 4.1: Relation of each component of the beam force to the image coeÆcients

with images formed in the vacuum chamber or magnetic pole faces.

Images in Images in

Beam force components vacuum chamber pole faces Comments

electric magnetic magnetic

@hFbeami
@y

����
�y=0

�V;H1

h2
��2 �

V;H

1

h2
�2 �

V;H

2

g2

incoherent
dc coherent

@hFbeami
@y

����
�y=0

+
@hFbeami

@�y

����
y=0

�V;H1

h2
��2 �

V;H

1

h2
�2 �

V;H

2

g2
coherent

@hFbeami
@y

����
y=0

��2 �
V;H

1 ��V;H1

h2
�2 �

V;H

2 ��V;H2

g2
ac coherent

4.2.2 Coasting Beams

Now we are ready to express the tune shifts in terms of image coeÆcients. First, let us

study the simpler case of a coasting beam, where the only ac magnetic �eld comes from

betatron oscillations. The frequency will be low when the betatron tune is close to an

integer and the magnetic �eld may be penetrating. On the other hand, the frequency

will be high when the betatron tune is close to a half integer and the magnetic �eld may

be non-penetrating. The incoherent tune shifts are:

��V;Hincoh = � Nr0R

��2�V;H0

�
�V;H1

h2
+ F�2 �

V;H

2

g2
+ (1� �2)

�V;Hspch

a2
V

�
: (4.39)

" " "
electric image magnetic image self-�eld, (1��2) gives

in vacuum chamber in magnet poles balance between ~E and ~H
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Here, the �rst term comes from the electric images in the vacuum chamber since electric

�eld is always non-penetrating and therefore the incoherent electric image coeÆcient

�V;H1 =h2. The second term comes the magnetic images in the magnet pole faces and

therefore the incoherent magnetic image coeÆcient �V;H2 together with the factor �2

in front and g2 in the denominator. The factor F represents the fraction of the ring

circumference where the beam is sandwiched between magnetic pole faces. As stated

before, the incoherent beam force comes from the images of the beam center which is

not displaced or �y = 0. These images are not moving and the beam force is therefore

static or dc, and the magnetic �eld is therefore landing on the magnet pole faces. The

last term is just the space charge contribution, where the 1 denotes the electric part and

��2 the magnetic part.

For the coherent tune shifts of a coasting beam, if the magnetic �eld is penetrating,

we just have simply,

��V;Hcoh = � Nr0R

��2�V;H0

�
�V;H1

h2
+ F�2 �

V;H

2

g2

�
; (4.40)

" "
electric image magnetic image

in vacuum chamber in magnet poles

where all the magnetic �eld penetrates the vacuum chamber and forms images in the

magnet pole faces. Note that there is no space charge term because the center of the

beam does not see the self-force among beam particles.

When the magnetic �eld is non-penetrating, we have instead

��V;Hcoh = � Nr0R

��2�V;H0

�
�V;H1

h2
+ F�2 �

V;H

2

g2
� �2 �

V;H

1 ��V;H1

h2

�
: (4.41)

" " "
electric image magnetic image ac magnetic image

in vacuum chamber in magnet poles in vacuum chamber

To understand this expression, recall the magnetic part of beam force on the right side

of Eq. (4.5). The ac magnetic �eld comes from the betatron oscillation of the whole

beam and has its source from the second term on the right side only, since we require

a moving beam center or �y 6= 0. According to Table 4.1, the contribution is therefore

��2(�V;H1 � �V;H1 )=h2. The dc part of the coherent magnet beam force is the �rst term on

the right side of Eq. (4.5). Since this dc �eld produces images in the magnet pole faces,
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we have therefore the second term of Eq. (4.41). The �rst term comes from the electric

component of the coherent beam force. After re-arrangement, the coherent tune shift

with penetrating �elds reads

��V;Hcoh = � Nr0R

��2�V;H0

�
(1��2)�V;H1

h2
+ �2 �

V;H

1

h2
+ F�2 �

V;H

2

g2

�
: (4.42)

4.2.3 Bunched Beams

For bunched beam, we would like to compute the maximum tune shifts when the beam

current is at its local maximum. We therefore divide by the bunching factor B suitably

so that the bunch intensity will be properly enhanced. Notice that ac magnetic �eld now

comes from two sources: transverse betatron oscillation of the bunch and longitudinal or

axial bunching of the beam. Although both e�ects are ac, their frequencies are in general

very di�erent. The frequency of transverse betatron oscillation is (n��V;H0 )!0=(2�), where

n is the revolution harmonic closest to the tune. These frequencies are therefore only

fractions of the revolution frequency. On the other hand, the axial bunch frequency

is a h!0=(2�) with h the rf harmonic, which is often many times revolution frequency.

For this reason, it is reasonable to consider the ac magnetic �elds arising from axial

bunching always non-penetrating, while the ac magnetic �elds arising from betatron

oscillation sometimes non-penetrating and sometimes penetrating.

In the expressions below, we try also to include the e�ect of trapped particles that

carry charges of the opposite sign. Take a proton beam, for example, electrons can be

trapped, giving a neutralization coeÆcient �e, which is de�ned as the ratio of the total

number of trapped electrons to the total number of protons. (For antiproton beam,

the particles trapped are positively charged ions.) The trapped electrons will not travel

longitudinally. Therefore, they only a�ect the electric force but not the magnetic force.

In other words, for electric contributions, we replace 1 by (1� �e).

The incoherent tune shift for a bunched beam is expressed as

��V;Hincoh=�
Nr0R

��2�V;H0

�
1��e
B

�V;H1

h2
+ F�2 �

V;H

2

g2
� �2

�
1

B
� 1

�
�V;H1

h2
+ (1��e��2)

�V;Hspch

a2
V

�
:

(4.43)" " " "
electric image magnetic image ac magnetic image self-�eld

in vacuum chamber in magnet poles from axial bunching

The second term represents magnetic �elds of a stationary beam and its images and
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therefore the usual incoherent magnetic image coeÆcient �V;H2 , which describes dc mag-

netic �elds penetrating the vacuum chamber and landing at the magnet poles. Here,

there is no division by the bunching factor B, because we are talking about the dc �elds

coming from the average beam current.

The third term is for the ac magnetic �elds generated from axial bunching and a

division by B is therefore necessary. Since the ac magnetic �elds are non-penetrating,

their contribution is the same as that of the incoherent electric �eld and therefore the

factor ��2�V;H1 . We must remember that there is a dc part that lands on the magnet pole

faces which we have considered already and must not be included here again. For this

reason, we need to replace B�1 by B�1 � 1. The accuracy of this term can be inferred

by noticing its disappearance when we let B ! 1, or the bunched beam becomes totally

unbunched. After re-arrangement, this incoherent tune shift becomes

��V;Hincoh=�
Nr0R

��2�V;H0

��
1��e � �2

B
+ �2

�
�V;H1

h2
+ F�2 �

V;H

2

g2
+ (1��e��2)

�V;Hspch

a2
V

�
:

(4.44)

For coherent motion with penetrating magnetic �elds from betatron oscillation, we

have

��V;Hcoh =�
Nr0R

��2�V;H0

�
1��e
B

�V;H1

h2
+ F�2 �

V;H

2

g2
� �2

�
1

B
� 1

�
�V;H1

h2

�
: (4.45)

" " "
electric image magnetic image ac magnetic image

in vacuum chamber in magnet poles from axial bunching

where the third term is contributed by the magnetic �eld of bunching frequencies, which

cannot penetrate the vacuum chamber. The magnetic �elds divide into the dc part and

the ac part in exactly the same way as Eq. (4.43), the expression for incoherent tune

shift. Because we are talking about coherent tune shifts, the coeÆcients �V;H2 and �V;H1 are

replaced, respectively by �V;H2 and �V;H1 . After re-arrangement, the coherent tune shifts

with penetrating magnetic �elds from betatron oscillation becomes

��V;Hcoh =�
Nr0R

��2�V;H0

��
1��e��2

B
+ �2

�
�V;H1

h2
+ F�2 �

V;H

2

g2

�
: (4.46)

Finally, we come to ac magnetic �elds that are non-penetrating coming from both
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axial bunching and betatron oscillation. The coherent tune shifts are

��V;Hcoh =�
Nr0R

��2�V;H0

�
1��e
B

�V;H1

h2
+ F�2 �

V;H

2

g2
� �2 �

V;H

1 ��V;H1

h2
� �2

�
1

B
� 1

�
�V;H1

h2

�
:

(4.47)
" " " "

electric image magnetic image ac magnetic image ac magnetic image
in vacuum chamber in magnet poles from transverse from axial bunching

motion

Here, the axial bunching parts are very exactly the same as in Eq. (4.45) because they

describe exactly the same ac magnetic �elds coming from axial bunching. As for the dc

magnetic �elds, the contribution in Eq. (4.45) comes from both terms of the beam force

on the right side of Eq. (4.5) and contributes the coeÆcient �V;H2 . Here the dc magnetic

�elds come from only the �rst term of the beam force and contribute �V;H1 instead, for

exactly the same reason as in Eq. (4.39). The part of the second term that comes from

betatron oscillation of the beam gives rise to the second last term of Eq. (4.47), for

exactly the same reason as in Eq. (4.39). After re-arrangement, this coherent tune shift

takes the form

��V;Hcoh =�
Nr0R

��2�V;H0

�
1��e��2

B

�V;H1

h2
+ F�2 �

V;H

2

g2
+ �2 �

V;H

1

h2

�
: (4.48)

4.3 Other Vacuum Chamber Geometries

The electric and magnetic image coeÆcients have been computed for other geometries

of the vacuum chamber: circular cross section, elliptical cross section [2, 3, 4], and

rectangular cross section [5], and even with the beam o�-centered. The computations

for the rectangular and elliptical cross sections involve one or more than one conformal

mappings and the results are given in terms of elliptical functions.

4.3.1 Circular Vacuum Chamber

The situation of circular cross section with an on-center beam is rather simple. Consider

a line charge of linear density �1 at location x = 0 and y = �y1 inside the cylindric beam

pipe of radius b with in�nitely conducting walls. We place an image line charge of linear

density �2 at location x = 0 and y = �y2 as shown in left plot of Fig. 4.5.
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Figure 4.5: Left plot illustrates a line charge density �1 inside a cylindrical beam

pipe o�set vertically by �y1. There is an image line charge density �2 at �y2 such that

the electric potential vanishes at every point P at the beam pipe. Right plot shows

the combined electric force acting on a witness line charge at (x1; y1).

The electric potential at point P on a chamber wall at an angle � is given by

VP = � e�1
2��0

ln r1 � e�2
2��0

ln r2 ; (4.49)

where (
r21 = �y21 + b2 � 2�y1b cos � ;

r22 = �y22 + b2 � 2�y2b cos � :
(4.50)

Two assertions are made:

�y2 =
b2

�y1
and �2 = ��1 : (4.51)

We obtain from the �rst assertion that r22 = r21(b
2=�y21). Then the second assertion ensures

that the electric potential VP vanishes aside from a constant for any point on the wall

of the cylindrical vacuum chamber.
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To compute the image force, place a witness line charge at x = x1 and y = y1, as

illustrated in the right plot of Fig. 4.5. The electric force exerted on the witness charge

by the image has the y component

F elec
y

e
=

e�1
2��0

b2

�y1
� y1

x21 +

�
b2

�y1
� y1

�2 �!
e�1
2��0

�y1
b2

; (4.52)

where in the last step only terms linear in y1 and �y1 are retained. According to Eq. (4.13),

��Vincoh = � Nr0R

��2�V0

�V1
b2

and ��Vcoh = � Nr0R

��2�V0

�V1
b2

; (4.53)

we immediately obtain the incoherent and coherent electric image coeÆcients for a cir-

cular beam pipe:

�V1 = 0 and �V1 =
1

2
: (4.54)

Because of the cylindrical symmetry, we also have

�H1 = 0 and �H1 =
1

2
: (4.55)

It is not surprising to see the incoherent electric image coeÆcients vanish. This is because

at the point of observation of the witness charge, ~r � ~E = 0, leading to �V1 + �H1 = 0.

4.3.2 Elliptical Vacuum Chamber

4.3.2.1 O�-centered Beam

The elliptical cross section of the vacuum chamber has half width w and half height

h < w. They are also known as the major and minor radii. The focal points are on the

horizontal axis at distance " =
p
w2 � h2 from the center. Consider a line beam on the

horizontal axis at distance x from the center. The image coeÆcients can be obtained by

performing two conformal mappings [2, 3, 4]. The derivations are rather involved. Here,

we only present the results. When the beam is inside the focal pointsy or 0 < x < ",

�V1 = ��H1 =
h2

12W 2

"
A

�
2K

� cn dn

�2

+
6Kk02x sn

�W cn dn
� 4"2 + 5x2

2W 2

#
; (4.56)

yThese expressions are presented from Eqs. (74) to (76) in Ref. [3]. The expression following Eq. (74)

is incorrect that the factor (1 + k2 + k4) in the middle term should have been (1 + 2k2 + k4). The �rst

factor in Eq. (76) after the opening square bracket, (1� k2S2), should have been (1� k2S4).
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�V1 =
h2

4W 2

"�
2K dn

� cn

�2

+
2Kk02x sn

�W cn dn
� "2 + x2

W 2

#
; (4.57)

�H1 = � h2

4W 2

"�
1� k2sn4

�� 2Kk0

� cn dn

�2

+
2Kk02x sn

�W cn dn
� "2 + x2

W 2

#
; (4.58)

where

A =
�
2� k2

�� 1
2

�
1 + k2

�2
sn2 � k2

�
1� 2k2

�
sn4 ; (4.59)

and

W 2 = "2 � x2 = w2 � h2 � x2 : (4.60)

The arguments of the Jacobian elliptic functions sn, cn, dn are�
2K(k)

�
sin�1(x="); k

�
; (4.61)

where K = K(k) is the complete elliptical function of the �rst kind and k is called the

modulusz. The complementary modulus k0 is given by

k0 =
p
1� k2 : (4.62)

We �rst compute the nome, de�ned as

q = exp

�
��K 0(k)

K(k)

�
; (4.63)

using the expression

q =
w � h

w + h
; (4.64)

then the complementary modulus k0 usingx

k0
1

2 =

1 + 2
1X
s=1

(�1)sqs2

1 + 2
1X
s=1

qs
2

; (4.65)

and �nally the modulus k through Eq. (4.62).

zSome authors also de�ne the parameter m = k2 and the complementary parameter m0 = k0
2
= 1�m.

xThis formula was stated wrongly in Eq. (6) of Ref. [5].
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Notice that each term in Eqs. (4.56), (4.57), and (4.58) becomes singular when the

beam approaches the focal points of the elliptic cross section. However, the singularities

cancel each other in each expression to arrive at a �nite value as x! ". For this reason

double precision must be used in evaluating these expressions. Right at the focal points

the image coeÆcients become{

�V1 = ��H1 =
h2

360"2

"�
1� 16k2 + k4

��2K
�

�4

+ 10
�
1 + k2

��2K
�

�2

� 11

#
; (4.66)

�V1 =
h2

180"2

"�
2 + 13k2 + 2k4

��2K
�

�4

+ 5
�
1 + k2

��2K
�

�2

� 7

#
; (4.67)

�H1 =
�h2
180"2

"
2
�
1� 16k2 + k4

��2K
�

�4

+ 5
�
1 + k2

��2K
�

�2

� 7

#
: (4.68)

When the beam is outside the focal points or x > ", the image coeÆcients assume

the formk

�V1 = ��H1 =
h2

12W 2

"
B1

�
2K

� sn cn

�2

+
6Kx dn

�W sn cn
� 4"2 + 5x2

2W 2

#
; (4.69)

�V1 =
h2

4W 2

"�
2K cn

� sn

�2

+
2Kx dn

�W sn cn
� "2 + x2

W 2

#
; (4.70)

�H1 = � h2

4W 2

"
B2

�
2K

� sn cn

�2

+
2Kx dn

�W sn cn
� "2 + x2

W 2

#
; (4.71)

where

B1 =
3
2
� 1

2

�
8� k0

2�
sn2 +

�
1 + k0

2�
sn4 ; B2 = 1� 2 sn2 + k0

2
sn4 : (4.72)

Unlike the situation when the beam is inside the focal points, here

W 2 = x2 � "2 = x2 � w2 + h2 ; (4.73)

{in Ref. [3], in Appendix D(f), the �rst term of �V
1

was
�
2 � 13k2 + 2k4

�
which has a wrong sign

preceding 13k2 as compared with our Eq. (4.67). In Ref. [4], Table II, Part (c), the expression for �1
when x = ", has an overall incorrect sign.

kIn Ref. [3], Appendix D(e), the expressions for �V1 , �
V

1 , and �H1 all have negative signs in front of the

middle terms inside the square brackets. They should be all positive as given by Eqs. (4.69), (4.70),

and (4.71). The expression for B1 in Ref. [3] has the typo that S in the second term on the right side

should have been S2.
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and the Jacobian elliptic functions sn, cn, and dn have arguments�
2K(k)

�
cosh�1(x="); k0

�
: (4.74)

However, the nome q, modulus k, and complementary modulus k0 are the same as given

by Eqs. (4.64), (4.62), and (4.65).

4.3.2.2 Centered Beam

When the beam is right at the center of the vacuum chamber, x = 0. The arguments of

the elliptic functions in Eq. (4.61) simplify to (0; k) and we have sn = 0, cn = dn = 1.

The expressions for the image coeÆcients in Eqs. (4.56), (4.57), and (4.58) simplify

readily to

�V1 = ��H1 =
h2

12"2

"�
1 + k0

2��2K
�

�2

� 2

#
; (4.75)

�V1 =
h2

4"2

"�
2K

�

�2

� 1

#
; (4.76)

�H1 =
h2

4"2

"
1�

�
2Kk0

�

�2
#
: (4.77)

4.3.3 Rectangular Vacuum Chamber

4.3.3.1 O�-Centered Beam

To conform with the elliptical beam pipe, let h and w be, respectively, the half height and

half width of the rectangular cross section��. When the beam is on the horizontal axis

but with fractional o�set g (or at distance gw from the center), the image coeÆcients

areyy

�V1 = ��H1 =
K2(k)

4

�
k04sn2 cn2

2 dn2
� k02(1� 2 sn2)

3
� dn2 (3� 4 sn2 + 4 sn4)

6 sn2 cn2

�
; (4.78)

��Note that in Ref. [5], h and w are the full height and full width of the rectangular cross section.
yyEquation (4.78) was reported in Eq. (53) of Ref. [5] with a wrong sign in front of sn4

10
inside the

last term in the curly brackets.
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�V1 =
K2(k)

4

k04sn2 cn2

dn2
; (4.79)

�H1 =
K2(k)

4

�
k0

2
(1� 2 sn2) +

dn2

sn2 cn2

�
: (4.80)

The arguments of the elliptic functions sn, cn, dn are�
K(k)y0

h
; k0
�
=

�
K(k)w

h
(1� g); k0

�
; (4.81)

where y0 = (1� g)w is the position of the beam measured from one vertical wall of the

vacuum chamber, and K(k) is the complete elliptical function of the �rst kind.

Here, the nome is computed according to

q = e�2�w=h ; (4.82)

which is quite di�erent from the one used in Eq. (4.64) for the elliptical beam pipe.

Next, the complementary modulus k0 can be computed from Eq. (4.65), from which the

modulus k can be obtained via Eq. (4.62).

4.3.3.2 Centered Beam

For a centered beam, g = 0, the arguments of the elliptical functions become�
K(k)w

h
; k0
�
=
�
1
2
K 0(k); k0

�
=
�
1
2
K(k0); k0

�
: (4.83)

Notice that the periods of sn, cn, dn with modulus k0 are 4K(k0). The elliptical functions

simplify to [6]

sn
�
1
2
K(k0); k0

�
=

1p
1 + k

; cn
�
1
2
K(k0); k0

�
=

p
kp

1 + k
; dn

�
1
2
K(k0); k0

�
=
p
k :

(4.84)

The electric image coeÆcients simplify to

�V1 = ��H1 =
K2(k)

12

�
1� 6k + k2

�
; (4.85)

�V1 =
K2(k)

4

�
1� k

�2
; (4.86)

�H1 = K2(k) k ; (4.87)

which involve only the complete elliptical function of the �rst kind.
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4.3.3.3 Comments

1. Since q decreases exponentially as w=h increases, very accurate value of k0 can

be computed with Eq. (4.65). For example, even for 1 � w=h � 0:2, 14-�gure

accuracy can be readily obtained for k0 and also k2 afterward using Eq. (4.62),

when the summations are extended to s = 5. In fact, for centered beam, there is

no need to go to w=h < 1, because we can interchange the role of w and h.

2. When w=k > 1, q becomes very small and k0 is very close to 1. (For example,

k2 = 2:9437� 10�3, 5:5796� 10�5 and 1:0420� 10�7, respectively, when w=h = 1,

2 and 3.) Equation (4.62) can no longer give accurate result for k. To preserve

accuracy, we must expand k2 as power series in q with the aid of Eqs. (4.62) and

(4.65):

k2 = 16q
�
1�8q+44q2�192q3+718q4�2400q5+7352q6�20992q7+56549q8�� � � � ;

(4.88)

from which 14-�gure accuracy can be obtained when w=k � 1.

3. Because k2 � 1 when w=h > 1, Eqs. (4.85), (4.86), and (4.87) can be viewed as

expansions from values for the in�nite horizontal plates. In fact, with

K(k) =
�

2

�
1 +

1

4
k2 +

9

64
k4 +O�k6�� ; (4.89)

we can write

�V1 = ��H1 =
�2

48

�
1� 6k +

3

2
k2 � 3k3 +

27

32
k4 � 33

16
k5 +O�k6�� ; (4.90)

�V1 =
�2

16

�
1� 2k +

3

2
k2 � k3 +

27

32
k4 � 11

16
k5 +O�k6�� ; (4.91)

�H1 =
�2

4
k

�
1 +

1

2
k2 +

11

32
k4 +O�k6�� : (4.92)

4.3.4 Closed Yoke

Mathematically, it is impossible to compute the magnetic image coeÆcients for a closed

cylindrical iron yoke that has in�nite relative permeability. In fact, no solution exists
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for a closed iron yoke of any geometry. This is because Ampere's law requiresI
~H � d~̀= I : (4.93)

For a beam of current I, the component of magnetic �eld ~H along the inner surface of

the iron yoke is therefore nonzero. Thus, the magnetic ux density ~B inside the yoke

becomes in�nite. Speaking in the reverse order, if the magnetic ux density inside the

yoke is �nite, the magnetic �eld ~H along the inner surface must vanish. From Ampere's

law, one gets I = 0, or no current is allowed to ow through the yoke.

For a normal-temperature magnet, we like to operate in the linear region of the

B-H hysteresis curve, for example at Point N in Fig. 4.6, in order to take advantage of

µ   ∼ 1r

µ   ∼ 1000r

S

N

H

B

Figure 4.6: B-H hysteresis plot showing the operation of normal temperature mag-

net at Point N where the relative magnetic permeability �r is large. The operation

of superconducting magnet is at Point S where the iron yoke is at saturation and

�r � 1.

the large relative magnetic permeability, �r � 1000. Then, most of the magnetic ux

density across the pole gap is supplied by �r and only a few percents come from the

winding current. Such operation limits the magnetic ux density to Bmax � 1:8 T. This

explains why the iron yoke is mostly made up of two pieces glued together with some

medium. In that case, ~H will only be large in the medium but relatively small inside

the yoke and a much larger beam current will be allowed.

The story for superconducting magnets is quite di�erent. Here, the magnetic ux

density is mostly supplied by the high winding current, while the iron yoke is always



4.4 Connection with Impedance 4-29

saturated. The operation point in the hysteresis curve is now at S of Fig. 4.6 in the large

H region where the local slope is 1. Thus the relative permeability �r becomes close to

1 and is very much less than the linear region of the hysteresis curve. If a closed iron

yoke is used, the maximum beam current allowed by Ampere's law becomes �r � 1000

times larger at operation point S than at operation point N .

When the relative permeability is �nite, the Laplace equation can still be solved

using the image method, provided there is suÆcient symmetry in the geometry. Readers

with interest are referred to, for example, the book by Binns and Lawrenson [7].

In Table 4.2, we tabulate the self-�eld coeÆcients for uniformly charged beams and

image coeÆcients for centroid beams [8].

4.4 Connection with Impedance

In Eq. (4.5), the term proportional to y on the right side is absorbed into the betatron

tune shift so that �V0 becomes �V . The equation becomes

d2y

ds2
+

(�V )2

R2
y =

1

mv2
@hFbeam(y; �y)i

@�y

����
y=0

�y : (4.94)

The coherent force on the right is related to the transverse wake function and therefore

the transverse impedance. The connection can be easily made using Eq. (1.28), which

says
@hFbeam(y; �y)i

@�y

����
y=0

�y =
ieZ?

1 �I�y

C
=

ie2Z?
1 �

2c��y

C
: (4.95)

On the other hand, in Eq. (4.12), according to the the de�nition of the image coeÆcient,

eEV (y; �y)jy=0 =
e2�Z0c

�

�V1 ��V1
h2

�y : (4.96)

As a result, we obtain

Z?
1 = �i Z0C

�2�2

�V1 � �V1
h2

: (4.97)

For a circular beam pipe, �V1 = 1
2
and �V1 = 0. This is just exactly the second half of

the transverse space charge impedance in Eq. (1.38). Thus, the transverse space charge

impedance can be interpreted as the summation of two parts: the part proportional
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Table 4.2: Self-�eld coeÆcients for uniformly charged beam and

image coeÆcients for centered beam.

Coe�. Circular Elliptical Rectangular
Parallel

Plates

�Vspch
1

2

aV
aH + aV

�Hspch
1

2

a2
V

aH(aH + aV )

�V1 0
h2

12"2

�
(1+k

02)

�
2K

�

�2
�2
�

K2(k)

12

�
1� 6k + k2

� �2

48

�H1 0
�h2
12"2

�
(1+k

02)

�
2K

�

�2
�2
� �K2(k)

12

�
1� 6k + k2

� ��2

48

�V2 * * *
�2

24

�H2 * * * ��2

24

�V1
1

2

h2

4"2

��
2K

�

�2
� 1

�
K2(k)

4
(1� k)2

�2

16

�H1
1

2

h2

4"2

�
1�

�
2Kk0

�

�2�
K2(k)k 0

�V2 * * *
�2

16

�H2 * * * 0

* �2 and �2 for closed magnetic boundary (e.g., circular, elliptic, or rectangular) cannot be

calculated when the relative permeability �r!1, since the induced magnetic �eld would

not permit a charged beam to pass through because the �eld energy would become in�nite.

Closed magnetic yokes are used in superconducting magnets, but there the coeÆcients

�2 = �2!0, since the magnetic material is driven completely into saturation (�r ! 1).

K(k) is the complete elliptic integral of the �rst kind. k is determined from (w�h)=(w+

h) = exp(��K 0=K) for the elliptical cross section but w=h = K 0=(2K) for the rectangular

cross section, where w and h are the half width and half height, with " =
p
w2 � h2, and

K 0 = K(k0) with k0 =
p
1� k2.
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to a�2 is the self-�eld contribution and the part proportional to b�2 is the wall image

contribution. We can therefore rewrite the expression in a more general form

ZV;H

1 = i
Z0C

�2�2

�
�V;Hspch

a2
V

� �V;H1 ��V;H1

h2

�
; (4.98)

where h is the half height of the vacuum chamber.

It is important to distinguish the di�erence between the force generating the coher-

ent tune shift and the force generating the transverse impedance. The former involves

the �1 coeÆcient while the later involves �1 � �1. The coherent tune shift is the result

of all forces acting on the center of the beam �y, while the transverse impedance comes

from the force generated by the center motion of the beam on an individual particle. In

other words,

�� / @hFbeam(y; �y)i
@y

����
�y=0

+
@hFbeam(y; �y)i

@�y

����
y=0

;

Z?
1 /

@hFbeam(y; �y)i
@�y

����
y=0

: (4.99)

Thus, the results can be very di�erent. Take the example of a beam between two in�nite

conducting planes. Because of horizontal translational invariance, the horizontal force

acting at the center of the beam vanishes independent of whether the beam is moving

horizontally or vertically. The horizontal coherent tune shift therefore vanishes. How-

ever, the horizontal motion of the center of mass of the beam does provide a horizontal

force on an individual particle, which may not be moving with the center of mass. That

individual particle will therefore see a nonvanishing transverse impedance.

4.5 More about Wake Functions

Most of the time the vacuum chamber is not cylindrical in shape. Thus, the expansion

into circular harmonics in Sec. 1.4 cannot be performed. Here, we want to emphasize

that it is always completely valid to expand ~E and ~B into circular harmonics. However,

when the boundary conditions are applied, ~E and ~B of di�erent circular harmonics will

be mixed together, and so are the wake functions Wm for di�erent m's. In other words,

equations corresponding to an individual m are not independent, thus rendering the

expansion useless. For this reason, we need to give slightly di�erent de�nitions for the

wake functions when there is no cylindrical symmetry.
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Figure 4.7: Test particle with charge q1 at an o�set of a1 from the designated

path leaves wake �elds to the witness particle with charge q2 at an o�set of a2 at a

distance z behind.

Consider a test particle carrying charge q1 traveling with velocity v longitudinally

along a designated path in a vacuum chamber. A witness particle of charge q2 at a

distance z behind along the same path sees a longitudinal force F k
0 and a transverse

force F?
0 due to the wake �elds of the test particle. In general, these forces depend

also on the location s of the test particle along the beam pipe. However, when we

apply the impulse approximation, these forces are integrated over s for a long length

` of the beam pipe and become functions of z only. For a circular machine, ` is taken

as the circumference C. Unlike the situation of traveling along the symmetry axis of

a cylindrical beam pipe, here there is always an average transverse force hF?
0 i. This

transverse force comes mostly from the images in the walls of the vacuum chamber. It

should be weak in general and can therefore be incorporated into the betatron tunes as

tune shifts in the way discussed above in Sec. 4.1.

The longitudinal wake function is de�ned as

W 0
0(z) = �hF

k
0 i`

q1q2
; (4.100)

where hF k
0 i` denotes the longitudinal integrated wake force or impulse.

If the path of the source particle is displaced transversely by a1 from the designated

path as in Fig. 4.7, the witness particle displaced by a2 at a distance z behind will see

a longitudinal force F
k
1 and a transverse force F?

1 . The transverse wake function is now

de�ned by

W1(z) = � lim
a1;a2!0

(hF?
1 i � hF?

0 i)`
a1q1q2

; (4.101)

where the transverse force along the designated path hF?
0 i has been subtracted away
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because it has been taken care of already as tune shifts. De�ned in this way, W 0
0(z)

and W1(z) will be the same as the m = 0 longitudinal wake function and the m = 1

transverse wake function de�ned in Chapter 1.
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4.6 Exercises

4.1. Consider a beam with bi-parabolic or semi-circular distribution

�(r) =
2e�

�r̂2

�
1� r2

r̂2

�
; (4.102)

where r̂ is the radial extent of the beam and � is the linear particle density.

(1) Compute the self-�eld or space charge incoherent tune shift at the center of

the beam where it is maximal and show that the space charge coeÆcient de�ned

in Eq. (4.25) is �spch = 1.

(2) Explain how one can understand that �spch for this distribution is in between

�spch =
1
2
for uniform distribution and �spch � 3

2
for bi-Gaussian distribution.

4.2. The horizontal betatron tune shift due to a quadrupole gradient error �k(s) =

�B0
V =(B�) at location s along the accelerator ring is

���H =
1

4�

Z C

0

�H(s)�k(s)ds ; (4.103)

where �H is the betatron function, C is the circumference of the ring, �B0
V
is the

vertical quadrupole gradient error, and (B�) is the magnetic rigidity. Consider

the space charge self-force as a quadrupole gradient error, derive, using the above

formula, the incoherent dipole space charge tune shift, Eq. (4.24), inside a beam

of uniform transverse distribution.

4.3. Consider a beam with elliptic cross section and uniform particle distribution.

(1) Show that the electric potential

V (x; y) = � e�

2��0

1

aH + aV

�
x2

aH
+

y2

aV

�
(4.104)

for x2=a2
H
+ y2=a2

V
< 1 and 0 otherwise, satis�es the Laplace equation

r2V (x; y) = � e�

��0aHaV
; (4.105)

where � is the linear particle density of the beam.

(2) Show that inside the beam, the transverse electric �elds are

Ex =
e�

��0

x

aH(aH + aV )



4.6 Exercises 4-35

Ex =
e�

��0

y

aV (aH + aV )
(4.106)

(3) Comparing with the electric �eld components inside a cylindrically symmetric

beam of radius a, show that the space charge tune shift coeÆcients, de�ned in

Eq. (4.25), inside this beam of elliptic cross section are

�Hspch =
a2
V

aH(aH + aV )
and �Vspch =

aV
aH + aV

: (4.107)

4.4. We are going to derive the electric potential V (x; y; z) for a 3-dimensional charge

distribution,

�(x; y; z) =
eN

(2�)3=2�x�y�z
exp

�
� x2

2�2
x

� y2

2�2
y

� z2

2�2
z

�
; (4.108)

following the method of Takayama [9], where N is the total number of particles.

(1) Show that the Green function of the Laplace equation can be written as

G(~r; ~�) =
1

4�j~r � ~�j
=

1

2�3=2

Z 1

0

dq e�j~r � ~�j2q2 : (4.109)

In other words, G(~r; ~�) satis�es

r2G(~r; ~�) = �Æ(~r � ~�) : (4.110)

(2) Changing the variable of integration to t = q�2, show that the electric potential

can be written as

V (x; y; z) =
1

4�3=2�0

Z 1

0

dt

t3=2

Z 1

�1

d~� �(~�)e�j~r � ~�j2=t : (4.111)

(3) With � given by Eq. (4.108), derive the electric potential

V (x; y; z) =
eN

4�3=2�0

Z 1

0

dt
exp

h
� x2

(2�2x+t)
� y2

(2�2y+t)
� z2

(2�2z+t)

i
q
(2�2

x + t)(2�2
y + t)(2�2

z + t)
: (4.112)

4.5. Consider a beam with bi-Gaussian transverse charge distribution,

�(x; y) =
e�

2��x�y
exp

�
� x2

2�2
x

� y2

2�2
y

�
; (4.113)
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where �x and �y are the rms width and height, and � is the linear particle density.

(1) From Eq. (4.112), show that the electric potential is

V (x; y) =
e�

4��0

Z 1

0

dt
exp

h
� x2

(2�2x+t)
� y2

(2�2y+t)

i
q
(2�2

x + t)(2�2
y + t)

: (4.114)

(2) Show that the transverse electric �elds are

Ex =
e�x

4��0

Z 1

0

dt
exp

h
� x2

(2�2x+t)
� y2

(2�2y+t)

i
(2�2

x + t)
q
(2�2

x + t)(2�2
y + t)

;

Ey ! Ex with x! y; y ! x : (4.115)

(3) The self-�eld or space charge tune shifts are at their maxima at the center of

the beam, or x! 0 and y ! 0. Show that they are given by Eq (4.33) with

�2 ! �x(�x + �y)

2
for ��Hspch incoh

�2 ! �y(�x + �y)

2
for ��Vspch incoh :

(4.116)

4.6. Derive the lowest order space charge self-force coeÆcient �spch of a particle with

betatron amplitude r inside a cylindrical symmetric coasting beam with transverse

bi-Gaussian distribution.

Answer: �spch = 1
2
f(r=�r) where �r is the rms beam radius and the form factor

f(r=�r) is given by Eq. (4.38).



Bibliography

[1] L.J. Laslett, Proceedings of 1963 summer Study on Storage Rings, BNL-Report

7534, p. 324; L.J. Laslett and L. Resegotti, Proceedings of VIth Int. Conf. on High

Energy Accelerators, Cambridge, MA, 1967, p. 150.

[2] B. Zotter, CERN Reports ISR-TH/72-8 (1972); IST-TH/74-38 (1974); ISR-TH/75-

17 (1975); Proceedings of VIth National particle Accelerator Conf., Washington

DC, 1974 (IEEE, 1975).

[3] B. Zotter, Nucl. Instru. Meth. 129, 377 (1975).

[4] B. Zotter, CERN Report ISR-TH/74-11 (1974).

[5] K.Y. Ng, Particle Accelerators 16, 63 (1984).

[6] See, for example, Table 16.5, p.571 of Abramowitz and Stegun, Handbook of Math-

ematical Functions, Dover, 1965.

[7] K.J. Binns and P.J. Lawrenson, Analysis and Computation of Electric and Magnetic

Field Problems, 2nd Ed., Pergamon Press, 1973.

[8] G. Guignard, CERN 77-10 (1977).

[9] K. Takayama, Lett. Al Nuovo Cimento 34, 190 (1982).

4-37



4-38 BIBLIOGRAPHY



Chapter 5

ENVELOPE EQUATION

We often read that when the linear part of the space charge force is added to the linear

equation of motion, it produces an incoherent tune shift, which if large enough can place

individual particles onto low-order betatron resonant lines resulting in an instability.

This picture, although appealing, is very misleading. In fact, the resonant driving force

drives the beam to resonance only when the coherent space charge tune shift lands the

coherent betatron tune of the beam onto the resonance lines. We are going to show that

resonant driving force of any order will not a�ect an individual particle when the space

charge force shifts its betatron tune onto the resonance line of that order.

5.1 The Integer Resonance

In this section, we are going to study the e�ects on beam particles under the inuence

of errors in the dipoles. We will �nd that although the beam center is able to see the

force from the dipole errors, it will not see the self-�elds from the beam particles. On

the other hand, a single particle sees the self-�elds and has its betatron tunes shifted.

However, a single particle oscillating at an integer tune will be not be driven by the

dipole-error force. We shall follow a discussion by Baartman [1].

The integer resonance is driven by errors in the dipoles around the accelerator ring.

The transverse motion of a beam particle is governed by

d2X

d 2
+ �2

0xX = Fsc x + Fe x( ) (5.1)

5-1
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where

 =

Z s

0

ds

�0x�x(s)
(5.2)

is the transverse Floquet phase which advances by 2� per turn, X is the normalized

transverse o�set (actual o�set x divided by square root of the betatron function �x),

and �0x is the bare betatron tune. The force� due to errors in dipoles in the x-direction

is represented by Fe x( ), which is periodic in  and is X independent. The space charge

force Fsc x, if linear, can be written as

Fsc x = �2�0x��sc(X � hXi) ; (5.3)

where hXi is the transverse o�set of the center of charge of the beam and ��sc is the

incoherent space charge tune shift depicted in, for example, Eq. (4.24). The equation of

motion becomes

d2X

d 2
+ �2

0xX = �2�0x��sc(X � hXi) + Fe x( ) : (5.4)

Taking the average, we obtain the equation of motion for the center of the beam,

d2hXi
d 2

+ �2
0xhXi = Fe x( ) : (5.5)

The space charge term disappears, indicating that the motion of the center of charge

is not a�ected by the space charge self-force. Physically, the beam transverse motion

is rigid and therefore the center cannot see any change in the pattern of the space

charge self-�eld. In other words, there is no coherent dipole space charge tune shift.

However, we do see that the center of the beam is driven by the dipole force due to

lattice error. The beam will be unstable if the coherent tune �0x, or just bare tune here,

is equal to an integer. Another way of saying the same thing is that as the coherent tune

approaches an integer, the closed-orbit distortion, being kicked in the same direction

in every turn, increases without limit. To show this more clearly, let us write the

nth-harmonic component of the periodic lattice-error force as Fe x( ) = fne
in . The

particular solution of Eq. (5.5) is

hXi = fne
in 

�2
0x � n2

; (5.6)

�Here Fsc x and Fe x do not have the dimension of a force. They should be forces divided by

appropriate variables. But for simplicity, we just call them forces.
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which is indeed unstable when the �0x = n.

The incoherent motion is obtained by subtracting Eq. (5.5) from Eq. (5.4),

d2

d 2
(X � hXi) + ��2

0x + 2�0x��sc
�
(X � hXi) = 0 ; (5.7)

showing that an individual particle is making betatron motion about the center of the

beam with the incoherent betatron tune �incoh = �0s+��sc. It is important to notice that

the incoherent equation of motion contains no driving terms for the integer resonance.

Therefore, incoherent motion is not a�ected by dipole errors. This means that the

incoherent tune can be equal to an integer with no adverse e�ects. It is worth re-

emphasizing: A particle which is shifted by direct space charge to a tune of exactly an

integer, turn by turn sees the same dipole errors at the same betatron phase, and yet

is not even slightly a�ected compared with other particles which do not have an integer

tune. This is not due to space charge stabilizing the resonance, as claimed by Ref. [2],

because in this example of linear space charge, there is no incoherent tune spread to

generate Landau damping. The correct answer is simply no driving term for incoherent

motion.

This concept can be extended easily to any nonlinear space charge force. For the

ith particle, the equation of motion is

d2Xi

d 2
+ �2

0xXi =
X
j

0
Fij + Fe x ; (5.8)

where Fij is the force of the jth particle acting on the ith particle, and
P0

j implies a

summation over j but with j = i excluded. Thus,
P0

j Fij is just the space charge force on

the ith particle. We now take the average of Eq. (5.8) by summing over i, giving exactly

Eq. (5.5) again. This result is obtained because of Newton's third law: Fij = �Fji when
i 6= j. Subtracting Eq. (5.5) from Eq. (5.8), we arrive at the incoherent equation

d2

d 2
(X � hXi) + �2

0x (Xi � hXi) =
X
j

0
Fij : (5.9)

Again, there is no dipole driving force for the equation of incoherent motion. The space

charge self-force, being nonlinear, does not just reduce to a simple incoherent tune shift.

The incoherent tune will be di�erent for di�erent particle depending on its amplitude

and the transverse beam distribution. However, whatever the incoherent tune is, even

at an integer, the individual particle will not be a�ected by the dipole lattice error at

all.



5-4 5. ENVELOPE EQUATION

5.2 The K-V Equation

Now let us come to the errors in the quadrupoles. This force, denoted by XF ( ) is

responsible for the half-integer resonance. Sometimes it is also called the linear error

force, because quadrupoles are linear elements of the accelerator lattice. The equation

of transverse motion for a particle is

d2X

d 2
+ �2

0xX = �2�0x��sc(X � hXi) +XF ( ) ; (5.10)

where a linear space charge force �2�0x��sc(X � hXi) has been assumed. Coherent

motion is obtained by averaging Eq. (5.10),

d2hXi
d 2

+ �2
0xhXi = hXiF ( ) ; (5.11)

and the di�erence gives the incoherent motion

d2

d 2
(X � hXi) + ��2

0x + 2�0x��sc
�
(X � hXi) = (X � hXi)F ( ) : (5.12)

It appears in Eq. (5.12) that the incoherent motion is driven by the quadrupole-error

force so that the particle will experience an instability at the half integer. This conclusion

is incorrect, although there is nothing wrong with the derivation from Eqs. (5.10) to

(5.12). A quadrupole in the lattice will change the size of the particle beam and so

will the quadrupole-error force. The incoherent space charge tune shift depends on the

beam size, which is a function of the quadrupole error force XF ( ). Actually, the e�ect

of the quadrupole-error force inside the incoherent space charge tune shift just cancels

the quadrupole-error force on the right side of Eq. (5.12), leaving behind an incoherent

motion not a�ected by the quadrupole-error force. To demonstrate this, we need to

study the equation of motion governing the beam size or beam envelope.

The dipole coherent tune shifts are zero because the beam center does not experience

any variation of the forces between beam particles, when the beam is executing rigid

dipole oscillations as a whole. Thus, the space charge forces do not a�ect the restoring

force of rigid oscillation and therefore do not a�ect the dipole coherent tunes. However,

there are other collective modes of oscillation in a beam. Examples are the breathing

mode, where the transverse beam size expands and contract without the beam center

being moved, and the mode when the breathing in the two transverse directions are 180Æ
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out of phase. The restoring forces of these modes of oscillation do depend on the forces

between the beam particles. Thus, their frequencies of oscillation are a�ected by the

space charge forces. To study these modes, we need to resort to the equations of motion

governing the beam envelope.

The envelope equation was �rst derived by Kapchinsky and Vladimirsky [3] for a

coasting beam with uniform charge density and elliptical cross section. Later it was

generalized by Sacherer [4] to include any distribution when the beam envelope x̂ is

replaced by the rms beam size ~x =
p
hx2i of the beam. We are going to follow Sacherer's

approach.

Consider an ensemble of particles that obey the single-particle equations

x 0 = px ;

p 0x = Fx(x; s) ;
(5.13)

where x is the transverse o�set, p is the canonical momentum, and the prime denotes

derivative with respect to time s, the distance along the designed orbit of the accelerator.

The total forcey in the x-direction,

Fx(x; s) = Fsc x + Fext x ; (5.14)

includes the space charge self-force Fsc x and the external force Fextx. Averaging over

the particle distribution f(x; p; s), we obtain the equations of motion for the center of

the beam:
hxi0 = hpxi ;
hpxi0 = hFx(x; s)i = hFext xi : (5.15)

where the last equation follows from hFsc xi = 0 because of Newton's third law. Note

that the order of the averaging and di�erentiation with respect to s is immaterial and

can be interchanged if one wishes. For a linear machine, for example with only dipoles

and quadrupoles in the ring, the external force is linear. We can write Fext x = Kx(s)x,

and the equation of motion governing the center of the beam becomes

hxi00 +Kx(s)hxi = 0 ; (5.16)

which involves only �rst moments and is independent of the space charge force or the

detailed form of the beam distribution.

yWe call them forces, although Fx(x; s), Fsc x, and Fextx do not have the dimension of a force. Note

that they have di�erent dimension from the forces introduced in Eq. (5.1).



5-6 5. ENVELOPE EQUATION

The second moments satisfy the equations

hx2i0 = 2 hxx 0i = 2 hxpxi ;
hxpxi0 = hx 0pxi+ hxp 0xi = hp2xi �Kx(s)hx2i+ hxFsc xi ;
hp2xi0 = 2 hpp 0xi = �2Kx(s)hxpxi+ 2 hpxFsc xi :

(5.17)

Notice that this set of equations is not closed because hxFsc xi and hpFsc xi are usually
functions of the higher moments like hxni, hxnpxi, etc. As will be demonstrated below,

if the self-force is derived from the free-space Poisson equation, hxFsc xi depends mainly

on the second moments and very little, if at all, on the higher moments.

Let us introduce the rms emittance

Ex =
p
hx2i hp2xi � hxpxi2 : (5.18)

Using the rate of change in the second moments in Eq. (5.17), the rate of change of the

rms emittance along the accelerator is

E 0
x =

hxpxi hxFsc xi � hx2i hpxFsc xi
Ex

: (5.19)

Thus, the rms emittance is an invariant provided that the space charge force is linear,

or when it can be written as Fsc x = �(s) (x� hxi). However, if we assume that the rms

emittance is either time invariant or its time dependency is known a priori, hp2xi can be

expressed in terms of hx2i, hxpxi, and Ex. Then, the �rst two equations in Eq. (5.17)

form a closed set, and they can be combined to give

~x00 +K(s)~x� E2

x

~x3
� hxFsc xi

~x
= 0 ; (5.20)

where ~x =
phx2i is the rms beam size.

The space charge term has an interesting interpretation. If we de�ne the linear part

of the space charge force Fsc x as "(s)x, where "(s) is determined by minimizing at a

�xed time

D =

Z
["(s)x� Fsc x]

2 n(x; s)dx ; (5.21)

where the linear distribution is

n(x; s) =

Z
f(x; p; s)dp ; (5.22)
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and the phase-space distribution is f(x; px; s), then we obtain

"(s)x =
hxFsc xi

~x2
x : (5.23)

In other words, the rms envelope equation depends only on the linear part of the space

charge force determined by least square.

Finally, let us express the envelope equation in terms of the static electric �eld Ex of
the space charge self-force in the x-direction and put back all the missing factors. The

envelope equation in the mks units now reads

~x00 +K(s)~x� E2

x

~x3
� e

m3�2c2
hxExi
~x

= 0 ; (5.24)

where m is the mass of the beam particles. In the denominator, we have the Lorentz

factor �2 because of Newton's second law and the other 2 because of the presence of

the magnetic �eld of the beam in the laboratory frame, as demonstrated in Eqs. (4.23)

and (4.24).

5.2.1 One Dimension

Consider a very long beam traveling in the z-direction with very wide width in the y-

direction. The situation can be approximated by a one-dimensional beam having space

charge self-force only in the x-direction and we assume that its distribution is symmetric

with respect to the x = 0 plane. The static electric �eld Ex in the x-direction is given

by Poisson equation
@Ex
@x

=
e

�0
n(x; s) ; (5.25)

from which

Ex = e

�0

Z x

0

n(x0; s)dx0 : (5.26)

Here, n(x; s) is the particle distribution per unit volume. Therefore, when integrated

over x from �1 to +1, it is normalized to �, the particle density per unit area in the

y-z plane. Since the electric �eld is proportional to the fraction of particles it encloses

between �x, we must have Ex / 1=~x. Thus,

hxExi
~x

=
e

�0

Z 1

�1
x
n(x)

�
dx

Z x

0

n(x0)dx0

�Z 1

�1
x2
n(x)

�
dx

�1=2 =
e�

2�0
% ; (5.27)
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where we have de�ned the dimensionless parameter

% =

2

Z 1

�1
xh(x)dx

Z x

0

h(x0)dx0

�Z 1

�1
x2h(x)dx

�1=2 : (5.28)

We have introduced a new distribution function h(x) = n(x)=� so that �, the particle

number per unit area in the y-z plane, is factored out and h(x) is normalized to unity.

It is important to point out that while % is dimensionless, h(x) can be scaled to anything

that is convenient. For example, in a uniform distribution, we can choose the edges as

�1, and in a Gaussian distribution, we can choose the rms spread as 1. Substituting in

Eq. (5.24), the one dimensional envelope equation now becomes

~x00 +K(s)~x� E2

x

~x3
� 2�r0�

3�2
% = 0 ; (5.29)

where r0 = e2=(4��0mc
2) is the classical radius of the beam particles. Table 5.1 shows

the values of % for four distributions. We see that for a wide range of distributions that

are likely to be encountered, the variation of % is less then 2.3%. Thus the one dimension

rms envelope equation will be accurately described by Eq. (5.29) with % = 1=
p
3.

Table 5.1: The values of the dimensionless parameter % for a wide range of distri-

butions. They are all close to 1=
p
3.

Distribution h(x)
p
3%

Uniform

�
1

2
jxj � 1

0 jxj > 1
1.000

Parabolic

�
3

4
(1� x2) jxj � 1

0 jxj > 1
0.996

Gaussian 1p
2�
e�x

2=2 0.977

Hollow 1p
2�
x2e�x

2=2 0.987

For a uniform distribution in one dimension, the half widths of the beam is x̂ =
p
3~x.

The full emittance is �x = 3Ex, since we also have p̂x =
p
3
p
hp2xi. The envelope equation
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for the half beam width in one dimension becomes

x̂ 00 +K(s)x̂� �2x
x̂3
� 2�r0�

3�2
= 0 ; (5.30)

where % = 1=
p
3 has been substituted.

5.2.2 Two Dimensions

With the absence of cross-correlations and coupling terms, the rms envelope equations

in the two transverse directions are given by Eq. (5.24) and the two space charge terms

hxFsc xi and hyF sc yi depend on the particle distribution. It will be shown below that

hxF sc xi and hyF sc yi depend only on second moments if the distribution has the elliptical

symmetry

n(x; y; s) = n

�
x2

a2
+
y2

b2
; s

�
; (5.31)

which when integrated over x and y gives the linear particle density �. Corresponding to

this distribution, the static electric �eld in the x-direction at a �xed location s is given

by

Ex = eabx

2�0

Z 1

0

n(T )

a2 + u

du

D(u)
; (5.32)

where

D(u) =
p
(a2 + u)(b2 + u) (5.33)

and

T =
x2

a2 + u
+

y2

b2 + u
: (5.34)

The validity of Eq. (5.32) can be veri�ed by computing the divergence of the electric

�eld. We get
@Ex
@x

=
eab

2�0

Z 1

0

du

D(u)

�
n(T )

a2 + u
+

2x2n0(T )
(a2 + u)2

�
: (5.35)

Changing variable of integration from u to T ,

dT = �
�

x2

(a2 + u)2
+

y2

(b2 + u)2

�
du (5.36)

and noting that
d lnD(u)

du
=

1

2

�
1

a2 + u
+

1

b2 + u

�
; (5.37)
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we arrive at

~r� ~E =
eab

2�0

�Z 1

0

du

D(u)
2n(T )

d lnD(u)

du
�
Z u=1

u=0

dT
2n0(T )
D(u)

�
; (5.38)

The variable in the �rst integral can now be easily changed from u to T , and we obtain

~r� ~E =
eab

�0

Z u=1

u=0

dT

�
n(T )

D2

dD

dT
� n0(T )

D

�

= �eab
�0

Z u=1

u=0

dT
d

dT

h n
D

i
=

e

�0
n

�
x2

a2
+
y2

b2

�
;

(5.39)

as required by Gauss's law. In passing, we give also the electric potential

�(x; y) = �eab
4�0

Z 1

0

du

D(u)

Z T

0

dT 0 n(T 0) : (5.40)

Now we are ready to compute hxExi and hyEyi. By de�nition,

hxExi = eab

2�0�

Z 1

0

du

D(u)

Z 1

�1

x2dx

a2 + u

Z 1

�1
dy n(T )n

�
x2

a2
+
y2

b2

�
: (5.41)

This suggests the change of variables x and y to the circular coordinates r and �,

r cos � =
xp

a2 + u
; r sin � =

yp
b2 + u

�! dxdy

D(u)
= rdrd� : (5.42)

We also let

r02 =
x2

a2
+
y2

b2
= r2

�
a2 + u

a2
cos2 � +

b2 + u

b2
sin2 �

�
: (5.43)

The integration variable u is now changed to r0 with

2r0dr0 =
r2

a2b2
�
a2 sin2 � + b2 cos2 �

�
du ; (5.44)

with the integration limits u from 0 to1 changed to r to 1. All these changes convert

Eq. (5.41) to

hxExi = ea3b2

2��0�(a+ b)

Z 1

0

n
�
r2
�
2�rdr

Z 1

r

n
�
r02
�
2�r0dr0 ; (5.45)

where the integration over � has been performed with the help ofZ
2�

0

cos2 �

a2 sin2 � + b2 cos2 �
d� =

2�

b(a + b)
: (5.46)
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Note that the variables r and r0 carry no dimension. With the new de�ned function

Q(r) = ab

Z r

0

n
�
r02
�
2�r0dr0 with Q(1) = � ; (5.47)

Eq. (5.45) can be integrated to give

hxExi = ea

2��0�(a+ b)

Z 1

0

dr
dQ(r)

dr
[��Q(r)] =

ea�

4��0(a + b)
: (5.48)

Since ~x =
phx2i / a and ~y =

phy2i / b, we obtain the �nal rms envelope equation in

two dimension:

~x 00 +Kx(s)~x� E2

x

~x3
� r0�

3�2

1

~x+ ~y
= 0 ;

~y 00 +Ky(s)~y �
E2

y

~y3
� r0�

3�2

1

~x + ~y
= 0 : (5.49)

For a uniform distribution with elliptical symmetry in two dimensions, the half

widths of the beam are x̂ = 2~x and ŷ = 2~y. The emittance is �x;y = 4Ex;y, since we also

have p̂x;y = 2
phpx;yi. The envelope equation becomes

x̂ 00 +Kx(s)x̂� �2x
x̂3
� 4r0�

3�2

1

x̂ + ŷ
= 0 ;

ŷ 00 +Ky(s)ŷ �
�2y
ŷ3
� 4r0�

3�2

1

x̂+ ŷ
= 0 : (5.50)

These are just the well-known K-V equations. However, the rms envelope equations

depicted in Eq. (5.49) are not restricted to the uniform K-V distribution and are valid

for any distribution with elliptical symmetry.

Two comments are in order. First, the distribution with elliptical symmetry, rep-

resented by Eq. (5.31), is a very general distribution. Nearly all practical beam distri-

butions fall into this category. Therefore, Sacherer's conclusion that hxExi in Eq. (5.48)

does not involve moment higher than second order is remarkable. Second, the rate of

change of the beam emittance Ex, Eq. (5.19), depends on both hxExi and hpxExi, and
will vanish if both of them do not involve moments higher than second order. Unfortu-

nately, hpxExi does depend on moments of the beam which is higher than second order.

As a result, the emittance introduced in Eq. (5.18) is time dependent and this renders

the rms envelope equations not a closed system. The set of rms envelope equations is

only closed when the distribution is uniform. It can be shown that the rate of increase

of emittance is just proportional to the energy of the part of the space charge self-�eld

that is nonlinear [5, 6, 7].
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5.3 Collective Oscillations of Beams

5.3.1 One Dimension

The one-dimension envelope equation for uniform beam, Eq. (5.29), contains the external

focusing term Kx(s), which includes both the ideal quadrupole focusing force and the

gradient errors. We �rst eliminate the rapidly varying part of Kx(s) from the envelope

equation by introducing the Floquet phase advance  x, which increases by 2� each

revolution turn,

 x =

Z s

0

ds

�0x�x(s)
; (5.51)

where �0x is the bare tune and �x is the betatron function de�ned in the absence of the

space charge self-force. Next introduce the dimensionless half beam size

X̂ =
x̂p
�x�x

; (5.52)

where the full emittance �x, de�ned via Eq. (5.18),

�x = 3
p
hx2ihp2xi � hxpxi2 ; (5.53)

is a constant of motion because the distribution is now uniform and the space charge

force is therefore linear [see Eq. (5.19)]. The envelope equation for a uniform beam in

one dimension now becomes (Exercise 5.1)

d2X̂

d 2
x

+ �2
0xX̂ � �2

0x

X̂3
� 2�r0�

3�2

�2
0x�

3=2
xp
�x

= 0 : (5.54)

The last term on the right side depends on s through the betatron function �x. Because

�x is periodic in s or the phase advance  x, we can expand it as a Fourier series. The

oscillatory part is x independent and is therefore similar to the force due to dipole errors

which we have studied earlier in Sec. 5.1. Since it will drive only integer resonance and

we are interested in half-integer resonance only in this section, this oscillatory part is

discarded. The non-oscillatory part is related to the incoherent space charge tune shift

��sc x, or (Exercise 5.2)

2�0x��sc x = �2�r0�

3�2

�2
0x
��
3=2
xp
�x

; (5.55)
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where ��x is the betatron function averaged over the Floquet phase  and is equal to

R=�0x, with R being the radius of the accelerator ring. In terms of ��sc x, the one-

dimension envelope equation now takes the simple formz

d2X̂

d 2
x

+
�
�2
0x + 2�0x��s cosn x

�
X̂ � �2

0x

X̂3
+ 2�0x��sc x = 0 ; (5.56)

where we have included the part in K(s) that corresponds to quadruple gradient errors

as a force possessing nth harmonic and total stopband width ��s.

When space charge is absent, the static solution (s or  x independent) of the enve-

lope equation is just X̂ = 1. Here, static is just mathematically true for the normalized

beam size X̂. In fact, this solution is not physically static, because it corresponds to the

beam size

x̂ =
p
�x�x ; (5.57)

and �x is a function of s. We can also see how the normalization process simpli�es the

analysis of the envelope equation. The solution in Eq. (5.57) says nothing more than

the fact that
p
�x is the beam radius when the beam is matched to the lattice. In fact,

the envelope equation, Eq. (5.29), before normalizing, is the equation satis�ed by
p
�x.

In the presence of space charge, the `static' solution becomes

X̂ = 1 + �x; (5.58)

which can be solved as a power series in

�x =
��sc x
�0x

: (5.59)

We obtain

�x = ��x

2
+

3�2

x

8
+O ��3

x

�
: (5.60)

Since ��sc x < 0, the beam size is therefore larger due to the repulsive nature of the

space charge force. This can be viewed as an increase in the betatron function due to

space charge by

�x �! �x�0x
�0x +��sc x

: (5.61)

zThe incoherent space charge tune shift is negative. Many authors prefer to denote ��sc x as the

absolute value of the tune shift. In that convention, the sign in the last term on the right side of

Eq. (5.56) will be positive instead.
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Now we are ready to solve the envelope equation around the `static' solution, for which

we let

X̂ = 1 + �x + Æx( x) : (5.62)

Here, Æx represents the amplitude of oscillation of the beam width about the equilibrium

value 1+�x. We only need Æx to be in�nitesimal. Therefore, we perform the power series

expansion according to

Æx � �x � 1 ; (5.63)

and keep only the �rst order in Æx. We also require only an in�nitesimal driving force,

because this is what it needs to drive a particle into instability. Thus, we will consider

the width of the stopband ��s=�0x to be of the same order as Æx. This consideration

leads to the equation

d2Æx
d 2

x

+
�
4�2

0x + 6�0x��sc x
�
Æx = �2�0x��s cos n x : (5.64)

Thus the beam envelope oscillates with the natural coherent tune 2
�
�0x +

3

4
��sc x

�
, and

resonance occurs when

n2 = 4�2
0x + 6�0x��sc x or

n

2
� �0x � 3

4
j��sc xj = �x incoh +

1

4
j��sc xj : (5.65)

The incoherent tune �x incoh = �0x + ��sc x can therefore be depressed beyond the half-

integer n
2
by 1

4
j��sc xj, a quarter of the incoherent tune shift before hitting the resonance

as is illustrated in Fig. 5.1. Solution of Eq. (5.64) gives

X̂ = 1� ��sc x
2�0x

� 2�0x��s cosn x
4�2

0x + 6�0x��sc x � n2
; (5.66)

where only the lowest order of ��sc x=�0x has been included. Clearly, this solution reects

the resonance depicted in Eq. (5.65), although the solution is perturbative and is not

valid near the resonance. We also see the beam envelope oscillate and that represents

a quadrupole breathing mode, which is a coherent mode or collective mode because all

beam particles have to participate collectively to produce this pattern of motion. This

is in contrast to the incoherent motion, where a single beam particle executes betatron

oscillations regardless of what the rest are doing.

Now we are in the position to study whether the force due to quadrupole errors will

drive a single particle unstable at the half-integer resonance. Let us return to Eq. (5.12),

the equation of motion of a single particle, which we rewrite as

d2X

d 2
x

+
�
�2
0x + 2�0x��s cos n x

�
X + 2�0x��sc x

X

X̂
= 0 : (5.67)
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ν0x

ν0x ∆νsc x||νincoh =

∆νsc x||3
4

∆νsc x| 2
n1

Figure 5.1: Plot showing that the incoherent tune of a one-dimensional beam,

�incoh = �0x � j��scxj, can be depressed to pass the half-integer 1

2
n before the

coherent quadrupole tune �0x � 3

4
j��scxj reaches the half-integer instability.

where X and X̂ are, respectively, the x-coordinate of the particle and the beam half

width normalized by
p
�x�x. ��sc x, as given by Eq. (5.55), is the commonly quoted

incoherent space charge tune shift without consideration of the beam being driven by

the gradient errors of the quadrupole. The correct incoherent space charge tune shift is

actually given by ��sc x=X̂ (see Exercise 5.2). Since we are not interested in the rigid

motion of the beam, the beam center hXi can be set to zero. When the perturbative

solution X̂ of the beam envelope in Eq. (5.66) is substituted, Eq. (5.67) becomes

d2X

d 2
x

+(�0x +��sc x)
2X+2�0x��s cosn x

�
1 +

2�0x��sc x
4�2

0x + 6�0x��sc x � n2

�
X = 0 : (5.68)

where the non-resonant free oscillations have not been included. At the particle intensity

which shifts the betatron tune to half-integer, namely �0x+��sc x = n=2, the two terms

inside the square brackets cancel, and the single-particle equation of motion reduces to

d2X

d 2
x

+
�n
2

�2
X = 0 : (5.69)

We see that when the incoherent tune of a particle is shifted to half-integer, the driving

force due to gradient errors cancels exactly. Thus, no resonance occurs for the particle.

The above proof appears to be overly approximatedx. The reader can pursuit this

proof to another order of the incoherent tune shift.

xThe more accurate condition for envelope instability is �2
0x
� 3

2
j�0x��sc xj =

�
n

2

�2
. So the more

accurate condition for \incoherent resonance" is �2
0x
� 2 j�0x��sc xj =

�
n

2

�2
. Use of these conditions

make the driving term vanish to a more accurate degree.
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5.3.2 Two Dimensions

Similar to the one-dimensional case, we normalize the two-dimensional envelope equa-

tions with uniformly distributed elliptic cross section in the same way by introducing

the phase advances

 x =

Z s

0

ds

�0x�x(s)
and  y =

Z s

0

ds

�0y�y(s)
; (5.70)

and the dimensionless half beam radii

X̂ =
x̂p
�x�x

and Ŷ =
ŷp
�y�y

; (5.71)

where �0x and �0y are the bare tunes and �x and �x are the betatron functions in the

x and y directions, respectively, de�ned in the absence of the space charge self-force.

Equation (5.50) that governs the motion of the beam radii becomes

d2X̂

d 2
x

+
�
�2
0x + 2�0x��sx cosnx x

�
X̂ � �2

0x

X̂3
+ 2�0x��sc x

a+ b

aX̂ + bŶ
= 0 ;

d2Ŷ

d 2
y

+
�
�2
0y + 2�0y��sy cosny y

�
Ŷ � �2

0y

Ŷ 3
+ 2�0y��sc y

a+ b

aX̂ + bŶ
= 0 ;

(5.72)

where a =
p
�x ��x and b =

p
�y ��y are the beam radii de�ned through the average

betatron functions ��x and ��y,

��sc x = � 2�r0R
2

3�2�0xa(a + b)
and ��sc y = � 2�r0R

2

3�2�0yb(a+ b)
(5.73)

are the incoherent space charge tune shifts. We have also included the forces due to

gradient errors at harmonics nx and ny.

We �rst solve for the static beam radii

X̂ = 1 + �x and Ŷ = 1 + �y (5.74)

in terms of the incoherent tune shifts

�x =
��sc x
�0x

and �y =
��sc y
�0y

: (5.75)

Up to second order, we get

�x = ��x

2
+

�2

x

4
� �x�y

8
and �y = ��y

2
+

�2

y

4
� �x�y

8
: (5.76)



5.3 Collective Oscillations of Beams 5-17

Next, the in�nitesimal displacements Æx and Æy are included:

X̂ = 1 + �x + Æx and Ŷ = 1 + �y + Æy : (5.77)

The derivation becomes very lengthy and uninteresting. For the sake of simplicity, we

study the special case of a round beam with a = b and obtain the equations for small

amplitude oscillation:

d2Æx
d 2

x

+ (4 + 5�x) �
2

0xÆx � �2
0x�xÆy = �2�2

0x��sx cosnx x ; (5.78)

d2Æy
d 2

y

+ (4 + 5�y) �
2

0yÆy � �2
0y�yÆx = �2�2

0y��sy cosny y : (5.79)

This is just a set of driven coupled simple-harmonic oscillators. For a round beam, we

expect the incoherent space charge tune shifts in the two transverse directions to be

equal. The eigentunes � can be found by solving the eigenvalues of the matrix

 
4�2

0x + 5�0x��sc x ��0x��sc x
��0x��sc x 4�2

0y + 5�0x��sc x

!
; (5.80)

from which we get

�2 = 2
�
�2
0x + �2

0y

�
+ 5�0x��sc x �

q
4
�
�2
0x � �2

0y

�2
+ (�0x��sc x)

2 : (5.81)

When the two bare tunes are close so that j�0x � �0yj � j�0x��sc xj, the two coherent

tunes are

�2 =

(
4��2 � 4j�0x��sc xj
4��2 � 6j�0x��sc xj

or � �

8>>><
>>>:

2

�
�� � 1

2
j��sc xj

�
;

2

�
�� � 3

4
j��sc xj

�
;

(5.82)

where 2��2 = �2
0x + �2

0y. This represents that the two transverse directions are tightly

coupled. The eigenfunctions are � (Æx + Æy) for the upper solution and � (Æx � Æy) for

the lower solution. Thus, the upper solution is the symmetric breathing mode where

the oscillations are in phase in both transverse directions and the tune is �� � 1

2
j�sc xj.

The lower solution is the antisymmetric mode where the beam envelope oscillates out of

phase in the two transverse directions with tune � � 3

4
j�sc xj.
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If the tune split is large so that j�0x � �0yj � j�0x��sc xj, the oscillations in the

two transverse directions are almost uncoupled. The envelope oscillations in the two

transverse directions are just two independent oscillators. The two coherent tunes are

�2 =

(
4�2

0x � 5j�0x��sc xj
4�2

0y � 5j�0x��sc xj
or � �

8>>><
>>>:

2

�
�0x � 5

8
j��sc xj

�

2

�
�0y � 5

8
j��sc yj

�
:

(5.83)

Let us come back to the situation of no tune split. Suppose that the bare tunes

�0x � �0y � �� are �� above a half-integer or integer. We try to increase the beam

intensity. and the incoherent tune shift j��sc xj increases accordingly. We will �rst

meet with the condition 3

4
j��sc xj = �� and the antisymmetric mode becomes unstable.

However, the incoherent tune, �0x � j��sc xj has passed the half integer already by a

factor of 4

3
. The symmetric mode will meet with the half-integer and become unstable

much later when j��sc xj = 2��.

Similar to the one-dimensional case, the oscillatory solutions for the envelope radii

can be solved. When substituted back into the single-particle equations of motion, we

can verify that the driving force vanishes when the incoherent equations are at half

integers, showing that the incoherent motion of individual particles can have their tunes

right at half-integers without instability.

Other distributions can be analyzed in the same way. Notice that, for a round

beam, the space charge tune shift ��sc x in the last term of Eq. (5.72) is

��sc x = � Nr0
2�3�2�

= � Nr0
8�3�2�rms

; (5.84)

where N = 2�R� is the total number of particles in the beam, � is the full emittance of

the uniform distributed beam and �rms is the rms emittance. Now rewrite Eq. (5.84) as

��sc x =
1

2

�
� Nr0
4�3�2�rms

�
; (5.85)

where the square-bracketed term is the maximum incoherent space charge tune shift of

a bi-Gaussian distributed round beam. Thus what we need to remember is that the

factor ��sc x in the envelope equation represents one half of the maximum incoherent

space charge tune shift for bi-Gaussian distribution. We mentioned before that for the
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case of strong coupling, the tune depression of the antisymmetric mode is 3

4
j��sc xj and

the incoherent tune shift can exceed that needed for coincidence with a half integer

resonance by a factor of 4

3
. Now for the case of the bi-Gaussian distribution, the tune

depression of this mode becomes 3

4
� 1

2
of the maximum incoherent space charge tune

shift for the bi-Gaussian distributed beam, and therefore the incoherent tune can exceed

that needed for coincidence with a half-integer resonance by as much as a factor of 8

3
.

For this reason, we de�ne a parameter G, such that Eq. (5.84) can be written as

��sc x =
1

G

�
max incoherent
sp ch tune shift

�
: (5.86)

Then, the incoherent space charge tune shift for the distribution considered will exceed

the tune depression of a particular collective quadrupole mode G times better than if

the distribution is uniform.

If we neglect the time dependency of the emittances, the rms envelope equations,

Eq. (5.49), say that the space charge e�ects of all beams are the same if they have

the same rms widths and emittances. These beams are called equivalent beams. For

example, an equivalent uniform beam implies that the beam has the same rms dimensions

as a uniform beam.

5.4 Simulations

5.4.1 One Dimension

Baartman [1] performed simulations with up to 50,000 particles according to the equation

of motion:

x00 + �2
0
x = �xm�1 cos(n�) + Fsc : (5.87)

Here, the driving force leads to resonances whenever the tune � satis�es m� = n. The

space charge self-force Fsc on a particular particle in the simulations is simply equal to

an intensity parameter multiplied by the di�erence between the number of particles to

its left and to its right.

For a sextupole force (m = 3) and bare tune equals �0 = 2:45, the relevant resonance

is at n=m = 7=3 = 2:3333. We expect to see the beam in resonance when the coherent

tune �coh = �0 � C33j��scj = 7=3, where ��sc is the incoherent space charge tune shift
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Figure 5.2: (color) Plot of the rms size (thick curve at center) of the simulated

one-dimensional beam of Gaussian distribution as a function of the incoherent tune,

which is used here as a measure of the beam intensity. Obviously, there is no e�ect

on the beam when the incoherent tune crosses the 7/3 resonance. But the rms beam

size increases very suddenly when the incoherent tune reaches 2.3167 corresponding

to the 7/3 resonance of the coherent tune. See text for the other curves.

and C33 = 7=8 by solving the envelope equation in one dimension. This corresponds

to an incoherent space charge tune shift of j��scj = (2:45 � 2:333)=C33 = 0:1334 or

the incoherent tune of 2:45 � 0:1334 = 2:3167. The simulations were performed for

a beam with transverse Gaussian distribution. The results are plotted in Fig. 5.2 as

the fraction of particles inside a given betatron amplitude versus the incoherent tune

of the stationary beam of the same rms size. The incoherent tune is chosen because

it serves as a measure of the beam intensity. Larger incoherent tune implies lower

beam intensity. The thick curve in the center is the rms beam size. We clearly see

that it passes the incoherent tune of 7/3 with nothing happening. However, there is

a sharp threshold at the expected incoherent tune 2.3167. This veri�es the fact that

it is the coherent tune but not the incoherent tune that determines the arrival of a

resonance. The horizontal curves in the �gure represent the fraction of particles inside

a �xed emittance for the Gaussian distribution. They step downwards as particles are

driven to larger amplitudes. The stepdown occurs when a horizontal curve meets the

curve connecting the + symbols. These + symbol represent the emittance at which the
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incoherent tune is on resonance. If we examine the �gure more closely, we �nd that

only those horizontal curves representing more than 50% of particles step downwards,

and also the stepdowns are more appreciable only when the particle amplitude becomes

larger. This phenomenon happens because of some halo particles residing at the very

edge of the beam. They behave like a separate beam and feel the space charge force from

the core of the beam as an external force. Since this is not the space charge self-force of

the beam halo, our discussion of the irrelevance of the incoherent tune does not apply

to these particles.

5.4.2 Two Dimensions

Machida [8] performed two-dimensional space charge simulations of the SSC Low Energy

Booster by including quadrupole error forces. The horizontal bare tune was �xed at

�0x = 11:87 while the vertical bare tune �0y varied from 11.95 to 11.55. The maximum

incoherent tune shift was kept �xed at j��sc yj = 0:33 with a half-integer stopband 0.02.

The beam simulated had a bi-Gaussian distribution. The threshold for emittance growth

was found to be roughly 11.63, when the incoherent tune had already passed the half-

integer resonance of 11.50. An incoherent tune shift of 0.33 for a bi-Gaussian distributed

beam is the same as an incoherent tune shift of 0.33/2=0.165 of an equivalent uniform

beam. According to Eq. (5.81), the incoherent tune shift of an equivalent uniform beam is

0.199, or 2�0:199 = 0:398 for a bi-Gaussian beam. If we include the stopband, meaning

that the half-integer resonance will start at 11:50 + 0:02 = 11:52, the incoherent tune

shift of an equivalent uniform beam is 0.1687, or 2 � 0:1687 = 0:337 for a bi-Gaussian

beam. The number is very close to the incoherent tune shift of the 0.33 input into the

simulations.

In other two-dimensional simulations, Machida and Ikegami [9] also demonstrated

that it was the coherent rather than the incoherent tune shifts that determine the

instability of a beam. Some results are illustrated in Fig. 5.3. In the simulations, the

horizontal coherent quadrupole tune hits the integer 13 when the beam intensity reaches

� 15 A. We do see that the horizontal emittance increases rapidly around the beam

intensity of 15 A. The vertical coherent quadrupole tune hits the integer 11 when the

beam intensity is raised to around 13 to 15 A. Around those intensities, large increase

in vertical emittance is evident in the plots. However, we do not see any growth of

emittance when the coherent quadrupole tunes cross half integers. The simulations were

performed using beams with the water-bag distribution, the K-V distribution, and the



5-22 5. ENVELOPE EQUATION

parabolic distribution. As is seen in the plots, the results do not depend much on the

beam distribution.

Figure 5.3: (color) Tune of coherent quadrupole mode (left) and rms emittance at

512 turns after injection (center and right) versus beam intensity. Upper �gures

show results in the horizontal plane while lower ones show results in the vertical

plane. Rms emittance growth is observed when either the horizontal or vertical

coherent quadrupole tune crosses an integer. (Reproduced from Ref. [9]).

5.5 Application to Synchrotrons

Let us apply what we have learned to some low-energy synchrotrons. For the Fermilab

Booster with an injection energy of 400 MeV and round beam, the bare tunes derived

from the lattice are �0x = 6:70 and �0y = 6:80. The nearest half-integer is 6.5. Thus,

if the half-integer resonance arises from the incoherent motion of the beam particles,

the largest incoherent space charge tune shift allowed will be j��sc xj = 0:20. If the

resonance comes from one of the coherent quadrupole envelope modes hitting the half-

integer, the largest incoherent space charge tune shift allowed becomes{ j��sc xj=0:296

{We can also make the rough estimate of assuming the two betatron bare tunes are equal, i.e.,

�0x � �0y � 6:70. Then the incoherent space charge tune shift according to Eq. (5.82) is j��sc xj �
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or j��sc yj = 0:291. These numbers are obtained from the matrix of Eq. (5.80) by

substituting 1

2
� = 6:5 for the eigentune and solving for j��sc xj. On the other hand, from

the experimentally measured beam size, the calculated incoherent space charge tune shift

is 0.40, which de�nitely exceeds the result from incoherent motion and agrees more or less

with the result from the coherent mode. So far the estimation has been based on uniform

distribution. If the distribution were bi-Gaussian, the largest incoherent space charge

tune shift allowed would become j��sc xj=2�0:296=0:592 or j��sc yj=2�0:291=0:582

instead for particles at the center of the beam with small amplitude betatron oscillations.

Similar computations are performed for various low-energy synchrotrons, for which

the beams are mostly round and the distribution uniform. The results are tabulated in

Table 5.2. We see that for all the synchrotrons listed, the space charge tune shifts com-

puted from experimentally measured beam sizes exceed those derived from incoherent

particle motion and are close to those derived from the coherent modes.

Table 5.2: Estimated inocherent space charge tune shifts for various low-energy

synchrotrons. The incoherent space charge tune shifts are derived from the exper-

imentally measured beam size (3rd column), the assumption that the half-integer

resonance comes from the incoherent motion of the beam particles (4th column),

and the assumption that the half-integer resonance comes from a coherent envelope

mode (5th column). We see that the values from experiments exceed those from

incoherent motion and agree mostly with those from the coherent modes.

j��sc xj=j��scyj
Synchrotron Bare tunes from from incoh from coherent

�0x=�0y experiment motion motion

KEK Booster 2.17/2.30 0.23 0.17 0.25/0.24

FNAL Booster 6.70/6.80 0.40 0.20 0.30/0.29

ISIS 3.70/4.20 0.40 0.20 0.31/0.27

AGS 8.75/8.75 0.58 0.25 0.33/0.33

AGS Booster 4.80/8.75 0.50 0.30 0.46/0.25

CERN PS 6.22/6.22 0.27 0.22 0.29/0.29

CERN PS-2 6.22/6.28 0.36 0.22 0.31/0.31

j��sc xj �
4

3
� 0:2 = 0:267.
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5.6 Exercises

5.1. Supply the missing steps in transforming the one-dimension envelope equation

from Eq. (5.30) to the normalized form of Eq. (5.54). You may need the de�nition

of the betatron function

�x�
00
x

2
� � 0x

2

4
+ �2

xKx(s)� 1 = 0 ; (5.88)

where the prime denotes derivative with respect to s, the distance along the accel-

erator ring, and Kx(s) is the focusing strength of the external quadrupoles.

5.2. Show that the incoherent space charge tune shift ��sc x of a one-dimension beam

uniformly distributed in the x direction and in�nite in the y and s directions is

given by

2�0x��sc x =
2�r0�R

2

3�2x̂
; (5.89)

where the beam has extent between �x̂, � is the particle density per unit area in

the y-s plane, r0 is the classical particle radius,  and � are the Lorentz parameters,

and R is the mean radius of the accelerator ring.

5.3. Veri�ed the expression for hxExi given by Eq. (5.48) by computing this quantity

for a round beam with (1) uniform distribution and (2) bi-Gaussian distribution.

5.4. Derive the incoherent space charge tune shifts for the various synchrotrons listed

in the last column of Table 5.2 when the intensity of the beam having uniform

distribution is increased so that the �rst coherent envelope mode reaches the half-

integer resonance.
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Chapter 6

LONGITUDINAL MICROWAVE

INSTABILITY FOR PROTONS

6.1 Keil-Schnell Criterion

According to Eq. (2.10), a beam particle changes its energy per turn according to

d�E

dn
= eVrf [sin(�s � h!0�)� sin�s]� [U(Æ)� Us] + C0(hF k

0 i � hF k
0si) ; (6.1)

where the �rst two terms on the right represent, respectively, the rf focusing and radiation

damping. The last term comes from the longitudinal wake potential [Eq. (2.7)]:

hF k
0 (�)i � hF k

0si = � e2

C0

�Z 1

�infty
d� 0�(� 0)W 0

0(�
0 � �)�

Z 1

�infty
d� 0�(� 0)W 0

0(�
0)
�
; (6.2)

where �(�) is the linear particle density of the beam for a particle that arrives � earlier

than the synchronous particle. For a purely inductive wake potential W 0
0(�) = LÆ0(�)

(� � 0) with L being the inductance, the energy gained per turn becomes

d�E

dn
= e2L�0(�) + � � � ; (6.3)

where we have only displayed the contribution of the wake potential and assumed �0(0) =
0.. Now consider a coasting beam with a very small momentum spread. If a small bump

is developed along the beam and the vacuum chamber is inductive (L > 0), particles

6-1
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at the front of the bump lose energy because �0(�) < 0, and particles at the rear of the

bump gain energy because �0(�) < 0. Above transition (� > 0), particles at the front

arrive earlier and particles at the rear arrive later. Thus the bump will be smoothed

out, as illustrated in the left drawing in Fig. 6.1. The result will be the same if the beam

sees a capacitive wake (L < 0) and is below transition. However, for capacitive wake

above transition, particles at the front of the bump gain energy and will arrive later

while those at the rear of the bump lose energy and will arrive earlier, thus enhancing

the bump. The situation is the same for an inductive wake below transition. In other

word, the situation is unstable against small nonuniformity in the linear distribution.

unstable stable

capacitiveinductive

Below transition

Figure 6.1: Below transition, a bump will be smoothed out under a capacitive force

(right) and the beam will be stable against bump formation. However under an

inductive force, the bump will continue to grow (left) and the beam will be unstable

against small perturbations. Above transition, the opposite is true.

So far the momentum spread of particles in the beam has not been considered. In

order for the bump to grow, the growth rate must be faster than phase-drifting rate

coming from the momentum spread of the beam particles, otherwise the bump will be

smeared. This damping process is called Landau damping [1]. The impedance driving

the instability need not be purely reactive. It can be the real part of the impedance.

Especially for a sharp bump, the driving frequency will be very high.

This same consideration can also be applied to a bunch provided that the growth

must be faster than synchrotron frequency otherwise the bump will be smeared out.

Needless to say, the size of the bump is much less than the length of the bunch. The

driving impedance must therefore have a wavelength less than the length of the bunch.
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This growth at high frequencies is called microwave instability. This discussion is very

similar to that in Sec. 3.2. There, the concern is about the enhancement or partial

cancellation of the rf focusing force at rf frequency; therefore an inductive force below

transition or a capacitive force above transition is preferred to prevent bunch lengthening.

Here, the concern is the evolution of a small bump at high frequencies. In order that

a small bump will not grow, the opposite conclusion is obtained. In other words, to

smooth out a bump. a capacitive force below transition or an inductive force above

transition is preferred.

Because of the random quantum excitation in an electron bunch, there is a �nite

probability of having electrons jumping outside the bucket and getting lost. To increase

the quantum lifetime of an electron bunch, a large rf bucket is necessary. Touschek

scattering will also convert transverse momentum spread of electrons into longitudinal.

In order that those electrons will not be lost, the rf bucket has to be large. For this

reason, the bucket in an electron machine is in general very much larger than the size of

the electron bunch, usually the height of the bucket is more than 10 times the rms energy

spread of the bunch, in contrast with only about 3 times or less in proton machines.

To achieve this, the rf voltage Vrf for an electron ring will be relatively much larger

than that in a proton ring of the same energy. Another reason of a high Vrf in an

electron machine is to compensate for the energy loss due to synchrotron radiation. For

example, in the high-energy ring of PEP II storing 9 GeV electrons, Vrf = 18:5 MV

is required. On the other hand, Vrf for the Fermilab Tevatron storing 1 TeV protons

is only 2.16 MV. As a result, the synchrotron tunes for electron rings, �s � 0:01, are

usually an order of magnitude larger than those for proton rings, �s � 0:001. For

this reason, in the consideration of collective instabilities, the synchrotron period of the

protons is sometimes much longer than the instability growth times. The wavelength

of the perturbation or instability driving force is often of the same size as the radius or

diameter of the vacuum chamber, which is usually much shorter than the length of a

proton bunch. As a result, the proton bunches can be viewed locally as coasting beams

in many instability considerations. Thus, each individual revolution harmonic can be

considered as an independent mode. On the other hand, the electron bunch is mostly

short, of the same size or even shorter than the diameter of the vacuum chamber. In

other words, the electron bunch length can be of the same order or even shorter than the

wavelength of the instability driving force. Therefore, for electron bunches, their bunch

structure must be considered when studying their instabilities. Individual revolution

harmonics are no longer independent and we need to study bunch modes instead.
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6.1.1 Dispersion Relation

Let us �rst study the dispersion relation governing microwave instability of a proton

beam [2]. Consider a coasting beam, with mean energy E0 and mean velocity v0. The

unperturbed phase-space distribution is�

 0(�E) =
N

C0

f0(�E) ; (6.4)

where  0(�E) is normalized to the number of particle N in the beam when integrated

over the energy o�set �E and distance s along the closed orbit of the on-momentum

orbit. The energy spread distribution f0(�E) is normalized to unity when integrated

over �E. Since the linear distribution of a coasting beam is uniform,  0 does not

depend on the location s or the time t. The length of the beam is therefore equal

to the circumference C0 of the accelerator ring. Note that here we are using t as the

independent variable, because we are using a snap-shot description. The variables s and

�E are used to describe the beam in the longitudinal phase space.

This stationary distribution is perturbed by an in�nitesimal longitudinal density

wave  1 which is position dependent and evolves in time. At time t, we postulate the

ansatz

 1(s;�E; t) =  ̂1(�E)e
ins=R�i
t ; (6.5)

where R = C0=(2�) is mean radius of the closed orbit of an on-momentum particle, and


=(2�) the collective frequency of oscillation to be determined. Here, n denotes the

revolution harmonic and n = 0 must be excluded, otherwise charge conservation will be

violated. Actually, this is a snap-shot description; therefore the linear density will be

periodic in s. By ansatz, we mean a postulation of the solution which must be veri�ed

to be consistent later. In fact, Eq. (6.5) can be considered as just one term of a Fourier

series expansion. In other words, our postulation is the independence of each revolution

harmonic or the revolution harmonics are good eigennumbers. When integrated over

�E, we get the perturbation line density at time t,

�1(s; t) = �̂1e
ins=R�i
t : (6.6)

A test particle at the �xed location s monitors the perturbation wave passing through

and experiences a wake force due to all beam particles that pass the location at an earlier

�The distribution in Eq. (6.4) can also be normalized to N by integration over �E and s=v0 after

the replacement of C0 in the denominator by T0 = C0=v0. In that case, dz should be replaced by dz=v0
in Eq. (6.7), and v0 should be deleted in Eqs. (6.8), (6.10), (6.11), and also the right side of Eqs. (6.8.
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time. This force, averaged over the ring circumference, can be expressed as

hF k
0 (s; t)i = �e

2

C

Z 1

0

dz �1(s; t�z=v0)W 0
0(z) = �e

2v0
C0

�1(s; t)Z
k
0(
) ; (6.7)

where Z
k
0(
) is the longitudinal impedance of the vacuum chamber evaluated at the

collective frequency. There is a similar force acting on the particle from the wake of the

unperturbed beam distribution by replacing �1 with the unperturbed �0 in Eq. (6.7).

But that force has no time dependency and is of no interest to us here. In fact, this force

will give a modi�ed steady-state Hamiltonian and will contribute to the a modi�cation

of the unperturbed particle distribution, which we call potential-well distortion. Notice

that the impedance samples the coherent frequency of the perturbation and has no

knowledge of the revolution harmonic dependency. This is because the impedance is

located at a �xed point along the ring. However, as we shall see below, the coherent

frequency 
 does contain a harmonic content.

The particle energy will be perturbed according to the equation of motion Eq. (6.1)

d�E

dt
= �e

2v0
T0

Z
k
0(
)�̂1e

ins=R�i
t ; (6.8)

where T0 = C0=v0 is the revolution period of the on-momentum particles.

Now let us pull out the Vlasov equation in its �rst order,

@ 1
@t

+
@ 1
@s

ds

dt
+

@ 0
@�E

d�E

dt
= 0 : (6.9)

Substitution leads to

�i(
� n!) 1 =
e2v0Z

k
0 (
)

T0

d 0
d�E

�̂1e
ins=R�i
t ; (6.10)

where ! = v=R and v are, respectively, the angular revolution frequency and velocity of

a beam particle with energy o�set �E. Next we have

 1(s;�E; t) =
ie2v0Z

k
0(
)

T0

d 0
d�E

�̂1e
ins=R�i
t


� n!
: (6.11)

Integrate both sides over �E. From Eq. (6.6), the left side is just the perturbation linear

density which cancels �̂1 and the exponential on the right side, leaving behind

1 =
ie2NZ

k
0

T 2
0

Z
f 00(�E)

� n!

d�E ; (6.12)



6-6 6. LONGITUDINAL MICROWAVE INSTABILITY FOR PROTONS

where the unperturbed distribution f0 in Eq. (6.4) that is normalized to unity has been

used, and the prime is derivative with respect to �E. An integration by part leads to

the dispersion relation

1 =
ieI0�nZ

k
0 (
)!

2
0

2��2E0

Z
f0(�E)

(
� n!)2
d�E ; (6.13)

where use has been made to the relation

d!

d�E
= � �!0

�2E0

; (6.14)

and I0 = eN=T0 is the mean current of the beam. The negative sign on the right side of

Eq. (6.14) comes about because the revolution frequency decreases as energy increases

above transition. An immediate conclusion of Eq. (6.13) is that our ansatz for  1 in

Eq. (6.5) is correct and all revolution harmonics are decoupledy. Equation (6.13) is

called a dispersion relation because it provides the relation of the collective frequency 


to the wave number n=R. This collective frequency is to be solved from the dispersion

relation for each revolution harmonic. If 
 has an imaginary part that is positive, the

solution reveals a growth and there is a collective instability.

If there is no energy spread, the collective frequency can be solved easily. The

collective frequency of oscillation is


 = n!0 + !0

s
eI0�n2

2��2E0

s
iRe Zk

0 (
)

n
� ImZ

k
0(
)

n

������

�n!0

; (6.15)

of which the positive imaginary part is the growth rate. Writing it this way, the �rst

square root is real above transition (� > 0), and there is no growth only when Z
k
0 is

purely inductive,

ImZ
k
0(n!0)

n
< 0 ; (6.16)

as postulated at the beginning of this chapter. By the same token, the beam is stable

below transition if the impedance is purely capacitive. For a low-energy machine, the

space charge impedance per harmonic is frequency independent and rolls o� only at very

high frequencies. Therefore above transition, the growth rate is directly proportional to

yThis is true when only the linear terms are included in the Vlasov equation. For the inclusion of

the lowest nonlinear terms, see Refs. [10, 11].
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n or frequency. This is the source of negative-mass instability for a proton machine just

above transition. The terminology comes about because the space charge force appears

to be attractive above transition in binding particles together to form clumps as if the

mass of the particles is negative. From Eq. (6.15), we can de�ne

!G = !0

s
��ieI0nZ

k
0

2pi�2E0

(6.17)

as the growth rate without damping due to energy spread. Close examination reveals

some similarity of this de�nition with the expression of synchrotron angular frequency

!s. We can therefore interpret !G as the synchrotron angular frequency inside a bucket

created by the interaction of the beam current I0 with the longitudinal coupling impe-

dance Z
k
0 at the revolution harmonic n. The factor �i takes care of the fact that the

voltage created has to be 90Æ out of phase with the current so that a bucket can be

formed.

Now let us consider a realistic beam that has an energy spread. Since ! is a

function of the energy o�set �E, de�ne a revolution frequency distribution g0(!) for

the unperturbed beam such that

g0(!)d! = f0(�E)d�E : (6.18)

Substituting into Eq. (6.13) and integrating by part, we obtain

1 = � ieI0�Z
k
0 (
)!

2
0

2��2E0

Z
g00(!)

� n!

d! : (6.19)

Given the frequency distribution g0(!) of the unperturbed beam and the impedance Z
k
0

of the ring at roughly n!0, the collective frequency 
 can be solved from the dispersion

equation. For a given revolution harmonic n, there can be many solutions for 
. How-

ever, we are only interested in those that have positive imaginary parts. This is because

if there is one such unstable solution, the system will be unstable independent of how

many stable solutions there are. However, there is a subtlety in dealing with solution

on the edge of stability, that is, when 
 is real. The dispersion relation will blow up

when n! = 
 during the integration. This subtlety can be resolved if the problem is

formulated as an initial value problem, which we will discuss in Chapter 14 on Landau

damping. It will be shown that the proper way to go around the subtlety is to make the

replacement



n
�! 


n
+ i� ; (6.20)



6-8 6. LONGITUDINAL MICROWAVE INSTABILITY FOR PROTONS

where � is an in�nitesimal positive real number and the harmonic n is considered positive.

In other words, the path of integration in the !-plane always goes under the 
=n pole

as illustrated in Fig. 6.2.

Im ω

ωReΩ
n + i ε

Figure 6.2: The path of integration in the dispersion relation must go below the 


pole.

6.1.2 Stability Curve

For a Gaussian distribution, the integral in the dispersion relation is related to the

complex error function, so that an analytic solution can be written down. For other

distributions, one has to resort to numerical method. For a given growth rate or Im
,

we perform the integral for various values ofRe
 and read o� Re Zk
0 and ImZ

k
0 from the

dispersion equation. Thus, we can plot a contour in theRe Zk
0 -ImZ

k
0 plane corresponding

to a certain growth rate. This plot for the Gaussian distribution below transition is

shown in Fig. 6.3. What are plotted is the real part U 0 and imaginary part V 0 of

U 0 + iV 0 =
eI0�

2(Z
k
0=n)

j�jE0(�E=E)2FWHM
(6.21)

at �xed growth rates. From outside to inside, the contours in the �gure correspond to

growth rates 0.5 to �0:5 in steps of �0:1 in units of HWHM of the frequency spread,

where negative values imply damping. The contour corresponding to the stability thresh-

old is drawn in dot-dashes and the area inside it is stable. Note that the positive V 0-axis
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Figure 6.3: The growth contours for a Gaussian distribution in revolution fre-

quency below transition. The abscissa U 0 and ordinate V 0 are, respectively, real and
imaginary parts of eI0�

2(Z
k
0=n)=[j�jE0(�E=E)

2
FWHM

]. From outside to inside, the

contours correspond to growth rates 0.5 to �0:5 in steps of �0:1 in units of HWHM

of the frequency spread, where negative values imply damping. The contour corre-

sponding to the stability threshold is drawn in dot-dashes and the area inside it is

stable.

is a cut and those damping contours continue into other Riemann sheets after passing

through the cut. Therefore, for each (U 0; V 0) outside the stability region bounded by the
dot-dashed curve, there can also be one or more stable solutions. However, since there

is at least one unstable solution, this outside region is termed unstable.

Obviously, these contours depend on the distribution g0(!) assumed. In Fig. 6.4,

we plot the stability contours for various frequency distributions below transition. They

are for frequency distributions, from inside to outside, f(x) = 3
4
(1� x2), 8

3�
(1� x2)3=2,

15
16
(1�x2)2, 315

32
(1�x2)4, and 1p

2�
e�x

2=2. The innermost one is the parabolic distribution

with discontinuous density slopes at the edges and we see that the stability contour
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curves towards the origin in the positive V 0 region. The contour next to it corresponds

Figure 6.4: The stability contours for di�erent frequency distribution below tran-

sition. The abscissa U 0 and ordinate V 0 are, respectively, real and imaginary parts

of eI0�
2(Z

k
0=n)=[j�jE0(�E=E)

2
FWHM

]. From inside to outside, they correspond to

unperturbed revolution frequency distribution f(x) = 3
4
(1 � x2), 8

3� (1 � x2)3=2,
15
16
(1� x2)2, 315

32
(1� x2)4, and 1p

2�
e�x

2=2. Note that all contours cut the V 0-axis at
about �1.

to continuous density slopes at the edges and it does not dip downward in the positive

V 0 region. As the edges become smoother or with higher derivatives that are continuous,
the contour shoots up higher in the upper half plane. For all distributions with a �nite

spread, the contours end with �nite values at the positive V 0-axis. For the Gaussian

distribution which has in�nite spread and continuous derivatives up to in�nite orders,

the contour will only approach the positive V 0-axis without intersecting it.

We note in Fig. 6.4 that, regardless the form of distribution, all contours cut the

negative V 0-axis at � �1. Therefore, it is reasonable to approximate the stability region
by a unit circle in the U 0-V 0 plane, so that a stability criterion can be written analytically.
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This is the Keil-Schnell criterion which reads [3] (Exercise 6.1)�����Zk
0

n

����� < F
j�jE0

eI0�2

�
�E

E0

�2

FWHM

; (6.22)

where F is a distribution-dependent form factor and is equal to the negative V 0-intersection
of the contour. For all the distributions discussed here, F � 1. (See Exercise 6.1 below).

For a bunch beam, if the disturbance has a wavelength much less than the bunch

length, we can view the bunch locally as a coasting beam. Boussard [4] suggested

to apply the same Keil-Schnell stability criterion to a bunch beam by replacing the

coasting beam current I0 with the peak current Ipeak of the bunch. Krinsky and Wang

[6] performed a vigorous derivation of the microwave stability limit for a bunch beam

with a Gaussian energy spread and found the stability criterion�����Zk
0

n

����� < 2�j�jE0

eIpeak�2

�
�E

E0

�2

rms

: (6.23)

Comparing with Eq. (6.22), the Krinsky-Wang criterion corresponds to the Keil-Schnell

criterion with a form factor of �=(4 ln 2) = 1:133, which is exactly the negative V 0-
intersect (see Exercise 6.1.) We want to point out that it is necessary for the Keil-

Schnell criterion of Eq. (6.22) to be de�ned in terms of the full width at half maximum

(FWHM) of the energy spread. Only such a reference will give a form factor that is

close to unity for all reasonable distributions of the energy spread. This may be because

the FWHM provides us with a more accurate measurement of the spread than the rms

value. As an example, in terms of FWHM according to Eq. (6.22), the form factors for the

Gaussian and the parabolic distributions are, respectively, and F = �=(4 ln 2) = 1:133

and F = �=3 = 1:0472. Since �EFWHM = 2
p
2 ln 2�Erms for the Gaussian distribution

and �EFWHM =
p
10�Erms for parabolic distribution, if we express the stability criterion

in terms of the rms energy spread as in Eq. (6.23), the form factors become F = 1 for

the Gaussian distribution and F = 5=3 = 1:67 for parabolic the distribution.

6.1.3 Landau Damping

Keil-Schnell Criterion can be rearrange to read

n!0

s
ej�jjZk

0=njI0
2��2E0

< n!0

r
F

2�

j�j�EjFWHM
�2E0

: (6.24)
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The left side is the growth rate without damping as discussed in Eq. (6.17) with I0
replaced by Ipeak in the case of a bunch. The right side can therefore be considered

as the Landau damping rate coming from energy spread or frequency spread. Stability

is maintained if Landau damping is large enough. The theory of Landau damping is

rather profound, for example, the exchange of energy between particles and waves, the

mechanism of damping, the contour around the poles in Eq. (6.13), etc. These will be

studied in detailed in Chapter 14. The readers are also referred to the papers by Landau

and Jackson [1, 7], and also a very well-written chapter in Chao's book [2].

6.1.4 Self-Bunching

Neglecting the e�ect of the wake function, the Hamiltonian for particle motion can be

written as

H = � �

2v�2E0

(�E)2 +
eVrf
2�vh

cos(h!0�) ; (6.25)

where the synchronous angle has been put to zero and the small-bunch approximation

has been relaxed. It is easy to see that the height of the bucket is

�Ej
bucket

=

s
eE0Vrf
�hj�j : (6.26)

Keil-Schnell criterion can now be rearranged to reads
eE0I0jZk

0 j
�nj�j <

s
F

��2
�Ej

FWHM
: (6.27)

Comparing with Eq. (6.26), the left side can be viewed as the height of a bucket created

by an induced voltage I0jZk
0 j while the right side roughly the half full energy spread

of the beam. This induced voltage will bunch the beam just as an rf voltage does. If

the self-bunched bucket height is less than the half full energy spread of the beam, the

bunching e�ect will not be visible and beam remains coasting. Otherwise, the beam

breaks up into bunchlets of harmonic n, and we call it unstable. This mechanism is

known as self-bunching.

In fact, self-bunching is not so simple. The image current of the beam is rich in

frequency components. For the component at the resonant frequency of the impedance,

the voltage induced, called beam loading voltage, is in phase with the image current
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or, more correctly, in opposite direction of the beam. Such voltage will not create any

rf-like bucket at all, and therefore cannot produce self-bunching. Remember that when

the beam is in the storage mode inside an accelerator ring, the rf voltage is at 90Æ to the
beam current and the bucket created will be of maximum size|the so-called stationary

bucket with synchronous angle �s = 0 when the operation is below transition. As the

synchronous angle �s increases, the angle between the rf voltage and the beam, or the

detuning angle  = �
2
� �s , de�ned in Eq. (6.30)below, decreases and so is the bucket

area|the so-called moving bucket. When the rf voltage is in phase with the beam, the

synchronous angle �s =
�
2
and the bucket area shrinks to zero. In order for the beam

image current to develop spontaneous self-bunching, the �elds developed must be of such

a phase and amplitude as to develop a real bucket of suÆcient area to contain the beam.

Although a small beam loading angle or a large synchronous angle will result in a small

bucket area, however, as the beam frequency moves away too far from the resonance

frequency, the beam loading voltage induced by the resonance impedance decreases also

because the resonant impedance rolls o� when the detuning is large. Consequently,

there is a frequency deviation between the beam Fourier component and the resonance

frequency at which the developed bucket area passes through a maximum. Some may

argue that it is not the bucket area but the bucket height that sets the instability

threshold, and the bucket height also goes through a maximum in between �s = 0 and
�
2
. It is this bucket height that should enter into Eq. (6.26) for the stability criterion.

The impedance of a resonance is

Z
k
0 (!) =

Rs

1� iQ
�
!
!r
� !r

!

� ; (6.28)

where Rs is the shunt impedance, Q the quality factor, and !r the angular resonant

frequency. When the frequency ! of the image current is close to the resonant frequency,

we can write

Z
k
0(!) � Rs cos e

�i ; (6.29)

with the detuning angle de�ned as

tan = 2Q
!r � !

!r
: (6.30)

Therefore, the beam loading voltage induced by the image current of frequency compo-

nent ! will be proportional to cos and at an angle  from the image current. Since

 = �
2
� �s and both the bucket area and height are proportional to the square root of
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the voltage, we have,

inducedbucket area / �(�)
p
� ;

inducedbucket height / �(�)
p
� ;

(6.31)

where � = sin�s = cos . The parameter �(�) is the ratio of the moving bucket area

to the stationary bucket area (when � = 0), and the parameter �(�) is the ratio of the

moving bucket height to the stationary bucket height [8]. The induced bucket area and

bucket height area plotted against � in Fig. 6.5. We see that the induced bucket area

Figure 6.5: Plot showing the area and height of the bucket created by image cur-

rent interacting with a resonant impedance. At a certain detuning  , describing

the frequency o�set of the image current Fourier component from the resonant fre-

quency of the impedance, the induced bucket area or bucket height passes through

a maximum. Self-bunching is most probable when the bucket area or bucket height

is maximized.

has a maximum when � = 0:25 or the detuning angle  = 76Æ, while the induced bucket

height has a maximum when � = 0:39 or the detuning angle  = 67Æ. From these

results, the most probable frequency at which self-bunching takes place can be inferred.

There are two comments. First, our discussion above is for an accelerator operat-

ing below transition. The detuning angle is positive implying that the frequency shift

is towards the inductive or low-frequency side of !r. When the accelerator is above
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transition, the detuning will be towards the capacitive or high-frequency side of !r.

This can be easily understood in a phasor-diagram description, which we will pursue in

Chapter 7.5. The synchronous angle �s that we reference in this subsection is in fact

the negative of the usual synchronous angle. This is because the beam loading voltage

is essentially in the opposite direction of the beam current. Therefore the beam load-

ing voltage will decelerate the beam instead of the usual acceleration by the rf voltage.

However, the sign of �s does not a�ect the area or height of the induced bucket.

6.1.5 Overshoot

When the current is above the microwave threshold, the self-bunching concept tells us

that there will be an increase in energy spread of the beam. The increase continues until

it is large enough to stabilize the beam again according to the Keil-Schnell criterion. For

a proton beam, experimental observation indicates that there will be an overshoot. Let

(�E)i be the initial energy spread which is below the threshold energy spread (�E)th
postulated by the Keil-Schnell criterion. The �nal energy spread (�E)f was found to

be given empirically by [9]

(�E)i(�E)f = (�E)2th : (6.32)

Thus the �nal energy spread is always larger than the threshold energy spread. Over-

shoot formulas similar to but not exactly the same as Eq. (6.32) have been derived

by Chin and Yokoya [10], and Bogacz and Ng [11]. For a bunch, the rf voltage intro-

duces synchrotron oscillations. Thus, an increase in energy spread implies also eventual

increase in bunch length. At the same time, the bunch area will be increased also.

The situation is quite di�erent for electron bunches because of their short bunch

lengths and the presence of radiation damping. This will be discussed in Chapter 7.

6.2 Observation and Cure

In order for a bunch to be microwave unstable, the growth rate has to be much faster

than the synchrotron frequency. For the FermilabMain Ring, the synchrotron period was

typically about 100 to 200 turns or 2 to 4 ms. A naive way is to observe the microwave

growth is to view the spectrum of the bunch over a large range of frequencies at a certain

moment. However, the bunch spectrum produced by a network analyzer is usually via a
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series of frequency �lters of narrow width, starting from low frequencies and working its

way towards high frequencies. This process is time consuming. As soon as the �ltering

reaches the frequencies concerned, typically a few GHz, the microwave growth may have

been stabilized already through bunch dilution, and therefore no growth signals will be

recorded. The correct way is to set the network analyzer at a narrow frequency span

and look at the beam signal as a function of time. The frequency span is next set to

an adjacent narrow frequency interval and the observation repeated until the frequency

range of a few GHz has been covered. Besides, we must make sure that the network

analyzer is capable of covering the high frequency of a few GHz for the microwave

growth signals. The cable from the beam detector to the network analyzer must also be

thick enough so that high-frequency attenuation is not a problem in signal propagation.

Such an observation was made at the CERN Intersecting Storage Ring (ISR) which is

a coasting beam machine. The network analyzer was set at zero span at 0.3 GHz. The

beam current was at 55 mA. The signal observed from injection for 0.2 s is shown at

the lower left corner of Fig. 6.6 in a linear scale. We see the signal rise sharply and

decade very fast, implying an instability which saturates very soon. The beam current

was next increased by steps to 190 mA and the observation repeated. We notice that

with a higher beam current, the instability starts sooner and stays on longer. The center

frequency of the network analyzer was next increased at the steps of 0.2 GHz and the

observation repeated. The observation reveals an instability driven by a broadband

impedance centering roughly at 1.2 GHz. Microwave instability can also be revealed in

monitoring the longitudinal beam pro�les, sometimes known as mountain ranges, via

a wall resistance monitor. An example is shown in Fig. 6.8. From the ripples, the

frequency of the driving impedance can be determined.

One way to produce microwave instability is to lower the rf voltage adiabatically.

As the momentum spread of the bunch becomes lower than the Keil-Schnell criterion,

microwave instability will develop. From the critical rf voltage, the momentum spread

of the bunch can be computed and the impedance of the vacuum chamber driving the

instability can be inferred. The rf voltage of the cavities in a proton synchrotron cannot

be very much reduced, otherwise multi-pactoring will occur. The total voltage of the

rf system can, however, be reduced by adjusting the phases between the cavities. For

example, if the phase between two cavities is 180Æ, the voltages in these two cavities

will be canceled. This is called paraphasing. For this reason, it is not possible to know

the rf voltage exactly. Small errors in the paraphasing angles will bring about a large

uncertainty in the tiny paraphased voltage. For this reason, the impedance determined
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Figure 6.6: Pick-up signal after injection in the CERN ISR, for di�erent observation

frequencies but at zero span and di�erent values of beam current. For high beam

current, the signal grows before it decays.

by this method may not be accurate.

Another way to observe microwave instability is through debunching. The rf volt-

age is turned o� abruptly and beam starts to debunch. During debunching, the local

momentum spread decreases. When the latter is small enough, microwave instability

occurs. From the time the instability starts, the impedance of the vacuum chamber can

be inferred with the help of the Keil-Schnell criterion. In performing this experiment,

the rf cavities must be shorted mechanically after the rf voltage is turned o�. Oth-

erwise, the beam will excite the cavities, a process called beam loading. The excited

�elds inside the cavities can bunch the beam developing high-frequency signals resem-

bling signals of microwave instability. Such an experiment has been performed at the

CERN Proton Synchrotron (CPS) and the observation is displayed in Fig. 6.7. The

�gure shows the time development at 2 ms per division. The top trace shows the rf
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voltage which is turned o� at 4 ms point. The network analyzer was set at a span from

1.5 to 1.8 GHz and the beam pick-up signal of the beam is shown in the lower trace.

We see high-frequency beam signal start developing about 1 ms after the rf voltage is

turned o�. The signal grows for a few ms before it subsides. The shortcoming of this

method of impedance measurement is the diÆculty in determining the exact time when

the microwave instability starts to develop. One must understand that the growth of

the signal amplitude is exponential; therefore the very initial growth may not be visible.

Figure 6.7: Microwave signal observed during debunching in the CERN CPS after

the rf voltage (top trace) is turned o�. The lower trace shows the beam signal at

1.5 to 1.8 GHz. The sweep is 2 ms per division.

Since microwave instability occurs so fast, it is not possible to use a damper system

to cure it. One way to prevent the instability is to blow up the bunch so that the energy

spread is large enough to provide the amount of Landau damping needed. Another

way is to reduce the impedance budget of the ring by smoothing out the beam pipe

discontinuities. For negative-mass instability driven by the space charge impedance just

after transition, one can try to modify the ramp curve so that transition can be crossed

faster. Of course, a t-jump mechanism will be very helpful.
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6.3 Ferrite Insertion and Instability

In Sec. 3.6, we discuss an experiment at the Los Alamos PSR where the space charge

repulsive force is large compared with the available rf bunching force. Ferrite rings

enclosed inside two pill-case cavities were installed into the vacuum chamber so that the

beam would see an amount of inductive force from the ferrite, hoping that the space

charge repelling force would be compensated. The experiment results show that this

additional inductive force did cancel an appreciable amount of the space charge force of

the intense proton beam to a certain extent. This is evident because the bunch lengths

were shortened in the presence of the ferrite inserts with zero bias of the solenoidal

current wound outside the ferrite tuners, and lengthened when the ferrite rings were

biased. Also, the rf voltage required to keep the protons bunched to the required length

had been lowered by about 1/3 in the presence of the ferrite insertion. At the same time

the gap between successive proton beams was the cleanest ever seen, indicating that the

rf buncher was able to keep the beam within the space charge distorted rf buckets so that

no proton would leak out. However, the space charge compensation of the potential-well

distortion had not been perfect. The ferrite insertion did lead to serious instability which

we are going to discuss below.

6.3.1 Microwave Instability

The PSR was upgraded in 1998. The two previous ferrite tuners together with an

additional one were installed in order to compensate for the space charge force of the

higher intensity beam. However, an instability was observed [12]. With the rf buncher

o�, Fig. 6.8 shows the mountain-range plot of two consecutive turns of a chopped coasting

beam accumulated for 125 �s and stored for 500 �s. The signals were recorded at a wide-

band wall current monitor. The ripples at the beam pro�le indicate that a longitudinal

microwave instability has occurred. The fast Fourier transform spectrum in Fig. 6.9

shows that the instability is driven at 72.7 MHz or the 26th revolution harmonic. The

instability had also been observed in bunched beam. Ripples also show up at the rear

half of a bunch, as recorded by a wall-gap monitor in Fig. 6.10. The top plots are

two successive turns of a � 250 ns (full width) bunch. Apparently, the instability is

tolerable because ripples do not distort the shape of the bunch by too much. However,

the � 100 ns bunch on the lower plots is totally disastrous. The instability lengthens

the bunch to almost 200 ns with very noticeable head-tail asymmetry.
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Figure 6.8: Beam pro�le of two consecutive turns of a chopped coasting beam

recorded in a wall-gap monitor after storage of � 500 �s. The ripples show that a

longitudinal microwave instability has occurred.

Figure 6.9: (color) Spectrum of the instability signal of the chopped beam in

Fig. 6.8, showing the driving frequency is at 72.7 MHz.
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Figure 6.10: Instability perturbation on pro�les of bunches with full width 250 ns

(top) and 100 ns (bottom). The e�ect on the 250 ns bunch may be tolerable, but

certainly not on the 100 ns bunch, which has lengthened almost to 200 ns.
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6.3.2 Cause of Instability

In order to understand the reason behind the instability, let us �rst construct a simple

model for the ferrite tuner. To incorporate loss, the relative permeability of the ferrite

can be made complexz: �s ! �0s + i�00s . The impedance of a ferrite core of outer/inner

diameter do=di and thickness t is therefore

Z
k
0 = �i(�0s + i�00s)!L0 ; (6.33)

where L0 = �0t ln(d0=di) denotes the inductance of the ferrite if the relative permeability

�s were unity. It is clear that �0s and �
00
s must be frequency-dependent. Their general

behaviors are shown in Fig. 6.11. For the Toshiba M4C21A ferrite, �0s is roughly constant
at � 50 to 70 at low frequencies and starts to roll o� around !r=(2�) � 50 MHz, while

�00s , being nearly zero at low frequencies, reaches a maximum near !r=(2�). The simplest

Figure 6.11: (color) Plot of �0 and �00 as functions of frequency in the 2-parameter

model. These are the typical properties of �0 and �00 for most ferrites.

zThe subscript 's' signi�es that the permeabilities are de�ned as if an inductor and a resistor are in

series.
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Figure 6.12: (a) Two-element model of ferrite. (b) Three-element model of ferrite

cores enclosed in a pill-box cavity.

model for a piece of ferrite consists of an ideal inductance Lp and an ideal resistor Rp

in parallel, as indicated in Fig. 6.12(a).

The impedance of the ferrite core is

Z
k
0(!) = �i!Lp 1 + i!=!r

1 + !2=!2
r

; (6.34)

with a resonance at

!r =
Rp

Lp
; (6.35)

and

�0s =
Lp
L0

1

1 + !2=!2
r

; �00s =
Lp
L0

!=!r
1 + !2=!2

r

: (6.36)

We see that the series �0s is relatively constant at low frequencies and starts to roll o�

when approaches !r, while �
00
s increases as ! at low frequencies and resonates at !r. The

corresponding longitudinal wake potential is

W (�) = Rp [ Æ(�)� !re
�!r� ] : (6.37)

When the ferrite is biased, Lp decreases so that �0s decreases. In this model, this is

accomplished by a rise in the resonant frequency !r. Actually, measurements show that
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the resonant frequency of �00s does increase when the ferrite is biased. Thus, this simple

2-parameter model gives a very reasonable description of the ferrite.

With the ferrite cores enclosed in a pill-box cavity, a 3-parameter broadband parallel-

RLC resonance model, as indicated in Fig. 6.12(b), appears to be more appropriate for

the ferrite tuner as a whole. Sometimes there may be an additional residual resistance

Rr which we neglect for the time being. We have, for the inductive insert,

Z
k
0 (!) =

Rp

1� iQ

�
!

!r
� !r

!

� ; (6.38)

where the resonant frequency is !r=(LpCp)
�1=2 and the quality factor is Q=Rp

p
Cp=Lp.

For a space charge dominated beam, the actual area of beam stability in the complex

Z
k
0=n-plane (or the traditional U

0-V 0 plane) is somewhat di�erent from the commonly

quoted Keil-Schnell estimation [3, 4]. In Fig. 6.13, the heart-shape solid curve, denoted

by 1, is the threshold curve for parabolic distribution in momentum spread, where the

momentum gradient is discontinuous at the ends of the spread. Instability develops and a

smooth momentum gradient will result at the ends of the spread, changing the threshold

curve to that of a distribution represented by 2, for example, 15
16
(1� Æ2=Æ̂2)2, where Æ is

the fractional momentum spread and Æ̂ the half momentum spread. Further smoothing

of the momentum gradient at the ends of the spread to a Gaussian distribution will

change the threshold curve to 3. On the other hand, the commonly known Keil-Schnell

threshold is denoted by the circle of unit radius in dots. This is the reason why in many

low-energy machines the Keil-Schnell limit has been signi�cantly overcome by a factor

of about 5 to 10 [5]. In this case, the space charge is almost the only source of the

impedance, the real part of the impedance can be typically orders of magnitude smaller.

As an example, if the impedance of the Los Alamos PSR is at Point A, the beam is

within the microwave stable region if the momentum spread is Gaussian like, although

it exceeds the Keil-Schnell limit. Now, if we compensate the space charge potential-well

distortion by the ferrite inductance, the ferrite required will have an inductive impedance

at low frequency equal to the negative value of the space charge impedance at A, for

example, about�5:5 units according to Fig. 6.13. However, the ferrite also has a resistive
impedance or Re Zk

0 coming from �00s . Although Re Zk
0=n is negligible at low frequencies

(for example, the rf frequency of 2.796 MHz of the PSR), it reaches a peak value near

!r=(2�) (about 50 to 80 MHz for the Toshiba M4C21A inside the pill-box container)

with the peak value the same order of magnitude as the low-frequency ImZ
k
0 . Actually,
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Figure 6.13: Microwave instability threshold curves in the complex Z
k
0 (or U 0-V 0)

plane, for (1) parabolic momentum distribution, (2) distribution with a continuous

momentum gradient, and (3) Gaussian momentum distribution. The commonly

quoted Keil-Schnell threshold criterion is denoted by the circle in dots. An intense

space charge beam may have impedance at Point A outside the Keil-Schnell circle

and is stable. A ferrite tuner compensating the space charge completely will have a

resistive impedance roughly at Point B and is therefore unstable.

according to the RLC model discussed above, we get approximately

Re Zk
0=njpk

ImZ
k
0=nj!!0

� Q2 +Q + 1

Q+ 2
=

8<:
Q if Q� 1

1 if Q � 1
1
2

if Q� 1

9=; � 1

2
: (6.39)

The RL model gives the same impedance ratio of 1
2
as the low-Q case of Eq.(6.39). Thus

the ferrite will contribute a resistive impedance denoted roughly by Point B (� 5:5 units)

when Q�1 or at least one half of it when Q�1. This resistive impedance of the ferrite

insert will certainly exceed the threshold curve and we believe that the longitudinal

instability observed at the Los Alamos PSR is a result of this consideration. It follows
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from here that such low-frequency compensation of an intense space charge induced

potential-well distortion will result in the microwave instability at high frequencies,

! ' !r. The conclusion appears to be that strong space charge potential-well distortion

can only be compensated by the ferrite inductance to some extent to ensure that the

resistive part of the ferrite insertion is kept below the microwave instability threshold.

However, Eq. (6.39) is only correct when the RLC circuit is composed of an ideal resistor,

an ideal inductor, and an ideal capacitor. In reality, the ferrite cores are much more

complicated. To represent the inductor insert, many of these elements are frequency

dependent. Thus, if one chooses the right ferrite in the construction of the inductive

insert, it is possible to have the ratio of Re Zk
0=njpk to ImZ

k
0=nj!!0 much less than 1

2
.

Such a ferrite will be the best candidate for space charge compensation.

6.3.3 Heating the Ferrite

One way to avoid the longitudinal microwave instability driven by the compensating

ferrite is to choose a ferrite having the properties of high �0s at low frequencies and low

lossx at high frequencies. Their ratio should be at least or larger than � 10. Past expe-

rience indicates that when a piece of ferrite is heated up, �0s will increase and hopefully

the loss at high frequencies will decrease, thus having exactly the same properties that

we are looking for.

A measurement of the temperature dependency of the ferrite has been made on a

ferrite insert similar to those manufactured for the PSR was used, but much shorter

containing only several ferrite cores. A sinusoidal wave was introduced from one end of

the ferrite tuner via an antenna while the transmitted wave was received with another

antenna at the other end. What was measured was S21, the forward transmission through

the network (in this case cavity), or the attenuation of a passive network. The results

are shown in Fig. 6.14 and reveal that the resonant loss peak drops by a factor of about

8 when the ferrite cores are heated from the room temperature of 23ÆC to 100ÆC.

A measurement of the permeability of the ferrite has also been made on a single

Toshiba M4C21A ferrite core as a function of core temperature. To provide both a

good electrical circuit path and a uniform core temperature, the core was encased in an

aluminum test �xture before being placed on a hot plate. The top half of the test �xture

xLow loss does not imply low �00. Whenever ferrite is used, for example in the inductor insert, there

will be inevitably capacitance involved. Thus low loss actually implies low Rp.
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Figure 6.14: (color) An antenna at one end of the ferrite tuner sends out a sinusoidal
wave to be picked up by another antenna at the other end of the tuner, and the loss

is recorded. As the ferrite cores are heated from room temperature to 100ÆC, the
loss has reduced by almost 8 times.

consisted of a machined aluminum disk, 9 in in diameter and 1.25 in thick. The inner

section of the disk was machined out 0.005 in undersize to accommodate the ferrite core.

The disk was then heated and the core was slipped into the disk. Upon cooling, the

aluminum disk contracted and made a good thermal contact with one side and the outer

edge of the ferrite core. The aluminum �xture and core were then ipped over onto a at

aluminum plate so that only the inner edge of the core was exposed. A good electrical

connection between the aluminum disk and at plate was made using strips of adhesive

backed copper tape. The test �xture was placed on a hot plate and covered with two

�re bricks. The test �xture was then heated to 175ÆC and allowed to cool slowly.

The impedance measurement was made by placing the probe of an HP4193A vector

impedance meter directly across the inner edge of the ferrite core. Impedances were
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measured from 10 MHz to 110 MHz in 10 MHz steps from 150ÆC to 25ÆC. The temper-
ature of the core was monitored by a Fluke 80T-150U temperature probe inserted into

a small hole in the aluminum disk portion of the test �xture.

In order to make an electrical model of the entire core and test �xture structure, it

was necessary to obtain the equivalent parallel capacitance of the test set-up as depicted

in Fig. 6.12(b). The capacitor Cp was determined by adding additional �xed 100 pf

capacitors across the inner edge of the ferrite core and observing the change in the

resonant frequency of the structure from 41 to 28 MHz, a frequency range in which

the �0s of the ferrite is known to be relatively constant. In this manner, a capacitance

of Cp = 75 pf was chosen to represent the equivalent parallel capacitance of the test

circuit. There was also a series residual resistance of Rr = 0:55 
 in the probe. This

residual resistance introduces a large error at low frequencies (below � 10 Hz) when

the resistive part of the RLC circuit is small. From the measurements of the input

impedance, Rp and Lp were computed. From Eq. (6.36), the relative permeability, �0s
and �00s were inferred. These are plotted in Figs. 6.15 and 6.16. We see that from 23ÆC
to 150ÆC, �0s at low frequencies has almost been doubled, implying that the inductance

Lp at low frequencies has been doubled according to Eq. (6.36). The loss component �00s
also increases with temperature with its peak moves towards lower frequencies. This is

obvious in the two-element model of a ferrite, because Eq. (6.36) says that the peak of

�00s is proportional to Lp and independent of Rp.

There is always a capacitance accompanied the ferrite insert. For a pill-box enclosing

a single ferrite core, the capacitance measured was Cp = 75 pF, which is not too di�erent

from the computed value of 93 pF where a relative dielectric �r = 13 has been assumed

for the ferrite. The real part of the impedance of the ferrite insert per ferrite core, Re Zk
0 ,

is shown in Fig. 6.17. The resonant peaks are actually represented by the element Rp in

the RLC circuit. The measured values of Rp as a function of frequency and temperature

is shown in Fig. 6.18. We see that Rp depends very much on frequency and exhibits

resonant peaks, which diminishes and moves to lower frequencies as the temperature

increases. Thus the loss at high frequencies has been very much reduced by heating the

ferrite. For a coasting beam, the energy lost to the ferrite core is given by the area under

each Re Zk
0 curve. Although both Rp and Lp vary tremendously with temperature, we

�nd out that this loss is in fact temperature independent within 10% from 23ÆC to 150ÆC.
However, the impedance becomes broader and broader and the resonant frequency shifts

lower as the temperature increases.
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Figure 6.15: (color) Measured real part of the series magnetic permeability, �0s of
a single Toshiba M4C21A ferrite core up to 110 MHz at 25Æ, 50, 75, 100, 125, and
150ÆC. Measured points are denoted by circles.

Figure 6.16: (color) Measured imaginary part of the series magnetic permeability,

�00s of a single Toshiba M4C21A ferrite core up to 110 MHz at 25Æ, 50, 75, 100, 125,
and 150ÆC. Measured points are denoted by circles.



6-30 6. LONGITUDINAL MICROWAVE INSTABILITY FOR PROTONS

Figure 6.17: (color) Measured real part of the impedance of a single Toshiba

M4C21A ferrite core inside an enclosing pill-box cavity up to 110 MHz at 25Æ, 50,
75, 100, 125, and 150ÆC. Measured points are denoted by circles.

Figure 6.18: (color) Measured resistance of the resistor Rp in the RL model of the

Toshiba M4C21A ferrite core or the RLC model of the inductor insert as functions

of frequency at 25Æ, 50, 75, 100, 125, and 150ÆC. Measured points are denoted by

circles.
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The threshold microwave instability, depicted in Fig. 6.13, is determined by the

impedance per unit PSR revolution harmonic, Z
k
0=n, whose real and imaginary parts

are shown, respectively, in Figs. 6.19 and 6.20. We now see that the resonant peak

of Re Zk
0=n decreases with increasing temperature (except at 25ÆC). This explains why

microwave instability can be alleviated by heating the ferrite cores.

The properties of the heated ferrite can be understand as follows. A piece of ferrite

consists of domains with magnetization. The total magnetization is the vector sum

of the magnetization of the domains. When the temperature increases, the domain

magnetizations are freer to move. They tend to line up resulting in higher magnetic

permeability �0s, which is what we has been observing. However, if the temperature

becomes too high, the spins of individual atoms or molecules become random and the

total magnetization will drop and reach zero at the Curie temperature.

6.3.4 Application at the PSR

Later in 1999 the solenoids of the ferrite inserts for PSR were removed, the outside of the

inserts were wound with heating tapes, and two modules were reinstalled in the PSR.

When the ferrite is heated to 130ÆC, the longitudinal microwave instability, seen in the in
Fig. 6.21, disappears. The pro�le of the 100 ns bunch in the presence of the heated ferrite

tuners, is no longer distorted and the bunch has not been lengthened. Further beam

studies with the heated ferrites carried out during the remainder of 1999 demonstrated

other bene�ts of the inductors without unmanageable operational impacts.

Two e�ects of the ferrite inserts are thought to contribute to improving the insta-

bility threshold possibly in two ways. One is the e�ect of a cleaner gap that will trap

fewer electrons during gap passage. This will improve the threshold of transverse e-p

coupled-centroid instability (Chapter-19). The other is the increased momentum spread

from the removal of the space charge depression of the bucket height. This will increase

Landau damping and improve the threshold of longitudinal microwave instability. The

latter increase in momentum spread is illustrated in Fig. 6.22 which shows plots from

ACCSIM simulations [14]. The simulations show the e�ect of longitudinal space charge

on the rf bucket height and momentum spread for a beam of 7:3 �C/pulse with 13 kV rf

voltage. The left plot shows the bunch and the bucket without longitudinal space charge

or the equivalent to full compensation by the inductive inserts. The right plot shows

the bunch and bucket subject to the longitudinal space charge force. For this case, the



6-32 6. LONGITUDINAL MICROWAVE INSTABILITY FOR PROTONS

Figure 6.19: (color) Measured real part of the impedance per revolution harmonic

of a single Toshiba M4C21A ferrite core inside an enclosing pill-box cavity up to

110 MHz at 25Æ, 50, 75, 100, 125, and 150ÆC. Measured points are denoted by

circles.

Figure 6.20: (color) Measured imaginary part of the impedance per revolution

harmonic of a single Toshiba M4C21A ferrite core inside an enclosing pill-box cavity

up to 110 MHz at 25Æ, 50, 75, 100, 125, and 150ÆC. Measured points are denoted

by circles.
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Figure 6.21: With two ferrite tuners installed and heated to 130ÆC, the instability
ripples disappear from the pro�le of the 100 ns bunch.

space charge e�ect reduces the bucket height by �23%. In the absence of space charge,

the bucket height scales by the square root of the rf voltage and would imply a reduction

� 41% in rf voltage to reach the same bucket height as with space charge. This argu-

ment implies that with inductors a �41% reduction in rf voltage would reach the same

momentum spread as obtained in their absence. This is in reasonable agreement with

the observed e�ect of �35%. Thus, it appears that Landau damping explains much of

the e�ect of the ferrite inserts on the instability. With the increase in bucket height after

the compensation of the space charge force by the inductive inserts, the bucket is able

to hold the beam particles inside without leakage into the gap region. Thus, the ferrite

inserts improve the thresholds of both the longitudinal microwave instability as well as

the transverse two-stream coupled-centroid instability.

Comparable reductions in threshold curves have been obtained with other means

of Landau damping such as the use of a skew quadrupole (coupled Landau damping),

sextupoles and octupoles. It has also been observed that the e�ects of these (on the

instability threshold) add with that of the inductors. An additional sextupole was in-

stalled in the upgrade. It is surprising that this sextupole has an important bearing
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Figure 6.22: Simulation of a PSR bunch with an intensity of 7:3 �C at the buncher

voltage of 13 kV using the code ACCSIM. The left plot is the result without space

charge while the right plot is the result with space charge included. Notice that

in the presence of space charge the bucket height is reduced by 24%, implying a

cancellation of the rf voltage by 42%. The top curve on the right shows the space

charge voltage per turn (proportional to the spatial derivative of the proton line

density).

on the beam stability. Turning on this sextupole current to +20 A and optimizing the

former four sextupoles and two octupoles in the ring can help to improve the threshold

curve by � 25% as is shown in Figure 6.23. It is understandable that the sextupoles

and octupoles introduce tune spread which can provide Landau damping of the vertical

coupled e-p instability once protons leak into the bunch gap and prevent the electrons

from clearing. However, why just one sextupole has this much e�ect is not clear at all.

In late 1999 the combined e�ect of heated ferrites and a skew quad enabled us to

accumulate and store at the PSR a record 9:7 �C/pulse, which is all that the linac could

deliver. For this demonstration, the accumulation time was 1225 �s, the maximum

obtainable at 1 Hz from the linac. The ferrite inserts were heated to 190ÆC, which over

compensates longitudinal space charge by �50%. The rf buncher was at the maximum

of 18 kV. In addition, the bunch width was stretched out to 305 ns, something never
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Figure 6.23: (color) After the upgrade, the PSR operating without the ferrite

insert had a lower bunch intensity versus buncher voltage, depicted in dots, than

the historical, depicted in dashes.

been accomplished before without reducing the threshold intensity. Beam losses were

high (� 5%), which would be prohibitive at 20 Hz. There was, no doubt, signi�cant

emittance growth that could be attributed to transverse space charge e�ects from the

very high peak beam current of 82 A observed in this demonstration.

Engineered versions of the heated ferrites were installed in the fall of 2000 and have

been used in production running ever since. A bunch length of 290 ns instead of the 250

has reduced the accumulation time accordingly thereby saving �$15k per month in linac

power costs. At the present, the PSR with two heated-ferrite modules can operate stably

at an intensity of 8 �C/pulse for low repetition rates (for beam studies and single pulse

users). Thus, the peak intensity goal of the upgrade has been surpassed. The remaining

challenge is to reduce beam losses so that routine operation at 20 Hz is possible with

acceptable activation of the ring.
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6.4 Exercises

6.1. The dispersion relation of Eq. (6.19) can be rewritten in a simpler form. let us

measure revolution angular frequency in terms of 2S, the FWHM spread, which is

related to the FWHM energy spread by

2S � ! � !0
��
FWHM

= ��!0
�2

�E

E0

����
FWHM

: (6.40)

We can then introduce a dimensionless reduced angular frequency x such that

n! � n!0 = nxS and 
� n!0 = nx1S ; (6.41)

where we have used the fact the the collective angular frequency 
 in Eq. (6.15)

is close to n!0. The frequency distribution function g0(!) is now transformed to a

distribution f(x) which is normalized to 1 when integrated over x. We have

dg0(!)

d!
d! =

d f(x)

dx

dx

d!
dx =

1

S

d f(x)

dx
dx : (6.42)

(a) Show that the dispersion relation (6.19) becomes

1 = � i2 sgn(�)
�

(U 0 + iV 0)
Z

f 0(x)
x1 � x

dx ; (6.43)

where U 0 and V 0 are de�ned in Eq. (6.21).

(b) When the beam current is just above threshold, the reduced collective angular

frequency is written as x1 = x1R + i� where x1R is real and � is an in�nitesimal

positive number. Show that the stability curve can be obtained from

1 = � i2 sgn(�)
�

(U 0 + iV 0)
�
}

Z
f 0(x)
x1R � x

dx� i�f 0(x1R)
�
: (6.44)

by varying x1R, where } denotes the principal value of the integral.

(c) show that the negative V 0-intersect or the lowest point of the bell-shaped

stability curve V 0
in is given by

1 = �2 sgn(�)V 0
in

�
}

Z
f 0(x)
x

dx : (6.45)

In fact, the form factor in the Keil-Schnell criterion is given by F = jV 0
inj.

(d) The form factor F 's in the Keil Schnell criterion for various frequency distri-

bution functions are listed in Table 6.1. Verify the results.
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Table 6.1: Form factors in the Keil-Schnell criterion for various distributions. For

the �rst four, the distributions reside only inside the region j�!j � d�!. When

normalized to the HWHM, the domain becomes jxj � a.

Frequency Distribution Form Factor

g0(!) [�!=!�!0] f(x) F

3

4d�!
�
1��!2d�!2

�
3

4a

�
1�x

2

a2

�
a2 = 2

�a2

6
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8

3�d�!
�
1��!2d�!2

�3=2
8

3�a

�
1�x

2

a2

�3=2
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1

1�2�2=3
�a2

8
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15
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�
1��!2d�!2

�2
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16a

�
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�2
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1�2�1=2
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10
= 1:0726

315

256d�!
�
1��!2d�!2

�4
315

256a

�
1�x

2

a2

�4

a2 =
1

1�2�1=4
�a2

18
= 1:0970

1p
2��

exp

�
��!2

2�2

�
1p
2�a

exp

�
� x2

2a2

�
a2 =

1

2 ln 2

�a2

2
= 1:1331

6.2. Using Eq. (6.44), plot the bell-shaped stability contours for the distributions listed

in Table 6.1 as illustrated in Fig. 6.4.

6.3. Using Eq. (6.43), show that the constant-growth contours for the Gaussian distri-

bution are given by

1 =
i sgn(�)4 ln 2

�
(U 0 + iV 0) [1 + i

p
� ln 2 x1 w(

p
ln 2x1)] ; (6.46)

where use has been made of the integral representation of the complex error func-

tion:

w(z) =
i

�

Z 1

�1

e�t
2

z � t
dt for Imz > 0 : (6.47)

Plot the contours in Fig. 6.3.
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Chapter 7

LONGITUDINAL MICROWAVE

INSTABILITY FOR ELECTRONS

7.1 Bunch Modes

In the previous chapter, microwave instability for a coasting beam was discussed. The

theory can also be extended to a bunch provided that two criteria are satis�ed: (1)

the bunch is much longer than the wavelength of the perturbation and (2) the growth

time is much shorter than a synchrotron oscillation period. These criteria are mostly

satis�ed by proton bunches, but not by electron bunches. Another theory of longitudinal

instability is therefore necessary for electron bunches.

For electron bunches, the synchrotron period is usually much shorter than the col-

lective instability growth times. Thus, synchrotron oscillation cannot be neglected in

the study of longitudinal instability. The revolution harmonics can no longer be studied

individually; they are no longer good eigennumbers. Here, we must study the di�erent

modes of oscillation inside a bunch.

Because the beam particles execute synchrotron oscillations, it is more convenient

to use instead circular coordinates r; � in the longitudinal phase space. We de�ne the

coordinates of a beam particle by

8<
:

� = r cos� ;

p� = r sin� =
�Æ

!s
;

(7.1)

7-1



7-2 7. LONGITUDINAL MICROWAVE INSTABILITY FOR ELECTRONS

r

m = 1
Dipole

m = 2
Quadrupole

m = 3
Sextupole

m = 4
Octupole

Stationary
Distribution

φ

Figure 7.1: Azimuthal synchrotron modes of a bunch in the longitudinal phase

space (top) and as linear density (bottom).

where � is the time advance ahead of the synchronous particle and p� the conjugate

momentum. A few azimuthal modes are shown in Fig. 7.1. One type of oscillation

is azimuthal in �, such as cosm�. For example, m = 1 corresponds to a rigid dipole

oscillation which we usually observe when the bunch is injected with a phase error. m = 2

corresponds to a quadrupole oscillation when there is a mismatch between the bunch and

the rf bucket so that the oscillation appears to be twice as fast. The drawings show the

motion of the bunch with the mth azimuthal mode. To obtain the mth azimuthal mode,

the stationary distribution must be subtracted. For example, for the m = 1 mode with

in�nitesimal amplitude, after subtracting the stationary distribution we obtain a ring

with positive charges on the right and negative charges on the left. The best description

will be cos �, and there are two nodes at � = ��
2
. The m = 2 mode assumes the shape

of cos 2� with 4 nodes at � = ��
4
and �3�

4
. For the mth mode, the shape is cosm� with

2m nodes.

It is clear that to drive the higher azimuthal modes, longitudinal impedance of higher

frequencies will be required. These modes can be understood mathematically if we follow

a particle and record its time of arrival at a �xed location along the accelerator ring turn

after turn. First assume a point particle. The signal recorded is

signal /
1X

k=�1

Æ
h
s� kC0 � v�̂ cos

�!ss

v
+ '

�i
; (7.2)
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where !s is the angular synchrotron frequency, C0 is the length of closed orbit of the

synchronous particle whose velocity is v. For the particle under study, the turn number

is denoted by k, the amplitude of synchrotron oscillation or the maximum time arrival

ahead of the synchronous particle is �̂ , and the initial synchrotron phase is represented by

'. It is safe to substitute s = kC0 inside the argument of cosine because the amplitude

of synchrotron oscillation is very much smaller than the circumference of the ring. We

get

signal /
Z 1

�1

d!

2�v

1X
k=�1

e�i[s�kC0��̂ v cos(k!sC0=v+')]!=v

=

Z 1

�1

d!

2�v

1X
k=�1

1X
m=�1

imJm(!�̂)e
�i(s�kC0)!=ve�im(k!sC0=v+') ;

(7.3)

where the mathematic formula for Bessel function,

eix cos� =
1X

m=�1

imJm(x) e
�im� (7.4)

has been used. The summation over k can be performed using the Poisson formula,

1

2�

1X
k=�1

eik� =
1X

p=�1

Æ(� � 2�p) ; (7.5)

to obtain

signal /
Z 1

�1

d!

C0

1X
p=�1

1X
m=�1

imJm [(p!0+m!s)�̂ ] Æ(!�p!0�m!s) e
�im'e�im!s=v; (7.6)

where !0=(2�) = v=C0 is the revolution frequency of the synchronous particle. Now we

see all the azimuthal modes as sidebands of each harmonic line. The Bessel functions in

the summation determines the amplitude of the sidebands. The synchrotron amplitude �̂

is usually very much smaller than the revolution period. In this case, the lowest sideband

m = 1 dominates. The revolution harmonics (m = 0) have roughly the same amplitude

under the envelope of J0 while the amplitudes of the m = 1 sidebands increase linearly

with frequency under the envelope of J1. If �̂ is getting larger, however, the higher order

sidebands (m > 1) will be observed. The m = 2 sidebands can have larger amplitudes

than the revolution harmonics (m = 0) and the m = 1 sidebands when J2 assumes

a maximum. This is illustrated in Fig. 7.2, where, for simplicity, only the positive

frequency part has been shown.
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Figure 7.2: (color) Spectrum of a beam particle with synchrotron motion. Only

the positive frequency is shown. The revolution harmonics (m = 0) are bounded by

Bessel function of order zero, the �rst synchrotron sidebands (m = 1) are bounded

by Bessel function of order one, and the second synchrotron sidebands (m = 2) are

bounded by Bessel function of order two.

It is important to point out that the Bessel functions have nothing to do with the

linear distribution of the bunch and here we are dealing with only a point bunch. The

Bessel functions just reect the synchrotron motion of the point bunch. If we wish

to know the signal from a bunch of particles, we need to multiply Eq. (7.6) by the

particle distribution f('; �̂) in the synchrotron phase ' and the synchrotron oscillation

amplitude �̂ and integrate over ' and �̂ . For example, if f('; �̂) is random in ', the

integral vanishes for all azimuthals except for m = 0, or just the revolution harmonics.

This is understandable because the bunch is smooth azimuthally. The distribution

must be nonuniform in the synchrotron phase before some azimuthal sidebands can be

excited. We also see that the sidebands have zero width if they are excited, even if we

are gathering signals from an ensemble of particles. The sidebands will be broadened,

however, when the beam particles see the coupling impedance of the vacuum chamber.

Of course, to describe a bunch completely, there will also be radial modes, where

the bunch oscillates with nodes at certain radii r. Let us concentrate on only one radial

mode per azimuthal, the one that is most easily excited. At zero beam intensity, these

modes are separated by the synchrotron frequency !s=(2�); for example, the mth mode
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exhibits as a sidebandm!s=(2�) away from a revolution harmonic line. This implies that

at low intensities, the azimuthal modes are good eigenmodes. The radial eigenmodes,

however, depend on the radial distribution of the unperturbed bunch. If the intensity

of the bunch is increased, the spacings of the sidebands will change.

Here, we wish to study the collective motion of the bunch, implying that it will

oscillate with a coherent frequency 
=(2�). The time dependent part is written as

1X
p=�1

Fpe
�i(p!0+
)t ; (7.7)

where Fp is some factor depending on p and !0=(2�) is the revolution frequency. Suppose

that the synchrotron dipole mode is excited, we will have 
 � +!s, provided that the

intensity of the bunch is not too large. Therefore, the spectrum of the bunch will consist

of only upper synchrotron sidebands at a distance !s above the harmonic lines, as shown

in the top plot of Fig. 7.3. Of course, not all the sidebands will be excited equally. The

excitation will depend on the driving impedance and also the bunch shape. All these

are grouped into the factor Fp. However, in an oscilloscope or network analyzer, we

can see only positive frequencies. This is equivalent to folding the spectrum about the

zero frequency point, the upper synchrotron sidebands corresponding to the negative

harmonics will appear as lower synchrotron sidebands for the positive frequencies, or

the lower plot of Fig. 7.3. When the driving impedance is a narrow resonance, we may

have 
 � �!s instead. Suppose the narrow resonance is at frequency !r = p!0�!s with

p > 0. Since Re Zk
0(!) is symmetric about ! = 0, this narrow resonance is also driving

the negative frequency �!r = p0!0 + !s where p0 = �p, which is the upper sideband

of a negative harmonic. In other words, because of the de�nite symmetries of Re Zk
0(!)

and ImZ
k
0(!) and also the spectrum of synchrotron motion in Eq. (7.6) about ! = 0,

it is possible for us to study only the half the sidebands, either the upper (
 � !s)

or (
 � �!s) lower. Studying the upper sidebands alone will yield exactly the same

results as studying the lower sidebands alone. For this reason, we can assume all the

excited synchrotron sidebands to be only upper sidebands in the language of having both

positive and negative frequencies. This analysis, however, is not correct for transverse

collective motion, because the synchrotron sidebands are around the tune lines which

are not symmetric about the zero-frequency point.

We would like to emphasize here that the spectrum of beam particles performing

synchrotron motion is very di�erent from the spectrum of the coherent motion of beam

particles. In the former, Eq. (7.6), we see all the possible modes. However, in the latter,
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1 2 3-1-2-3 0

0 1 2 3

harmonics

harmonics
Figure 7.3: Top plot shows the synchrotron lines for both positive and negative

revolution harmonics. The revolution harmonics are shown in dashes and the syn-

chrotron upper sidebands in solid. Lower plot shows the negative-harmonic side

folded onto the positive-harmonic side. We see upper and lower sideband for each

harmonic line.

only some of those modes are excited coherently. We are looking at the coherent modes

one at a time, because usually we have interest only in the one that has the fastest

growth rate.

7.2 Mode Mixing

Assume a broadband impedance resonating at !r. The impedance will be inductive

when ! < !r and capacitive when ! > !r. If the rms length of the bunch �� > !�1
r , the

bunch particles are seeing mostly the inductive part of the impedance. We can assume

that the accelerator ring is operated above the transition energy because the electrons,

having small masses, are traveling at almost the velocity of light. This inductive force

is repulsive opposing the focusing force of the rf voltage, thus lengthening the bunch

and lowering the synchrotron frequency. Therefore, all azimuthal modes will be shifted

downward, except for the dipole mode m = 1 at least when the beam intensity is low.

The m = 1 does not shift because this is a rigid dipole motion and the inductive force

acting on a beam particle is proportional to the gradient of the linear density as is
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demonstrated in Sec. 3.2. The centroid of the bunch does not see any linear density

gradient and is therefore not a�ected by the inductive impedance. This is very similar

to the space charge self-�eld force. In fact, the inductive impedance is just the negative

of a capacitive impedance. When the bunch intensity is large enough, the m = 2

mode will collide with the m = 1 mode, and an instability will occur if the frequencies

corresponding to these two modes fall inside the resonant peak ofRe Zk
0 . Mathematically,

the frequency shifts of the two modes become complex. Since one solution is the complex

conjugate of the other, one mode is damped while the other one grows. This is called

longitudinal mode-mixing instability. Sometimes it is also known as mode-coupling or

mode-colliding instability. An illustration is shown in Fig. 7.4 for a parabolic bunch of

full length �L interacting with a broadband impedance resonating with impedance R at

frequency !r=(2�).
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Figure 7.4: Plot showing longitudinal mode-mixing instability of a parabolic bunch
of full length �L interacting with a broadband impedance resonating with impedance

R at frequency !r=(2�). The bunch length �L is much longer than !�1
r so that the

bunch particles are seeing the inductive part of the impedance. Thus, all modes,

except for m = 1, shift downward.
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A more thorough derivation will be given later after we study Sacherer's integral

of instabilities in later chapters. Here, we just give a rough estimate of the threshold

and discuss some points of interest. Just as a space charge impedance will counteract

the rf focusing force below transition, here an inductive impedance will counteract the

rf focusing force above transition. According to Eq. (3.58), the extra voltage seen per

turn by an electron at an arrival advance � from the e�ect of the inductive impedance

is

Vind =
3eN

2!0�̂ 2

�����
Z
k
0

n

�����
ind

�

�̂
; (7.8)

where a parabolic linear distribution for the electron bunch of half length �̂ has been

assumed and N is the number of particles in the bunch. Although a parabolic distri-

bution for electron bunches is not realistic, it does provide a linear potential and ease

the mathematics. The synchrotron frequency is proportional to the square root of the

potential gradient, dVind=d�, where � is the rf phase. This extra voltage will shift the

incoherent synchrotron tune downward. If the beam intensity is low, the shift can be

obtained by perturbation, giving

��s
�s0

=
1

2

dVind=d�

dVrf=d�
=

3e2N�

8�!2
s0�̂

3�2E0

�����
Zk
0

n

�����
ind

: (7.9)

All the azimuthal modes will have their frequencies shifted downward coherently by

roughly by this amount also except for the m = 1 mode. The threshold can therefore

be estimated roughly by equating the shift to the synchrotron tune. Because this shift

is now large, the perturbative result of Eq. (7.9) cannot apply. Instead we equate the

gradient of the extra voltage from the inductive impedance directly to the gradient of

the rf voltage, to get the threshold

3e2N j�j
4�!2

s0�̂
3�2E0

�����
Z
k
0

n

�����
ind

<� 1 : (7.10)

For a broadband impedance of quality factor Q � 1,�����
Z
k
0

n

�����
ind

� Rs

nr
; (7.11)

where Rs is the shunt impedance at the resonance angular frequency !r = nr!0. Written

in terms of the dimensionless current parameter � in Fig. 7.4, the threshold of Eq. (7.10)

translates to
4�2eIbj�jRs

3E0!2
s�

3
L
!r

<�
�2

9
; (7.12)
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Figure 7.5: Power spectra hm(!) for modes m = 0 to 3 with zero chromaticity.

which agrees with the point of mixing in the �gure very well, where �L = 2�̂ is the full

bunch length. It can also be written as

Rs

nr
<�

8j�jE0

9eIpk�2

�
�E

E0

�2

FWHM

: (7.13)

This is almost identical to the Keil-Schnell criterion in Eq. (6.22) with the average

current replaced by the peak current. For this reason, this longitudinal mode-mixing

threshold is often also referred to as the Keil-Schnell threshold. In fact, as will be shown

later, unlike the Keil-Schnell criterion, the left-side of Eq. (7.13) is not the usual jZk
0=nj

of a broad resonance. Instead it should be replaced by the e�ective impedance

�����
Z
k
0

n

����� �!
Z
k
0

n

�����
e�

=

Z
d!

Z
k
0(!)

!
!0hm(!)Z

d!hm(!)
; (7.14)

where hm(!) is the power spectrum of the mth azimuthal mode depicted in Fig. 7.1. In

fact, when made dimensionless, hm is a function of !�̂ only. For Sacherer's approximate

sinusoidal modes, the power spectra of some lower azimuthal modes are shown in Fig. 7.5.

It is important to point out that it is the reactive part of the impedance that shifts the

frequencies of the di�erent azimuthal modes and the resistive part of the impedance that
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drive the stability. According to Fig. 7.5, for the azimuth m = 1 to mix with azimuth

m = 2, the peak of the resonance must have frequency between the peak of the power

spectra of the two modes, or

!r � 2�

�L
: (7.15)

In fact, this is expected, because with one or two oscillations in the linear density of the

bunch, the wavelength of this instability must therefore have wavelength comparable to

or shorter than the bunch length. The signal measured should correspond roughly to

the rms frequency of the bunch spectrum, which is also in the microwave region because

an electron bunch is often shorter than the transverse size of the vacuum chamber. For

this reason, this instability is also referred to as microwave instability in the electron

communities.

7.3 Bunch Lengthening and Scaling Law

In Fig. (7.4), the dashed curve denotes the growth rate of the instability. It is evident

that the growth rate increases very rapidly as soon as the threshold is exceeded. We see

that even when the bunch current exceeds the threshold by 20%, the growth rate reaches

��1 � !s, or the growth time is Ts=(2�), much shorter than a synchrotron period. This

means that the radiation damping e�ect and the use of conventional feedback systems

may not e�ective in damping the instability.

One way to avoid instability is to push the threshold to a higher value. For example,

if the bunch is short enough so that �� < !�1
r , the bunch particles will sample mostly the

capacitive part of the broadband impedance. The frequencies of the azimuthal modes

will shift upward instead. But the real part of the impedance will eventually bend the

mode downward. However, it will become harder for the m = 2 and m = 1 modes to

collide, the threshold will be relatively higher.

In reality, this instability is not devastating. The growth rate shown in Fig. (7.4)

only applies when the bunch length and energy spread of the bunch are kept unchanged.

As soon as the threshold is past, the bunch will be lengthened and the energy spread

increased to such an extent that stability is regained again. Unlike proton bunches no

overshoot is observed in electron bunches, probably because of the radiation damping.

Typical plots of the bunch length and energy spread are shown in Fig. 7.6. Note that

because of the balancing of synchrotron radiation and random quantum excitation, there
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Figure 7.6: Both the bunch length and energy spread begin to grow after the bunch

current exceeds its microwave instability threshold Ith. (a) The bunch length starts

with its natural value at zero current and becomes shortened due to the capacitive

potential-well distortion, if the natural bunch length is short enough so that the

capacitive part of the impedance is sampled. (b) Below the instability threshold,

the energy spread is always at its natural value una�ected by the e�ect of potential-

well distortion.

is a natural momentum spread �Æ0 and the corresponding natural bunch length ��0 is

determined by the rf voltage. This is what we see below the threshold. For a short bunch

with �Æ0 < !�1
r , we will see the bunch length decreases as the bunch intensity increases,

because the bunch samples the attractive capacitive impedance. This is called potential-

well distortion which has been discussed in Chapter 3. However, the momentum spread

is still determined by its natural value and is not changed. Unlike a proton bunch

which can often be lost after the microwave instability threshold, the electron bunch can

stabilize itself by self-increasing its length and energy spread, as illustrated in Fig. 7.6.

One way to observe this instability is to measure the increase in bunch length. We

can also monitor the synchrotron sidebands and see the m = 2 sideband move towards

them = 1 sideband. This frequency shift, which is a coherent shift, as a function of beam

intensity is a measure of the reactive impedance of the ring. An accurate measurement

of the frequency shift of the m = 2 mode may sometimes be diÆcult. An alternate

and more accurate determination of the frequency shift can be made by monitoring the
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phase shift in the beam transfer function to be discussed in Chapter 14.

Noting that the mode-coupling threshold, Eq. (7.10) or Eq. (7.12), depends on only

one parameter

� =
�Ib
�2sE0

; (7.16)

there is a scaling law relating the bunch lengthening and the frequency dependency

of the impedance sampled by the bunch. It says that the rms bunch length �� above

threshold is given by

�� / �1=(2+a) (7.17)

when the part of the impedance sampled by the bunch behaves like

Z
k
0 / !a : (7.18)

Here, Ib is the average beam current of the bunch. This scaling law was �rst derived by

Chao and Gareyte [2] and has been veri�ed experimentally in the storage ring SPEAR

at SLAC. The results are plotted in Fig. 7.7. The scaling law can be proved easily by

dimension argument. To proceed, substitute the e�ective impedance of Eq. (7.14) into

the threshold condition of Eq. (7.12), and note that the power spectrum h(!) can be

made dimensionless and therefore depends on !�� only (Exercise 7.3). A similar proof

will be given later in Sec. 13.3 below. Note that if the Keil-Schnell criterion is applied,

we always have �� / �1=3 or a = 1, implying a long bunch seeing the inductive part of

the impedance. However, for SPEAR, measurements point to �� / �0:76 or a = �0:68,
implying that the SPEAR bunch is short enough to sample the capacitive part of the

impedance. This clearly demonstrates that the Keil-Schnell criterion is only suitable

for long bunches which sample the inductive part of the broadband impedance, and

cannot be used in an electron machine where the bunch length is so short that the

capacitive part of the impedance is sampled. There is another big di�erence between

the microwave instability for coasting beam and the mode-mixing instability discussed

here. Above transition, which is true for nearly all electron rings, the tear-drop stability

curve of the coasting-beam based theory states that the beam will be unstable if it is

driven by a capacitive impedance which is large enough. However, it can be shown that

pure reactive impedance cannot lead to mode-mixing instability. The modes may cross

each other when the frequency shifts are large enough, but no instability will materialize.

(See Exercise 13.3 below.)

This instability is not a devastating instability, because it results only in the blowup

of the bunch area. In fact, many storage rings, especially collider rings, operate above
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Figure 7.7: RMS bunch length �Z versus the scaling parameter � for the electron

storage ring SPEAR. The momentum compaction factor has been kept constant.

The measurement results indicate that �� / �1=(2+a) with a = �0:68.

this threshold, because a much higher beam intensity and therefore luminosity can be

attained. However, this may not be the situation for a light source, where we always

want to have shorter bunches so as to have smaller spot sizes for the synchrotron light.

In order to accomplish this, the electron ring must be carefully designed so that the

impedance is as small as possible. On the other hand, it is very diÆcult to reduce the

impedance in a ring already built. For example, some capacitive structures had been

placed in the SLAC damping rings, so as to reduce the inductive impedance of the

rings. The threshold of the mixing of the m = 2 and m = 1 mode has been actually

pushed higher. However, the beam particles are now seeing mostly the real part of the

impedance, which distorts the bunch asymmetrically bringing out the importance of

other radial excitation modes. These radial modes actually collide at a threshold much

lower than the previous threshold before the modi�cation. Fortunately, this instability

due to the mixing of radial modes is much weaker than the instability due to the mixing
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of azimuthal modes [4].

7.4 Sawtooth Instability

Before the modi�cation of the vacuum chambers in the SLAC Linear Collider (SLC)

damping rings, a new form of longitudinal instability coupling with synchrotron radiation

damping was observed. Upon the injection of a bunch, the bunch length decreased

rapidly with a longitudinal damping time of the order of 2 ms. When the bunch length

passed below a threshold, a sudden blowup in bunch length occurred in a time span

comparable to or shorter than the 10 �s synchrotron period, as illustrated in Fig. 7.8.

This process was self-limiting because of the nonlinear nature of the short-range wake

�elds responsible for blowing up the bunch. Since the blowup is faster than a synchrotron

period, this might have been the type of coasting-beam based microwave instability

governed by the Boussard-modi�ed Keil-Schnell criterion. Once the blowup ceased,

the bunch damped down until the threshold was reached again in about a synchrotron

damping time of � 1:3 ms. Thus, a cyclical repetition of the instability was observed

and termed according to its shape sawtooth instability [5].

The time-dependent nature was seen in the bunch-length signal from the beam-

position-monitor (BPM) electrodes and the bunch-phase signal from the synchronous-

phase monitor. The bunch phase can be referenced to either the 714 MHz rf of the

damping ring or to the 2856 MHz S-band rf of the linac. The synchronous beam phase

angle is given by �s = sin�1(Us=Vrf), where Us is the energy loss per turn as a result of

synchrotron radiation. The higher-order mode losses of a bunch are functions of the line

charge density and are inversely proportional to the bunch length. As the bunch blew up,

the higher-order losses decreased and the beam phase shifted by about 0:5Æ at 714 MHz

during a sawtooth. This translated into a 2Æ jump at the S-band in the linac. This

magnitude of phase error caused a problem with the rf bunch-length compressor in the

ring-to-linac beam line. When this instability took place, the bunch would be incorrectly

launched into the linac and might eventually be lost on the downstream collimators,

causing the linac to trip the machine protection circuits. For some consequences, see

Exercises 7.4 and 7.5.

There is a threshold for this instability, which occurred at around 3� 1010 particles

per bunch for a nominal rf voltage of 1 MV. At higher intensity, the sawteeth appeared
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Figure 7.8: Plot of bunch length versus time at the injection of the SLAC Damping

ring with an intensity of 3�1010 particles per bunch. The bunchlength was damped

rapidly in the �rst 2 ms after injection to a point where it was unstable against

microwave instability. Rapid growth took place until the bunch was self-stabilized.

After that it was damped by synchrotron radiation to below the instability threshold.

This repetition has the shape of sawteeth.

closer together in time. The process could be viewed as a relaxation oscillator where

the period is a function of the bunch-length damping time and the trigger threshold.

The damping time is constant but the bunch length at which the bunch went unstable

increased at higher intensities. When the bunch intensity was increased to 4 � 1010

particles, a transition occurred to a second regime with \continuous sawteeth".

With the installation of new SLC damping-ring vacuum chambers, the sawtooth

instability did not go away as it was expected by simulations. On the contrary, the

threshold went down from 3�1010 to 1.5-2�1010 particles per bunch. The new instabil-

ity has a similar behavior, but it apparently is very much milder and does not a�ect the

phase mismatch of the linac downstream as severely as the old instability. An intense

investigation has been going on to study this instability even after the installation of the

new vacuum chambers. Podobedov and Siemann [6] tried to measure the longitudinal

density bunch pro�les from the synchrotron light with a high-resolution Hamamatsu

streak camera during the instability. The phase of oscillation of the bunch density was

obtained from the high-frequency BPM signals, processed and digitized by an oscillo-
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scope. The 295 chosen pro�les were binned according to their phases. The +�
2
� �

4
phase

bin implies near maximum deviation, while the ��
2
� �

4
phase bin implies near minimum

deviation. The average shapes for the two phase bins and the overall average pro�le are

shown in Fig. 7.9. The wavelength of oscillation is about 30 ps. The oscillating part of
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Figure 7.9: (color) Beam density pro�les during an instability burst captured by

streak camera. The average is in solid. Those with the phase +�
2 �

�
4 are in red

dot-dashes and those with phase ��
2 �

�
4 are in blue dashes.

the density was next �ltered out using

Æ�(�) =

�
�k(�)� �0(�)

sin�k

�
; (7.19)

where �k are all the pro�les with the phases �k (k = 1; 2; � � � ; 295), �0 is the phase-
averaged pro�le, and the angle brackets denote the median value. The structure obtained

is shown in Fig. 7.10. This linear density resembles the m = 2 quadrupole mode in

Fig 7.1 with the stationary distribution subtracted. The structure in the longitudinal

phase space is shown in the corner of the �gure. The ratio of the positive peak area

to the one under �0 is about 3%, which measures the amount of redistributed particles

creating the quadrupole structure.

The instability was further pursued in the frequency domain by Podobedov and

Siemann [7]. A bunch containing 3:5� 1010 positrons was scanned in the SLC positron

damping ring for the whole store of several minutes, during which the bunch intensity
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Figure 7.10: (color) Bunch density oscillation with the average distribution sub-

tracted. The structure resembles the projection of the azimuthal m = 2 oscillation.
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Figure 7.11: Typical spectrum at 3 � 1010 ppb around the 1149th revolution har-

monic (9.77 GHz) in the SLC positron damping ring after the installation of the

new vacuum chamber. The quadrupole mode sidebands are excited and are dis-

placed � 160 kHz from the harmonic, about 10% less than twice the zero-current

synchrotron frequency at 690 kV rf.
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Figure 7.12: (color) Contour plot of all the spectrum analyzer sweeps for a store

of a positron bunch in the SLC damping ring. The bunch intensity decays from

3:5 � 1010 to almost half near the end of the store. Sextupole mode instability is

�rst seen and switches to quadrupole mode instability around 3.2-3:4 � 1010 ppb.

All instabilities stop below the intensity of 1:7� 1010 ppb.

decayed by roughly a factor of two. The signal processing system consists of a square-law

detector which demodulates the instability signal from the sidebands to high-frequency

revolution harmonics. This signal is subsequently ampli�ed and the higher-order mixing

products are removed by a low-pass �lter. Figure 7.11 shows a typical spectrum at

bunch intensity 3�1010 around the 1149th revolution harmonic (9.77 GHz). We see the

quadrupole mode of instability and the quadrupole sidebands to the harmonic displaced

by about 160 kHz. This is roughly 10% lower than twice the zero-current synchrotron

frequency at the rf voltage of 690 kV. The contour plot in Fig. 7.12 shows all the

spectrum analyzer sweeps for the whole store. One can see how the instability jumps

from sextupole to a quadrupole mode around the intensity of 3.2-3:4 � 1010 ppb. The
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Figure 7.13: (color) Oscilloscope traces of the instability signal from di�erent values

of the stored positron bunch. Sawtooth behaviors occur near the intensity of 2.6-

3:1 � 1010 ppb when the mode of excitation is purely quadrupole.

quadrupole mode threshold is about 1:7�1010 ppb with its frequency linearly decreasing

at a rate of � 5 kHz/1010 ppb. Such a behavior is usually attributed to the inductive

portion of the ring impedance. However, we do not see the crossing of the quadrupole and

sextupole modes or the crossing of the quadrupole and dipole modes. This indicates that

the instabilities may arise from the mixing of radial modes belonging to one azimuthal,

as postulated by Chao [8]. We believe that before the modi�cation of the vacuum

chamber, the instability, which was very much strong, did arise from the mixing of two

azimuthal modes. In any case, the physics behind the sawtooth instability is still far

from understood.

Along with the spectrum analyzer data, Fig. 7.13 shows some oscilloscope traces

taken concurrently. The top trace at 3:5�1010 ppb corresponds to a constant amplitude

sextupole mode. The next trace corresponds to the case when both sextupole and

quadrupole modes coexist. At even smaller current, 2.6-3:1� 1010 ppb, the two traces
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in the middle show the sawtooth bursting behavior of the instability and correspond

to pure quadrupole mode. Finally below 2:5 � 1010 ppb, the bursts disappear and the

quadrupole mode oscillates with constant amplitude.

Lowering the rf voltage is a means of increasing the equilibrium bunch length and

extending the intensity threshold. This is because the Landau damping from the energy

spread, which is determined by synchrotron radiation, is unchanged, but lengthening

the bunch reduces the local peak current and brings the bunch below the Keil-Schnell

threshold according to Eq. (6.22). A low rf voltage, however, is not suitable for eÆcient

injection and extraction for the damping rings. Before the installation of the new vacuum

chamber into the damping rings, the rf voltage was ramped down from 1 MV to 0.25 MV

approximately 1 ms after injection, as illustrated in Fig. 7.14. It was ramped up back to

1 MV 0.5 ms before extraction. In this way the onset of sawtooth instability had been

suppressed up to an intensity of 3:5� 1010 per bunch.
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Figure 7.14: The rf voltage was lowered in the SLAC damping ring after injection

and before extraction, thus lengthening the bunch and reducing the local charge

density. This raised the microwave instability threshold and prevented the sawtooth

instability.

Here, we want to mention another di�erence between electron and proton bunches.

Although lowering the rf voltage may stabilize an electron bunch, this certainly will not

work for a proton bunch. This is because for an electron bunch, the energy spread is

determined by synchrotron radiation and will not change as the rf voltage is lowered.

On the other hand, for a proton bunch, the bunch area conserves. Thus, lowering the

rf voltage will diminish the energy spread instead, although the local linear density is
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decreased. Recall the Boussard-modi�ed Keil-Schnell criterion [3] or the Krinsky-Wang

criterion [1] for Gaussian energy spread distribution,

�����
Zk
0

n

����� <
2�j�jE0

eIpk�2

�
�E
E0

�2

: (7.20)

Assuming also a Gaussian linear distribution,

Ipk =
eNp
2���

; (7.21)

where �� is the rms bunch length in time. Constant bunch area of a proton bunch

implies constant ���E. Thus, the threshold is directly proportional to the energy spread

�E and is inversely proportional to the bunch length �� . Reducing the rf voltage will

make the proton bunch more susceptible to microwave instability. Such instability is

very often seen when an rf rotation is perform to obtain a narrow proton bunch. The

rf voltage is �rst lowered adiabatically in order to lengthen the bunch to as long as

possible. The rf voltage is then raised suddenly to its highest possible value. The long

and small-energy-spread bunch will rotate after a quarter of a synchrotron oscillation to

a narrow bunch with large energy spread. Because it takes a lot of time to reduce the

rf voltage adiabatically, the beam will often su�er from microwave instability when the

momentum spread is small. To avoid this instability, one way is to snap the rf voltage

down suddenly so that the rf bucket changes from Fig. 7.15(a) to 7.15(b). The bunch

will be lengthened after a quarter synchrotron oscillation. The rf voltage is then snapped

up again as in Fig. 7.15(c) so that the lengthened bunch rotates into a narrow bunch

as required. Since snapping the rf voltage is much faster than lowering it adiabatically,

this may prevent the evolution of microwave instability. Such a method is also used in

bunch coalescence at Fermilab.

(c)(a) (b)

Figure 7.15: Bunch shortening is performed by snapping down the rf voltage Vrf ,

rotating for 1
4 synchrotron oscillation, snapping up Vrf , and rotating for another 1

4

synchrotron oscillation.
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7.5 Exercises

7.1. Derive the incoherent synchrotron tune shift in Eq. (7.9) driven by an inductive

impedance.

7.2. (1) Derive the mode-mixing threshold, Eq. (7.10), by equating the synchrotron

tune shift to the synchrotron mode separation.

(2) Rearrange the result to obtain the Keil-Schnell like criterion of Eq. (7.13).

7.3. Prove the scaling law about bunch length dependency using dimension argument

as outlined in the text.

7.4. There is a di�erence in energy loss between the head and tail of a bunch in a linac

because of the longitudinal wake. Take the SLAC linac as an example. It has a

total length of L = 3 km and rf cavity cell period L0 = 3:5 cm. The bunch consists

of N = 5�1010 electrons and is of rms length �z = 1:0 mm. The longitudinal wake

per cavity period is W 0
0 = 6:29 V/pC at z = 0+ mm and 4:04 V/pC at z = 1 mm.

(1) Consider the bunch as one macro-particle, �nd the total energy loss by a

particle traveling through the whole linac, taking into account the fundamental

theorem of beam loading (proved in Sec. 8.4.1 below) that a particle sees exactly

one half of its own wake.

(2) Consider the bunch as made up of two macro-particles each containing 1
2
N

electrons, separated by the distance �z. Find the energy lost by a particle in the

head and a particle in the tail as they traverse the whole linac.

7.5. A more detailed computation gives 1.2 or 2.1 GeV as the energy lost by a particle
1
2
�z ahead or behind the bunch center. This energy spread needs to be corrected

to ensure the success of �nal focusing at the interaction point of the SLAC Lin-

ear Collider. The rf voltage is 600 kV per cavity period and the rf frequency is

2.856 GHz.

(1) Explain why we cannot compensate for the energy spread by placing the tail

of the bunch (1
2
�z behind bunch center) at the crest of the rf wave so that the tail

can gain more energy than the head.

(2) The correct way to eliminate this energy spread is to place the center of the

bunch at an rf phase angle � ahead the crest of the rf wave such that the gradient

of the rf voltage is equal to the gradient of the energy loss along the bunch. Show

that the suitable phase is � = 17:3Æ.
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(3) The accelerating gradient will decrease with this rf phase o�set. A compro-

mise phase is � = 12Æ. Compute the head-tail energy spread with this phase o�set

and compare the e�ective accelerating gradients in the two situations.

(4) Assume that the sawtooth instability adds a �2Æ uncertainty in rf phase error,
implying that � now becomes 10 to 14Æ. Compute the head-tail energy spread and

the center energy uncertainty under this condition. Repeat the computation if the

rf phase jitter is �5Æ instead.
7.6. A particle at time advance � inside a bunch of linear particle distribution �(�)

(normalized to total number of particles N when integrated over �) sees a voltage

due to the longitudinal wake,

V (z) = �e
Z 1

�

W 0
0(z=v)�(� � z=v)

dz

v
(7.22)

and su�ers an energy loss. The energy loss of the whole bunch, which is often

called the parasitic loss is

�E = e2
Z 1

�1

V (�)�(�)
ds

v
: (7.23)

(1) Show that the parasitic loss can also be written as

�E = �2�e2
Z 1

�1

Z
k
0(!)

���~�(!)
���2 d! ; (7.24)

where the Fourier transform of the linear distribution is de�ned as

�(�) =

Z 1

�1

~�(!)e�i!�d� : (7.25)

(2) Show that the space charge-like wake �eld W 0
0(z) = LÆ0(z=v) does not cause

parasitic energy losses.

(3) For a Gaussian bunch with rms length �� , show that the parasitic energy loss

per unit length due to the resistivity of a circular beam pipe of radius b is

�E =
e2N2�(3

4
)

4�2b�
3=2
�

�
Z0�r
2�c

�1=2

; (7.26)

where � is the wall conductivity, �r is the wall relative magnetic permeability,

and �(3
4
) = 1:22542 is the Gamma function. You may use Eq. (1.42) for the wall

impedance.
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(4) For the SSC the stainless steel beam pipe radius is b = 1:65 cm with a con-

ductivity of � = 2:0�106 (
-m)�1 at cryogenic temperature and relative magnetic

permeability �r � 1. There are two proton beams, each of which has M = 17280

bunches with N = 7:3� 109 protons each and an rms length �z = 7 cm. Compute

the power load on the cryogenic system due to the parasitic power heating of the

beam pipe wall. To reduce the cryogenic load, the inner surface of the beam pipe

is coated with a layer of copper having � = 1:8 � 109 (
-m)�1 and �r = 1 at

cryogenic temperature. Recompute the heat load.
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Chapter 8

BEAM LOADING AND

ROBINSON'S STABILITY

Klystron or tetrodes� are employed to drive the rf cavities. When a klystron or

tetrode is coupled to an rf cavity, electromagnetic �elds are generated inside the cavity.

The electric �eld across the gap of the cavity provides the required power to compensate

for the energy loss to synchrotron radiation and coupling impedance, and to supply the

necessary acceleration to the particle beam. However, the particle beam, when passing

through the gap of the rf cavity, also excites electromagnetic �elds inside the cavity in the

same way as the klystron or the rf source. This excitation of the cavity by the particle

beam is called beam loading. Beam loading has two e�ects on the rf system. First, the

electric �eld from beam loading generates a potential, called the beam loading voltage,

across the cavity gap and opposes the accelerating voltage delivered by the klystron.

Thus more power has to be supplied to the rf cavity in order to overcome the e�ect of

beam loading. Second, to optimize the power of the klystron, the cavity needs to be

detuned. The detuning has to be performed correctly. If not, the power delivered by the

klystron will not be eÆcient. Worst of all, an incorrect detuning will excite instability

of the phase oscillation. We �rst study the steady-state beam loading and derive the

criterion for phase stability. Later, transient beam loading will be addressed. The general

methods to suppress beam loading are also reviewed. Most of the material in this chapter

comes from the lecture notes of Wilson [1], Wiedemann [2], and Boussard [3].

�Klystrons are usually used in electron rings where the rf frequencies are high while tetrodes are

usually used in proton rings where the rf frequencies are low. In this chapter, there is no intention to

distinguish between the two, and we often use the terminology rf generator instead.

8-1
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8.1 Equivalent Circuit

gk igk Ygk i rfV

rf

im

iimig ibRsRgRg
R s=
β

V

Klystron Output Cavity Transmission Line RF  Cavity

L C

Figure 8.1: Circuit model representing an rf generator current source ig driving an

rf cavity with a beam loading current iim.

The rf system can be represented by an equivalent circuit as shown in the top

diagram of Fig. 8.1. The rf cavity is represented by a RLC circuit with angular resonant

frequency

!r =
1p
LC

; (8.1)

where L and C are the equivalent inductance and capacitance of the rf cavity. The

klystron or tetrode is also represented by a RLC circuit with the angular resonant fre-

quency !rf, which is the actual rf frequency of the accelerator ring. The klystron/tetrode

is connected to the rf cavity by waveguides or transmission lines via transformers as illus-

trated. The problem can be simpli�ed considerably by assuming that there is a circulator

or isolator just before the rf cavity, so that any power which is reected from the cavity

and travels back towards the klystron will be absorbed. Such an assumption leads to

the equivalent circuit in the lower diagram of Fig. 8.1. The resistor Rs is called the

unloaded shunt impedance of the rf system, because it is the impedance of the isolated

cavity at its resonant frequency. The image current of the particle beam is represented

by a current source iim. This is a valid representation from the rigid-bunch approxima-

tion, because the velocities and therefore the current of the beam particles are assumed
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roughly constant when the beam passes through the cavity gap. We reference image

current here instead of the beam current ib, because it is the image current that ows

across the cavity gap and also into the cavity. The image current is in opposite direction

to the beam current.

On the other hand, the situation is di�erent for the klystron. The velocities of

the electrons as they pass through the the gap of the output cavity of the klystron can

change in response to the cavity �elds of the klystron. As a consequence, the rf source

is represented by a current source ig in parallel to the loading resistor Rg or admittance

Yg = 1=Rg. The latter is written in terms of the shunt admittance Ys or shunt impedance

Rs of the rf cavity as

Yg = �Ys =
�

Rs
; (8.2)

where � is the coupling coeÆcient still to be de�ned. The generator or klystron current

ig and the loading admittance Yg in the lower equivalent circuit diagram are equivalent

values and are di�erent from the actual generator current igk and actual loading admit-

tance Ygk in the klystron circuit in the top circuit of Fig. 8.1. For example, in the rf

system of the Fermilab Main Injector, igk = 12ig.

The rf generator outputs a generator current Ig in order to produce the rf gap

voltage Vrf for the beam. The total required output powery is

Ptotal =
1

2

I2g
Yg + Yload

; (8.3)

where Yload is called the load cavity admittance, which includes the admittance of the

cavity Ys = 1=Rs and also all the contribution from the particle beam. An explicit

expression will be given in Eq. (8.43) below. In the situation of a very weak beam

(ib ! 0), Yload ! Ys. The total power can be rewritten as

Ptotal =
1

2

YgI
2
g

(Yg + Yload)2
+
1

2

YloadI
2
g

(Yg + Yload)2
: (8.4)

The �rst term on the right is the power dissipated at the generator. The second term

is the power required to be transferred to the cavity and the beam, and we denote it

yThis is the power required to transfer a certain energy per unit time to the cavity and the beam, and

is di�erent from the power available to the beam and cavity. The latter is given by 1

2
~Ig � ~Vrf and becomes

zero when the load angle �L = �=2, as indicated in Eq. (8.38). On the other hand, the required power

is inversely proportional to cos2 �L. When �L ! �=2, most of the energy energy is being transferred to

the cavity as stored energy and very little is given to the beam. Therefore to satisfy the requirement of

the beam, an in�nite required power by the generator becomes necessary.
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by Pg, which is usually referred to loosely as the generator power. We wish to obtain

the condition for which this power delivered to the cavity and beam is a maximum by

equating its derivative with respect to Yload to zero. The condition is

Yload = Yg = �Ys : (8.5)

This is just the usual matching of the input impedance to the output impedance. The

maximized generator power is then

Pg =
i2g

8�Ys
=
Rsi

2
g

8�
: (8.6)

Notice that in the situation of an extremely weak beam, this matched condition is just

Yg = Ys with the coupling coeÆcient � = 1. Equation (8.6) will be used repeatedly

below and whenever the generator power Pg is referenced, we always imply the matched

condition satisfying Eq. (8.5).

Here, all the currents and voltages referenced are the magnitudes of sinusoidally

varying currents and voltages at the rf angular frequency !rf (not the cavity resonant

angular frequency !r). Their corresponding phasors always have an overhead tilde. For

example, iim is the magnitude of the Fourier component of the image current phasor
~im that ows into the cavity at the rf frequency. Thus, for a short bunch, we have

(Exercise 8.1),

iim = 2I0 ; (8.7)

with I0 being the dc current of the beam. As phasors, however, they are in the opposite

direction. It will be shown later, the image current phasor ~im may not be equal to the

negative beam current phasor ~ib because of possible feed-forward. In that case, I0 in

Eq. (8.7) will be the dc image current instead. For this reason, we try to make reference

to the image current that actually ows into the cavity instead of the beam current.

In high energy electron linacs, bunches are usually accelerated at the peak or crest

of the rf voltage wave in order to achieve maximum possible energy gain. As a result,

the klystron is operated at exactly the same frequency as the resonant frequency of the

rf cavities, i.e., !rf = !r. Without the rf generator, the beam or image current sees the

unloaded shunt impedance Rs in the cavity and the unloaded quality factor Q0, which

can easily be found to be

Q0 = !rCRs : (8.8)

With the rf generator attached, however, the beam image current source sees an e�ective

shunt impedance RL in the cavity, which is the parallel combination of the generator
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shunt impedance Rg and the cavity shunt impedance Rs. This is called the cavity loaded

shunt impedance in contrast with the cavity unloaded shunt impedance Rs. We therefore

have

RL = (Ys + Yg)
�1 =

Rs

1 + �
: (8.9)

Correspondingly, the beam image current sees a loaded quality factor in the cavity, which

is

QL = !rCRL =
Q0

1 + �
: (8.10)

Notice that
Rs

Q0

=
RL

QL

; (8.11)

independent of whether it is loaded or unloaded. In fact, Rs=Q0 is just a geometric

factor of the cavity.

The beam loading voltage is the voltage generated by the image current, and is

given by

Vbr =
iim

Yg + Ys
=

iim
Ys(1 + �)

; (8.12)

while the voltage produced by the generator is

Vgr =
ig

Yg + Ys
=

ig
Ys(1 + �)

; (8.13)

where the subscript \r" implies that the operation is at the resonant frequency, so that

the currents and voltages are in phase, although they may have sign di�erence. In terms

of the generator power Pg in Eq. (8.6), the generator voltage at resonance becomes

Vgr =

p
8�

1 + �

p
RsPg : (8.14)

It is clear that the beam loading voltage is in the opposite direction of the generator

voltage. Thus, the net accelerating voltage is

Vrf = Vgr � Vbr =
p
RsPg

� p
8�

1 + �

�
1� K

2
p
�

��
; (8.15)

where

K2 =
i2imRs

2Pg
(8.16)
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plays the role of the ratio of the beam loading power to the generator power. Since the

shunt impedance Rs of a superconducting cavity is very high, beam loading becomes

much more important. The fraction of generator power delivered to the beam is

� =
iimVrf
2Pg

=
2
p
�

1 + �
K

�
1� K

2
p
�

�
: (8.17)

The power dissipated in the cavity is

Pc =
V 2
rf

2Rs

= Pg

�
2
p
�

1 + �

�2�
1� K

2
p
�

�2

: (8.18)

From the conservation of energy, we must have

Pg = �Pg + Pc + Pr ; (8.19)

where Pr is the power reected back to the generator and is given by

Pr
Pg

=

�
� � 1�K

p
�

1 + �

�2

: (8.20)

So far we have not said anything about the coupling coeÆcient �. Now we can choose

� so that the generator power is delivered to the cavity and the beam without any

reection, or from Eq. (8.20), the optimum coupling constant is

K =
�op � 1p

�op
: (8.21)

Notice that this optimization is also a maximization of the accelerating voltage Vrf, as

can be veri�ed by di�erentiating Eq. (8.15) with respect to �.

8.2 Beam Loading in an Accelerator Ring

In a synchrotron ring or storage ring, it is necessary to operate the rf system o� the

crest of the accelerating voltage wave form in order to have a suÆcient large bucket area

to hold the bunched beam and to insure stability of phase oscillation. The klystron or

rf generator is operating at the rf frequency !rf=(2�) = h!0=(2�), where h is an integer

called the rf harmonic, and !0=(2�) is the revolution frequency of the synchronized

beam particles. Notice that this rf frequency will be the frequency the beam particles
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experience at the cavity gap and is di�erent from the intrinsic resonant frequency of

the cavity !r=(2�) given by Eq. (8.1). According to the circuit diagram of Fig. 8.1, the

impedance of the cavity seen by the particle at rf frequency !rf=(2�) can be written as

Zcav =
RL

1� jQL

�
!r
!rf
�!rf
!r

� = RL cos e
j ; (8.22)

where  is called the rf detuning angle or just detuning. As will be shown below,

detuning is an essential mechanism to make the beam particle motion stable under the

inuence of the rf system. It is important to point out that loaded values have been

used here, because those are what the image current sees. From Eq. (8.22), the detuning

angle is de�ned as

tan = QL

�
!r
!rf
�!rf
!r

�
: (8.23)

When the deviation of !rf from !r is small, an approximation gives

tan = 2QL

!r�!rf
!r

: (8.24)

Note that in this section we have used j instead of �i, because phasor diagrams are cus-
tomarily drawn using this convention. Phasors, as illustrated in Fig. 8.2, are represented

by overhead tildes rotating counter-clockwise with angular frequency !rf if there is only

one bunch in the ring. If there are Nb equal bunches in the ring separated equally by

hb = h=Nb rf buckets, where h is the rf harmonic, we can also imagine the phasors to

be rotating at angular frequency !rf=hb. They are therefore the Fourier components at

the rf frequency or !rf=hb. This implies that we are going to see the same phasor plot

for each passage of a bunch through the rf cavity. In order to be so, the beam loading

voltage should have negligible decay during the time interval Tb = 2�hb=!rf between

two successive bunches. In other words, we require Tb � Tf in this discussion, where

Tf = 2QL=!r is the �ll time of the cavity.

Most of the time, the image current phasor ~iim has the same magnitude as that of

the beam current phasor ~ib, although in the opposite direction. When the image current
~iim interacts with the loaded cavity, according to Eq. (8.22), a beam loading voltage

phasor ~Vb will be produced and is given by

~Vb = ~iimRL cos e
j ; (8.25)

and

Vb = Vbr cos : (8.26)
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Figure 8.2: Phasor plot showing the beam loading voltage phasor ~Vb induced in the

rf cavity by the image current phasor ~iim, which lags ~Vb by the detuning angle  .

Also plotted is the beam loading voltage phasor ~Vbr, with Vb = Vbr cos when the

beam current is at the crest of the rf wave with no detuning.

Thus the voltage phasor always leads the current phasor by the detuning phase  and

the magnitude of the phasor ~Vb is less than its value at the cavity resonant frequency

Vbr by the factor cos . If one likes, one can also introduce the phasor ~Vbr which is in

phase with the current phasor ~iim and has the magnitude given by Eq. (8.26). This is

illustrated in Fig. 8.2.

Some comments are necessary. Here, we start from only one Fourier component

(the one at frequency !rf or !rf=hb) of the image current ~iim. The beam loading voltage
~Vb experienced by the beam is also a Fourier component of the same frequency. Since we

are investigating the problem in the frequency domain, this is equivalent to a very long

interval in the time domain. In other words, the result describes a steady-state problem,

implying that the beam has passed by the rf cavities many many times already. The

beam loading voltage ~Vb is therefore a sinusoidal wave in time. However, this is not

exactly what we expect from a cavity. The beam loading voltage decays exponentially

as soon as the beam leaves the rf cavity. It is charged up again like a step function when

the beam passes by again. Thus, the time dependent behavior of the beam loading

voltage is more like a sawtooth rather than sinusoidal. Putting it in another way, more

than one Fourier component will be necessary to fully describe the beam loading picture.

However, if the exponential decay is slow, the beam loading wave will behave more like

sinusoidal. Therefore, our description of the beam loading problem here is valid only

when the cavity decay time constant (or �ll time)

Tf =
2QL

!r
(8.27)
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is very much longer than the interval Tb between successive beam passage. We will

address a more accurate description later.

There are good reasons that detuning is necessary. The �rst one is for the compen-

sation of beam loading, which we describe in the next subsection. One may argue why we

do not just employ an extra generator current equal and opposite to the image current

for a simple 100% compensation. This requires the generator to deliver unnecessarily

large current at a phase angle other than that of the rf voltage. Needless to say, this

will result in a degradation of the eÆciency of the rf excitation system and an increase

in cost. The second reason is phase stability. When the center of the beam deviates

from its proper rf phase, proper detuning will damp the deviation and guarantee phase

stability. This will be addressed later in the section on Robinson's stability.

8.2.1 Steady-State Compensation

In Fig. 8.3, the total current phasor ~it inside the cavity is the vector sum of the image

current phasor ~iim and the generator current phasor ~ig. The rf voltage phasor ~Vrf is at

the synchronous angle �s and leads the total current phasor by the detuning angle  .

The current phasor ~i0 is the projection of ~it along ~Vrf . Thus, ~i0 is the generator current

required to set up the rf voltage when the cavity is at resonance and when there is no

beam current. In other words, i0 = Vrf=RL = (1 + �)Vrf=Rs, where � is the coupling

coeÆcient of the generator to the rf cavity and Rs is the unloaded shunt impedance.

We want to solve for the load angle �L that the the generator current phasor lags

the rf voltage phasor. By projecting along and perpendicular to the rf voltage phasor,

one obtains

tan �L =
i0 tan � iim cos�s

i0 + iim sin�s
; (8.28)

and

ig =
i0 + iim sin�s

cos 
: (8.29)

To optimize the eÆciency of the generator, the generator current phasor ~ig and

the rf voltage phasor ~Vrf should be in the same direction, because in this way the load

will appear real to the generator and the stored energy will be reduced to a minimum.
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Figure 8.3: Phasor plot showing the vector addition of the image current phasor
~iim and the generator current phasor ~ig to give the total current phasor ~it. The

latter lags the rf voltage phasor ~Vrf at synchronous phase �s by the detuning angle

 . Note that the generator current phasor is not in phase with the rf voltage phasor.

It lags ~Vrf by the load angle �L.

Substituting for �L = 0, we obtain the in-phase conditions

tan =
iim cos �s

i0
(8.30)

and

ig = i0 + iim sin�s : (8.31)

Figure 8.4 shows the voltage phasors inside the cavity with the rf voltage phasor ~Vrf
in phase with the generator current phasor ~ig. Here, we see that the beam loading

voltage phasor ~Vb is ahead of the image current phasor ~iim by the detuning angle  .

The generator voltage phasor ~Vg is also ahead of the generator current phasor ~ig by the

detuning angle  . These two voltage phasors add up to give the gap voltage phasor ~Vrf
which has a synchronous angle �s. The in-phase condition can also be obtained from

this phasor diagram. Since the voltage components perpendicular to ~ig must add up to
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Figure 8.4: Phasor plot showing the vector addition of the generator voltage phasor
~Vg and the beam loading voltage phasor ~Vb to give the gap voltage phasor ~Vrf in an

rf cavity. Note the detuning angle  which puts the gap current phasor ~ig in phase

with the gap voltage phasor.

zero, after dividing by Rs cos , we get

ig sin = iim sin(�
2
+ �s �  ) : (8.32)

Next, resolve the current contributions along ~ig and we obtain Eq. (8.31). Finally,

eliminate ig and arrive at the in-phase condition of Eq. (8.30).

Notice that steady-state beam loading has been compensated by the introduction

of a suitable generator current. This compensation scheme with detuning is much more

eÆcient than the one without, because part of the beam loading voltage has been utilized

in the rf voltage and the generator current is in phase with the rf voltage. In other words,

the generator power required will be smaller than when there is no detuning. Actually,

it can be readily shown by di�erentiating Eq. (8.35) below with respect to the detuning

angle  that the generator power is the smallest when the in-phase condition is met

between the generator current phasor and the rf voltage phasor. In the event that the

beam intensity is very high, the beam loading voltage Vb can become much larger than

the required gap voltage Vrf . Needless to say, to balance such a large a very high power

ampli�er will be necessary to generate the required generator current Ig. When this

happens, low-level rf feedback can be installed to reduce the e�ective cavity impedance

as observed by the beam. A low-level rf feed-forward is also possible to cancel partly or
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completely the image current. These methods will be discussed later in Sec. 8.4.4.

The generator power Pg can be computed with the aid of Eq. (8.14), namely,

Pg =
(1 + �)2V 2

gr

8�Rs
; (8.33)

where Vgr is the generator voltage at the cavity resonant frequency, and is related to the

generator voltage Vg at the rf frequency by Vg = Vgr cos . Using the cosine law for the

triangle made up from ~Vg, ~Vb, and ~Vrf , it is easy to obtain

V 2
g = V 2

b + V 2
rf � 2VbVrf sin( � �s) ; (8.34)

or

V 2
gr = V 2

br + V 2
rf(1 + tan2  )� 2VbrVrf(tan cos�s � sin�s) ; (8.35)

where Vbr = Vb= cos is the beam loading voltage at the cavity resonant frequency. From

Eq. (8.14), the required generator power for the cavity and beam can be expressed as

Pg =
Rs

8�

�
(i0 + iim sin�s)

2 + (i0 tan � iim cos�s)
2
�
; (8.36)

where

Vbr =
Vb

cos 
=
iimRs

1 + �
(8.37)

is the beam loading voltage at the cavity resonant frequency, and the de�nition of i0
in Eq. (8.31) has been used. If the correct detuning is made so that ~Ig and ~Vrf are in

phase, the second term on the right-hand side vanishes and the expression is very much

simpli�ed. On the other hand, we notice that the two terms on the right-side resemble

the denominator and numerator on the right-side of Eq. (8.28). We can therefore rewrite

the generator power in terms of the load angle �L,

Pg =
Rs

8�

(i0 + iim sin�s)
2

cos2 �L
; (8.38)

which recovers the situation of in-phase detuning when �L = 0. The factor cos2 �L is

important. It tells us that when the load angle �L ! �=2, an in�nite generator power is

required. This is because only the fraction cos2 �L of the power goes into the beam and

the majority, sin2 �L, goes into charging the cavity.

Again we can optimize the generator power by choosing the best coupling constant

�, which turns out to be

�op = 1 +
iimRs sin�s

Vrf
= 1 +

Pb
Pc

; (8.39)
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where

Pc =
V 2
rf

2Rs
(8.40)

is the power dissipated in the walls of the cavity and

Pb =
1
2
iimVrf sin�s = I0Vrf sin�s (8.41)

is the power spent on accelerating the beam, since Vrf sin�s is the accelerating voltage.

Here, we have used Eq. (8.7), the fact that the Fourier component image current at the

rf frequency (or at !rf=hb) is nearly twice the dc beam current I0 when the bunch is

short. At the optimized coupling constant, the generator power becomes

Pg op =
V 2
rf

2Rg
=

V 2
rf

2Rs
�op = Pb + Pc ; (8.42)

which just states that the power is transmitted to the cavity completely without any

reected. Here, we can identify the load cavity admittance Yload de�ned in earlier in

Eq. (8.4) as

Yload =
iim sin�s
Vrf

+
1

Rs
; (8.43)

where the �rst term on the right is admittance of the beam and the second term is the

admittance of the cavity.

Usually there is a servo-tuner which measures the phase di�erence between the

generator current phasor and rf gap voltage phasor, and controls the cavity tune via a

mechanical plunger or ferrite bias, so that the phase di�erence vanishes. At equilibrium

of the servo-tuner, Eqs. (8.30) and (8.31) are automatically satis�ed, and the cavity

detuning corresponds to

�! = !r � !rf =
!rRLiim cos�s

2QLVrf
: (8.44)

8.3 Robinson's Stability Criteria

8.3.1 Phase Stability at Low Intensity

We are now in the position to discuss the conditions for phase stability. Suppose that

center of the bunch has the same energy as the synchronous particle, but is at a small
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Figure 8.5: With the bunch center at Point 1 in the synchrotron oscillation, the

beam current phasor ~ib arrives earlier by being ahead of the x-axis at a small angle

� > 0 in the phasor plot. The bunch sees a smaller rf voltage Vrf sin(�s��) if the
synchronous phase 0 < �s <

1
2�. It is decelerated. Below transition, it will arrive

not so early in the next turn and phase stability is therefore established.

phase advance �rf = � > 0, as depicted by Point 1 in the synchrotron oscillation and the

phasor ~ib in the phasor plot in Fig. 8.5. The phasor ~ib arrives earlier by being ahead of the

x-axis at a small angle � > 0. Then the accelerating voltage it sees will be Vrf sin(�s��)
instead of Vrf sin�s, or an extra decelerating voltage of �Vrf cos�s if 0 < �s <

1
2
�.

Receiving less energy from the rf voltage than the synchronous particle will slow the

bunch. If the beam is below transition, this implies the reduction of its revolution

frequency, so that after the next h rf periods its arrival ahead of the synchronous particle

will be smaller or � will become smaller. The motion is therefore stable. Therefore to

establish stable phase oscillation when beam loading can be neglected, one requires

(
0 < �s <

�
2

below transition;
�
2
< �s < � above transition:

(8.45)

This is exactly the same condition for stable phase oscillation we conclude from the

expression for the synchrotron tune in Eq. (2.14). Notice that this is just the condition

of phase stability and there is no damping at all. Here, the derivation relies on the fact

that the rf voltage phasor ~Vrf is unperturbed and this is approximately correct when the

beam intensity and therefore the beam loading voltage is small.
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8.3.2 Phase Stability at High Intensity

When the beam current is very intense, we can no longer neglect the contribution of the

beam loading voltage. The condition of phase stability in Eq. (8.45) will be modi�ed.

Now, go back to Fig. 8.5 when the beam current phasor arrives at an angle � > 0 ahead

of the x-axis but is at the same energy as the synchronous particle, the image current

phasor ~iim will also advance by the same angle � after h rf periods. Therefore, there

will be an extra beam loading voltage phasor �iimRL cos e
j( +3�=2), which constitutes

the perturbation of the rf voltage phasor ~Vrf . If  < 0, this phasor will point into the

3rd quadrant and decelerate the particle in concert with �Vrf cos�s in slowing the beam,

thus causing no instability below transition. On the other hand, if  > 0, this phasor

will point into the 4th quadrant and accelerate the particle instead. To be stable, the

extra accelerating voltage on the beam must be less than the amount of decelerating

voltage �Vrf cos�s, or�
Vrf sin(�s � �)� Vrf sin�s

�
+ �iimRL cos sin � ��Vrf cos�s + �Vbr cos sin < 0 :

(8.46)

Thus for phase stability, we require

Vbr
Vrf

<
cos �s

sin cos 

(
 > 0 below transition;

 < 0 above transition;
(8.47)

which is called Robinson's high-intensity criterion of stability. In above, Vbr = iimRL is

the in-phase beam loading voltage when the beam is in phase with the loaded cavity

impedance.

Notice that this Robinson's high-intensity criterion of stability is only a criterion

of phase stability similar to the phase stability condition of Eq. (8.45). Satisfying this

criterion just enables stable oscillating like sitting inside a stable potential well. Violating

this criterion will place the particle in an unstable potential well so that phase oscillation

will not be possible. To include damping or antidamping due to the interaction of the

beam with the cavity impedance, another criterion of Robinson stability, Eq. (8.57)

below, must be satis�ed also.

We can also look at the phase stability problem in another way. In order that the

beam can execute stable phase oscillation, it must see a linear restoring force when the

beam deviates from its equilibrium position. This force comes from change in the rf

voltage ~Vrf seen by the beam when the beam is at an o�set. This explains why we have
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Figure 8.6: When the generator voltage phasor ~Vg becomes in phase with the beam

current phasor, it provides no force gradient to the beam in the direction of the

beam. Since the restoring force vanishes for an in�nitesimal o�set of the beam

arrival time, the beam is on the edge of instability in phase oscillation.

the gradient of the rf accelerating voltage or Vrf cos�s in Eq. (2.14), the expression of

the synchrotron tune. Now the rf voltage phasor ~Vrf is the sum of the beam loading

voltage phasor ~Vb and the generator voltage phasor ~Vg, or

~Vrf = ~Vb + ~Vg : (8.48)

Notice that the beam loading voltage phasor ~Vb moves with the beam and therefore

will not provide any force gradient or restoring force to the beam. In other words,

d ~Vb=d� = 0. Thus only the generator voltage phasor ~Vg can provide such a restoring

force. Therefore, we should compute d ~Vg=d�. If this gradient enhances the displacement

of the beam from the synchronous position, the system is unstable; otherwise, it is stable.

When the generator voltage phasor is in phase with the beam as illustrated in Fig. 8.6,

it is clear that for any small variation of time arrival � of the beam, the beam will not

see any variation of the generator voltage phasor ~Vg in the direction of the beam, or

d ~Vg=d� = 0 in the direction of the beam. In other words, there is no restoring force to

alter the energy of the beam so as to push it back to its equilibrium position. Thus the

con�guration in Fig. 8.6 constitutes the Robinson's limit of phase stability. From the

�gure, it is evident that the projection of ~Vrf and ~Vb perpendicular to the beam must be

the same or the stability limit is

Vrf cos �s = iimRL cos sin ; (8.49)
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which is exactly the same as Eq. (8.47).

Now let us impose the condition that the generator current ~ig is in phase with the

rf voltage ~Vrf . First, we have i0 = Vrf=RL, so that Robinson's criterion of phase stability

in Eq. (8.47) can be rewritten as

iim
i0

<
cos�s

sin cos 

(
 > 0 below transition;

 < 0 above transition:
(8.50)

Second, the in-phase condition implies Eq. (8.30), which simpli�es the above to

iim
i0

<
1

sin�s
; (8.51)

after eliminating the detuning. If we further optimize the generator power by choosing

the coupling constant �op given by Eq. (8.39), it is easy to show that

iim sin�s
i0

=
�op � 1

�op + 1
< 1 : (8.52)

In other words, the Robinson's phase stability criterion will always be satis�ed when the

generator current phasor ~ig and the rf voltage phasor ~Vrf are in phase and the coupling

between the generator and the rf cavities is optimized.

When the generator current phasor and the rf voltage phasor are in phase, Fig. 8.6

immediately gives the phase stability limiting criterion for the detuning as

 =
�

2
� �s : (8.53)

Substituting into the in-phase condition of Eq. (8.30) reproduces the stability criterion

of Eq. (8.51). The stability criterion can also be rewritten as

1
2
Vrfiim sin�s <

1
2
Vrfi0 ; (8.54)

where the right side is PL, the power dissipated in the cavities and the generator, while

the left side is Pb, the power supplied to the beam for acceleration and/or compensation

of energy lost to radiation and impedance. Thus, Robinson's phase stability criterion

can also be reworded as

Pb < PL ; (8.55)

or the power allocated to dissipation is larger than the power delivered to the beam.
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The Robinson's limit of phase stability is correct only if there is no other stabilizing

mechanism available. In an accelerator ring, there is usually a loop that monitors the

beam loading and feedbacks onto the generator current so as to maintain the required

rf gap voltage and synchronous phase. This correction, however, is not instantaneous,

because it takes time for the new generator voltage to establish inside the rf cavity.

If gain of the feedback is high, the time delay can be much faster than the �ll time

Tf = 2QL=!r of the cavity. If this time delay is short compared with the synchrotron

period, phase stability can be established, even if the criterion Pb < PL is violated. The

former Fermilab Main Ring at its peak intensity ofNp = 3:25�1013 protons/pulse (about
3:25�1010 per bunch for 1000 bunches) serves as an example. The ring had a mean radius
of 1 km and therefore a revolution frequency f0 = 47:7 kHz. The dc beam current was

I0 = eNpf0 = 0:245 A or the image current was iim = 2I0 = 0:490 A assuming that the

bunches are short. With 15 working cavities each supplying 213 kV, the total rf voltage

was Vrf = 3:2 MV. The acceleration rate was 125 GeV/s or 2.62 MeV/turn. Thus,

sin�s = 0:819 and iim sin�0 = 0:407 A. Each cavity had a loaded shunt impedance

of 0:60 M
, or the total loaded shunt impedance was RL = 9:00 M
. The current

required to set up the rf voltage turned out to be i0 = Vrf=RL = 0:355 A, which less

than iim sin�0. Thus, Robinson's phase stability criterion had been violated. There was

a servo-tuner that guaranteed the generator current phasor to be in-phase with with rf

voltage phasor. There were also rf voltage magnitude and phase loops to maintain the

the proper rf voltage and synchronous phase. The rf cavities were of !r=(2�) = 53:1 MHz

with a loaded quality factor QL � 5000. The cavity �ll time was then Tf = 30:0 �s or

about 1.43 revolution turns, small compared with the synchrotron period of � 100 turns.

The modi�cation of the detuning is usually the slowest part of the feedback procedure,

but it is de�nitely faster than the synchrotron frequency. As a result, phase stability

was maintained even when Robinson's stability criterion was not ful�lled.

8.3.3 Robinson's Damping

Next, we consider the interaction of the beam with the impedance of the rf system. As

we will see, proper detuning damps synchrotron oscillations while improper detuning

leads to an oscillation with increasing amplitude. During half of a synchrotron period,

the center of the bunch is at a higher energy than the synchronous particle. For the sake

of convenience, choose the particular moment when the phase of bunch center is just in

phase with the synchronous particle, so that the phasor ~ib is exactly along the x-axis.
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Figure 8.7: With bunch center at Point 2 in the synchrotron oscillation, the beam

current phasor ~ib is in phase with the x-axis in the phasor plot. Below transition,

higher energy implies higher e�ective rf frequency !rf . The bunch sees a smaller

e�ective detuning angle and loses more energy per turn than when the bunch is

at the synchronous position. The synchrotron oscillation amplitude is therefore

damped.

This is illustrated by Point 2 in the synchrotron oscillation and the beam current phasor

being in phase with the x-axis in the phasor plot in Fig. 8.7. Below transition, however,

higher energy implies higher revolution frequency !0. The detuning  which is de�ned

by

tan = 2QL

!r � !rf
!r

(8.56)

appears e�ectively smaller from the view of the bunch center, when we consider the

e�ective rf frequency as !rf = h!0. The energy loss per turn, which is iimjZcavj cos , will
be larger than if the bunch center is synchronous. For the other half of the synchrotron

period, the beam particle has an energy smaller than the synchronous particle and

revolves with a lower frequency, and therefore sees a larger e�ective detuning. Again we

choose the moment when the phase of the bunch center is just in phase with synchronous

particle, or Point 3 in the synchrotron oscillation. The bunch will lose less energy than

if it is synchronous. The result is a gradual decrease in the energy o�set oscillation

after oscillation. This reduction of synchrotron oscillation amplitude is called Robinson

damping. Notice that if the detuning is in the other direction below transition,  < 0,

the beam particle will lose less energy when its energy is higher than synchronous and

lose more energy when its energy is less. The oscillation amplitude will increase turn
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after turn and the beam will therefore be Robinson unstable. The opposite is true if the

beam is above transition. We therefore have the criterion of Robinson stability:�
 > 0 or !r > !rf below transition;

 < 0 or !r < !rf above transition:
(8.57)

Notice that so far we have not imposed any optimization condition on the rf system. If

the cavity tuning is adjusted so that the generator current ~ig is in the same direction as

the rf voltage ~Vrf, so that the beam-cavity impedance appears to be real as demonstrated

in Fig. 8.4, the beam will always be Robinson stable, because the detuning will always

satisfy Eq. (8.57) according to Eq. (8.30).

8.4 Transient Beam Loading

By transient we mean that the �ll time of the cavity Tf is not necessarily much longer

than the time interval Tb for successive bunches to pass through the cavity. In other

words, the beam loading voltage from the �rst bunch will have signi�cant decay before

the successive bunch arrives.

First, let us understand how the transient beam loading occurs. As the bunch of

charge q > 0 passes through the cavity gap, a negative charge equal to that carried

by the bunch will be left by the image current at the upstream end of the cavity gap.

Since the negative image current will resume from the downstream end of the cavity gap

following the bunch, an equal amount of positive charge will accumulate there. Thus, a

voltage will be created at the gap opposing the beam current and this is the transient

beam loading voltage as illustrated in Fig. 8.8. For an in�nitesimally short bunch, this

transient voltage is

Vb0 =
q

C
=
q!rRs

Q0
; (8.58)

where C is the equivalent capacitance across the gap of the cavity. Notice that we will

arrive at the same value if the loaded shunt impedance RL and the loaded quality factor

QL are used instead. Due to the �nite quality factor Q0, this induced voltage across the

gap starts to decay immediately, hence the name transient beam loading. We will give

concrete example about the size of the voltage later. The next question is how much of

this beam loading voltage will be seen by the bunch. This question is answered by the

fundamental theorem of beam loading �rst derived by P. Wilson [1].
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Figure 8.8: As a positively charged bunch passes through a cavity, the image current

leaves a negative charge at the upstream end of the cavity gap. As the image current

resumes at the downstream side of the cavity, a positive charge is created at the

downstream end of the gap because of charge conservation, thus setting up an electric

�eld ~E and therefore the induced beam loading voltage.

8.4.1 Fundamental Theorem of Beam Loading

When a particle of charge q passes through a cavity that is lossless (in�nite Rs and

in�nite Q0), it induces a voltage Vb0 which will start to oscillate with the resonant

frequency of the cavity. Suppose that the particle sees a fraction f of Vb0, which opposes

its motion. After half an oscillation of the cavity, a second particle of charge q passes

through the cavity. The �rst induced voltage left by the �rst is now in the direction of

the motion of the second particle and accelerates the particle. At the same time, this

second particle will induce another retarding voltage ~Vb0 which it will see as a fraction

f . This second retarding voltage will cancel exactly the �rst one inside the cavity, since

the cavity is assumed to be lossless. In other words, no �eld will be left inside the cavity

after the passage of the two particles. The net energy gained by the second particle is

�E2 = qVb0 � fqVb0 ; (8.59)

while the �rst particle gains

�E1 = �fqVb0 : (8.60)

Conservation of energy requires that the total energy gained by the two particles must

be zero. This implies f = 1
2
. In other words, the particle sees one half of its transient

beam loading voltage, which is the fundamental theorem of beam loading.
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Figure 8.9: Phasor plot showing the the instant just after the second passage of

the charged particle through the lossless cavity. The induced beam loading voltage

phasors for the two passages are labeled as V
(1)
b0 and V

(2)
b0 , respectively.

The following is a more general proof by Wilson. The �rst particle induces a voltage

phasor ~V
(1)
b0 in the lossless cavity which may lie at an angle � with respect to the voltage

~Ve seen by that particle. As before, we suppose Ve = fVb0, where Ve and Vb0 are the

magnitudes of, respectively, ~Ve and ~V
(1)
b0 . Some time later when the cavity phase changes

by �, the same particle returns via bending magnets or whatever and passes through the

cavity again. It induces a second beam loading voltage phasor ~V
(2)
b0 . At this moment,

the phasor ~V
(1)
b0 rotates to a new position as illustrated in Fig. 8.9. The net energy lost

by the particle on the two passes is

�E = 2fqVb0 cos � + qVb0 cos(� + �) : (8.61)

The cavity, however, gains energy because of the beam loading �elds left behind. The

energy inside a cavity is proportional to the square of the gap voltage. If the cavity is

free of any �eld to start with, the �nal energy stored there becomes

�Ec = �

�
2Vb0 cos

�

2

�2

= 2�V 2
b0(1 + cos �) ; (8.62)

where � is a proportionality constant. From the conservation of energy, we get

2fqVb0 cos � + qVb0(cos � cos � � sin � sin �)� 2�V 2
b0(1 + cos �) = 0 : (8.63)



8.4 Transient Beam Loading 8-23

Since � is an arbitrary angle, we obtain

qVb0 sin � = 0 ;

qVb0 cos � = 2�V 2
b0 ;

2fqVb0 cos � = 2�V 2
b0 : (8.64)

The �rst equation gives � = 0 implying that the transient beam loading voltage must

have a phase such as to maximally oppose the motion of the inducing charge. Clearly

� = � will not be allowed because this leads to the unphysical situation of the particle

gaining energy from nowhere. Solving the other two equations, we obtain f = 1
2
.

8.4.2 From Transient to Steady State

Let the bunch spacing be hb rf buckets or Tb in time. The cavity time constant or �lling

time is Tf = 2QL=!r and the e-folding voltage decay decrement between two successive

bunch passages is ÆL = Tb=Tf . During this time period, the phase of the rf �elds changes

by !rTb and the rf phase by !rfTb = 2�hb. The phasors therefore rotate by the angle

	 = !rTb � 2�hb, which can also be written in terms of the detuning angle,

	 = (!r � !rf)Tb = ÆL tan ; (8.65)

where Eq. (8.24) has been used. The transient beam loading voltage left by the �rst

passage of a short bunch carrying charge q is Vb0 = q=C = q!rRL=QL. The total beam

loading voltage Vb seen by a short bunch is obtained by adding up vectorially the beam

loading voltage phasors for all previous bunch passages. The result is

Vb =
1
2
Vb0 + Vb0

�
e�ÆLej	 + e�2ÆLej2	 + � � � � ; (8.66)

where the 1
2
in the �rst term on the right side is the result of Wilson's fundamental

theorem of beam loading, which states that a particle sees only one-half of its own

induced voltage. It is worth pointing out that these voltages are excitations of the

cavity and are therefore oscillating at the cavity resonant frequency (all higher order

modes of the cavity are neglected). This in�nite series of induced voltage phasors is

illustrated in Fig. (8.10). The summation can be performed exactly giving the result

Vb = Vb0

h
F1(ÆL;  ) + jF2(ÆL;  )

i
; (8.67)

with

F1 =
1� e�2ÆL

2D
; F2 =

e�ÆL sin(ÆL tan )

D
; (8.68)
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Figure 8.10: Transient beam loading voltages from equally spaced bunches. Each

preceding voltage phasor has a phase advance of  because of detuning and a decay

of e�ÆL . Note that the bunch that is just passing by sees only half of its induced

voltage ~Vb0. These voltage phasors add up to the total beam loading voltage phasor
~Vb. Together with the generator voltage ~Vg, the cavity gap voltage results at the

synchronous angle �s.

D = 1� 2e�ÆL cos(ÆL tan ) + e�2ÆL : (8.69)

In terms of the coupling constant � and detuning angle  , we have

tan = 2QL

!r � !rf
!r

;

QL =
Q0

1 + �
;

ÆL = Æ0(1 + �) ;

(8.70)

where we have de�ned Æ0 = Tb=Tf0 with Tf0 being the �lling time of the unloaded cavity.

Then the single bunch induced beam loading voltage becomes

Vb0 = 2I0RsÆ0 ; (8.71)

use has been made of the approximation for short bunches, so that the Fourier component

of the current of a bunch at frequency !rf=hb is equal to twice its dc value or ib = 2I0
and I0 = q=Tb. Putting things together, we get

Vb = 2I0RsÆ0

�
F1(Æ0; �;  ) + jF2(Æ0; �;  )

�
; (8.72)
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with

F1(Æ0; �;  ) =
1� e�Æ0(1+�)

2D
; (8.73)

F2(Æ0; �;  ) =
e�Æ0(1+�) sin[Æ0(1 + �) tan ]

D
; (8.74)

D = 1� 2e�Æ0(1+�) cos[Æ0(1 + �) tan ] + e�2Æ0(1+�) : (8.75)

Some comments are in order. Figure 8.10 shows the transient nature of beam loading

if the beam loading voltage phasors, that rotate by the angle 	 and have their magnitudes

diminished by the factor e�ÆL for each successive time period, are excitations of one

short bunch. However, what we consider is in fact the diminishing beam loading voltage

phasors coming from successive bunches that pass through the cavity at successive time

periods nTb earlier with n = 1; 2; � � � . For this reason, what Fig. 8.10 shows is actually
the steady-state situation of the beam loading voltages, because for each time interval

Tb later, we will see exactly the same spiraling beam loading phasor plot and the same

total beam loading voltage phasor ~Vb. Therefore, we can add into the plot the generator

voltage phasor ~Vg in the same way as the plot in Fig. 8.4. In fact, the plot in Fig. 8.4

provides only an approximate steady-state plot, because the beam loading voltage phasor

there does attenuate a little bit after a 2� rotation of the phasors, although a high QL has

been assumed. However, such attenuation has already been taken care of in Fig. 8.10,

resulting in the plotting of an exact steady state. When the bunch arrives, the beam

loading voltage phasor is ~Vb as indicated in Fig. 8.10. It rotates counterclockwise and its

magnitude decreases because of �nite quality factor of the cavity. Just before the arrival

of the next bunch, the beam loading voltage phasor becomes ~Vb� 1
2
~Vb0. Notice that the

beam loading voltage phasor rotates for more than 2�, since !r > !rf or the detuning

angle  is positive in Fig. 8.10. As soon as the next bunch arrives, it jumps by 1
2
~Vb0 and

goes back to ~Vb. Therefore, the beam loading voltage phasor is not sinusoidal and does

not rotate at the speed of !rf or !rf=hb. It approaches sinusoidal only when the jump

of the transient beam loading voltage 1
2
~Vb0 is small and that happens when the loaded

quality factor QL is large, or when the cavity �lling time Tf = 2QL=!r is much larger

than the time interval Tb between successive bunch passages. On the other hand, the

beam loading voltage phasor ~Vb seen by the bunch in Fig. 8.4 is sinusoidal because it is

induced by a sinusoidal component of the beam. In fact, over there, we allow for only

one Fourier component.
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Using Eq. (8.14), the generator power Pg can now be computed:

Pg=
(1 + �)2V 2

rf

8�Rs cos2  

(�
sin�s� ibRsÆ0

Vrf
F1(Æ0; �;  )

�2
+

�
cos�s+

ibRsÆ0
Vrf

F2(Æ0; �;  )

�2)
:

(8.76)

In the situation when the generator current ~ig is in phase with the rf voltage ~Vrf, the

generator power can be minimized so that there will not be any reection. Similarly,

the generator power can also be optimized by choosing a suitable coupling coeÆcient �.

Unfortunately, these optimized powers cannot be written as simple analytic expressions.

8.4.2.1 Limiting Case with Æ0 ! 0

When the bunch spacing Tb is short compared to the unloaded cavity �lling time Tf0,

simpli�ed expressions can be written for the total beam loading voltage Vb. One gets

F1(Æ0; �;  ) =
1

Æ0(1 + �)(1 + tan2  )
; (8.77)

F2(Æ0; �;  ) =
tan 

Æ0(1 + �)(1 + tan2  )
; (8.78)

so that

Vb =
ibRs

1 + �

1

1� j tan 
: (8.79)

Notice that this is exactly the same expression in Eq. (8.25). In fact, this is to be

expected, because we are in the situation of Tb � Tf , or the case of a high QL resonating

cavity.

In the absence of detuning, the beam loading voltages left by previous bunches just

added up to give

Vb =
Vb0
2

1 + e�ÆL

1� e�ÆL
: (8.80)

For a high-QL cavity, this becomes

Vb =
Vb0
ÆL

= ibRL ; (8.81)

which is the maximum beam loading voltage seen by the beam.

When Æ0 ! 0, the phase angle 	 = Æ0(1 + �) tan ! 0, although the detuning

 may be �nite. Thus, the transient beam loading voltage ~Vb0 will not decay and will
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also line up for successive former bunch passages, leading to an in�nite total beam

loading voltage Vb seen by the bunch. However, Æ0 ! 0 implies letting Q0 ! 1
while keeping the shunt impedance �xed. Thus, the instantaneous beam loading voltage

Vb0 = q=C = q!rRs=Q0 = 2ibRsÆ0 also goes to zero, implying that the summation

has to be done with care. For successive Vb0's to wrap around in a circle, one needs

approximately 2�=	 Vb0's. The radius of this circle will be Vb0=	. As Æ0 ! 0, this

radius becomes

lim
Æ0!0

Vb0
	

=
2ibRs

tan 
; (8.82)

which is �nite. In fact, this is roughly the same as the total beam loading voltage Vb as

Æ0 ! 0.

During bunch-to-bunch injection, the transient beam loading voltage in the cavity

will add up gradually as is indicated in the spiral in Fig. 8.10. Thus, if the decay

decrement is small, the total beam loading voltage will reach a maximum roughly equal

to twice the voltage given by Eq. (8.72) before spiraling to its limiting value. The

maximum beam loading voltage will be twice the value given by Eq. (8.79) as if the

shunt impedance has been doubled.

8.4.2.2 Limiting Case with Tb � Tf

This is the situation when the instantaneous beam loading voltage decays to zero before

a second bunch comes by. It is easy to see that F1(Æ0; �;  ) ! 1
2
and F2(Æ0; �;  ) ! 0.

From Eq. (8.76), it is clear that the generator power increases rapidly as the square of

Æ0. This is easy to understand, because the rf power that is supplied to the cavity gets

dissipated rapidly. A pulse rf system will then be desirable. In such a system, the power

is applied to the cavity for about a �lling time preceding the arrival of the bunch. For

most of the time interval between bunches, there is no stored energy in the cavity at all

and hence no power dissipation.

8.4.3 Transient Beam Loading of a Bunch

When a bunch of linear density �(�) passes through a cavity gap, electromagnetic �elds

are excited. The beam loading retarding voltage seen by a particle at time � ahead of
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the bunch center is given by

V (�) =

Z 1

�

q�(� 0)W 0
0(�

0 � �)d� 0 ; (8.83)

where q is the total charge in the bunch, �(�) is normalized to unity when integrated

over � , and W 0
0(�) is the wake potential left by a point charge at a time � ago. If we

approximate the cavity as a RLC parallel circuit with angular resonant frequency !r,

loaded quality factor QL, and loaded shunt impedance RL, the wake potential can be

written as, for � > 0,

W 0
0(�) =

!rRL

QL

e���
h
cos �!� � �

�!
sin �!�

i
: (8.84)

For � < 0, W 0
0(�) = 0 because of causality. For � = 0, W 0

0(�) = !rRL=(2QL) because of

the fundamental theorem of beam loading. In above, the decay rate � and the shifted

resonant angular frequency �! are given by

� =
!r
2QL

and �! =
p
!2
r � �2 : (8.85)

Notice that this is exactly the same wake potential we studied in Eq. (1.48) of Exer-

cise 1.3. For the convenience of derivation, we introduce the loss angle � which is de�ned

asz

cos � =
�!

!r
and sin � =

�

!r
: (8.86)

With this introduction, the wake potential can be conveniently rewritten as

W 0
0(�) =

!rRL

QL cos �
Re ei(ei�!r�+�) : (8.87)

The �rst application is for a point bunch with distribution �(�) = Æ(�). Substitution

into Eq. (8.83) gives V (�) = qW 0
0(��), or

V (�) =

8>>>>><
>>>>>:

0 � > 0 ;

q!rRL

2QL

� = 0 ;

q!rRL

QL cos �
Re ei(ei�!r�+�) � < 0 :

(8.88)

Thus, the head of the bunch (� = 0+) sees no beam loading voltage. The tail of the

bunch (� = 0�) sees the transient beam loading voltage Vb0 = q=C as given by Eq. (8.58).

The center of the bunch sees one half of Vb0.

zIf one prefers, this angle can also be de�ned as cos � = �=!r and sin � = �!=!r.
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8.4.3.1 Gaussian Distribution

Consider a Gaussian distributed bunch of rms length �� . The linear density is

�(�) =
1p
2���

e��
2=(2�2� ) : (8.89)

The beam loading voltage experienced by a beam particle at distance � ahead the bunch

center is (Exercise 8.5)

V (�) =
q!rRL

2QL cos �
Re ei���2=(2�2� )w

�
��!re

i�

p
2

+
i�p
2��

�
; (8.90)

where q is the total charge in the bunch and w is the complex error function de�ned as

w(z) = e�z
2

�
1 +

2ip
�

Z z

0

et
2

dt

�
: (8.91)

It can be readily shown that as the bunch length shortens to zero, the head, center, and

tail of the bunch are seeing the transient beam loading voltage (Exercise 8.5)

V (�) =

8>>>>><
>>>>>:

0 � = 0 + (head) ;

q!rRL

2QL

� = 0 (center) ;

q!rRL

QL

� = 0� (tail) ;

(8.92)

exactly the same result for a point bunch. In fact, Eq. (8.92) just serves as another proof

of the fundamental theorem of beam loading that the test charge sees one half of its own

beam loading voltage. This proof is more general than those presented in the previous

subsection, because it involves a lossy cavity or a cavity with a �nite quality factor QL.

The beam loading voltages of a Gaussian bunch are plotted in Fig. 8.11. They

are all normalized to q!rRL=QL, which is the beam loading voltage when the bunch

is contracted to a point. Each curve is identi�ed by two parameters: (QL; F ), where

F =
p
6!r��=� is roughly the fraction of the rf wavelength occupied by the bunch, since

we usually equate the half 95% Gaussian bunch length to
p
6�� . The horizontal coordi-

nate is the distance of the test particle ahead the bunch center in units of �� , the rms

bunch length. We notice that as the bunch becomes shorter, the beam loading voltage

becomes larger. When it becomes very short, the curve with (1,0.01), we recover the
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Figure 8.11: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

Gaussian distribution seen by a particle at distance �=�� ahead the bunch center,

where �� is the bunch rms length and q the total charge in the bunch. Each curve is

labeled by (QL; F ), where F =
p
6!r��=� is roughly the fraction of the rf wavelength

occupied by the bunch, andQL, RL, and !r=(2�) are, respectively, the loaded quality

factor, loaded shunt impedance, and resonant frequency of the cavity.

results in Eq. (8.92) that a particle at the center of the bunch sees one half of the bunch

beam loading voltage. When the quality factor of the cavity becomes larger, the beam

loading voltage does not decay as fast and its reduced amplitude is therefore closer to

unity. We also notice that the beam loading voltage seen by each particle in the bunch

varies along the bunch. This result is important, because it is diÆcult to compensate

for the beam loading voltage to every point along the bunch.

8.4.3.2 Parabolic Distribution

Consider a bunch with parabolic distribution,

�(�) =
3

4�̂

�
1� � 2

�̂ 2

�
j� j � �̂ ; (8.93)

where �̂ is the half bunch length. As the bunch of total charge q passes through a cavity,

the transient beam loading voltage seen by a particle at a distance T behind the head
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of the bunch is (Exercise 8.6), for T � 2�̂ ,

V (T ) =
q!rRL

QL

3p2

2�2 cos �

(
p

�

�
!r(�̂�T ) cos �+sin 2�

�
+

+ e��T
�
sin(�!T�2�)� p

�
cos(�!T��)

�)
; (8.94)

and for T > 2�̂ ,

V (T ) =
q!rRL

QL

3p2

2�2 cos �

(
e��(T�2�̂ )

�
p

�
sin
�
�!(T�2�̂)�2�

�
� cos

�
�!(T�2�̂)��

��
+

+ e��T
�
sin(�!T�2�)� p

�
cos(�!T��)

�)
; (8.95)

where

p =
�

!r�̂
: (8.96)

Beside the normalization factor q!rRL=QL, the beam loading voltage depends on two

parameters: !r�̂ and the loaded quality factor QL.

Figure 8.12 shows the beam loading voltage seen by a bunch with parabolic distribu-

tion. The normalization is also to q!rRL=QL. The horizontal coordinate is the fractional

distance T=(2�̂) of the test particle behind the head of the bunch. Each voltage curve is

labeled by the two parameters (QL; F ), where F = !r�̂ =� = 1=p is the ratio of the total

bunch length to the rf wavelength. All the comments of the beam loading voltage of the

Gaussian bunch apply here also.

8.4.3.3 Cosine-Square Distribution

Consider a bunch with cosine-square linear distribution,

�(�) =
1

�̂
cos2

��

2�̂
j� j � �̂ ; (8.97)

where �̂ is the half bunch length. As the bunch of total charge q passes through a cavity,

the transient beam loading voltage seen by a particle at a distance T behind the head
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Figure 8.12: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

parabolic distribution seen by a particle at distance T=(2�̂ ) behind of the head of the

bunch, where 2�̂ is the total bunch length and q the total charge in the bunch. Each

curve is labeled by (QL; F ), where F = !r�̂ =� is the fraction of the rf wavelength

occupied by the bunch, andQL, RL, and !r=(2�) are, respectively, the loaded quality

factor, loaded shunt impedance, and resonant frequency of the cavity.

of the bunch is (Exercise 8.6), for T � 2�̂ ,

V (T ) =
q!rRL

QL

p2

2�D cos �

(�
1� p2

�
sin

�(�̂�T )
�̂

cos � + p cos
�(�̂�T )

�̂
sin 2�+

+ p3e��T sin �!T � pe��T sin(�!T�2�)
)
; (8.98)

and for T > 2�̂ ,

V (T ) =
q!rRL

QL

p2

2�D cos �

(
pe��(T�2�̂ )sin [�!(T�2�̂)�2�]� p3e��(T�2�̂ )sin �!(T�2�̂)+

+ p3e��T sin �!T � pe��T sin (�!T�2�)
)
; (8.99)

where p is given by Eq. (8.96) and

D = 1� 2p2 cos 2� + p4 : (8.100)
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Besides the factor outside the curly brackets, the beam loading voltage depends on two

parameters: !r�̂ and the loaded quality factor QL.

Figure 8.13 shows the beam loading voltage seen by a bunch with cosine-square

distribution. The normalization is also to q!rRL=QL. The test particle is at the fractional

distance T=(2�̂) behind the head of the bunch. We labeled each reduced beam loading

voltage curve by (QL; F ), where F = !r�̂ =� = 1=p is the ratio of the total bunch length

to the rf wavelength. All the comments concerning the beam loading voltage of the

Gaussian bunch apply to here as well.

Figure 8.13: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

cosine-square distribution seen by a particle at distance T=(2�̂ ) behind the head of

the bunch, where 2�̂ is the total bunch length. Each curve is labeled by (QL; F ),

where F = !r �̂ =� is the fraction of the rf wavelength occupied by the bunch, and QL,

RL, and !r=(2�) are, respectively, the loaded quality factor, loaded shunt impedance,

and resonant frequency of the cavity.

8.4.3.4 Cosine Distribution

Consider a bunch with cosine linear distribution,

�(�) =
�

4�̂
cos

��

2�̂
j� j � �̂ ; (8.101)

where �̂ is the half bunch length. As the bunch of total charge q passes through a cavity,

the transient beam loading voltage seen by a particle at a distance T behind the head
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of the bunch is (Exercise 8.6), for T � 2�̂ ,

V (T ) =
q!rRL

QLcos �
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and for T > 2�̂ ,
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q!rRL
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where p and D are given by Eqs. (8.96) and (8.100). Besides the factor outside the curly

brackets, the beam loading voltage depends on two parameters: !r�̂ and the loaded

quality factor QL.

Figure 8.14 shows the beam loading voltage seen by a bunch with cosine-square

distribution. The normalization is also to q!rRL=QL. The test particle is at the fractional

distance T!r=(2�) behind the head of the bunch, or the time is normalized to an rf

wavelength. The reduced beam loading voltage depends on two parameters: !r�̂ and

the loaded quality factor QL. We labeled each reduced beam loading voltage curve

by (QL; F ), where F = !r�̂ =� = 1=p is the ratio of the total bunch length to the rf

wavelength. All the comments concerning the beam loading voltage of the Gaussian

bunch apply to here as well. Both curves are for the high quality factor QL = 5000. For

the example of F = 0:3, the reduced transient beam loading voltage has a maximum of

0.681 within the bunch length and later rings for a long time at the frequency !r=(2�)

of the cavity with an amplitude 0.918 decaying very slowly. This amplitude is roughly

equal to I1=(2I0), where I1 is the rf component of the bunch current and I0 is the

average bunch current. Because the e-folding decaying time is QL=� rf buckets, the

bunch is seeing these ringing amplitudes left by its predecessors. For a ring with all

buckets occupied, the beam loading voltage seen by a bunch is

Vb =
q!rRL

QL

�
A+B

�
1 + e�ÆL + e�2ÆL + � � � �� ; (8.104)

where ÆL is the decay decrement. Here, A denotes the portion of the beam loading

voltage excited instantaneously by the bunch crossing the cavity gap while B denotes
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Figure 8.14: The beam loading voltage, normalized to q!rRL=QL, of a bunch with

cosine distribution seen by a particle at distance T (normalized to the rf wavelength)

behind the head of the bunch. Each curve is labeled by (QL; F ), where F = !r�̂ =�

is the fraction of the rf wavelength occupied by the bunch, and QL, RL and !r=(2�)

are, respectively, the loaded quality factor, loaded shunt impedance, and resonant

frequency of the cavity.

whatever left by the previous crossings. Comparing with Eq. (8.66) for a point bunch

(F = 1), we have A = 1
2
and B = 1. For a bunch of �nite extent, for example F = 0:3

in the cosine distribution, we have A = 0:681 and B = I1=(2I0) = 0:918. For a high

QL, it is the second term that dominates. We can conclude that compared with a point

bunch, a distributed bunch of �nite length will have its beam loading voltage lowered

only by a small amount, i.e., by the fraction I1=(2I0).

The situation of F = 1 is very special and is represented by the dashed curve.

Here, the bunch is as long as the rf wavelength. In fact, the situation corresponds to a

bunch �lling the rf bucket uniformly. Although the �rst maximum is A � 0:2, the actual

ringing amplitude is roughly B � 0:33. It is easy to show that I1=(2I0) = 1=3. In other

words, even when the bunch �lls up the bucket, the beam loading voltage is decreased

by a factor of only 3.

We plot in Fig. 8.15 I1=(2I0) as functions of F , the total bunch length in units of rf

wavelength, for various bunch distribution. We see that when the bunch is short, I1=(2I0)
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drops very slowly with F and is distribution weakly-dependent only when the bunch is

long. When the total bunch length equal the bucket length or F = 1, I1=(2I0) = 1=2,

exp(��2=16), 1/3, and 3=�2, respectively, for the cosine-square, Gaussian, cosine, and

parabolic distribution.

Figure 8.15: Ratio of the rf component of the bunch to two times the dc component,

I1=(2I0), as functions of F , total bunch length in units of bucket length, for, from

top to bottom, cosine-square, Gaussian, cosine, and parabolic distributions.

8.4.4 Transient Compensation

We are going to give a short overview of some methods to cope with transient beam

loading. The serious readers are referred to the references for further reading.

For a ring in the storage mode with all rf buckets �lled with bunches of equal charges,

each bunch is seeing exactly the same beam loading voltage, except for the inuence of

its small amount of synchrotron motion. We say that the beam loading is in the steady

state and compensation can be made by detuning the cavity if the beam intensity is not

too high.

However, the beam loading in many circumstances is in the transient state when

there is a sudden change in beam intensity. One example is injection when bunches are
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injected one by one. The beam loading voltage inside the rf cavity will increase linear

with time, and the beam loading voltage seen by a bunch depends on time as well as

its location along the ring. Obviously, slow extraction of an intense beam will also lead

to sudden changes in the beam loading voltage. Another example is a gap left in an

accelerator ring to allow for the �ring of the injection and extraction kickers. Such a gap

is also bene�cial in clearing particles of opposite charge trapped inside the beam in order

to eliminate collective two-stream instability. In the presence of a gap, the total beam

loading voltage experienced in a cavity will be di�erent during di�erent bunch passages.

For example, the bunch just after the gap will see the smallest beam loading voltage

and the bunch just preceding the gap will see the most. As a result, the last bunch in

the bunch train or batch will always see a lower rf voltage than the �rst bunch. At best,

there will be a synchronous phase di�erence between the bunches leading to increase in

longitudinal bunch area. At worst, the �nal bunches of the batch will not have enough

voltage for stability. Strictly speaking, the word transient has been used wrongly for

the problem of a gap, because such an e�ect occurs even when the stored beam is in the

steady state. The uneven beam loading voltage experienced by the di�erent bunches in

the batch is a result of having many frequency components in the beam loading voltage

besides the ones at the rf frequency and its multiples. Because of this, we should de�ne

the term transient beam loading as e�ects at frequencies other than the fundamental rf,

its multiples, and their synchrotron sidebands.

One way to reduce beam loading, either steady-state or transient, is to reduce the

loaded shunt impedance RL of the cavity seen by the beam [9]. An obvious method is to

add a resistance in parallel. Although this reduces the voltage created by both the beam

and the power ampli�er, however, the power requirements of the ampli�er are increased.

If the power ampli�ers are already operating at their capacity, this is not an applicable

solution.

Another possibility for reducing the beam loading voltage generated by the beam

is to have another power ampli�er to supply an additional generator current Ig equal

and opposite to the beam image current. These two currents cancel each other at the

cavity gap, making the cavity look like a short circuit to the beam. This method is very

fast because there is no need to �ght against the �lling time of the cavity since there

is no net current owing across the cavity gap at all and therefore no additional �elds

created inside the cavity. This is a powerful but expensive solution due to the extra

ampli�er required. It is called high-level feed-forward compensation and is applicable

for �xed rf frequency only. It was added to the CERN Intersecting Storage Ring (ISR)
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rf system not so much to improve stability but due to a power limitation in the rf power

ampli�er. It can be shown [3] that the extra power required can become halved if the

cavity is haly pretuned before the injection so that the peak powers before and after

injection are the same. In other words, the power is unmodulated even when the beam

is fully modulated. The required power can be lowered by a factor of two again if there

is optimum matching between the rf generator and the cavity. This can be accomplished

by having a circulator inserted between the rf power and the cavity so that the additional

current for the beam loading compensation means also real power.

To avoid high power consumption, there are also methods for low-level compensa-

tion. One technique is referred to as feed-forward [10]. The bunch current at a location

preceding the cavity in the accelerator ring is measured and the signal is added to the

low-level rf drive of the power ampli�er so that an additional generator current Ig equal

and opposite beam current is generated at the time the bunch crosses the cavity gap,

as illustrated in Fig. 8.16. Experience and analysis show a dramatic increase in the
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Figure 8.16: Block diagram of direct rf feed-forward, where B(s) is the beam

response and S is the transconductance of the ampli�er.

instability threshold. This scheme has been successfully applied in the CERN Proton

Synchrotron (PS) and the CERN Proton Synchrotron Booster (PSB). The instability

threshold can probably be raised an order of magnitude. This is because the cavity

voltage is completely decoupled from the beam signal, which nulli�es the Robinson's

instability. However, it is diÆcult to apply when the rf frequency is varying. The feed-

back path through the beam response is fairly weak, so the risk of creating an unstable

system response is low. However, with a weak feedback, any errors in the system will

not be compensated, so it is very important that the delay and phase advance of the
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systems are properly tuned for beam cancellation. In practice, maintaining an error free

system is very diÆcult when large amounts of impedance reduction is required.

A second technique of reducing the cavity impedance is ampli�er feedback. The

voltage in the cavity is measured, ampli�ed and added to the low-level rf drive, as is

illustrated in Fig. 8.17. To compute the impedance seen by the beam, the input at the
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Figure 8.17: Block diagram of direct rf feedback, where the ampli�er gain is G and

the transconductance is S. The e�ective impedance seen by the beam is reduced

from RL to RL=(1 + SGRL).

generator is turned o�. The cavity voltage is ampli�ed to GVrf where G is the gain. It is

then transformed into a current �SGVrf through the transconductance S. This current

is next fed through the generator and produces the additional gap voltage �SGVrfZ,
giving a total gap voltage of Vrf = Vb � SGVrfZ, where Vb = RLib is the beam loading

voltage produced by the beam current ib in the absence of the feedback loop. The

e�ective impedance experienced by the beam becomes

Re� =
RL

1 + SGRL

; (8.105)

where H = SGRL is called the open loop gain. Thus, by increasing the gain, the shunt

impedance can be largely reduced. The main feedback path for this system no longer

includes the beam response, and it is much stronger. The low-level feedback is very fast

and the delay just depends on the length of the cables of the feedback loop. This is

the most powerful method known and can be applied even for varying rf frequency. It

has been applied to the CERN ISR at 9.5 MHz with H = 60, the CERN Antiproton

Accumulator at 1.85 MHz with H = 120, and the CERN PSB at 6 to 16 MHz with

H = 5 to 12.
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In addition, there are a number of feedback loops in an rf accelerating system to

assure that the particle beam will be accelerated according to the prescribed ramp design

and to guarantee stability even when the Robinson's stability limit is exceeded. In the rf

system of the former Fermilab Main Ring, for example, there are �ve feedback loops: [11]

(1) Rf frequency control loop, which compares the beam bunch phase versus rf phase

comparitor and output an error signal. It is dc coupled with very low bandwidth. rf

frequency.

(2) Beam radial position control loop, which controls the radial position of the beam

by making small adjustment to the synchronous phase angle. It is dc coupled with

bandwidth about 10 kHz.

(3) Correction loop for cavity gap voltage phase versus generator voltage phase. It is

ac coupled with 5 MHz bandwidth and is capable of fast adjustment of cavity excitation

phase to compensate for transient beam loading e�ects.

(4) Cavity voltage amplitude control loop, which adjusts the generator current such

that the rf voltage amplitude developed at the cavity gap equals to its prescribed value.

It has a very high dc gain (� 60 db) and corner frequency 5 Hz.

(5) Detuning loop, which monitors the load angle between the generator current and

the cavity gap voltage and adjusts the cavity tuning through ferrite biasing so that the

load impedance presented to the generator appears to be real. It has a high dc gain

(� 60 db) with low bandwidth and corner frequency 1 Hz.

Among these, the second and third loops are the fastest, while the detuning loop is

the slowest. These loops are not only limited by their gains, because they are only

independent when the beam intensity is low. As the beam intensity increases, they

become coupled and gradually lose their function.

For large rf systems, long delays may be unavoidable and the conventional rf feed-

back would have a too restricted bandwidth, may be much smaller than the cavity

bandwidth itself. However, in the spectrum of transient beam loading, it is only those

revolution harmonic lines that require nulli�cation, and there is nothing in between the

harmonics. With a return path transfer function having a comb-�lter shape with max-

ima at every revolution harmonic, this condition can be satis�ed. The overall delay of

the system must be extended to exactly one machine turn to ensure the correct phase

at the harmonics. Nullifying the beam signals at the revolution harmonics other than

the fundamental rf frequency cures the transient beam loading.
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8.4.4.1 Coupled-Bunch Instabilities

As will be discussed in Chapter 9, narrow resonances located at the synchrotron side-

bands may excite longitudinal coupled-bunch instabilities. Although these narrow res-

onances originate mostly from the higher-order modes of the cavities, some may also

comes from the revolution harmonics of the beam loading voltage excited because of

having asymmetric �ll in the stored beam. These harmonic lines have �nite widths due

to energy spread of the bunches and the synchrotron oscillations that develop because

of the rf phase o�sets. Thus, these harmonic components of the beam loading voltage

can drive coupled-bunch instabilities and their nulli�cation through comb-�lter shape

feedback is very essential.

Even for a ring of bunches with asymmetric gaps, the detuning of the cavities may

also drive coupled bunch instabilities. This happens for a large machine where the

revolution frequency f0 is low. Detuning can very often shift the peak of the intrinsic

resonant frequency of the cavities by more than one or more revolution harmonic. Here,

we use a design of the former Superconducting Super Collider (SSC) as an example [5].

The average beam current is I0 = 0:073 A. and a 374.7-MHz rf system is chosen. There

are 8 cavities each having a shunt impedance RL = 2:01 M
 and RL=QL = 125 
, or

QL = 1:608� 104. At storage, the rf gap voltage per cavity is Vrf = 0:5 MV. Thus the

required detuning is given by

2QL

!r � !rf

!r
= tan =

iim cos�s
i0

: (8.106)

At �s � � and using short-bunch approximation, we obtain

!r � !rf

!r
= � iimRL

2VrfQL

= �0:183� 10�4 ; (8.107)

or a detuning of �fr = �6:84 kHz. The half bandwidth of the loaded cavity is �f =

fr=(2QL) = 11:68 kHz. However the revolution frequency of the collider ring is only

f0 = 3:614 kHz. In other words, the resonant impedance of the cavities would occur at a

frequency slightly greater than frf � 2f0 and have a spread covering about 10 revolution

harmonics. Such impedance could drive longitudinal coupled-bunch instabilities with

considerable strength. If we compute this with the Fermilab Main Ring at a total of

3:25� 1013 protons in the ring, we �nd that j�fr=ff j = 1:33� 10�4 or j�frj = 7:1 kHz

during acceleration, while the half bandwidth of the cavities is� 4:4 kHz. These numbers

are very much less than the revolution frequency f0 = 47:7 kHz. On the other hand, the
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200-MHz traveling-wave accelerating structures in the CERN Super Proton Synchrotron

(SPS) have a considerable bandwidth so that the impedance at frf � nf0 for small

n is appreciable. Coupled-bunch instabilities arising from this impedance have been

reported [6]. This also happens in the Low Energy Ring (LER) of the SLAC B-factory.

Matching the klystron to the rf cavities requires the cavity be detuned to a frequency

near frf�1:5f0, thus driving longitudinal coupled-bunch instabilities [7] in modes �1 and
�2. Longitudinal coupled-bunch instabilities are usually alleviated by damping passively
the driving resonances in the cavity or employing a mode damper. Here, the problem

is quite di�erent. First, we cannot damp this fundamental mode passively because we

require it to supply energy to the beam. Second, usually the higher-order resonances that

drive the coupled-bunch instabilities are much weaker than the fundamental. However,

it is the fundamental that drives the coupled-bunch instabilities here. In other words,

a very much powerful damper will be necessary to remove the instabilities. Because of

this complication, a solution to this problem proposed in the SSC Conceptual Design

Report is not to detune the cavity at the expense of increasing the required rf power.

8.5 Examples

8.5.1 Fermilab Main Ring

Once the former Fermilab Main Ring operated above transition inM = 567 consecutive

bunches with total intensity 5� 1013 protons. The ring consisted of h = 1113 rf buckets

and the rf frequency was !r=(2�) = 53:09 MHz There were 15 rf cavities, each of

which had a loaded shunt impedance of RL = 500 k
 and the loaded quality factor was

QL = 5000.

At steady state, the kth bunch in a bunch train of M bunches sees a beam loading

voltage of (Exercise 8.7)

Vbk = V0e
�(k�1)ÆL + Vb0

�
1
2
+ e�ÆL + � � �+ e�(k�1)ÆL

�
; (8.108)

where ÆL = �=QL is the decay decrement,

Vb0 =
qB!rRL

QL

(8.109)

is the transient beam loading voltage left by a bunch carrying charge q, B is a parameter

de�ned in Eq. (8.104) to take care of the fact that the bunch has a �nite length, and is
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equal to the current component at the rf frequency divided by twice the dc current, and

V0 = Vb0
e�(h�M+1)ÆL � e�hÆL

(1� e�ÆL)(1� e�hÆL)
(8.110)

is the beam loading voltage seen by the �rst bunch due to the excitation by earlier

passages of the beam. The di�erence in beam loading voltage experienced by the last

and the �rst bunch is therefore

�Vb = Vb0
e�ÆL[1� e�(M�1)ÆL ][1� e�(h�M)ÆL ]

(1� e�ÆL)(1� e�hÆL)
: (8.111)

For the Fermilab Main Ring with B = 0:872, we obtain Vb0 = 0:411 kV and �Vb =

113 kV for one cavity. In the storage mode the gap voltage per cavity was Vrf = 66 kV.

Thus, if the generator current Ig is in phase with the gap voltage and the synchronous

angle was exactly �s = � at the passage of the �rst bunch through the cavity, the

last bunch will see a synchronous angle �s = tan�1(ÆVb=Vrf) � 1
3
�. Such a large shift

is intolerable because this will lead to a synchrotron oscillation of the center of the

last bunch with an amplitude of 1
6
� and �nally result in a large growth of longitudinal

emittance. There was a correction loop in the rf system that was capable of adding plus

or minus quadrature currents up to
p
3 times the existing generator current to the input

of the power ampli�er [11]. With such an addition the synchronous angle goes back to

�. The response time was � 300 ns, about 16 bunch periods, and was limited by the

length of the cable loop. During such time, a maximum synchrotron phase shift of only

2:8Æ could develop and was tolerable.

Equation (8.111) shows that �Vb is small when there are only a small number of

consecutive bunches in the ring (M ! 1). This is expected because it just gives the

sum of the beam loading voltages of these few bunches while V0 ! 0. On the other

hand, if the ring is almost �lled (M ! h), �Vb is also small, because of this is close to

a symmetric �lling of the ring. It is easy to show that the maximum �Vb occurs when

the ring is half �lled, or when the length of the gap is equal to the length of the bunch

train.

8.5.2 Fermilab Booster

The injection into the Fermilab Booster from the Fermilab Linac is continuous for up

to 10 Booster turns. After that the beam is bunched by adiabatic capture, which takes
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place in about 150 �s while the rf voltage increases to 100 kV. During the injection, the

beam is coasting and does not contain any component of the rf frequency. However,

during adiabatic capture, both the rf voltage and the rf component of the current in-

crease. If the former does not increase fast enough, Robinson's stability criterion will be

violated. In general, the most dangerous moment is when the bucket area is equal to the

bunch area. After that, the ratio of rf component beam signal to rf voltage decreases.

However, the rf voltage during adiabatic capture in the Booster is maintained through

counter-phasing. This is accomplished by dividing the 18 cavities into two groups. The

required voltage amplitude and synchronous angle are obtained by varying the relative

phase between the two groups. Thus the gap voltage in each cavity is not small and

individually Robinson's stability is satis�ed in each cavity. Counter-phasing is essential

during adiabatic capture: First, maintaining too low a gap voltage inside a cavity will

cause multi-pactoring. Second, the response of raising rf voltage during the capture

through varying the generator current is slow because one has to �ght the quality factor

of the cavities, whereas controlling the rf voltage through varying the relative phase is

fast. Since the beam loading voltage always points in the same direction aside from a de-

tuning angle, to achieve counter-phasing, the generator current must be di�erent in the

two sets of cavities. The implication is that it will not be possible to have the generator

current in phase with the gap voltage. Thus extra rf power will be required [12].

In the present booster cycle, the maximum power delivered to the beam is Pb =

265 kW at Vrf = 864 kV, while the maximum power lost to the ferrites is PL = 830 kW.

Since Pb < PL all the time, phase stability is guaranteed. To ensure that the beam

accelerates according to the designed ramp curve, there is a slow low-level feedback

loop which keeps the beam at the correct radial position in the aperture of the vacuum

chamber by adjusting the synchronous phase angle. There is also a fast low-level feedback

loop which damps phase oscillations. At extraction, since all bunches are kicked out at

the same location in one revolution turn, the bunches will not see any transient beam

loading voltage at all.

Actually, there are usually only M = 80 bunches in the ring of rf harmonic h = 84,

and 4 bunch spaces are reserved for the extraction kicker. At the intensity of 6 � 1010

proton per bunch, the transient beam loading voltage excited in each of the 18 cavities

by one bunch at passage is Vb0 = q!rRL=QL = 37:9 V where RL=QL � 13 
 per cavity.

According to Eq. (8.111), the di�erence in beam loading voltage experienced between

the last and �rst bunch is �Vb = 3:76Vb0 = 142 V. The beam gap is created near the

end of the ramp, where the rf voltage has the lowest value of 305 kV at extraction, or
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16.9 kV per cavity. This amounts to an rf phase error of 0:48Æ. Typically, a bunch

at extraction has a half width of 2.8 ns or 54Æ. Thus the phase error is comparatively

small and so is the increase in bunch area due to dilution. For this reason, no action is

necessary to compensate for this gap-induced beam loading.

8.5.3 Fermilab Main Injector

A batch of 84 bunches is extracted from the Fermilab Booster and injected into the

Fermilab Main Injector. The rf frequency is !r=(2�) = 52:8 MHz and the rf harmonic

is h = 588. Each bunch contains 6 � 1010 particles. At injection, at the rf voltage

of 1.2 MV and a bunch area of 0.15 eV-s, the half length is 28.3 ns. There are 18 rf

cavities with a total RL=QL = 1:872 k
 and QL = 5000. At the passage of the �rst

bunch across the cavities, the transient beam loading voltage excited in all the cavities

is Vb = qB!rRL=QL = 5:46 kV, where we have taken B = 0:915 by assuming a parabolic

distribution. At the passage of the last bunch of the batch, the total beam loading voltage

excited becomes Vb = 444 kV, where we have taken into account the decay decrement

but the detuning has been set to zero. If there is a second batch transferred from the

Booster, this will take place after one Booster cycle or 66.7 ms. During this time interval,

steady-state has already reached, since the �ll time of the cavities is 2QL=!r = 30 �s

(about 2.7 turns). Figure 8.18 shows the beam loading voltages experienced by the 84

bunches in the batch in their �rst, second, and third passages through the cavities. The

top trace represents the voltages seen when steady-state is reached. The di�erence in

beam loading voltages seen by last and �rst bunch can be read out from the �gure. It

can also be computed analytically from Eq. (8.111) to be �Vb = 388 kV. Actually, this

di�erence is not much di�erent from that experienced even in the �rst revolution turn

because of the large quality factor of the cavities. The designed rf voltage at injection

is Vrf = 1:2 MV. If the designed synchronous phase �s = 0 is synchronized to the

middle bunch of the batch, the phase error introduced becomes ��s = �9:18Æ for the
�rst and last bunches. This large di�erence in beam loading voltage, however, will not

lead to energy di�erence along the bunches. The o�-phase bunches will be driven into

synchrotron motion instead. The �rst and last bunch will have amplitudes of oscillation

��s = �9:18Æ. Eventually, the bunch area will increase. Measured in rf phase, the half

width of the bunch at injection is 53:8Æ. Thus, the bunch length will increase linearly

from the middle bunch towards the front and the rear of the batch, with a maximum

fractional increase of 9.18/53.8=17%. Such an increase is tolerable at this moment.

There is a fast feedback loop with a delay of only 16 bunch spacings (300 ns), implying
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Figure 8.18: Beam loading voltages experienced by the 84 bunches in the batch at

their �rst, second, and third passages of the Main Injector rf cavities. The top trace

shows the beam loading voltages when steady state is reached. In the computation,

cavity detuning has been set to zero.

that the maximum di�erence in beam loading voltage will only be � 88 kV and the

phase error introduced will only be � �2:1Æ. Unfortunately, this feedback loop is not

working most of the time.

Notice that proper detuning does not help here if we want to keep the generator

current in phase with the rf voltage for the middle bunch. For half of the batch (42

bunches), the accumulated phase shift due to detuning is of the order of 1Æ so that the

transient beam loading voltages of individual bunches still add up almost in a straight

line (Exercise 8.8).

There is an upgrade plan that increases the bunch intensity by a factor of 5. The

transient beam loading will then become intolerable, because the phase error can be as

large as ��s = �58Æ. One proposal of compensation is feedforward. One proposal is to

replace all the cavities with ones that have the same QL, but with RL=QL reduced by

a factor of 5. The beam loading e�ects will be the same as before. However, reducing

the shunt impedance RL 5 times implies the requirement of a larger generator current
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(
p
5 = 2:2 times) in order to supply the same rf power.

There is a plan to slip-stack two Booster batches and capture them into 84 bunches

of double intensity [8]. In order that two series of rf buckets can �t into the momentum

aperture of the Main Injector, the rf voltage employed to sustain the bunches will have

to decrease to less than 100 kV. Relatively, the transient beam loading problem becomes

very severe. To control beam loading, the followings are planned:

1. Using only 2 or 4 of the 18 cavities to produce the required rf voltage and de-Qing

the remaining cavities. One simple technique that may de-Q the cavities by a factor of

3 is to turn o� the screen voltage to reduce the tube plate resistance.

2. Feed-forward the signal of the wall current monitored at a resistive-wall gap to the

cavity drivers. Experience at the Main Ring expects to achieve a 10-fold reduction in

the e�ective wall current owing into the cavities.

3. Feedback on all the cavities. A signal proportional to the gap voltage is ampli�ed,

inverted, and applied to the driver ampli�er. Based on experience in the Main Ring and

results achieved elsewhere, a 100-fold reduction can be achieved.

8.5.4 Proposed Prebooster

Let us look into the design of a proposed Fermilab prebooster which has a circumference

of 158.07 m. It accelerates 4 bunches each containing 0:25 � 1014 protons from the

kinetic energy 1 to 3 GeV. Because of the high intensity of the beam, the problems of

space charge and beam loading must be addressed. We wish to examine the issues of

beam loading and Robinson instabilities based on a preliminary rf system proposed by

GriÆn [13].

8.5.4.1 The Ramp Curve

Because of the high beam intensity, the longitudinal space-charge impedance per har-

monic is Zk=njspch � �j100 
. But the beam pipe discontinuity will contribute only

about Zk=njind � j20 
 of inductive impedance. The space-charge force will be a large

fraction of the rf-cavity gap voltage that intends to focus the bunch. A proposal is to

insert ferrite rings into the vacuum chamber to counteract this space-charge force [14].

An experiment of ferrite insertion was performed at the Los Alamos Proton Storage

Ring and the result has been promising [15]. Here we assume such an insertion will
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Figure 8.19: A typical ramp curve for a design of the future Fermilab prebooster.

over-compensate all the space-charge force leaving behind about Zk=njind � j25 
 of

inductive impedance. An over-compensation of the space charge will help bunching so

that the required rf voltage needed will be smaller.

The acceleration from kinetic energy 1 to 3 GeV in 4 buckets at a repetition rate

of 15 Hz is to be performed by resonant ramping. In order to reduce the maximum

rf voltage required, about 3.75% of second harmonic is added. A typical ramp curve,

with bucket area increasing quadratically with momentum, is shown in Fig. 8.19, which

will be used as a reference for the analysis below. If the present choice of initial and

�nal bucket areas and bunch areas is relaxed, the fraction of second harmonic can be

increased. However, when the second harmonic is beyond � 12:5%, it will only atten

the rf gap voltage in the ramp but will not decrease the maximum signi�cantly.

8.5.4.2 The RF System

According to the ramp curve in Fig. 8.19, the peak voltage of the rf system is Vrf �
185 kV. GriÆn proposed 10 cavities [13], each delivering a maximum of 19.0 kV. Each

cavity contains 26.8 cm of ferrite rings with inner and outer radii 20 and 35 cm, re-

spectively. The ferrite has a relative magnetic permeability of �r = 21. The inductance

and capacitance of the cavity are L � 0:630 �H and C � 820 pF. Assuming an average
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Figure 8.20: Transient beam loading power tetrode connected directly to an rf

cavity gap to feed-forward the same amount of negative charge to the downstream

end of the cavity gap so as to cancel the positive charge created there as the beam

passes by.

ferrite loss of 134 kW/m3, the dissipation in the ferrite and wall of the cavity will be

P � 14:2 kW. The mean energy stored is W � 0:15 J. Therefore each cavity has a

quality factor Q � 459 and a shunt impedance Rs � 12:7 k
.

Because each bunch contains q = 4:005 �C, the transient beam loading is large. For

the passage of one bunch, 4:005 �C of positive charge will be left at downstream end of

the cavity gap creating a transient beam loading voltage of Vb0 � q=C = 5:0 kV, where

C = 820 pF is the gap capacitance. We note from Fig. 8.19 that the accelerating gap

voltages at both ends of the ramp are only about or less than 10 kV in each cavity. If

the wakes due to the bunches ahead do not die out, we need to add up the contribution

due to all previous bunch passages. Assuming a loaded quality factor of QL = 45, we

�nd from Eq. (8.72) that the accumulated beam loading voltage can reach a magnitude

of Vb = 73 kV when the detuning angle is zero (see Fig. 8.26).

A feed-forward system is suggested which will deliver via a tetrode the same amount

of negative charge to the downstream end of the gap so as to cancel the positive charge

created there as the beam passes by. Without the excess positive charge, there will not

be any more transient beam loading. This is illustrated in Fig. 8.20.

Here, we are in a situation where the image current iim passing through the cavity
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gap is not equal to the beam current ib. However, either at zero detuning or nonzero

detuning, Eqs. (8.17) and (8.41) indicate that the portion of generator power transmitted

to the acceleration of the beam is directly proportional to the magnitude of the image

current. If the image current goes to zero in this feed-forward scheme, this implies

that the rf generator is not delivering any power to the particle beam at all, although

the beam is seeing an accelerating gap voltage. Then, how can the particle beam be

accelerated? The answer is simple, the power comes from the tetrode that is doing the

feed-forward. This explains why the tetrode has to be of high power.

Actually, the feed-forward system is not perfect and we assume that the cancellation

is 85 %. For a Æ-function beam, the component at the fundamental rf frequency is 56.0 A.

Therefore, the remaining image current across the gap is iim = 8:4 A. To counter this

remaining 15% of beam loading in the steady state, the cavity must be detuned according

to Eq. (8.30) by the angle

 = tan�1
�
iim cos �s

i0

�
; (8.112)

where �s is the synchronous angle and i0 = Vrf=Rs is the cavity current in phase with

the cavity gap voltage Vrf. For high quality factor of Q = 459 which is accompanied by

a large shunt impedance, the detuning angle will be large. Corresponding to the ramp

curve of Fig. 8.19, the detuning angle is plotted as dashes in Fig. 8.21 along with the

synchronous angle and maximum cavity gap voltage. We see that the detuning angle is

between 80Æ and 86Æ, which is too large. If a large driving tube is installed with anode

(or cathode follower) dissipation at � 131 kW, the quality factor will be reduced to the

loaded value of QL � 45 and the shunt impedance to the loaded value of RL � 1:38 k
.

The detuning angle then reduces to  � 29Æ at the center of the ramp and to � 40Æ or

� 56Æ at either end. This angle is also plotted in Fig. 8.21 as a dot-dashed curve for

comparison. Then, this rf system becomes workable.

8.5.4.3 Fixed-Frequency RF Cavities

Now we want to raise the question whether it is possible to have a �xed resonant fre-

quency for the cavity. A �xed-frequency cavity can be a very much simpler device

because it may not need any biasing current at all. Thus the amount of cooling can be

very much reduced and even unnecessary. It appears that the resonant frequency of the

cavity should be chosen as the rf frequency at the end of the ramp, or fR = 7:37 MHz

so that the whole ramp will be immune to Robinson's phase-oscillation instability [4].
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Figure 8.21: Detuning angle for the high Q = 459 and low QL = 45 situations.

However, the detuning will be large. For example, at the beginning of the ramp where

frf = 6:64 MHz, the detuning angle becomes  = 85:2Æ. Since the beam loading voltage

Vim is small, the generator voltage phasor ~Vg will be very close to the gap voltage phasor
~Vrf . As a result, the angle � between the gap voltage ~Vrf and the generator current pha-

sor ~ig will be close to the detuning angle, as demonstrated in Fig. 8.22. For example,

Fig. 8.23 shows that, at the beginning of the ramp, the detuning angle is  = 85:2Æ.

Although the average total power delivered by the generator

1
2
~ig � ~Vrf = V 2

rf

2RL

+ 1
2
iimVrf cos�s (8.113)

is independent of �, the energy capacity of the driving tube has to be very large.

Another alternative is to choose the resonant frequency of the cavity to be the rf

frequency near the middle of the ramp. Then the detuning angle  and therefore the

angle � between ~Vrf and ~ig will be much smaller at the middle of the ramp when the gap

voltage is large. Although � will remain large at both ends of the ramp, however, this

is not so important because the gap voltages are relatively smaller there. Figure 8.25

shows the scenario of setting the cavity resonating frequency fR equal to frf at the ramp

time of 13.33 ms.

There is a price to pay for this choice of fR; namely, there will be Robinson phase

instability for the second half of the ramp when the rf frequency is larger than fR. The
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Figure 8.22: For a �xed cavity resonant frequency, the detuning angle  is �xed at

each ramp time. When beam loading is small, the angle � between the gap voltage
~Vrf and the generator current ~ig will be close to  and will be large.

Figure 8.23: When the cavity resonant frequency is chosen as the rf frequency at

the end of the ramp, both the detuning angle as well as the angle between the cavity

gap voltage ~Vrf and the generator current ~Ig are large.
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Figure 8.24: Plot showing the high-intensity Robinson's phase-stability criterion is

satis�ed in the �rst half of the ramp but not the second. Regions above the curve

and to the left of the vertical straight line are unstable.

Figure 8.25: When the cavity resonant frequency is chosen as the rf frequency at

the middle of the ramp at 13.33 ms, although the detuning angle as well as the angle

between the cavity gap voltage ~Vrf and the generator current ~Ig are large at both

ends of the ramp, they are relatively smaller at the middle of the ramp where the

gap voltage is large.
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suÆcient condition for having a potential well for stable oscillation is, from Eq. (8.47),

the high-intensity Robinson's criterion:

Vbr
Vrf

<
cos�s

sin cos 
; (8.114)

where Vbr = iimRL is the in-phase beam loading voltage. Below transition, the syn-

chronous angle �s is between 0 and 1
2
�. For the second half of the ramp, the rf frequency

becomes higher than the resonant frequency of the cavity, we have  < 0. Figure 8.24

plots the criterion for the whole ramp. It shows that the criterion is well satis�ed for the

�rst half of the ramp but not satis�ed for the second half. Therefore, we must rely on

control loops in the rf system to maintain phase stability. Of course a low-level feedback

loop to reduce the cavity impedance helps tremendously.

Even when the beam is in an potential well for oscillatory motion, we still need

to worry whether the oscillation amplitude will grow or be damped. The instability

comes from the fact that, below transition, the particles with larger energy have higher

revolution frequency and see a smaller real impedance of the cavity, thus losing less

energy than particles with smaller energy. Therefore, the synchrotron amplitude will

grow. In other words, the upper synchrotron sideband of the image current interacts

with a smaller real impedance of the cavity resonant peak than the lower synchrotron

sideband. However, since the loaded quality factor QL is not small, the di�erence in real

impedance at the two sidebands is only signi�cant when the rf frequency is very close

to the cavity resonant frequency. Thus, we expect the instability will last for only a

very short time during the second half of the ramp. The growth rate of the synchrotron

oscillation amplitude has been computed and is equal to [2]

1

�
= � iim�!s(R+�R�)

2Vrf cos�s
; (8.115)

where

R+ � R� = Re
h
Zcav(!rf+!s)� Zcav(!rf�!s)

i
; (8.116)

iim is the image current, � is the velocity with respect to light velocity, !s=(2�) is the

synchrotron frequency, and Zcav is the longitudinal impedance of the cavity. We see

from Fig. 8.25 that the growth occurs for only a few ms and the growth time is at

least � 25 ms. The total integrated growth increment from ramp time 13.33 ms is

�G =
R
��1dt = 0:131 and the total growth is e�G � 1 = 14:0% which is acceptable.

Finally let us compute the beam loading voltage seen by a bunch including all the

e�ects of the previous bunch passage. In this example, ÆL � �hb=QL = 0:0698 for hb = 1
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Figure 8.26: (color) Plot of transient beam loading voltage including all previous

bunch passages,
q

C
(F1 + jF2), versus detuning angle  .

Table 8.1: F1 and F2 for some values of the detuning angle  .

 	 = ÆL tan F1 F2

0Æ 0Æ � 1

ÆL
0

84:9Æ 45Æ 0.12 1.2

87:5Æ 90Æ � ÆL
2

� 1

2

88:7Æ 180Æ � ÆL
4

0

and QL = 45. When the detuning angle  = 0, Vb � Vb0=(2ÆL). The functions F1 and

F2 are computed at some other values of  , which are listed in Table 8.1 and plotted

in Fig. 8.26. We see that the total transient beam loading voltage Vt falls rapidly as

the detuning angle  increases. It vanishes approximately � 88:7Æ and oscillates rapidly

after that. However, the choice of a large  is not a good method to eliminate beam

loading, because in general the angle between the generator current phasor ~ig and the

rf voltage phasor ~Vrf will be large making the rf system ineÆcient.
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8.6 Exercises

8.1. For a Gaussian bunch with rms length �� in a storage ring, �nd the Fourier com-

ponent of the current at the rf frequency. Give the condition under which this

component is equal to twice the dc current.

8.2. Prove the fundamental theorem of beam loading when there are electromagnetic

�elds inside before the passage of any charged particle.

8.3. In Section 8.2, rf-detuning and Robinson's stability condition have been worked out

below transition. Show that above transition the detuning according the Fig. 8.4

leads to instability. Draw a new phasor diagram for the situation above transi-

tion with stable rf-detuning. Rederive Robinson's high-intensity stability criterion

above transition.

8.4. Derive Eq. (8.76), the generator power delivered to the rf system with multi-passage

of equally spaced bunches.

8.5. (a) Derive Eq. (8.90), the beam loading voltage seen a charge particle inside a

Gaussian bunch of rms length �� at a distance � ahead of the bunch center.

(b) Using the property of the complex error function,

lim
��!0

w

�
i�p
2��

�
= lim

��!0

2p
�
e�

2=(2�2� )

Z 1

�
p
2��

e�t
2

dt =

8<
:

0 � > 0 ;

1 � = 0 ;

2 � < 0 ;

(8.117)

derive Eq. (8.92), the transient beam loading voltage seen by the head, center, and

tail of the bunch as the bunch length shortens to zero.

8.6. (1) Derive Eqs. (8.94) and (8.95), the transient beam loading voltage seen by a

charge particle in a bunch with parabolic distribution at a distance T from the

head of the bunch.

(2) Derive Eqs. (8.99) and (8.99), the transient beam loading voltage seen by a

charge particle in a bunch with cosine-square distribution at a distance T from the

head of the bunch.

(3) Derive Eqs. (8.102) and (8.103), the transient beam loading voltage seen by a

charge particle in a bunch with cosine distribution at a distance T from the head

of the bunch.
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8.7. For a batch withM consecutive bunches inside a ring of rf harmonic h, the steady-

state beam loading voltage experienced by the kth bunch when it crosses the cavity

gap is given by Eq. (8.5.1).

(1) Continuing bucket by bucket, write down the beam loading voltage experienced

by the �rst bunch of the train when it crosses the cavity again. Since this beam

loading voltage must equal to the one given by Eq. (8.5.1) with k = 1, determine

the residual beam loading voltage V0 in the cavity at that time and show that it

is given by Eq. (8.110).

(2) Show that the di�erence in beam loading voltage �Vb experienced by the last

and �rst bunch is given by Eq. (8.111).

(3) Show that �Vb assumes a maximum

�Vb = Vb0
e�ÆL

h
1� e�

1
2
(h�1)ÆL

i2
(1� e�ÆL)(1� e�hÆL)

: (8.118)

when M = 1
2
(h+ 1).

8.8. For a batch of 84 bunches inside the Fermilab Main Injector as described in

Sec. 8.5.3,

(1) compute the detuning angle with the requirement that the generator current

is in phase with the rf voltage with respect to the middle bunch of the batch,

(2) compute the rf phase slip between the transient beam loading voltages of suc-

cessive bunches and show that because of the high quality factor the accumulation

for half of the batch (42 bunches) is only around 1Æ.

8.9. Exercise 8.7 can also be pursued in the frequency domain. Fill in the missing steps

of the following derivation.

(1) ConsiderM = 2m point bunches each with charge q insideM = 2m consecutive

buckets in a ring with rf harmonic h. The current is

I(t) = q
mX
n=1

Æ[t� (n� 1
2
)Tb] + q

mX
n=1

Æ[t+ (n� 1
2
)Tb] ; (8.119)

where Tb is the bucket width. In the frequency domain, the current at each revo-

lution harmonic is given by

Ip =
1

T 0

Z T0=2

�T0=2

I(t)e�j2�pt=T0 =
2q

T0

mX
n=1

cos
2�p(n� 1

2
)

h
; (8.120)
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where T0 = hTb is the revolution period and p is an integer ranging from �1 to

+1.

(2) The beam loading voltage excited at each harmonic is Vbp = IpZp where the

loaded impedance of the cavity is

Zp = RL cos pe
j p with tan p = 2QL

�
h

p
� p

h

�
; (8.121)

and RL and QL are the loaded shunt impedance and quality factor.

(3) Considering the symmetry of the impedance, the beam loading voltage in the

time domain becomes

Vb(t) =
X
p

Ip

�
cos2 �p cos

2�pt

T0
� cos�p sin p sin

2�pt

T0

�
: (8.122)

(4) Using the information of the Main Injector in Sec. 8.5.3, evaluate numerically

and plot Ip, Vbp, and Vb(t).
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Chapter 9

LONGITUDINAL

COUPLED-BUNCH

INSTABILITIES

When the wake does not decay within the bunch spacing, bunches talk to each

other. Assuming M bunches of equal intensity equally spaced in the accelerator ring,

there are � = 0; 1; � � � ; M�1 modes of oscillations in which the center-of-mass of

a bunch leads� its predecessor by the phase 2��=M . In addition, an individual bunch

in the �th coupled-bunch mode can oscillate in the synchrotron phase space about its

center-of-mass in the mth azimuthal mode with 2m = 2; 4; � � � azimuthal nodesy in
the perturbed longitudinal phase-space distribution. Of course, there will be in addition

radial modes of oscillation in the perturbed distribution. The long-range wake can drive

the coupled bunches to instability.

9.1 Sacherer's Integral Equation

Because the beam particles execute synchrotron oscillations, it is more convenient to

use circular coordinates r; � in the longitudinal phase space instead of the former time

�We can also formulate the problem by having the bunch lag its predecessor by the phase 2��0=M

in the �0th coupling mode. Then mode �0 will be exactly the same as modeM�� discussed in the text.
yFor example, the dipole mode m = 1 can be written as � cos�, which has two nodes � = ��=2.

9-1
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advance � and energy o�set �E. We de�ne8<
:

x = r cos� = � ;

px= r sin� =
�

!s�2
�E

E0
;

(9.1)

so that the equations of motion8>><
>>:

dx

ds
=�!s

v
px ;

dpx
ds

=
!s
v
x +

�

E0!s�2
hF k

0 (� ; s)i ;
(9.2)

become more symmetric. In the absence of the wake force hF k
0 (� ; s)i, the trajectory of a

beam particle is just a circle in the longitudinal phase space. In above, !s is the angular

small-amplitude synchrotron frequency, � the slip factor, and v = �c is the velocity and

E0 the energy of the synchronous particle. The phase-space distribution  of a bunch

can be separated into the unperturbed or stationary part  0 and the perturbed part  1:

 (�;�E; s) =  0(�;�E) +  1(�;�E; s) : (9.3)

The linearized Vlasov equation becomes

@ 1
@s

� !s
v
px
@ 1
@x

+
!s
v
x
@ 1
@px

+
@ 0
@px

�

E0!s�2
hF k

0 (� ; s)i = 0 : (9.4)

Changing to the circular coordinates, the equation simpli�es to

@ 1
@s

+
!s
v

@ 1
@�

+
�

E0!s�2
d 0
dr

sin�hF k
0 (� ; s)i = 0 : (9.5)

The perturbed distribution can be expanded azimuthally,

 1(r; �; s) =
X
m

�mRm(r)e
im��i
s=v ; (9.6)

where Rm(r) are functions corresponding to themth azimuthal, �m are the expansion co-

eÆcients, and 
=(2�) is the collective frequency to be determined. The Vlasov equation

becomes

(
�m!s)�mRm(r)e
�i
s=v = � iv�

E0!s�2
d 0
dr

Z �

��

d�

2�
e�im� sin� hF k

0 (� ; s)i : (9.7)
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Now consider the wake force acting on a beam particle at location s, where a cavity

gap is located for example, with time advance � relative to the synchronous particle

due to all preceding particles passing through s at an earlier time. This force can be

expressed as

hF k
0 (� ; s)i = �

e2

C

1X
k=�1

Z 1

�1

d� 0�1[�
0; s� kC � v(� 0��)]W 0

0[kC + v(� 0��)] ; (9.8)

where only the perturbed density �1, which is the projection of  1 onto the � axis, is

included, because the unperturbed part should have been considered in the zeroth order

of the Vlasov equation during the discussion of potential-well distortion. The summation

over k takes care of the contribution of the wake left by the charge distribution in previous

turns. The lower limit of the summation and the lower limit of the integral have been

extended to �1 because of the causality property of the wake function. The expression

in Eq. (9.8) is more accurate than the on in Eq. (2.7). In the latter, we assume the

particle density does not change from the time the source particles pass the reference

point to the time when the test particle observes the wake at the same reference point.

Such an assumption is no longer valid here because the wake is left by particles in other

bunches which may be many revolution turns ahead and these bunches are oscillating

azimuthally in the longitudinal phase space. When the source particle, with time advance

� 0 with reference to the synchronous particle and k turns ahead of the test particle, is at

location s to excite the cavity, the test particle is at location s� kC � v(� 0��). Hence,
we have the second argument in the perturbation linear density �1.

There are M bunches and the synchronous particle in the `th bunch is at location

s`. If the witness particle is in the nth bunch,

hF k
0n(� ; s)i = �

e2

C

1X
k=�1

M�1X
`=0

Z 1

�1

d� 0�

� �`
�
� 0; s� kC � (s`�sn)� v(� 0��)�W 0

0

�
kC + (s`�sn) + v(� 0��)� : (9.9)

We assume the bunches are identical and equally spaced. For the �th coupled mode, we

substitute in the above expression the perturbed density of the nth bunch �1n(�)e
�i
s=v

including the phase lead,

�`(� ; s) = �1n(�)e
i2��(`�n)=Me�i
s=v : (9.10)

Next, let us go to the frequency domain using the Fourier transforms

W 0
0(v�) =

1

2�

Z 1

�1

d! Z
k
0(!)e

�i!� ; (9.11)
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�1n(�) =

Z 1

�1

d! ~�1n(!)e
i!� : (9.12)

In Eq. (9.9) above, we shall neglectz the time delay � 0�� in �` because this will only

amount to a phase delay 
(� 0��) where 
 � m!s, which is very much less than the

phase change !r(�
0��) during the bunch passage, where !r=(2�) is the frequency of

the driving resonant impedance. Substituting Eqs. (9.11) and (9.12) into Eq. (9.9) and

integrating over � 0 and one of the !'s, the wake force for the �th coupled-bunch mode

becomes

hF k
0n�(� ; s)i = �

e2

C

1X
k=�1

M�1X
`=0

ei2��(`�n)=Mei
(�s+kC+s`�sn)=v�

�
Z 1

�1

d!~�1n(!)Z
k
0(!)e

�i!(kC+s`�sn)=vei!� : (9.13)

The summation over k can now be performed using Poisson formula

X
k

e�ik!C=v =
X
p

2� Æ

�
!C

v
� 2�p

�
=
X
p

!0 Æ(! � p!0) : (9.14)

This leads to

hF k
0n�(� ; s)i = �e

2

C

1X
p=�1

M�1X
`=0

ei2��(`�n)=Me�i
s=v+i!p�!0~�1n(!p)Z
k
0(!p)e

�ip!0(s`�sn)=v ;

(9.15)

where we have used the short-hand notation

!p = p!0 + 
 : (9.16)

We next make use of the fact that the unperturbed bunches are equally spaced, or

s` � sn =
`� n

M
C : (9.17)

The summation over ` can be performed. The sum vanishes unless (p��)=M = q, where

q is an integer:
M�1X
`=0

ei2�(`�n)(��p)=M =

8<
: M if

p� �

M
= q ;

0 otherwise :
(9.18)

zWithout this approximation, only Z
k
0 will have the argument !p in Eq. (9.15). The argument of

~� and the factor in front of � in the exponent will be replaced by !p�
. In Eq. (9.19) below, The

argument of ~� and the factor in front of � in the exponent will be replaced by !q�
.
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The �nal result is

hF k
0n�(� ; s)i = �

e2M!0
C

e�i
s=v
1X

q=�1

~�1n(!q)Z
k
0 (!q)e

i!q� ; (9.19)

where

!q = (qM+�)!0 + 
 : (9.20)

Since the left side of the Vlasov equation is expressed in terms of the radial function

Rm(r), we want to do the same for the wake force. First, rewrite the perturbed density

in the time domain,

hF k
0n�(� ; s)i = �e

2M!0
C

e�i
s=v
1X

q=�1

Z
k
0(!q)

Z
d� 0

2�
�1n(�

0)ei!q(���
0) : (9.21)

Since �1n(�
0) is the projection of the perturbed distribution onto the � 0 axis, we must

have

�1n(�
0)d� 0 =

Z
 1n(�

0;�E 0)d� 0d�E 0 (9.22)

=
E0!s�

2

�

Z
 1n(r

0; �0)r0dr0d�0 (9.23)

=
E0!s�

2

�

X
m0

�m0

Z
Rm0(r0)eim

0�0r0dr0d�0 : (9.24)

The wake force then takes the form

hF k
0n(� ; s)i=�

e2!0M

2�C

E0!s�
2

�
e�i
s=v

1X
q=�1

X
m0

Z
k
0 (!q)

Z
r0dr0d�0�m0Rm0(r0)eim

0�0ei!q(���
0) ;

(9.25)

This wake force is next substituted into the Vlasov equation (9.7). The integrations

over � and �0 are performed in terms of Bessel function of order m using its integral

de�nition

imJm(z) =
1

2�

Z �

��

d� e�im�+iz cos� ; (9.26)

the recurrence relation

Jm�1(z) + Jm+1(z) =
2m

z
Jm(z) ; (9.27)

and the fact that

Jm(�z) = (�1)mJm(z) : (9.28)
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The result is the Sacherer's integral equation for longitudinal instability for the mth

azimuthal �th coupled-bunch mode,

(
�m!s)�mRm(r) =

� i2�e
2MN�

�2E0T 2
0!s

m

r

dg0
dr

X
m0

im�m0

�m0

Z
r0dr0Rm0(r0)

X
q

Z
k
0 (!q)

!q
Jm0(!qr

0)Jm(!qr) ; (9.29)

where transformation of the unperturbed longitudinal distribution

 0(r)d�d�E =
!s�

2E0

�
 0dxdpx = Ng0(r)rdrd� (9.30)

has been made so that g0 is normalized to unity when integrated over rdrd�.

This is an eigenfunction-eigenvalue problem, the �m's being the eigenfunctions and


 the corresponding eigenvalue. The solution is nontrivial. However, with some approx-

imations, interesting results can be deduced. When the perturbation is not too strong

so that the shift in frequency is much less than the synchrotron frequency, there will not

be coupling between di�erent azimuthals. The integral equation simpli�es to

(
�m!s)Rm(r) = � i2�e
2MN�

�2E0T 2
0!s

m

r

dg0
dr

Z
r0dr0Rm(r

0)
X
q

Z
k
0(!q)

!q
Jm(!qr

0)Jm(!qr) :

(9.31)

The spread in synchrotron frequency can be introduced by letting !s be a function of

r. Moving the factor 
 � m!s(r) to the right side, the radial distribution Rm can be

eliminated by multiplying both sides by rJm(r) and integrating over dr. We then arrive

at the dispersion relation,

1 = � i2�e
2MNm�

�2E0T 2
0!s

X
q

Z
k
0(!q)

!q

Z
dr
dg0
dr

J2m(!qr)


�m!s(r)
: (9.32)

Stability and growth contours can be derived from the dispersion relation of Eq. (9.32)

in just the same way as in the discussion of microwave instability for a single bunch in

Chapter 6.

9.1.1 Synchrotron Tune Shift

When the spread in synchrotron frequency is small, Eq. (9.32) gives the frequency shift


�m!s =
i2�e2MNm�

�2E0T 2
0 !s

X
q

Z
k
0 (!q)

!q

�
�
Z
dr
dg0
dr

J2m(!qr)

�
; (9.33)
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where the expression inside the square brackets, denote by F , can be viewed as a dis-

tribution dependent form factor, which is positive de�nite because dg0=dr is negative.

The real part Re(
�!s) gives the coherent tune shift of the bunch while the imaginary

part Im
 gives the growth rate of the instability.

When the bunch length 2�̂ is much shorter than the wavelength of the perturbing

impedance, or !q�̂ � 1, the Bessel function can be substituted by its small-argument

expression:

Jm(x) � 1

m!

�x
2

�m
: (9.34)

We are interested in particular the synchrotron tune shift of one bunch (M = 1) in

dipole mode (m = 1), and obtain

�
 = � e2N�

2�2E0T 2
0!s

X
q

!q ImZ
k
0 (!q) ; (9.35)

where !q = q!0 + !s and the bunch density normalization

Z
g0(r)rdrd� = 1 (9.36)

has been used. In the situation that the perturbing impedance is a broadband resonance,

we can make the approximation !q = q!0.

It is important to point out that Eq. (9.35) is only the dynamic part of the syn-

chrotron tune shift contributed by the impedance. There is another contribution coming

from the static potential-well distortion. This term is not present in Eq. (9.35), because

during the derivation of the Sacherer's growth formula, we have substituted only the

perturbed distribution into the wake force in Eq. (9.8) but not the unperturbed distri-

bution. As a result, the static potential-well distortion piece has been left out. This

static contribution has been addressed in Eq. (3.50). When the short bunch approxi-

mation is made, it can be shown that the static contribution just cancels the dynamic

contribution, resulting in no coherent shift for the dipole mode (Exercise 9.2). This

is evident physically because the dipole motion is rigid. The whole bunch moves as

a whole, and therefore the bunch center does not experience any change in wake �eld

from itself at all. On the other hand, an individual particle moving inside a bunch will

experience the time variation of the wake left by the bunch and therefore the incoherent

tune shift is nonzero.



9-8 9. LONGITUDINAL COUPLED-BUNCH INSTABILITIES

9.1.2 Water Bag Model

Take the simple case of a single bunch of length 2�̂ and uniform distribution in the

longitudinal phase space, which is usually called the water bag model. Then

g0(r) =
1

��̂ 2
H(�̂ � r) ; (9.37)

where the Heaviside function is de�ned as H(x) = 1 when x > 0 and zero otherwise.

The form factor, the expression inside the square brackets of Eq. (9.33), becomes

F =
1

��̂ 2
J2m(!q�̂ ) �

!2
q

4�

1

(m!)2

�
!q�̂

2

�2m�2

; (9.38)

where the assumption of a short bunch has been made in the last step. The growth rate

driven by the impedance can now be written as

1

�m
=

e2N�

2�2E0T 2
0!s

m

(m!)2

X
q

�
!q�̂

2

�2m�2

!qRe Zk
0 (!q) ; (9.39)

where, for one bunch, !q = q!0 + 
.

9.1.3 Robinson's Instability

The m = 0 mode is a trivial mode which gives 
0 = 0. It describes the potential-

well distortion mode addressed in Chapter 3 and is of not much interest here where

the emphasis is on instabilities. The next azimuthal mode is m = 1 which describes

dipole oscillations and we expect 
1 � !s. Consider the situation of having the driving

impedance as a resonance so narrow that there is only one q > 0 that satis�es

!r � q!0 � !s ; (9.40)

where !r=(2�) is the resonant frequency. The growth rate for a short bunch can therefore

be obtained from Eq. (9.39),

1

�1
= Im�!s =

�e2N!r
2�2E0T 2

0!s
[Re Zk

0(q!0+!s)�Re Zk
0(q!0�!s)] ; (9.41)

where the �rst term corresponds to positive frequency and the second negative frequency.

If the resonant frequency is slightly above q!0 as illustrated in Fig. 9.1(a), we have
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Figure 9.1: (a) Above transition, if the resonant frequency !r is slightly above a

revolution harmonic q!0, ReZ
k
0 at the upper synchrotron sideband is larger than at

the lower synchrotron sideband. The system is unstable. (b) Above transition, if

!r is slightly below a harmonic line, ReZ
k
0 at the upper sideband is smaller than at

the lower sideband. The system is stable.

Re Zk
0(q!0 + !s) > Re Zk

0(q!0 � !s). Above transition, the growth rate will be positive

or there is instability. On the other hand, if !r < q!0 as illustrated in Fig. 9.1(b), the

growth rate is negative and the system is damped. This instability criterion was �rst

analyzed by Robinson [1], and we have obtained exactly the same result in Sec. 8.3.3

using phasor diagram analysis. Below transition, the inverse is true; one should tune the

resonant frequency of the cavity below a revolution harmonic for stability. Note that the

growth rate of Eq. (9.41) is independent of the bunch length when the bunch is short,

implying that for the dipole mode, this is a point-bunch theory.x Thus, this special case

should be obtainable much more easily than the complicated derivation that we have

gone through, and it is worthwhile to make a digression into this easier derivation.

9.1.3.1 Point-Bunch Theory

Let us start from the equations of motion of a super particle with arrival time advance

�(s), carrying charge eN , and seeing its own wake left behind k revolutions before. We

xMore about Robinson's stability criterion was discussed in Chapter 7.5.
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have
d2�

ds2
+
!2
s

v2
� =

e2N�

v�2E0C

1X
k=�1

W 0
0 [kT0 + �(s� kC)� �(s)] ; (9.42)

where the summation has been extended to �1 (the future) because the wake function

obeys causality. The arrival time advance of each passage through the cavity gap is

of the order of the synchrotron oscillation amplitude, which should be small. We can

therefore expand the wake potential about kT0. The right side becomes

R:S: =
e2N�

v�2E0C

1X
k=�1

[�(s� kC)� �(s)]W 00
0 (kT0)

=
e2N�

v�2E0C
�(s)

1X
k=�1

�
e�i
(s=v�kT0) � 1

�
W 00

0 (kT0) ;

(9.43)

where we have substituted the collective time behavior

�(s) / e�i
s=v ; (9.44)

with 
 being the collective angular frequency to be determined. Next go to the frequency

domain by introducing the longitudinal impedance Z
k
0 , or

W 0
0(t) =

1

2�

Z
d!Z

k
0(!)e

�i!t : (9.45)

We obtain

R:S: = � ie2N�

v�2E0C

1X
k=�1

�
e�i
(s=v�kT0) � 1

� Z d!

2�
!Z

k
0(!)e

�i!kT0 : (9.46)

The summation over k can now be performed. Substituting the time behavior of � into

the left side, the equation of motion becomes


2 � !2
s =

ie2N�v2

�2E0C2

1X
p=�1

h
(p!0 + 
)Zk

0(p!0 + 
)� p!0Z
k
0(p!0)

i
: (9.47)

Finally, assuming that the perturbation is small, the result simpli�es to

�
 =
ie2N�

2�2E0T 2
0!s

1X
p=�1

h
(p!0 + !s)Z

k
0 (p!0 + !s)� p!0Z

k
0 (p!0)

i
: (9.48)

The above shift in synchrotron frequency gives exactly the same growth rate as Eq. (9.41)

when the driving impedance is a narrow resonance. The only di�erence is the second
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term in Eq. (9.48). This term receives contribution from the imaginary part of the

impedance only and describes the tune shift due to potential-well distortion. The origin

of this term is very similar to the derivation of Eqs. (3.50) and (3.51). The only thing

additional here is the inclusion of the wake e�ect from preceding bunch passages. Here,

the wake �eld from preceding bunch passages does not move with the bunch as a whole,

and therefore contributes a viewable coherent tune shift. This term should also appear in

the Sacherer's growth formula. It has been left out because, during the derivation, only

the perturbed distribution but not the unperturbed distribution have been substituted

into the wake force in Eq. (9.8).

Now let us come back to Eq. (9.41). For M equal bunches, the equation becomes,

for coupled-bunch mode �,

1

�1�
=

�e2NM!r
2�2E0T 2

0!s

�
Re Zk

0(qM!0+�!0+!s)�Re Zk
0(q

0M!0��!0�!s)
�
: (9.49)

When � = 0, both terms will contribute with q0 = q and we have exactly the same

Robinson's stability or instability as in the single bunch situation. This is illustrated in

Fig. 9.2. When � = M=2 if M is even, both terms will contribute with q0 = q, and the

same Robinson's stability or instability will apply. For the other M�2 modes, only one

term will be at or close to the resonant frequency and only one term will contribute. If

the positive-frequency term contributes, we have instability. If the negative-frequency

term contributes, we have damping instead. If one choose to speak in the language

of only positive frequencies, there will be an upper and a lower synchrotron sideband

surrounding each revolution harmonic. Above transition, the coupled-bunch system will

be unstable if the driving resonance leans towards the upper sideband and stable if it

leans towards the lower sideband.

For the higher azimuthal modes (m > 1) driven by a narrow resonance, we have the

same Robinson's instability. The growth rates are

1

�m�
=
�e2NM!r
2�2E0T 2

0!s

m

(m!)2

�
!r�̂

2

�2m�2

�

�
�
Re Zk

0(qM!0+�!0+m!s)�Re Zk
0(q

0M!0��!0�m!s)
�
; (9.50)

which depend on the bunch length as �̂ 2m�2. As a result, higher azimuthal instabilities

for short bunches will be much more diÆcult to excite. For long bunches, we need to

evaluate the form factor F . An example will be discussed in Sec. 9.2.
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Figure 9.2: Top plot shows the synchrotron lines for both positive and negative

revolution harmonics for the situation of M = 6 identical equally-spaced bunches.

The coupled-bunch modes � = 0, 1, 2, 3, 4, 5 are listed at the top of the synchrotron

lines. Lower plot shows the negative-harmonic side folded onto the positive-harmonic

side. We see upper and lower sidebands for each harmonic line.

Landau damping can come from the spread of the synchrotron frequency. The

spread due to the nonlinear sinusoidal rf wave form can be written as (Exercise 9.4)

�!s
!s

=

�
�2

16

��
1 + sin2 �s
1� sin2 �s

�
(h�Lf0)

2 ; (9.51)

where �L is the total length of the bunch and �s is the synchronous angle, and is valid

for small amplitudes. The mode will be stable if [2]

1

�
.

p
m

4
�!s : (9.52)

When the synchronous angle �s 6= 0, the computation of synchrotron frequency spread is

tedious. A numerical calculation is shown in Fig. 9.3 for various � = sin�s. The expres-

sion in Eq. (9.51) comes from a �tting to the numerical calculation at small amplitudes.

9.2 Time Domain

The longitudinal coupled-bunch instabilities can also be studied without going into the

frequency domain. We are employing the same Vlasov equation in Eq. (9.7), but using
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Figure 9.3: Synchrotron frequency spread S as a function of single-bucket bunch-

ing factor B � �Lf0 for various values of � = sin�s. �L is full bunch length, f0
is revolution frequency, �s is synchronous angle, and !s0 is unperturbed angular

synchrotron frequency.

the wake function of a resonance in the time domain. This derivation was �rst given by

Sacherer [2].

The wake function for a resonance with resonant frequency !r=(2�), shunt impe-

dance Rs and quality factor Q was given in Eq. (1.46). For a narrow resonance with

� = !r=(2Q)� !r, we can neglect the sine term{ and simplify the wake function to

W 0
0(z) =

!rRs

Q
e��z=v cos

!rz

v
when z > 0 : (9.53)

The wake force is then given by

hF k
0 (� ; s)i = �e

2!rRs

QC

Z 1

�

d� 0 e��(�
0��) cos[!r(�

0��)] � [� 0; s� v(� 0��)] ; (9.54)

where � [� 0; s� v(� 0��)] is the linear density of the beam particles passing the location

s at time � 0 � � ago. Now let �(� ; s) represent the line density of the individual bunch,

which has a phase lead of 2��=M for mode � compared with the preceding bunch �sep =

T0=M ahead, and is inuenced by all the preceding bunches. The location argument s

{The sine term can be included at the expense of a slightly more complicated derivation.
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of � in Eq. (9.54) becomesk s� k�sep � v(� 0��), with k = 0; 1; 2; � � � . For simplicity,

we neglect the time delay � 0�� . In the time variation e�i
s=v where 
 � m!s, this

approximation causes a phase delay 
(� 0��) which is negligible in comparison with the

phase change due to the resonator. We will also neglect the variation in the attenuation

factor over one bunch e��(�
0��), but we retain the attenuation factor between bunches

e��k�sep . Then the wake force exerted on a particle in the �th coupled-bunch mode can

be written as

hF k
0�(� ; s)i=�

e2!rRs

QC

1X
k=0

e2�ik�=M�k��sep

Z
one
bunch

d� 0cos[!r(�
0��+k�sep)] �1(� 0)e�i
(s=v�k�sep) ;

(9.55)

where Eq. (9.10), the `time' variations of preceding bunches in the �th coupled mode,

have been used. It is worth pointing out that the lower limits of the summation and

integration cannot be extended to �1 as before, because the explicit expression of the

wake function has been used. Note that only the perturbed line density �1 is included.

This is because we are interested in the growth rate here and the unperturbed part �0
will not contribute to the growth rate. Changing the integration variables from (�;�E)

to (r; �) while keeping only the azimuthal m,

�1(�
0)d� 0 =

Z
�mRm(r

0)eim�0d� 0d�E 0 =

Z
E0!s�

2

�
�mRm(r

0)eim�0r0dr0d�0 : (9.56)

Substituting the wake force into Eq. (9.7), we arrive at

(
�m!s)Rm(r) =
ie2N�!rRs

2��2E0QT0!s

dg0
dr

1X
k=0

e2�ik�=M�k(��i
)�sep�

�
Z 1

0

r0dr0Rm(r
0)

Z �

��

d� e�im� sin�

Z �

��

d�0eim�0cos[!r(r
0 cos�0�r cos�+k�sep)] ; (9.57)

where again we have used the unperturbed distribution g0(r) given by Eq.(9.30) which

is normalized to unity. The integrations over � and �0 can now be performed using the

formulas for Bessel functions depicted in Eqs. (9.26) to (9.28), givingZ �

��

d� e�im� sin�

Z �

��

d�0eim�0 cos[!r(r
0 cos�0�r cos�+k�sep)] =

i4�2 sin k!r�sep
mJm(!rr

0)Jm(!rr)

!rr
: (9.58)

kHere we include the term k�sep which Sacherer had left out. This term is important to exhibit

Robinson's criterion of phase stability.
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Equation (9.57) now becomes

(
�m!s)Rm(r) = �2�e2NRsm�

�2E0QT0!s

dg0
dr
�

�
1X
k=0

e2�ik�=M�k(��i
)�sep sin(k!r�sep)

Z 1

0

dr0Rm(r
0)
r0Jm(!rr

0)Jm(!rr)

r
: (9.59)

Finally, we introduce Landau damping by allowing the synchrotron frequency to be a

function of the radial distance from the center of the bunch in the longitudinal phase

space. Moving 
�m!s(r) to the right side and performing an integration over rdr, Rm

can be eliminated resulting in the dispersion relation

1 = � i2�e
2MNm�Rs

�2E0T 2
0 !s!r

D(��sep)

Z 1

0

dr
dg0
dr

J2m(!rr)


�m!s(r) ; (9.60)

where we have de�ned the function��

D(��sep) = �i2��sep
1X
k=0

e2�ik�=M�k(��i
)�sep sin(k!r�sep) ; (9.61)

which contains all the information about the quality factor of the resonance and its

location with respect to the revolution harmonics. It is interesting to note that Eq. (9.60)

closely resembles Eq. (9.32). It will be shown below that D = 1 for a narrow resonance

with the resonant peak located at (qM+�)!0 +m!s. Thus the two dispersion relations

are identical. In fact, they are the same even when the resonant peak is not exactly

located at a synchrotron line.

Let us study the function D(��sep). Noting that the bunch separation is �sep =

T0=M , this function can be rewritten as

D(��sep) = ��sep

�
1

1�ex+ �
1

1�ex�
�
; (9.62)

where

x� =
2�i

M

�
q�M + �+m

!s
!0
� !r
!0

�
� ��sep : (9.63)

The q�M term comes about because we can replace � in Eq. (9.61) by q�M+�, where

q� are positive/negative integers and � = 0; 1; � � � ; M�1. When the resonance is

��We would like D = �1 when the resonance is at the upper/lower sideband. As a result, our

de�nition of D di�ers from Sacherer's by a phase.
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extremely narrow, we have ��sep = !r�sep=(2Q) � 1. The two terms in Eq. (9.62)

almost cancel each other so that D(��sep) � 0 unless !r � (jq�jM��)!0. For modes

� 6= 0 and � 6= 1
2
M if M is even, only one of the two terms in Eq. (9.62) contributes. If

!r � (jq�jM��)!0�m!s, we have jx+j � 1 or jx�j � 1 and

D(��sep) � ���sep
x�

=
�i!r=(2Q)

!r � [(jq�jM��)!0�m!s]� i!r=(2Q)
� �1 : (9.64)

When � = 0 or � = M=2 if M is even, it is possible to choose q+ and q� so that both

terms will contribute. We have

D � �i!r=(2Q)
!r � [(q+M+�)!0+m!s]� i!r=(2Q)

+
�i!r=(2Q)

!r � [(jq�jM��)!0�m!s] + i!r=(2Q)
;

(9.65)

where q+ = jq�j for � = 0 and jq�j = q++1 for � = M=2. Note that Eq. (9.65) is just

proportional to the di�erence between Z
k
0(q+M!0+�!0+m!s+ i�) and Z

k
0(jq�jM!0�

�!0 � m!s � i�); the Robinson's stability criterion derived in Eq. (9.49) is therefore

recovered.

On the other hand, when the resonance is broad, ��sep � 1. The �rst few terms

in Eq. (9.61) dominate. Since k = 0 does not contribute, we include here only the next

term,

D(��sep) � �i2��sep sin(!r�sep)e2�i�=M���sep : (9.66)

The magnitude jDj becomes mode independent and exhibits a maximum when !r�sep =

2�
�
q + 1

4

�
. Thus the coupled-bunch modes near � = �1

4
M are most strongly excited,

although jDj will be much less than unity. Figure 9.4 plots jDj versus !r=!0 for the

situation ofM=10 bunches. The solid vertical lines show jDj � 1 for narrow resonance.

The dotted curve are for broadband resonance when the bunch-to-bunch attenuation

decrement is ��sep = 4; the values of jDj are small and appear to be mode-independent.

The dashed curves correspond the intermediate case with bunch-to-bunch attenuation

decrement ��sep = 1. From left to right, they are for modes � = 0, 1 and 9, 2 and 8,

3 and 7, 4 and 6, 5. We see that jDjmax is roughly the same for each mode. Note that

��sep = 1 translates into (�!r=!0)FWHM = M=� = 3:2 or the resonance covers more

than 3 revolution harmonics. Apparently, the �gure shows that no mode will be excited

if the !r=!0 falls exactly on qM or q(1
2
M) if M is even. This incorrect result appears

because in drawing the plot, the limit !s ! 0 has been taken. Figure 9.5 plots jDjmax

versus the bunch-to-bunch decrement ��sep, showing that it is less than 5% from unity

when ��sep < 0:55.
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Figure 9.4: jDj as functions of resonant harmonic !r=!0 for M = 10 bunches

when bunch-to-bunch decay decrement ��sep � 1 for narrowband resonance (solid),

��sep = 4 for broadband resonance (dots), and ��sep = 1 for resonance in between

(dashes). The dashed curves from left to right represent coupled-bunch modes � = 0,

1 and 9, 2 and 8, 3 and 7, 4 and 6, 5. The excitations at !r=!0 = 0, or M=2 are

zero, because we have set the synchrotron frequency to zero in the plot.

Figure 9.5: jDjmax as a function of bunch-to-bunch decay decrement ��sep. Note

that jDjmax � 1 for narrow resonances but drops very rapidly as the resonance

becomes broader.
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In the event that the spread in synchrotron frequency is small, we can obtain from

Eq. (9.60) the synchrotron frequency shift


�m!s = � i2�e
2NRsmM�

�2E0!s!rT 2
0

D(��sep)

Z 1

0

dr
dg0
dr

J2m(!rr) ; (9.67)

where the integral can be viewed as a form factor which is distribution dependent. A

dimensionless form factor

Fm(��) = �4�m�̂

!r

Z 1

0

dr
dg0
dr

J2m(!rr) (9.68)

can now be de�ned for each azimuthal, where �̂ is the half bunch length and �� = 2!r�̂

is the change in phase of the resonator during the passage of the whole bunch. Then

the frequency shift can be rewritten as


�m!s =
i�e2NMRs

4��2E0�sT0�̂
D(��sep)Fm(��) ; (9.69)

where �s = !s=!0 is the synchrotron tune.

We take as an example the parabolic distribution in the longitudinal phase spaceyy,

which implies

g0(r) =
2

��̂ 4
(�̂ 2 � r2) and

dg0
dr

= � 4r

��̂ 4
: (9.70)

The form factor is

Fm(��) =
32m

��

Z 1

0

J2m(
1
2
x��)xdx

=
16m

��

h
J2m
�
1
2
��
�� Jm+1

�
1
2
��
�
Jm�1

�
1
2
��
�i
; (9.71)

which is plotted in Fig. 9.6 for m = 1 to 6. The form factor speci�es the eÆciency with

which the resonator can drive a given mode. We see that the maximum value of F1 for the

dipole mode occurs when �� � �. This is to be expected because the head and tail of the

bunch will be driven in opposite directions. Similarly, the quadrupole or breathing mode

is most eÆciently driven when �� � 2�, and so on for the higher modes. In general,

mode m is most eÆciently driven when the resonator frequency is �� � m�. Note also

that the maximum value of Fm drops faster than m�1=2, implying that higher azimuthal

modes are harder to excite. For distributions other than the \parabolic" of Eq. (9.70),

yyThis is di�erent from the so-called parabolic distribution, which is actually parabolic line density.
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Figure 9.6: Sacherer's form factor for longitudinal oscillation inside a bunch with

azimuthal modes m = 1; 2; 3; 4; 5 and 6. The unperturbed parabolic distribution

in the longitudinal phase space, Eq. (9.70), is assumed.

we expect the form factors to have similar properties. However, a shorter bunch does not

necessarily imply a slower growth especially for the m = 1 mode, although the excitation

in the form factor Fm(��) is small. According to Eq. (9.69), the growth rate is obtained

from multiplying the form factor Fm(��) with eN=�̂ , the local linear charge density or

peak current. In fact, with a �xed number of particles in the bunch, as the bunch length

is shortened, the local linear charge density increases, thus enhancing the growth rate.

As a result, a more practical form factor should be �Fm(��) = 2Fm(��)=�� as plotted

in Fig. 9.7 in logarithmic scale. It is clear that for small ��, F1 � 1
2
�� and �F1 � 1.

From Eq. (9.67), the growth rate for the dipole mode above transition can be written as

1

�1
= Im
 =

�e2NMRs!r
2�2E0!sT 2

0

D(��sep) ; (9.72)

which agrees with the expression in Eq. (9.49) derived for short bunches. It is also

evident from Fig. 9.7 that the excitations of higher azimuthal modes will be very much

smaller.
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Figure 9.7: A more useful form factor �F (��) in logarithmic scale for longitudinal

oscillation inside a bunch with azimuthal modes m = 1; 2; 3; 4; 5 and 6. The

unperturbed parabolic distribution in the longitudinal phase space is assumed. It is

related to the Sacherer's form factor of Fig. 9.6 by �F (��) = 2F (��)=��.

9.3 Observation and Cures

The easiest way to observe longitudinal coupled-bunch instability is in a mountain-range

plot, where bunches oscillate in a particular pattern as time advances. Examples are

shown in Figs. 9.8 and 9.9. Streak camera can also be used to capture the phases of

adjacent bunches as a function of time. From the pattern of coupling, the coupled-mode

� can be determined. From the frequency of oscillation, the azimuthal mode m can also

be determined. We can then pin down the frequency !r=(2�) of the o�ending resonance

driving the instability.

Observation can also be made in the frequency domain by zooming in the region

between two rf harmonics in the way illustrated in Fig. 9.2. The coupled-bunch mode

excited will be shown as a strong spectral line in between.

Longitudinal coupled-bunch instability will lead to an increase in bunch length and

an increase in energy spread. For a light source, this translates into an increase in the

spot size of the synchrotron light.
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Figure 9.8: (color) Mountain-range plot showing coupled-bunch instability in the

Fermilab Main Injector just after injection at 8 GeV.

There are many way to cure longitudinal coupled bunch instability. The driving

resonances are often the higher-order modes inside the rf cavities. When the particular

resonance is identi�ed and if it is much narrower than the revolution frequency of the ring,

we can try to shift its frequency so that it resides in between two revolution harmonics

and becomes invisible to the beam particles. We can also study the electromagnetic

�eld pattern of this resonance mode inside the cavity and install passive resistors and

antennae to damp this particular mode. This method has been used widely in the

Fermilab Booster, where longitudinal coupled-bunch instability had been very severe

after the beam passed the transition energy. At that time, the bunch area increased

almost linearly with bunch intensity. Passive damping of several o�ending modes cured

this instability to such a point that the bunch area does not increase with bunch intensity

anymore.

Longitudinal coupled-bunch instability had also been observed in the former Fer-

milab Main Ring. Besides passive damping of the cavity resonant modes, the instability

was also reduced by lowering the rf voltage. Lowering the rf voltage will lengthen the

bunch and reduce the form factor Fm(��). This is only possible for a proton machine
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Figure 9.9: Mountain range plot showing bunches in a batch executing coupled-

bunch instability in the Fermilab Main Injector just after injection at 8 GeV

where the bunches are long. It will not work for the short electron bunches for the m = 1

dipole mode. This is because, as mentioned before, the form factor for the dipole mode

is not sensitive to the bunch length for short bunches. Even for a proton machine, the rf

voltage cannot be reduced by a large amount because proton bunches are usually rather

tight inside the rf bucket, especially during ramping.

If the growth turns out to be harmful, a fast bunch-by-bunch damper may be

necessary to damp the dipole mode (m = 1). A damper for the quadrupole mode

(m = 2) may also be necessary. This consists essentially of a wall-gap pickup monitoring

the changes in bunch length and the corresponding excitation of a modulation of the

rf waveform with roughly twice the synchrotron frequency. A feed-back correction is

then made to the rf voltage. Another way to damp the longitudinal coupled-bunch

instability is to break the symmetry between theM bunches. For example, a 5% to 10%

variation in the intensity of the bunches will help. Another way to break the symmetry
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is to have bunches not placed symmetrically in the ring. Some analysis shows that the

stability will be improved if some bunches in the symmetric con�guration are missing [3].

Prabhakar [4] recently proposed a new way to cure longitudinal coupled-bunch instability

using uneven �ll in a storage ring. We are going to discuss this method in more detail

in Sec. 9.3.4.

There can also be Landau damping, which comes from the spread of the synchrotron

frequency. The spread due to the nonlinear sinusoidal rf wave form as given by Eq. (9.51)

is usually small unless the synchronous angle is large. Electron bunches are usually much

smaller in size than the rf bucket. As a result, the spread in synchrotron frequency is

be very minimal and does not help much in Landau damping.

9.3.1 Higher-Harmonic Cavity

In order to Landau damp longitudinal coupled-bunch instability, a large spread in syn-

chrotron frequency inside the bunch is required. One way to do this is to install a

higher-harmonic cavity, sometime known as Landau cavity [5] because it provides Lan-

dau damping. For example, the higher-harmonic cavity has resonant angular frequency

m!rf and voltage rVrf, where !rf is the resonant angular frequency and Vrf the voltage

of the fundamental rf cavity. The total rf voltage seen by the beam particles becomes

V (�) = Vrf
�
sin(�s � !rf�)� r sin(�m �m!rf�)

�� Us

e
; (9.73)

where the phase angles �s and �m are chosen to compensate for Us, the radiation energy

loss, or to provide any required acceleration, We would like the bottom of the potential

well, which is the integral of V (�), to be as at as possible. The rf voltage seen by the

synchronous particle is compensated to zero by the energy lost to synchrotron radiation.

In addition, we further require

@V

@�

����
�=0

= 0 and
@2V

@� 2

����
�=0

= 0 ; (9.74)

so that the potential will become quartic instead. We therefore have 3 equations in 3

unknowns:

sin�s = r sin�m +
Us

eVrf
; (9.75)

cos�s = rm cos�m ; (9.76)

sin�s = rm2 sin�m ; (9.77)
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from which �m and r can be solved easily (Exercise 9.5). For small-amplitude oscillation,

the potential becomes

�
Z
V (�)d(!rf�) �! m2�1

24
(!rf�)

4Vrf cos�s ; (9.78)

which is quartic and the synchrotron frequency is (Exercise 9.6)

!s(�)

!s0
=
�

2

�
m2�1
6

�1=2
!rf�

K(1=
p
2)

2
6664
1�

�
m2

m2 � 1

Us

eVrf

�2

1�
�
Us

eVrf

�2

3
7775
1=4

; (9.79)

where the last factor can usually be neglected; its deviates from unity by only � [(m2�
1)Us=(2eVrf)]

2 if the synchronous angle is small. In above, !s0 is the synchrotron angular

frequency at zero amplitude when the higher-harmonic cavity voltage is turned o�, and

K(1=
p
2) = 1:854 is the complete elliptic integral of the �rst kind which is de�ned as

K(t) =

Z �=2

0

d�p
1� t2 sin2 �

: (9.80)

We see that the synchrotron frequency is zero at zero amplitude and increases linearly

with amplitude. This large spread in synchrotron frequency may be able to supply ample

Landau damping to the longitudinal coupled-bunch instability.

In the situation where there is no radiation loss and no acceleration, Us = 0, the

solution of Eqs. (9.75) to (9.77) simpli�es, giving �s = �m = 0 and the ratio of the

voltages of higher-harmonic cavity to the fundamental r = 1=m. Of course, it is also

possible to have r 6= 1=m. Then the synchrotron frequency at the zero amplitude will not

be zero and the spread in synchrotron frequency can still be appreciable. When m = 2,

i.e., having a second-harmonic cavity, the mathematics simpli�es. The synchrotron

frequencies for various values of r are plotted in Fig. 9.10. Here, r = 0 implies having

only the fundamental rf while r = 1
2
the situation of having the synchrotron frequency

linear in amplitude for small amplitudes. In between, the synchrotron frequency spread

decreases as r decreases. Notice that for 0:3 <� r < 0:5, the synchrotron frequency has a

maximum near the rf phase of � 100Æ. Particles near there will have no Landau damping

at all and experience instability. Thus the size of the bunch is limited when a double

cavity is used. Also the size of the bunch cannot be too small because of two reasons:

�rst, the average synchrotron frequency may have been too low, and second, the central

region of the phase space is a sea of chaos [7].
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Figure 9.10: The normalized synchrotron tune of a double rf system as a function

of the peak rf phase � for various voltage ratio r. Here, the higher-harmonic cavity

has frequency twice that of the fundamental. When r > 1
2 , the center of the bucket

becomes an unstable �xed point and two stable �xed points emerge [7].

A Landau cavity increases the spread in synchrotron frequency, therefore it is ideal

in damping mode-coupling instability and coupled-bunch instability. However, it may

be not helpful for the Keil-Schnell type longitudinal microwave instability, which is valid

for coasting beams. This method was �rst applied successfully with a third-harmonic

cavity to increase Landau damping at the Cambridge Electron Accelerator (CEA) [8].

It was later applied to the Intersecting Storage Ring (ISR) at CERN SR a 6th harmonic

cavity to cure mode-coupling instability [9]. Recently, a third-harmonic cavity has been

reported in the SOLEIL ring in France to give a relative frequency spread of about 200%.

However, since the center frequency has been dramatically decreased (not exactly to

zero), the net result is a poor improvement in the stabilization. The gain in the stability

threshold has been only 30% [6].

Actually, with a higher-harmonic cavity, the bunch becomes more rectangular-like

in the longitudinal phase space, or particles are not so concentrated at the center of the

bunch. Assuming the bunch area to be the same, the Boussard-modi�ed Keil-Schnell

threshold is proportional to the energy spread. Since the bunch becomes more attened,

the maximum energy spread which is at the center of the bunch is actually reduced, and
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so will be the instability threshold. However, spreading out the particles longitudinally

does help to increase the bunching factor and decrease the incoherent self-�eld or space-

charge tune shift. At the CERN Proton Synchrotron Booster, an rf system with higher

harmonics 5 to 10 has raised the beam intensity by about 25 to 30% [10]. For the

Cooler Ring at the Indiana University Cyclotron Facility, a double cavity has been able

to quadruple the beam intensity [7].

9.3.2 Passive Landau Cavity

Higher-harmonic cavities are useful in producing a large spread in synchrotron fre-

quency so that single-bunch mode-mixing instability and coupled-bunch instability can

be damped. However, the power source to drive this higher-harmonic rf system can

be rather costly. One way to overcome this is to do away with the power source and

let the higher-harmonic cavity or cavities be driven by the beam loading voltage of the

circulating beam.

Let the ratio of the resonant frequencies of the higher-harmonic cavity to the fun-

damental rf cavity be m and the rf harmonic of the fundamental rf cavity be h. If the

higher-harmonic cavity has a high quality factor, the beam loading voltage is just ib, the

current component at the cavity resonant frequency, multiplied by the impedance of the

cavity. Here, for a Gaussian bunch

ib = 2I0e
�
1
2
(mh!0�� )

2
; (9.81)

where �� is the rms bunch length and !0 is the angular revolution frequency. Thus for

a short bunch, ib � 2I0 with I0 being the average current of the bunch.

The higher-harmonic cavity must have suitable shunt impedance Rs and quality

factor Q, and this can be accomplished by installing necessary resistor across the cavity

gap. Thus, Rs and Q can be referred to as the loaded quantities of the cavity. For a

particle arriving at time � ahead of the synchronous particle, it sees the total voltage

V (�) = Vrf sin(�s � !rf�)� ibRsRe
�

1

1 + i2QÆ
eim!rf�

�
� Us

e
; (9.82)

where !rf = h!0 is the angular rf frequency determined by the resonator in the rf klystron

that drives the fundamental rf cavity and the negative sign in front of ib indicates that
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this beam loading voltage is induced by the image current and opposes the beam current.

In above,

Æ =
1

2

�
!r
m!rf

� m!rf
!r

�
� !r �m!rf

!r
(9.83)

represents the deviation of the resonant angular frequency !r of the higher-harmonic

cavity from the mth multiple of the rf angular frequency. Of course, this is related to

the detuning angle  of the higher-harmonic cavity, which we introduce in the usual way

as

tan = 2QÆ : (9.84)

Now, Eq. (9.82) can be rewritten as

V (�) = Vrf sin(�s � !rf�)� ibRs cos cos( �m!rf�)� Us

e
: (9.85)

Again to acquire the largest spread in synchrotron frequency, we require

V (0) = 0 ; V 0(0) = 0 ; V
00

(0) = 0 ; (9.86)

so that the potential for small amplitudes becomes quartic,

U(�) = �
Z
V (�)d� = ��

4

4!
V

000

(0) : (9.87)

Since we are having exactly the same quartic potential as in an rf system with an active

Landau cavity, we expect the synchrotron frequency to be exactly the same as the

expression given by Eq. (9.79) when the oscillation amplitude is small.

The set of requirements, however, are di�erent from that of the active Landau cavity

system. Here, the requirements are

Vrf sin�s = ibRs cos
2  + Us=e ; (9.88)

Vrf cos�s = �mibRs cos sin ; (9.89)

Vrf sin�s = m2ibRs cos
2  : (9.90)

For an electron machine which is mostly above transition, the synchronous angle �s is

between 1
2
� and �. Thus, from Eq. (9.89), we immediately obtain

sin 2 > 0 =) 0 <  <
�

2
; (9.91)
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Figure 9.11: For the higher-harmonic cavity, the resonant frequency !r is above

the mth multiple of the rf frequency. The beam will be Robinson unstable above

transition. For the fundamental cavity, the resonant frequency !r0 is below the rf

frequency !rf = h!0, and the beam will be Robinson stable. The detuning of the

fundamental rf should be so chosen that the beam will be stable after traversing

both cavities.

and from Eqs. (9.83) and (9.84), !r > m!rf. This means that the beam in the higher-

harmonic cavity is Robinson unstable [4], as is illustrated in Fig. 9.11. Of course, the

fundamental rf cavity should be Robinson stable, and it will be nice if the detuning is

so chosen that the beam remains stable after traversing both cavities.

The synchrotron light source electron ring at LNLS, Brazil would like to install

a passive Landau cavity with m = 3 in order to alleviate the longitudinal coupled-

bunch instabilities. The fundamental rf system has harmonic h = 148 or rf frequency

frf = !rf=(2�) = 476:0 MHz with a tuning range of�10 kHz, and rf voltage Vrf = 350 kV.

To overcome the radiation loss, the synchronous phase is set at �s0 = 180Æ� 19:0Æ. This

gives a synchrotron tune at small amplitudes �s = 6:87�10�3 or a synchronous frequency
fs = 22:1 kHz.
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With the installation of the passive Landau cavity, the synchronous phase must be

modi�ed to a new �s, which is obtained by solving Eqs. (9.88) and (9.90):

sin�s =

�
m2

m2�1
��

Us

eVrf

�
=

m2

m2�1 sin�s0 : (9.92)

Thus,

�s0 = 180Æ � 19:0Æ =) �s = 180Æ � 21:49Æ ; (9.93)

where m = 3 has been used. The detuning  of the higher-harmonic cavity can be

obtained from Eqs. (9.89) and (9.90), or

tan = �m cot�s =)  = 82:53Æ : (9.94)

Finally from Eq. (9.90),

ibRs =
Vrf sin�s
m2 cos2  

: (9.95)

With ib = 2I0 = 0:300 A and Vrf = 350 kV, we obtain the shunt impedance of the

higher-harmonic cavity to be Rs = 2:81 M
. The power taken out from the beam is

P =
1

2

i2bRs

1 + tan2  
= 2:14 kW ; (9.96)

which is not large when compared with the power loss due to radiation

Prad = NUsf0 = I0Vrf sin�s0 = 17:09 kW ; (9.97)

where N is the number of electrons in the bunch. The higher-harmonic cavity has a

quality factor of Q = 45000 and a resonant frequency fr � 3fr0 = 1428 MHz. From the

detuning, it can easily found that the frequency o�set is fr � 3frf = 121 kHz.

Now let us compute the growth rate for one bunch at the coherent frequency 
.

For one particle of time advance � , we have from Sacherer's integral equation for a short

bunch [2],


2 � !s(�)
2 =

i�eI0
E0T0

X
q

(q!0 + 
)Z
k
0 (q!0 + 
) : (9.98)

where � is the slip factor and we have retained the dependency of the synchrotron

frequency !s on � because of its large spread in the presence of the higher-harmonic

cavity. From Eq. (9.79), this dependency is

!s(�)

!s0
=
�

2

�
m2�1
6

�1=2
!rf�

K(1=
p
2)

s
cos�s
cos�s0

; (9.99)
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where the last factor amounts to 0.9920 and can therefore be safely abandoned. Thus,

the average !2
s over the whole bunch just gives the square of the rms frequency spread,

h!2
si = �2!s =

"
�!s0
2

r
m2�1
6

!rf��

K(1=
p
2)

#2
: (9.100)

The FWHM natural bunch length at Vrf = 350 kV is �
FWHM

= 70:6 ps; thus �� = 30:0 ps.

This gives �!s = �
FWHM

=(2
p
2 ln 2) = 12:2 kHz.

Since the synchrotron frequency is now a function of the o�set from the stable �xed

point of the rf bucket, a dispersion relation can be obtained from Eq. (9.98) by integrating

over the synchrotron frequency distribution of the bunch. Here, we are interested in the

growth rate without Landau damping, which is given approximately by

1

�
= Im
 � �eI0!rf

2E0T0(2�!s)

nh
Re Zk

0(!rf + 2�!s)�Re Zk
0(!rf � 2�!s)

i
+m

h
Re Zk

0(m!rf + 2�!s)�Re Zk
0(m!rf � 2�!s)

io
; (9.101)

where the mean angular synchrotron frequency has been assumed to be

�!s = 2�!s : (9.102)

The growth rate can be computed easily by substituting into Eq. (9.101) the expression

for Re Zk
0 . However, the di�erences in Eq. (9.101) can also be approximated by deriva-

tives. For the higher-harmonic cavity, both the upper and lower synchrotron sidebands

lie on the same side of the higher-harmonic resonance as indicated in Fig. 9.11. Their

di�erence, � 4�!s=(2�) = 7:76 kHz, is also very much less than the cavity detuning

(!r �m!rf)=(2�) = 121 kHz. Recalling that

Re Zk
0 (!) = Rs cos

2  ; (9.103)

where the detuning  is given by Eq. (9.84), the second term can be written as a

di�erential,

Re Zk
0(m!rf + 2�!s)�Re Zk

0(m!rf � 2�!s) �
�
Rs cos

2  sin 2 
2Q

!r

�
4�!s : (9.104)

For the fundamental cavity, the resonant frequency is !r0=(2�) = 476:00 MHz.

The detuning is usually � = �10 kHz at injection and is reduced to � = �2 kHz in
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storage mode when the highest electron energy is reached. Thus, the upper and lower

synchrotron sidebands lie on either side of the resonance as illustrated in Fig. 9.11. Since

�� �!s , we can also write the �rst term of Eq. (9.101) as a di�erential about !r0+ �!s,

with the assumption that the resonance is symmetric about the resonant frequency !r0.

Thus,

Re Zk
0(!rf + �!s)�Re Zk

0(!rf � �!s)

= Re Zk
0 (!r0+�+�!s)�Re Zk

0(!r0��+�!s) �
�
Rs cos

2  !s sin 2 !s

2Q

!r0

�
2� ; (9.105)

where  !s , which is similar to a detuning angle by the amount �!s, is de�ned as

tan !s = 2Q
�!s
!r0

: (9.106)

We arrive at

1

�
=

2�eI0Q

E0T0

�
�

�!s
Rs cos

2  !s sin 2 !s

��
fund

+ Rs cos
2  sin 2 

��
higher

�
; (9.107)

where the contributions from the fundamental and higher-harmonic cavities are indi-

cated by the subscripts `fund' and `higher', respectively. The square bracketed factor in

Eq. (9.107) becomes�
�

�!s
Rs cos

2  !s sin 2 !s

��
fund

+Rs cos
2  sin 2 

��
higher

�
= (�0:1953 + 0:0122) M
 ;

(9.108)

where we have used for the fundamental cavity, the shunt impedance Rs = 3:84 M
, and

quality factor Q = 45000 exactly the same as the higher harmonic cavity. The two-rf

system turns out to be Robinson stable; the damping rate is 54600 s�1 or a damping time

of 0.018 ms. However, it is important to point out that the growth rate formula given by

Eq. (9.101) is valid only if the shift and spread of the synchrotron frequency are much

less than some unperturbed synchrotron frequency. Here, the synchrotron frequency is

linear with the o�set from the stable �xed point of the longitudinal phase space and

the spread is therefore very large. Thus, Eq. (9.101) can only be viewed as an estimate.

The employment of a mean synchrotron angular frequency �!s can also be questionable.

Although the assumption of the mean synchrotron angular frequency in Eq. (9.102) is

not sensitive to the higher-harmonic-cavity term in Eq. (9.101), however, it is rather

sensitive to the fundamental-cavity term. The dependence is complicated since the

equivalent detuning  !s depends on �!s also. For example, if we use �!s = 1:5�!s instead,
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the damping time decreases to 0.013 ms, while �!s = 3:0�!s increases the damping time

to 0.036 ms. With this uncertainty, a suggestion may be to increase the detuning �

of the fundamental to � � �4 kHz so that it becomes more certain that the two-rf

system will be Robinson stable, otherwise, the purpose of the higher-harmonic cavity

can be defeated, because some of the spread of the synchrotron frequency obtained will

be used to �ght the Robinson's instability created instead of other longitudinal collective

instabilities of concern.

Now let us estimate how large a Landau damping we obtain from the passive Landau

cavity coming from the spread of the synchrotron frequency. Following Eq. (9.52), the

stability criterion is roughly

1

�
<�
!s(
p
6�� )

4
; (9.109)

where the synchrotron angular frequency spread is given by Eq. (9.79). The spread in

synchrotron angular frequency has been found to be !s(
p
6�� ) = 39:6 kHz. In other

words, the higher-harmonic cavity is able to damp an instability that has a growth time

longer than 0.101 ms, an improvement of 57 folds better than when the higher-harmonic

cavity is absent. Thus, theoretically, this Landau damping is large enough to alleviate

the Robinson's antidamping of higher-harmonic cavity as well.

We notice that the required shunt impedance of the passive Landau cavity Rs =

2:81 M
 is large, although it is still smaller than the shunt impedance of 3.84 M
 of the

fundamental cavity. It is easy to understand why such large impedance is required. The

synchronous angle for a storage ring without the Landau cavity is usually just not too

much from 180Æ, here �s0 = 180Æ�19:0Æ, because of the compensation of a small amount

of radiation loss. The rf gap voltage phasor is therefore almost perpendicular to the beam

current phasor. In order that the beam loading voltage contributes signi�cantly to the rf

voltage, the detuning angle of the passive higher-harmonic cavity must therefore be large

also, here  = 82:53Æ. In fact, without radiation loss to compensate, the beam loading

voltage phasor would have been exactly perpendicular to the beam current phasor. Since

cos = 0:130 is small, the shunt impedance of the higher-harmonic cavity must therefore

be large. In some sense, the employment of the higher-harmonic cavity is not eÆcient at

all, because we are using only the tail of a large resonance impedance, as is depicted in

Fig. 9.11. This is not a waste at all, however, because we can do away with the generator

power source for this cavity. Also, the large detuning angle implies not much power will

be taken out from the beam as it loads the cavity, only 2.14 kW here. On the other

hand, the detuning of the fundamental cavity need not be too large. This is because
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the rf gap voltage is supplied mostly by the generator voltage and only partially by the

beam loading in the cavity.

The most important question here is how do we generate a large shunt impedance

for the higher-harmonic cavity. Usually it is easy to lower the shunt impedance by

adding a resistor across the cavity gap. Some other means will be required to raise

the shunt impedance, in case it is not large enough. One way is to coat the interior

of the higher-harmonic cavity with a layer of medium that has a higher conductivity.

However, it is hard to think of any medium that has a conductivity very much higher

than that of the copper surface of the cavity. For example, the conductivity of silver

is only slightly higher. Another way to increase the conductivity signi�cantly is the

reduction of temperature to the cryogenic region. Notice that Rs=Q is a geometric

property of the cavity. Raising Rs will raise Q also. However, a higher quality factor is

of no concern here, because the requirements in Eqs. (9.88), (9.89), and (9.90) depend

on the detuning  only and are independent of Q. With the same detuning  , a higher

Q just implies a smaller frequency o�set between the resonant angular frequency !r of

the higher-harmonic cavity and the mth multiple of the rf angular frequency.

The shunt impedance of the higher-harmonic cavity determines the rf voltage to be

used in the fundamental cavity. We can rewrite Eq. (9.95) as

ibRs

Us=e
=

�
m2 � 1

m2

��
Vrf
Us=e

�2

� 1 ; (9.110)

after eliminating �s and  with the aid of Eqs. (9.92) and (9.94). Thus, for a given

beam current, a small shunt impedance of the higher-harmonic cavity translates into

small rf voltage. Notice that the right side is quadratic in Vrf. For example, with the

same radiation loss, when the shunt impedance of the higher-order cavity decreases from

6.12 to 2.81 M
, the rf voltage Vrf has to decrease from 500 kV to 350 kV. A low rf

voltage is usually not favored because the electron bunches will become too long.

In order to maximize Landau damping, criteria must be met so that the rf potential

becomes quartic. As is shown in Fig. 9.10 for a m = 2 double rf system, when the rf

voltage ratio deviates from r = 1=m = 0:5 by 20% to 0.4, the spread in synchrotron

frequency for a small bunch decreases tremendously to almost the same tiny value as in

the single rf system. There is a big di�erence between an active Landau cavity and a

passive Landau cavity. In an active Landau cavity, the criteria in Eqs. (9.77) to (9.77)

are independent of the beam intensity. On the other hand, the criteria for the operation

of a passive cavity, Eqs. (9.88), (9.89), and (9.90), depend on the bunch intensity. What
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will happen when the bunch intensity changes signi�cantly? Let us recall how we arrive

at the solution of the three equations of the passive two-rf system. The new synchronous

phase �s, as given by Eq. (9.92), is determined solely by the ratio of the radiation loss

Us to the rf voltage Vrf . while the detuning  is just given by �m cot�s. The only

parameter that depends on the beam current is the shunt impedance Rs. Thus, the

easiest solution is to install a variable resistor across the the gap of the higher-harmonic

cavity and adjust the proper shunt impedance by monitoring the intensity of the electron

bunches.

In the event that the shunt impedance is not adjustable, one can adjust instead

the rf voltage so that Eq. (9.110) remains satis�ed with the new current but with the

preset Rs. With the new rf voltage, the synchronous phase �s has to be adjusted so that

Eq. (9.92) remains satis�ed. This will alter the detuning  according to Eq. (9.94). The

only way to achieve the new detuning is to vary the rf frequency. This will push the

beam radially inward or outward. As the beam current changes by �I0=I0, to maintain

the criteria of the quartic rf potential, the required changes in rf voltage, synchronous

angle, and detuning of the higher-harmonic cavity are, respectively,

�Vrf
Vs

=
1

2

�
m2

m2�1
Vs
Vrf

� �
m2�1
m2

V 2
rf

V 2
s

� 1

�
�I0
I0

; (9.111)

�(� � �s) = �
"�

m2�1
m2

Vrf
Vs

�2

� 1

#�1=2
�Vrf
Vs

; (9.112)

� =
1

2m

"�
m2�1
m2

Vrf
Vs

�2

� 1

#�1=2
�I0
I0

; (9.113)

where Us = eVs is the energy loss per turn due to synchrotron radiation. The change

of the detuning angle  leads to a fractional change in the rf frequency and therefore a

fractional change in orbit radius

�R

R
= �m

2�1
4mQ

�
m2�1
m2

V 2
rf

V 2
s

� 1

�"�
m2�1
m2

Vrf
Vs

�2

� 1

#�1=2
�I0
I0

; (9.114)

where R is the radius of the storage ring. These changes are plotted in Fig. 9.12 for

the LNLS double rf system when he beam current varies by �20%. Because of the high
quality factors Q of the cavities, the radial o�set of the beam turns out to be very small,

less than �0:14 mm for a �20% variation of beam current.
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Figure 9.12: Plots showing the required variations of rf voltage Vrf , synchronous

angle �s, higher-harmonic-cavity detuning  , and beam radial o�set �r to maintain

the criteria of the quartic rf potential, when the beam current varies by �20%.
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9.3.3 Rf Voltage Modulation

The modulation of the rf system will create nonlinear parametric resonances, which

redistribute particles in the longitudinal phase plane. The formation of islands within

an rf bucket reduces the density in the bunch core and decouples the coupling between

bunches. As a result, beam dynamics properties related to the bunch density, such as

beam lifetime, beam collective instabilities, etc, can be improved.

Here we try to modulate the rf voltage with a frequency �m!0=(2�) and amplitude

�, so that the energy equation becomes [11]

d�E

dn
= eVrf[1 + � sin(2��mn+ �)][sin(�s � h!0�)� sin�s]� [U(Æ)� Us] ; (9.115)

where � is a randomly chosen phase, �m is the modulating tune, � is the fractional voltage

modulation amplitude, Us and U(Æ) denote the energy loss due to synchrotron radiation

for the synchronous particle and a particle with momentum o�set Æ. This modulation

will introduce resonant-island structure in the longitudinal phase plane. There are two

critical tunes: �
�1 = 2�s +

1
2
��s ;

�2 = 2�s � 1
2
��s :

(9.116)

If we start the modulation by gradually increasing the modulating tune �m towards �2
from below, two islands appear inside the bucket from both sides, as shown in the second

plot of Fig. 9.13. The phase space showing the islands is depicted in Fig. 9.14. As �m
is increased, these two islands come closer and closer to the center of the bucket and the

particles in the bunch core gradually spill into these two islands, forming 3 beamlets.

When �m reaches �2, the central core disappears and all the particles are shared by the

two beamlets in the two islands. Further increase of �m above �2 moves the two beamlets

closer together. When �m equals �1, the two beamlets merge into one. Under all these

situations, the two outer islands rotate around the center of the rf bucket with frequency

equal to one half the modulation frequency. Every rf bucket has the same phase space

structure of having two or three islands rotating at the same angular velocity and with

the roughly same phase. The only possible small phase lag is due to time-of-ight.

Therefore, only coupled mode � = 0 will be allowed, unless the driving force is large

enough to overcome the voltage modulation.

Rf voltage modulation has been introduced into the light source at the Synchrotron

Radiation Research Center (SRRC) of Taiwan to cope with longitudinal coupled-bunch
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Figure 9.13: (Color) Simulation results of rf voltage modulation. The modula-

tion frequency is increased from top to bottom and left to right. The modulation

amplitude is 10% of the cavity voltage. The 4th plot is right at critical frequency

�2f0 = 49:6275 kHz and the 7th plot right at critical frequency �1f0 = 52:1725 kHz.
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Figure 9.14: Top �gures show separatrices and tori of the time-independent Hamil-

tonian with voltage modulation in multi-particle simulation for an experiment at

Indiana University Cyclotron Facility. The modulation tune is below �2 with the

formation of 3 islands on the left, while the modulation tune is above �2 with the

formation of 2 islands on the right. The lower-left plot shows the �nal beam dis-

tribution when there are 3 islands, a damping rate of 2.5 s�1 has been assumed.

The lower-right plot shows the longitudinal beam distribution from a BPM sum

signal accumulated over many synchrotron periods. Note that the outer two beam-

lets rotate around the center beamlet at frequency equal to one-half the modulation

frequency.



9.3 Observation and Cures 9-39

instability [12]. The synchrotron frequency was �sf0 = 25:450 kHz. A modulation fre-

quency slightly below twice the synchrotron frequency with � = 10% voltage modulation

was applied to the rf system. The beam spectrum measured from the beam-position

monitor (BPM) sum from a HP4396A network analyzer before and after the modulation

is shown in Fig. 9.15. It is evident that the intensities of the beam spectrum at the

annoying frequencies have been largely reduced after the application of the modulation.

The sidebands around the harmonics of 587.106 Hz and 911.888 MHz are magni�ed in

Fig. 9.16. We see that the synchrotron sidebands have been suppressed by very much.

The multi-bunch beam motion under rf voltage modulation was also recorded by streak

camera, which did not reveal any coupled motion of the bunches. Because of the suc-

cessful damping of the longitudinal coupled-bunch instabilities, this modulation process

has been incorporated into the routine operation of the light source at SRRC.

9.3.4 Uneven Fill

In a storage ring with M identical bunches evenly spaced, there will be M modes of

coupled-bunch oscillation, of which about half are stable and half unstable in the presence

of an impedance, if all other means of damping are neglected. Take the example of having

the rf harmonic h = M = 6 as illustrated in Fig. 9.2. If there is a narrow resonant

impedance in the rf cavity located at !r � (qM +�)!0 with � = 4, coupled-bunch mode

� = 4 becomes highly unstable. At the same time, this resonant impedance also damps

coupled-bunch mode M � � = 2 heavily. Usually, we only care for the mode that is

unstable and pay no attention the mode that is damped. In some sense, the damping

provided by the impedance is rendered useless or has been wasted. However, if there is

another narrow resonant impedance located at the angular frequency (qM + �0)!0 with

�0 = 2. This impedance excites coupled-bunch mode 2, but damps coupled-bunch mode

4. If this impedance is of the same magnitude as the �rst one, both coupled-bunch modes

2 and 4 can become stable. Thus, having more narrow resonances in the impedance does

not necessarily imply more instabilities. If they are located at the desired frequencies,

they can be helping each other so that the excitation of one can be canceled by the other.

This method of curing coupled-bunch instability was proposed in Ref. [13] by creating

extra resonances in the impedance in the accelerator ring. However, extra resonances

in the impedance are not necessary. The same purpose can also be served if we can

couple the two coupled-bunch modes together, for example modes 2 and 4 in the above

example, the damped mode will be helping the growth mode. If the resulting growth
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plying rf voltage modulation. The synchrotron frequency was 25.450 kHz. The

voltage was modulated by 10% at 50.155 kHz. The frequency span of the spectrum
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rates of the two coupled modes fall lower than the synchrotron radiation damping rate

and the Landau damping rate in the ring, the coupled-bunch instability will be cured.

This method of cure is called modulating coupling proposed by Prabhakar [4, 14], and

the coupling is accomplished with an uneven �ll in the ring. We saw in Eq. (9.48) that

wake �eld left by previous bunch passages contributes to a coherent synchrotron tune

shift in the bunch. For an unevenly �lled ring, the tune shifts for di�erent bunches will

be di�erent. This provides a spread in synchrotron tune and therefore extra Landau

damping, which is another idea proposed by Prabhakar.

Let us go over the uneven-�ll theory briey. Consider M point bunches evenly

placed in the ring, but they may carry di�erent charges. The arrival time advance �n of

the nth bunch at time s obeys the equation of motion,

��n + 2dr _�n + !2
s�n =

e�

�2E0T0
Vn ; (9.117)

where dr is the synchrotron radiation damping rate and the overdot represents derivative

with respect to s=v. Here Vn(s) is the total wake voltage seen by bunch n, and is given

by

Vn(s) =
1X

p=�1

M�1X
k=0

qkW
0
0

�
tpn;k + �k(s� vtpn;k)� �n(s)

�
; (9.118)

where qk is the charge of bunch k, tpn;k = (pM + n � k)Tb is the time bunch k is ahead

of bunch n p turns ago, and Tb = T0=M is the bunch spacingy. Since the deviation due

to synchrotron motion is small compared with the bunch spacing, Eq. (9.118) can be

expanded, resulting

Vn(s) =
1X

p=�1

M�1X
k=0

qk
�
�k(s� vtpn;k)� �n(s)

�
W 00

0

�
tpn;k
�
: (9.119)

yIn Eq. (9.9), we have kC+(s`�sn) in the argument of the wake functionW 0
0, where we are sampling

the wake force on the nth bunch due to the `th bunch. There, sn represent the distance along the ring

measured from some reference point to the nth bunch in the same direction of bunch motion. Thus,

the `th bunch is ahead of the nth bunch by the distance s` � sn. In Eq. (9.118), we count the number

of bunch spacings instead. Thus, the kth bunch is ahead the nth bunch by the time (n� k)Tb, since we

number the bunches from upstream to downstream or in the opposite direction of bunch motion. Note

that the term v(� 0 � �) in the argument of the linear density in Eq. (9.8) has been neglected because

this will only amount to a phase delay 
(� 0 � �) where 
 � !s and is very much less than the phase

change !r(�
0 � �).
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If all bunches carry the same charge, we have the situation of even �ll and the M

symmetric eigenmodes arez

�` =
1p
M

0
BBBBB@

1

e�i`�

e�2i`�

...

e�i(M�1)`�

1
CCCCCA ; ` = 0; 1; � � � ;M�1; � =

2�

M
: (9.120)

They form an orthonormal basis which we called the even-�ll-eigenmode (EFEM) basis

For an uneven �ll, it is natural to expand the new eigenmodes using as a basis the

EFEMs. The arrival time advances �n(s) for the M bunches in Eq. (9.117) can now be

written as0
B@

�0
...

�M�1

1
CA = &0�0 + � � �+ &M�1

�M�1 or �n(s) =
1p
M

M�1X
m=0

&m(s)e�i2�nm=M ; (9.121)

where the expansion coeÆcients can be written inversely as

&m(s) =
1p
M

M�1X
n=0

�n(s)e
i2�nm=M : (9.122)

Assuming the ansatz

�k(s) / e�i
s=v ; (9.123)

where the collective frequency 
 is to be determined, the voltage from the wake can now

be written as

Vn(s) =
1p
M

1X
p=�1

M�1X
k;m=0

qk&
m(s)e�i2�nm=M

h
ei(m!0+
)t

p
n;k � 1

i
W 00

0 (t
p
n;k) ; (9.124)

where

&m(s) / e�i
s=v : (9.125)

zHere, coupled-bunch mode ` implies the center-of-mass of a bunch lags its predecessor by the phase

2�`=M . Thus, coupled-bunch mode ` here is the same as coupled-bunch mode M � ` discussed in the

earlier part of this Chapter. There, the center-of-mass of a bunch leads its predecessor by the phase

2�`=M .
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Next project the whole Eq. (9.117) onto the `th EFEM, giving

�&` + 2dr _&
` + !2

s&
` =

e�

�2E0M

1X
p=�1

M�1X
n;m;k=0

qk
T0
&m(s)ei2�n(`�m)=M

h
ei(m!0+
)t

p
n:k � 1

i
W 00

0 (t
p
n:k) : (9.126)

There are too many summations over bunch number. We can eliminate one by de�ning

the integer variable u = pM +n�k = tpn:k=Tb. After that,
P

p ! 1
M

P
u. The summand

becomes independent of n and we have
P

n =M . The right side of Eq. (9.126) becomes

R:S: =
e�

�2E0M

1X
u=�1

M�1X
m=0

Il�m&
m(s)ei2�u(`�m)=M

�
ei(m!0+
)uTb � 1

�
W 00

0 (uTb) ; (9.127)

where we have introduced the complex amplitude of the pth revolution harmonic in the

beam spectrum,

Ip =
M�1X
k=0

ike
i2�kp=M ; (9.128)

with ik = qk=T0 denoting the average current of bunch k. For an evenly �lled ring, the

average beam current of each bunch is the same. Let us go to the frequency space by

introducing the longitudinal impedance,

W 0
0(t) =

Z
d!

2�
Z
k
0 (!)e

�i!t : (9.129)

The summation over u can now be performed using Poisson formula resulting in the

di�erence of two Æ-functions, which facilitate the integration over ! resulting in

R:S: = � ie�

�2E0T0

1X
p=�1

M�1X
m=0

Il�m&
m(s)

n
[(pM+`)!0+
]Z

k
0 [(pM+`)!0+
]

� [(pM+`�m)!0]Z
k
0 [(pM+`�m)!0]

o
: (9.130)

With the introduction of the coupling impedance,

Z`m(!) = Ze�

�
`!0 + !

�� Ze�

�
(`�m)!0

�
Ze�(!) =

1

!rf

1X
p=�1

�
pM!0 + !

�
Z
k
0

�
pM!0 + !

�
;

(9.131)
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the equation of motion for the bunches can be written in the simpli�ed form,

�&` + 2dr _&
` + !2

s&
` = � ie�!rf

�2E0T0

M�1X
m=0

Il�mZ`m(
)&
m : (9.132)

The next simpli�cation is to exclude all solutions when 
 � �!s and include only

those near +!s. From the ansatz (9.123) or (9.125), one has

�&` + 2dr _&
` + !2

s&
` � �2i!s

�
_&` � (dr � i!s)&

`
�
; (9.133)

provided that dr � !s and j
� !sj � !s. We �nally obtain

_&` � (dr � i!s)&
` =

M�1X
m=0

A`m&
m ; (9.134)

with

A`m =
e�!rf

2�2E0T0!s
I`�mZ`m(!s) : (9.135)

This is just a M -dimensional eigenvalue problem. In the situation of an evenly �lled

ring, all bunch current ik are the same and the harmonic spectrum amplitude

Ip =

�
I0 =

P
k ik p = 0

0 p 6= 0 ;
(9.136)

where I0 is the total average current in the ring. This implies no coupling between the

EFEMs, as expected, and the eigenvalues are

�` = A`` =
e�!rf

2�2E0T0!s
I0 [Ze�(`!0 + !s)� Ze�(0)] ; ` = 1; � � � ; M�1 : (9.137)

Some results are apparent:

� The sum of eigenvalues,
P
A``, is independent of �ll shapes.

� Uneven-�ll eigenvalues vary linearly as I0.

� Radiation damping merely shifts all eigenvalues by dr, regardless of �ll shape.

� If all �lled buckets have the same charge qk, then broadband bunch-by-bunch

feedback also damps all uneven-�ll modes equally, since it behaves like radiation

damping.

� The EFEM basis yields a sparse A-matrix because usually coupled-bunch instabil-

ities are driven by only a few parasitic higher-order resonances in the rf cavities.
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9.3.4.1 Modulation Coupling

Let us study some special casex when IkZe�(k!0) = 0 except for k = 0. This implies

that the modulation coupling terms are the only manifestation of �ll unevenness. The

problem simpli�es considerably. In addition, if there is only one sharp resonance exciting

instability for mode ` in the EFEM basis, this resonance will initiate damping for mode

m. We try to couple these two modes by �lling the ring unevenly so that I`�m is

maximized. The A-matrix is now diagonal except for the coupling between these two

modes. The coupling A-matrix reduces to a two-by-two matrix. The new eigenvalues

for these two modes are

� =
1

2
(�` + �m)� 1

2

q
(�` � �m)2 + 4C2

`�m�`�m ; (9.138)

where Cp = jIpj=I0 is called the modulation parameter and its value cannot exceed unity.

If C`�m = 0, the even-�ll eigenvalues �` and �m are not perturbed. As C`�m approaches

unity, one eigenvalue approaches zero and so is its growth rate. The other eigenvalue

approaches �` + �m so that the damping rate of mode m is helping the growth rate of

mode `.

To optimize the modulation parameter Cp, we resort to the de�nition of the har-

monic amplitude Ip in Eq. (9.128). As an example, take a ring of M = 900 even-�ll

bunches and we wish to optimize Cp with p = 3. According to the de�nition of the

harmonic amplitude Ip in Eq. (9.128), the easiest way to accomplish this is to �ll the

ring every M=p = 900=3 = 300-th bucket (assuming that the total number of bucket is

also M = 900). Since we wish to keep the same current I0 in the ring, each of these

p = 3 chosen buckets will be �lled with bunch current I0=p = I0=3 and the modula-

tion parameter becomes C3 = 1. However, with so much charge concentrated at these

3 buckets, each bunch can become unstable by itself. To cope with this single-bunch

instability, we can �ll several adjacent buckets around each of these 3 chosen locations.

If the maximum allowable bunch current is imax, we need to �ll up I0=(pimax) adjacent

buckets. If I0 = 450 mA and imax = 2 mA, we need to �ll up 75 adjacent buckets at

xConsider a ring with M = 84 buckets. If there is a sharp resonance at !r = (pM + `)!0 with

` = 79, coupled-bunch mode ` = 79 in the EFEM basis will be excited, but mode m =M � ` = 5 will

be damped. To couple these two modes, we need to maximize Ik or I�k with k = `�m = 74. Under

this situation, IkZe�(k!0) = 0 except for k = 0, because (1) although I74 6= 0, there is no impedance

at (pM � 74)!0, and (2) although Ze�(k!0) 6= 0 for k = ` and k = m, I` and Im are zero because we

maximize I`�m only. The same is true if there are a few sharp resonances. This condition, however,

excludes the extra Landau damping to be studied in the Sec. 9.3.4.2.
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Figure 9.17: (color) Illustration of �ll optimization for a ring withM = 900 bunches

when evenly �lled and total beam current I0 = 450 mA. Solid: 50% �ll and 25% �ll

maximize C3 for imax = 1 mA and 2 mA. Dash-dot: Reference sinusoid at 3 times

revolution frequency.

each of the 3 locations. So all in total x = I0=(Mimax) or 25% of the buckets are �lled.

If imax = 1 mA instead, 150 adjacent buckets have to be �lled in each of the 3 chosen

locations, which makes 50% of the ring �lled. These patterns are illustrated in Fig. 9.17.

When a fraction x of the ring �lled in this way, the modulation parameter Cp will be

reduced. In general, we can calculate a corresponding \weight" cos(2�pn=M) for each

bucket n and �ll each of the \heaviest" I0=imax buckets to the same current imax. The

modulation parameter will be

Cp � sin(�x)

�x
: (9.139)

9.3.4.2 Landau Damping

We need to be a little careful to derive the tune shift for the bunches because, for

example, Eq. (9.132) is the equation of motion for a coupled-bunch mode ` and not for

a particular bunch. We need to use Eq. (9.121) to transform back to the equation of

motion of �k for bunch k. The frequency shift for bunch k relative to the mean tune is

found to be

�!k
s = � ie�!rf

�2E0T0!s

M�1X
`=0

�
Ze�(`!0)I`e

�i2�k`=M
�
; (9.140)

which is purely real because the real part of the summand is an odd function of ` with

period M . For an evenly �ll pattern, I` = 0 unless ` = 0. the tune shift for each bunch

will be the same. For I` 6= 0 when ` 6= 0, however, di�erent bunches receive di�erent

tune shifts, creating a tune spread for Landau damping.
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Consider a sharp impedance resonance at n!0 which is not a multiple of the bunch

frequency M!0. If we design a �ll optimized for Cn, we excite a sinusoidal ringing in

the wake voltage at n!0, which contributes to an uneven frequency shift to Eq. (9.140).

The larger the modulation parameter the larger will be the tune spread. Figure 9.18

shows the increase in Landau damping as the �ll fraction x is decreased. In the �gure,

Re � is proportional to the growth rate while Im� is proportional to the tune shift.

Interestingly, eigenvalues with large imaginary parts are completely damped even by

80% �lls.
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Figure 9.18: (color) Graphic look-up table for �ll-induced damping of eigenvalue

of unstable longitudinal EFEM n as Cn is increased from 0 (100% of ring �lled) to

0.5 (61% �lled). Dashes: Evolution of �n from a few even-�ll starting points.

9.3.4.3 APPLICATION

There are longitudinal coupled-bunch instabilities in the PEP-II Low Energy Ring (LER)

at I0 = 1 A and M = 873 [14]. The two largest cavity resonances are expected to drive

bands of modes centered at 93.1 MHz (EFEM 683) and 105 MHz (EFEM 770) unstable.

They also stabilize the corresponding bands at 25.9 MHz (EFEM 190) and 14 MHz

(EFEM 103). The growth and damping rate spectrum are shown in Fig. 9.19(a). The

best modulation-coupling cure is to couple the modes around 105 MHz to those near

25.9 MHz by maximizing C580 or C293 (Cp = CM�p). This will automatically couples
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Figure 9.19: (color) Illustration of �ll optimization for a ring with M = 1000

bunches when evenly �lled and total beam current I0 = 500 mA. Solid: 50% �ll and

25% �ll maximize C4 for imax = 1 mA and 2 mA. Dash-dot: Reference sinusoid at

4 times revolution frequency.

93.1 MHz to 14 MHz. The optimization can be easily accomplished by �lling every third

nominally-spaced bucket, since 873=3 = 291 is close to 293. This is equivalent to slicing

the frequency range from zero to M!0 and placing the three parts of the growth or

damping spectrum on each other. Thus the damping parts will help the growing parts.

The calculation illustrated in Fig. 9.19(b) shows that such a �ll should be stable at 1 A.

Modulation coupling was expected to raise the instability threshold from 305 mA

(nominal spacing) to 1.16 A (3 times nominal spacing). The measured thresholds are

350 mA and 660 mA, respectively.

Theoretical predictions of �ll-induced Landau damping were �rst tested at the Ad-

vanced Light Source (ALS). Only two of the 328 ALS modes were unstable: mode 204

and 233. The e�ective impedance at 233!0 was used to create a tune spread by maxi-

mizing C233.

A baseline even-�ll instability measurement was �rst made at I0 = 172 mA. This

gave the two eigenvalues �204 = (0:47� 0:02) + i(0:05� 0:03) ms�1 and �233 = (0:61�
0:02) + i(1:16� 0:03) ms�1, assuming that the radiation damping rate dr = 0:074 ms�1.

It is evident from Fig. 9.18 that �ll fraction less than 60% will damp the target mode

almost completely. Thus, any residual instability in the Landau �ll must correspond to
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the Landau-damped mode 204. Numerical calculation gives us only one unstable mode

with eigenvalue (0:1� 0:04)� i(1:62� 0:06) ms�1, whose real part is about 6 times less

than in the even-�ll case. The measured eigenvalue for a 175-mA beam with C233 = 0:67

is (0:09� 0:003)� i(1:63� 0:005) ms�1, in agreement with the theoretical prediction.

Prediction of uneven �ll has also been made on the light source at SRRC of Tai-

wan [15]. The main source of longitudinal impedance is from the Doris type rf cavities,

which have a resonance at 744.1948 MHz, loaded QL = 2219 and RL=QL = 31:95 
. But

from the observation on the real machine, the unstable mode number is 97 or resonance

frequency is 742 MHz. There are M = 200 rf bucket in the SRRC ring. Thus, the most

stable mode is 103. To couple the two modes, one must maximize C6, or the �lling pat-

tern is in 6 groups of buckets. The simulations consist of using three uneven �ll patterns

as illustrated on the left side of Fig. 9.20 with a total beam current of 200 mA.
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Figure 9.20: Fill patterns used in the simulation of the Taiwan Light Source.
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Figure 9.21: (color) The evolution of EFEM 97 and EFEM 103 of four �ll patterns

from simulation.

Table 9.1: Simulation results of growth rates of EFEM 97 and 103

of four �ll patterns. 5 ms radiation damping time has been included.

Growth rate ms�1

Fill pattern C6 EFEM 97 EFEM 103

uniform 0 1.9399 |

uneven1 0.8302 1.0004 1.0182

uneven2 0.9476 0.4947 0.4947

uneven3 0.8855 0.8659 0.8703

The spectra are shown on the right side. The growth rates for the two modes are

displayed in Fig. 9.21 and listed in Table 9.1. Note that the derived growth rates in-

clude 5 ms radiation damping time. We see that the uneven �lls do help to damp the

beam instability, although the result has not been completely satisfactory because the

instability still grows.
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9.4 Exercises

9.1. Above/below transition, with the angular resonant frequency !r o�set by �! =

�(!r�h!0) where !rf = h!0 is the angular rf frequency, h is the rf harmonic, and

!0 is the revolution angular velocity, the bunch su�ers Robinson's instability.

(1) Assuming that !s � j�!j � !rf and using the expression for resonant im-

pedance in Eq. (1.40), show that the Robinson's growth rate in Eq. (9.41) can be

written as
1

�
= �2e2N�RsQ

�2E0T 2
0

cos2  sin 2 ; (9.141)

where N is the number of particles in the bunch, E0 is the synchronous energy,

�c is the velocity of the synchronous particle with c being the velocity of light,

T0 = 2�=!0 is the revolution period, � is the slip factor, and the detuning angle  

is de�ned as

tan = 2Q
!r � !rf
!r

for the resonant impedance with shunt impedance Rs, resonant frequency !r=(2�),

and quality factor Q.

(2) Assuming further that j�!j is much less than the resonator width !r=(2Q)

which, in turn, is much less than !0, show that the Robinson's growth rate can be

written as
1

�
= �4e2NRsQ

2��!

��2E0hT0
: (9.142)

(3) Robinson instability is usually more pronounced in electron than proton ma-

chines because high shunt impedance and quality factor are often required in the rf

system. Take for example a ring of circumference 180 m with slip factor j�j = 0:03.

To store a typical bunch with 1 � 1011 electrons at E0 = 1 GeV, one may need

an rf system with h = 240, Rs = 1:0 M
, and Q = 2000. On the other hand, to

store a bunch of 1� 1011 protons at kinetic energy E0 = 1 GeV in the same ring,

one may need an rf system with h = 4, Rs = 0:12 M
, and Q = 45. Compare the

Robinson's growth rates for the two situations when the resonant frequencies are

o�set in the wrong directions by j�!j = !s. Assume the synchrotron tune to be

0.01 in both cases.

9.2. From Eq. (3.50), derive the potential-well contribution to the coherent synchrotron

tune shift of a short bunch in the dipole mode. Show that this static contribution

just cancels the dynamical contribution in Eq. (9.35) when the driving impedance

is broadband.
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9.3. Using the de�nition of the form factor in Eq. (9.68), compute numerically the form

factor when the unperturbed distribution is bi-Gaussian. The half bunch length

can be taken as �̂ =
p
6�� , where �� is the rms bunch length.

9.4. Consider a single sinusoidal rf system operating at synchronous angle �s = 0.

(1) Show that the synchrotron frequency of a particle at rf phase � is given by

fs(�)

fs0
=

�

2K(t)
; (9.143)

where t = sin�=2, fs0 is the synchrotron frequency at zero amplitude, and K(t) is

the complete elliptic integral of the �rst kind de�ned in Eq. (9.80).

(2) Show that Eq. (9.143) is consistent with Eq. (9.51) at small amplitudes.

9.5. Solve the set of equations in Eqs. (9.75) to (9.77) to obtain the fundamental rf

phase �s, the higher-harmonic rf phase �m and the voltage ratio r in terms of the

harmonic ratio m and Us=eVrf.

Answer:

sin�s=
m2

m2�1
Us

eVrf
; tan�m=

m

m2�1
Us

eVrfs
1�
�

m2

m2�1
Us

eVrf

�2
; r=

s
1

m2
� 1

m2�1
U2
s

(eVrf)
2 :

9.6. Derive the small-amplitude synchrotron frequency as given by Eq. (9.79).
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Chapter 10

TRANSVERSE INSTABILITIES

10.1 Transverse Focusing and Transverse Wake

Transverse focusing of the particle beam is necessary. If not the beam will diverge hitting

the vacuum chamber and get lost. The alternating gradient focusing scheme suggested

by Courant and Synder [1] employs F-quadrupoles and D-quadrupoles to provide for

strong focusing of the beam in both the horizontal and vertical planes. For this reason,

the transverse beam size can be made very small and so is the size of the vacuum

chamber and the aperture of the magnets. In light sources, usually the Chasman-Green

lattices are used. They consist of double achromats or triple achromats, which are strong

focusing and give zero dispersion at both ends. Another merit of the achromats is that

they can provide much smaller transverse emittances for the electron beam than the

alternating gradient scheme of Courant and Synder.

Because quadrupoles can focus in only one transverse plane and defocus in the other,

transverse oscillations develop in both transverse planes. These are called betatron oscil-

lations, and the oscillation frequencies, !�=(2�), are called betatron frequencies, which

are usually di�erent in the two transverse planes. The number of betatron oscillations

made in a revolution turn of the beam, �� = !�=!0, is called the betatron tune. The

equation of motion of a beam particle in, for example, the vertical plane, is given by

d2y

dn2
+ (2���)

2y =
C2hF?1 i
�2E0

; (10.1)

where n denotes turn number and the right side is the contribution due to the transverse

10-1



10-2 10. TRANSVERSE INSTABILITIES

electromagnetic wake W1(�). Consider a coasting beam with current I0. The transverse

force averaged over the circumference of the ring, hF?1 i acting on the test particle is

related to the transverse impedance through Eqs. (1.26) to (1.28):

Z?1 = � iChF
?
1 i

e�I0�y
(10.2)

where �y is the transverse displacement of the beam center. After averaging over all the

beam particles, we obtain the equation of motion for the transverse motion of the beam

center:
d2�y

dn2
+ (2���)

2�y =
ie�I0Z

?
1 C

�2E0

�y : (10.3)

Thus, the transverse wake amounts to a betatron frequency shift

�!� = � i�c2

2!�E0

I0
C
Z?1 ; (10.4)

where c is the velocity of light. For a coasting beam, transverse excitation comes from

the transverse impedance that samples one or more of the betatron sidebands n!0 + !�
anking the revolution harmonic n. The reactive part of Z?1 (!) produces a real frequency
shift. The resistive part of the impedance produces an imaginary frequency shift, which

if positive implies instability. Since Re Z?1 (!) ? 0 when ! ? 0, the resistive part causes

instability for negative frequency. Therefore only coasting-beam modes with n < ���
can be unstable.

There is a direct parallel between the transverse dynamics and the longitudinal

dynamics, as is illustrated in the equations of motion in the longitudinal phase plane

and the transverse phase plane. However, there is a big di�erence that the betatron

tune �� � 1 while the synchrotron tune �s � 1.

10.2 Separation of Transverse and Longitudinal Mo-

tions

Just as for synchrotron oscillations, it is more convenient to change from (y; py) to the

circular coordinates (r�; �) in the transverse betatron phase space. Following Eq. (7.1),

we have �
y = r� cos �

py = r� sin � ;
(10.5)
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and Eq. (10.1) is transformed into8>><
>>:

dy

ds
=�!�

v
py

dpy
ds

=
!�
v
y � c

E0!��
hF?1 (� ; s)i ;

(10.6)

where instead of turn number, the continuous variable s, denoting the distance along

the designed orbit, has been used as the independent variable.

For a bunched beam, longitudinal motion has to be included. For time period

much less than the synchrotron damping time, Hamiltonian theory can be used. The

Hamiltonian for motions in both the longitudinal phase space and transverse phase space

can be written as

H = Hk +H? ; (10.7)

where Hk is the same Hamiltonian describing the longitudinal motion:

Hk = � �(�E)2

2v0�20E0
� eVrf
C0h!0

�
cos(�s � h!0�)� cos�s � h!0� sin�s

�
+ V (�)

���
wake

; (10.8)

while H? is the additional term coming from the equations of motion in the transverse

phase space as given by Eq. (10.6). Note that the transverse force hF?1 (� ; s)i in Eq. (10.6)
depends on the longitudinal variable � ; therefore

[Hk; H?] 6= 0 : (10.9)

We assume that the perturbation is small and synchro-betatron coupling is avoided.

Then

[Hk; H?] � 0 : (10.10)

This implies that in the transverse phase space, the azimuthal modes m? = 1; 2; � � � ,
and the radial modes k? = 1; 2; � � � are good eigenmodes. In fact, this is very reason-

able because at small perturbation, the transverse azimuthal modes m? correspond to

frequencies m?!� with separation !�. Since

!� � !0 � !s ; (10.11)

the possibility for di�erent transverse azimuthals to couple is remote. A direct result of

Eq. (10.10) is the factorization of the bunch distribution 	 in the combined longitudinal-

transverse phase space; i.e.,

	(r; �; r�; �) =  (r; �)f(r�; �) ; (10.12)
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where  (r; �) is the distribution in the longitudinal phase space and f(r�; �) the distri-

bution in the transverse phase space. Now decompose  and f into the unperturbed

parts and the perturbed parts:

 (r; �) =  0(r) +  1(r; �) ;

f(r�; �) = f0(r�) + f1(r�; �) : (10.13)

When substituted into Eq. (10.12), there are four terms. The term  1f0 implies only

the longitudinal-mode excitations driven by the longitudinal impedance without any

transverse excitations. This is what we have discussed in the previous sections and we

do not want to include it again in the present discussion. The term  0f1 describes

the transverse excitations driven by the transverse impedance only. This term will be

included in the  1f1 term if we retain the azimuthal m = 0 longitudinal mode. For this

reason, the bunch distribution 	 in the combined longitudinal-transverse phase space

contains only two terms

	(r; �; r�; �) =  0(r)f0(r�) +  1(r; �)f1(r�; �)e
�i
s=v ; (10.14)

where we have separated out the collective angular frequency 
 from  1f1.

10.3 Sacherer's Integral Equation

The linearized Vlasov equation is studied in the circular coordinates in both the longitu-

dinal phase space and transverse phase space. However, only the transverse wake force

will be included in the discussion here. After substituting the distribution in Eq. (10.14),

the �rst order terms of the equation become�
�i


v
f1 1 +

!s
v
f1
@ 1

@�
+
!�
v
 1
@f1
@�

�
e�i
s=v� 0

df0
dr�

sin �
c

E0!��
hF?1 (� ; s)i = 0 : (10.15)

It is worth pointing out that since the transverse wake force hF?1 (� ; s)i is a function

of the longitudinal coordinate � , it should also contribute to the second equation of

Eq. (9.2) although the longitudinal wake force has been neglected here. It is, however,

legitimate to drop this contribution if synchro-betatron resonance is avoided and the

transverse beam size has not grown too large (see Exercise 10.4).

The next approximation is to consider only the rigid dipole mode in the transverse

phase space; i.e., the bunch is displaced by an in�nitesimal amount D from the center
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De i θ

θ

rβ

Figure 10.1: A bunch executing betatron motion with an amplitude D in the rigid

dipole mode. In the transverse phase space, it is rotating counterclockwise rigidly

with the radial o�set D.

of the transverse phase space and executes betatron oscillations as a rigid object by

revolving at frequency !�=(2�) counterclockwise. Then according to the convention of

Eq. (10.5) and Fig 10.1, we must have,

f0(r�) + f1(~r�) = f0
�
~r �Dei�

�
; (10.16)

where ~r� and ~r are treated as complex number in the transverse phase plane. When

D ! 0, this becomes

f1(r�; �) = �Df 00(r�)ei� : (10.17)

Since we are retaining only one mode of transverse motion, all the modes that we are

going to study are again synchrotron motion on top of this transverse mode. For this

reasons, these synchrotron modes are no longer sidebands of the revolution harmonics;

they are now sidebands of the betatron sidebands. Some of the transverse modes are

shown in Fig. 10.2.

Equation. (10.15) then becomes�
i(
� !�) 1 � !s

@ 1

@�

�
De�i
s=v +

ic2

2E0!�
 0hF?1 (� ; s)i = 0 ; (10.18)

where we have dropped the e�i� component of sin � because that corresponds to rotation

in the transverse phase space with frequency �!�=(2�) which is very far from !�=(2�)

provided that the frequency shift due to the wake force is small. Notice that the trans-

verse distribution f1(r�; �) has been removed and the Vlasov equation involves only the
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mode m=0 m=�1 m=�2 m=0 m=�1 m=�2 m=0 m=�1 m=�2

(a) �=0 rad (b) �=5 rad (c) �=9 rad

Figure 10.2: Head-tail modes of transverse oscillation. The plots show the con-

tortions of a single bunch on separate revolutions, and with six revolutions super-

imposed (denoted by k). Vertical axis is di�erence signal from position monitor,

horizontal axis is time, and �� = 4:833. The chromaticity phases are (a) � = 0 rad,

(b) � = 5 rad, and (c) � = 9 rad. Chromaticity will be introduced in Sec. 10.6.

longitudinal perturbed distribution function  1(r; �). This  1 is the same perturbed

distribution that we studied before with the exception that the azimuthal mode m = 0

is included.

The transverse wake force on a beam particle in the nth bunch at a time advance

� is, similar to the longitudinal counterpart in Eq. (9.9),

hF?1n(� ; s)i = �e
2D

C

1X
k=�1

M�1X
`=0

Z 1

�1
d� 0�

� �`[�
0; s� kC � (s`�sn)� v(� 0��)]W1[kC + (s`�sn) + v(� 0��)] : (10.19)

We assumeM identical bunches equally spaced. For the �th coupled mode, we substitute

in the above expression the perturbed density of the nth bunch �1n(�)e
�i
s=v including

the phase lead as given by Eq. (9.10). Now the derivation follows exactly the longitudinal

counterpart in Chapter 9 and we obtain

hF?1n�(� ; s)i =
ie2MD!0�

C
e�i
s=v

1X
q=�1

~�1n(!q)Z
?
1 (!q)e

i!q� ; (10.20)

where !q = (qM+�)!0+!�+
. We next substitute the result into the linearized Vlasov

equation and expand  1 into azimuthals according to  1(r; �) =
P

m �mRm(r)e
im�. We
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�nally obtain Sacherer's integral equation for transverse instability

(
� !� �m!s)�mRm(r) =

� i�e2MNc

E0!�T 2
0

g0
X
m0

im�m
0

�m0

Z
r0dr0Rm0(r0)

X
q

Z?1 (!q)Jm0(!qr
0)Jm(!qr) ; (10.21)

where the unperturbed distribution g0(r) de�ned in Eq. (9.30) has been used instead

of  0(r). Notice that all transverse distributions are not present in the equation and

what we have are longitudinal distributions. This is not unexpected because we have

retained only one transverse mode of motion, namely the rigid dipole mode, in the trans-

verse phase space. Therefore, the Sacherer's integral equation for transverse instability

is almost the same as the one for longitudinal instability. There are only two di�er-

ences. First, the unperturbed longitudinal distribution g0(r) appears in the former but

r�1dg0(r)=dr appears in the latter. Second, although the m= 0 mode does not occur

in the longitudinal equation because of violation of energy conservation, however, it is

a valid azimuthal mode in the transverse equation because it describes rigid betatron

oscillation.

10.4 Solution of Sacherer's Integral Equations

Consider �rst the transverse integral equation, where W (r) = g0(r) is considered to be

a weight function. For each azimuthal m, �nd a complete set of orthonormal functions

gmk(r) (k = 1; 2; � � � ) such that

Z
W (r)gmk(r)gmk0(r)rdr = Ækk0 : (10.22)

On both sides of the integral equation, perform the expansion

�mRm(r)e
im� =

X
k

amkW (r)gmk(r)e
im� : (10.23)

Some comments are necessary. From Eq. (10.22), it appears that the orthonormal func-

tions gmk(r) depend on the weight function W (r) only and are independent of the az-

imuthal m. As a result, gmk(r) will not be uniquely de�ned, because the weight function

W (r) = g0(r) is independent of m. In fact, this is not true. If we look into either
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the Sacherer's longitudinal integral equation (9.31) or the transverse integral equation

(10.21) for one single azimuthal, it is easy to see that

Rm(r) / W (r)Jm(!qr) : (10.24)

Therefore, for small r, we must have the behavior

Rm(r) � rm lim
r!0

W (r) : (10.25)

Taking the parabolic distribution in the longitudinal case as an example, lim r!0W (r) is

a constant implying that Rm(r) � rm. From Eq. (10.23), since gmk(r) is the expansion

of Rm(r), the small-r behavior of gmk(r) will be constrained. This makes the set of

orthonormal functions gmk(r) dependent on the azimuthalm and become, in fact, unique.

After substituting the expansion of �mRm into both sides of Eq. (10.21), multiply

on both sides by gmk(r) and integrate over rdr. Sacherer's integral equation becomes

(
�!��m!s)amk = � i�e
2MNc

E0!�T 2
0

X
m0k0

am0k0

X
q

Z?1 (!q)~�
�
mk(!q)

~�m0k0(!q) ; (10.26)

where we have de�ned

~�mk(!) =

Z
i�mW (r)Jm(!r)gmk(r)rdr : (10.27)

The ~�mk(!) is the Fourier transform of the eigenmode �mk(�), which can be shown to

be in fact the (mk) component of the perturbed linear density �1(�). Let us start from

the Fourier transform of the linear density of the (mk)th mode

~�
(mk)
1 (!) =

1

2�

Z
d��

(mk)
1 (�)e�i!� =

1

2�

Z
d�d�E  

(mk)
1 (�;�E)e�i!� : (10.28)

Now substitute the (mk)th mode of Eq. (10.23) for  
(mk)
1 to obtain

~�
(mk)
1 (!) =

!s�
2E0

2��

Z
rdrd�W (r)gmk(r)e

im��i!� : (10.29)

The integration over � can be performed to yield a Bessel function. Finally using the

de�nition of ~�mk(!) given in Eq. (10.27), we arrive at

~�
(mk)
1 (!) =

!s�
2E0

�

Z
rdrW (r)gmk(r)i

�mJm(!r) =
!s�

2E0

�
~�mk(!) : (10.30)
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Taking the Fourier transform, we therefore obtain

�
(mk)
1 (�) =

!s�
2E0

�
�mk(�) : (10.31)

Notice that ~�mk(!) is dimensionless; therefore it must be a function of !�L where

�L is the total bunch length. The sum over the power spectrum should give us

X
q

j~�mk(!q)j2 �
Z

d!

M!0
j~�mk(!)j2 � 1

M!0�L
; (10.32)

where !q = (qM + �)!0 + !� + m!s. For this reason, Eq. (10.26) can roughly be

transformed into

(
�!��m!s)amk = � i

1+m

e�c2

2!�E0

Ib
L

X
m0k0

am0k0

P
qZ

?
1 (!q)

~��mk(!q)�m0k0(!q)P
q
~��mk(!q)�mk(!q)

; (10.33)

where Ib is the current of one bunch and L = �c�L is the total bunch length. Equa-

tion (10.33) is especially useful if we include only one mode of excitation. For example,

the lowest radial mode k = 1 is usually the most prominent one to be excited and the

di�erent azimuthal modes do not mix when the perturbation is small.

This expression is very similar to the coasting-beam formula of Eq. (10.4). Besides

the averaging over the power spectra, the coasting beam current per unit length I0=C

is replaced by the average single bunch current Ib divided by the total bunch length

L in meters. The factor (1+m)�1 in front says that higher-order modes are harder

to excite, and is introduced under some assumption of the unperturbed distribution in

phase space [2]. It is easy to understand why the power spectrum hmk(!) = j~�mk(!)j2
enters because Z?1 (!)~�mk(!) gives the deecting �eld, which must be integrated over

the bunch spectrum to get the total force. Written in the form of Eq. (10.33), there is

no need for ~�mk(!) or �mk(�) to have any special normalization.

The Sacherer's longitudinal integral equation (9.29) can be solved in exactly the

same way by identifying the weight function as

W (r) = �1

r

dg0(r)

dr
; (10.34)

where the negative sign is included because dg0(r)=dr < 0. The result is

(
�m!s)amk =
i2�e2MNm�

�2E0T 2
0!s

X
m0k0

am0k0

X
q

Z
k
0(!q)

!q
~��mk(!q)

~�m0k0(!q) ; (10.35)
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where ~�mk(!q) is again given by Eq. (10.27), but with the weight function replaced by

Eq. (10.34). However, ~�mk(!q) now has the dimension of of (time)�1 because the weight
function is di�erent. Dimensional analysis gives

X
q

j~�mk(!q)j2 �
Z

d!

M!0
j~�mk(!)j2 � 1

M!0� 3L
: (10.36)

Equation (10.35) becomes approximately

(
�m!s)amk =
im

1+m

4�2eIb�

3�2E0!s� 3L

X
m0k0

am0k0

P
q

Z
k
0 (!q)

!q
~�m0k0(!q)~�

�
mk(!q)P

q
~��mk(!q)

~�mk(!q)
; (10.37)

where the extra factor in front is a result of the assumption of some particular unper-

turbed phase-space distribution. A more detailed derivation of Eq. (10.37) can be found

in Ref. [2].

10.5 Sacherer's Sinusoidal Modes

Assuming the perturbation is small so that only a single azimuthal mode will contribute,

we learn from the Sacherer's integral equation (10.21) that the perturbed excitation is

Rm(r)e
im� / W (r)Jm(!qr)e

im� : (10.38)

For a bunch of half length �̂ = 1
2
�L, Rm(�̂ ) = 0. So it is reasonable to write the kth

radial mode corresponding to azimuthal m as

Rmk(r)e
im� / W (r)Jm

�
xmk

r

�̂

�
eim� ; (10.39)

where xmk is the kth zero of the Bessel function Jm. Sacherer [3] discovered that,

assuming a uniform or water-bag unperturbed distribution; i.e., W (r) is constant for

r < �̂ , the projection of Rmk(r)e
im� onto the � axis

�(mk)(�) /
Z
W (r)Jm

�
xmk

r

�̂

�
eim�d�E (10.40)

is approximately sinusoidal. In fact, head-tail excitations that are sinusoidal-like had

been observed in the CERN Proton Synchrotron (PS) booster. For this reason, instead
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of solving the integral equation, Sacherer approximated �(mk)(�) by a linear combination

of sinusoidal functions, and these modes are called sinusoidal modes. He introduced a

set of orthonormal functions

�m(�) /

8><
>:

cos(m+1)�
�

�L
m = 0; 2; � � � ;

sin(m+1)�
�

�L
m = 1; 3; � � � :

(10.41)

Note that �m(�) has exactly m nodes along the bunch not including the two ends. If

we restrict ourselves to the most prominent lowest radial mode (k = 1), these �m(�)'s

are just the approximates to �(m1)(�). From now on, the radial mode index k will be

dropped.

The power spectrum of the modes in Eq. (10.41) is proportional to

hm(!) =
4(m+1)2

�2
1 + (�1)m cos �y

[y2 � (m+1)2]2
(10.42)

where y = !�L=� and �L = L=v is the total length of the bunch in time. They are

plotted in Fig. 7.5. The normalization of hm(!) in Eq. (10.42) has been chosen in such a

way that, when the smooth approximation is applied to the summation over k, we have

B
+1X

q=�1
hm(!q) � B

M!0

Z +1

�1
hm(!)d! = 1 : (10.43)

Here B = M!0�L=(2�) is the bunching factor in the presence of M identical equally-

spaced bunches, or the ratio of full bunch length to bunch separation.

For the elliptical distribution in the longitudinal phase space, g0(r) / (�̂ 2� r2)�1=2,
so that the linear density becomes constant, the spectral excitations of the lowest radial

mode �m(�) are the Legendre polynomials, the Fourier transform ~�m(!) are the spherical

Bessel functions jm, and the power spectra hm / jjmj2. We called these the Legendre

modes. For the bi-Gaussian distribution in the longitudinal phase space, �m(�) are the

Hermite polynomials and ~�m(!) are !
m multiplied by a Gaussian. We call these the

Hermite modes.

For the longitudinal integral equation, we have the same modes if we have the

same weight function. For the longitudinal case, the weight function is W (r) = g00(r)=r
instead. Therefore the sinusoidal modes correspond to g0(r) / (�̂ 2�r2) or linear density
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�(�) / (�̂ 2� � 2)3=2. The Legendre modes correspond to g0(r) / (�̂ 2� r2)1=2 or parabolic
linear density �(�) / (�̂ 2� � 2). The Hermite modes correspond to the same bi-Gaussian

distribution as in the transverse situation. These solutions are summarized in Table 10.1.

Sometimes the growth rates computed are rather sensitive to the longitudinal bunch

distribution assumed. Therefore, results using the sinusoidal modes are estimates only.

After so much mathematics, it is possible to present some simple expressions for the

growth rates. From Eq. (10.37) for the longitudinal and Eq. (10.33) for the transverse,

let us assume that there is no mixing between azimuthal modes as well as radial modes.

Then the longitudinal growth rate simpli�es to

1

�mk�
= Im
 � m

1+m

4�2eIb�

3�2E0!s� 3L

X
q

Re Zk0(!q)
!q

hmk(!q) ; (10.44)

where !q = (qM + �)!0 +m!s and the power spectrum has been normalized to unity

according to Eq. (10.43). The transverse growth rate simpli�es to

1

�mk�

= Im
 � � 1

1+m

eIbc

4���E0

X
q

Re Z?1 (!q)hmk(!q) ; (10.45)

where !q = (qM + �)!0 + !� +m!s.

10.6 Chromaticity Frequency Shift

The betatron tune �� of a beam particle depends on its momentum o�set Æ. The

chromatic betatron tune shift is de�ned as

��� = �Æ ; (10.46)

where � is called the chromaticity�. Because the beam particle makes synchrotron oscil-

lations, its betatron tune will be changing from turn to turn depending on its momentum

o�set. There will be a betatron phase o�set which will accumulate. Consider a beam

particle which is currently at the head of the bunch. It will be executing betatron os-

cillations with the same betatron tune as the synchronous particle, because it is at the

synchronous momentum. Below transition, the synchrotron oscillation is clockwise in

�Sometimes, especially in Europe, the chromaticity � is also de�ned by ��� = ���Æ.
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the longitudinal phase space as indicated in Fig. 10.3, because, for example, at a positive

momentum o�set, the particle comes back earlier or its arrival time advance increases.

Thus leaving the head of the bunch, the particle loses energy and starts to oscillate

∆ν  > 0β

∆ν  < 0β

Chromaticity ξ > 0
∆ E

τ
tail head

Below transition

Figure 10.3: Synchrotron motion in the longitudinal phase space below transition.

If chromaticity � is positive, the betatron tune will be larger/smaller than that of

the synchrotron particle, when the particle energy o�set is positive/negative.

with smaller betatron tune if the chromaticity � is positive. Turn by turn, the slip in

betatron phase accumulates and reaches a maximum when the particle arrives at the

tail of the bunch. After that the momentum o�set of the second half of the synchrotron

oscillation becomes positive. The betatron tune is larger than the nominal value and

the accumulated betatron phase slip gradually reduces. When the particle arrives at the

head all the betatron phase slip vanishes. This phase slip is illustrated schematically in

Fig. 10.4.

We would like to compute the phase slip for a particle that has a time advance

� relative to the synchronous particle. The momentum o�set in Eq. (10.46) can be

eliminated using the equation of motion of the phase

�� = ��T0Æ ; (10.47)

where � is the slip factor and �� is the change in time advance of the particle in a turn.

The phase lag in a turn is then

Z
2���� = �2� �

�

Z
��

T0
= ��!0

�
� : (10.48)
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τ

∆ Ε

Figure 10.4: Schematic drawing showing the lagging of the betatron phase, de-

picted by the arrows, from the head (right) to the tail (left) of the bunch when the

chromaticity � and slip factor � have the same signs.

Thus, below transition (� < 0), a particle at the bunch head (� = �̂) has an accumu-

lated betatron phase advance of ��!0�̂ =� relative to the synchronous particle, while

a particle at the tail (� = ��̂ ) has an accumulated betatron phase slip of ��!0�̂ =�.
Equation (10.48) indicates that the phase lag increases linearly along the bunch and is

independent of the momentum o�set. Relative to the synchronous particle, we write

this accumulated betatron phase for a particle at arrival time advance � as

��!0
�
� = �!�� ; (10.49)

where

!� =
�!0
�

(10.50)

is called the betatron angular frequency shift due to chromaticity. Below transition and

for positive chromaticity, !� is negative, but the accumulated betatron phase at the

bunch head is positive. Thus, in previous derivation we should make the substitution

ei!q� ! ei(!q�!�)� : (10.51)

where !q = (qM + �)!0+m!s. For this reason, !� should be subtracted from !q in the

argument of the power spectrum hm but not in the argument of Re Z?1 of the growth

rate formula like Eq. (10.45) and also not in the argument of ImZ?1 of the tune shift

formula. The total betatron phase shift from head to tail is represented by � = !��L,



10-16 10. TRANSVERSE INSTABILITIES

Figure 10.5: Positive chromaticity above transition shifts the all modes of excitation

towards the positive frequency side by !�. Mode m = 0 becomes stable, but mode

m = 1 may be unstable because it samples more negative Re Z?1 than positive

Re Z?1 .

where �L is the total length of the bunch from head to tail. The head-tail modes for

various values of � are shown in Fig. 10.2.

For positive chromaticity above transition, !� > 0, the modes of excitation in

Fig. 7.5 are therefore shifted to the right by the angular frequency !�. As shown in

Fig. 10.5, mode m = 0 sees more impedance in positive frequency than negative fre-

quency and is therefore stable. However, it is possible that mode m = 1, as in the

illustration of Fig. 10.5, samples more the highly negative Re Z?1 at negative frequencies

than positive Re Z?1 at positive frequencies and becomes unstable.

If the transverse impedance is suÆciently smooth, it can be removed from the

summation in Eq. (10.45). The growth rate for the m = 0 mode becomes

1

�0
= � eIbc

2!�E0�L
Re Z?1 (!�) : (10.52)

The transverse impedance of the CERN Proton Synchrotron (PS) had been measured

in this way by recording the growth rates of a bunch at di�erent chromaticities.
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10.7 Exercises

10.1. Fill in all the steps in the derivation of Sacherer's integral equation for transverse

instabilities.

10.2. Derive the power spectra of the sinusoidal modes of excitation in Eq. (10.41), and

show that they are given by Eq. (10.42) when properly normalized according to

Eq. (10.43).

10.3. If the transverse impedance is suÆciently smooth, it can be removed from the

summation in Eq. (10.33). Show that the growth rate for the m = 0 mode becomes

1

�0
= � eIbc

2!�E0�L
Re Z?1 (!�) : (10.53)

The transverse impedance of the CERN PS has been measured in this way by

recording the growth rates of a bunch at di�erent chromaticities. The CERN PS

has a mean radius of 100 m and it can store proton bunches from 1 to 26 GeV with

a transition gamma of t = 6. The bunch has a spectral spread of � �100 MHz,

implying that each measurement of the impedance is averaged over an interval

of � 200 MHz. If the impedance has to be measured up to � 2 GHz and the

sextupoles in the PS can attain chromaticities in the range of �10, at what proton
energy should this experiment be carried out?

10.4. Rede�ne the longitudinal coordinates in Eq. (9.1) by X = xv and PX = pxv, where

v is the particle velocity, so that X carries the dimension of length.

(a) Show that, for the equations of motion (9.2) in the longitudinal phase space

and (10.6) in the transverse phase space, the Hamiltonian is

H = �!s
2v

(X2 + P 2
X
)� !�

2v
(y2 + p2y)

� v�

E0!s�2

Z X

0

dX 0hF k0 (X 0=v; s)i+ cy

E0!��2
hF?1 (X=v; s)i : (10.54)

(b) Show that the second equation of motion in Eq. (9.2) needs to be modi�ed to

dpx
ds

=
!s
v
x+

�

E0!s�2
hF k0 (x; s)i �

y

E0!��3v

@

@x
hF?1 (x; s)i ; (10.55)

where the last term is the synchro-betatron coupling term which we dropped in

our discussion.
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Chapter 11

TRANSVERSE COUPLED

BUNCH INSTABILITIES

11.1 Resistive Wall

If there are M identical equally spaced bunches in the ring, there are � = 0; � � � ; M�1
transverse coupled modes when the center-of-mass of one bunch leads its predecessor by

the betatron phase of 2��=M . The transverse growth rate for the �-th coupled-bunch

mode is given by Eq. (10.45). Including chromaticity, it becomes

1

�m�

= � 1

1+m

eMIbc

4���E0

P
qRe Z?

1
(!q)hm(!q��=�L)

B
P

q hm(!q��=�L)
; (11.1)

where !q = (qM+�)!0 + !� +m!s, the bunching factor B = M�L=T0 has been used,

� = !��L is the chromaticity phase shift across the bunch of full length �L and T0 is

the revolution period. Here, we assume that all the bunches are executing synchrotron

oscillations in the same longitudinal azimuthal mode m.

The most serious transverse coupled-bunch instability that occurs in nearly all stor-

age rings is the one driven by the resistive wall [1]. Since� Re Z?

1
/ !�1=2 and is positive

(negative) when the angular frequency ! is positive (negative), the betatron line at the

�Here, we assume that the wall is thicker than one skin depth at revolution frequency. Otherwise,

ReZ
?

1
/ !

�1.

11-1
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Figure 11.1: The �0:4!0 betatron line in the Tevatron dominates over all other be-

tatron lines for the � = 1093 mode coupled-bunch instability driven by the resistive

wall impedance.

lowest negative frequency acts like a narrow resonance and drives transverse coupled-

bunch instabilities. Take, for example, the Fermilab Tevatron in the �xed-target mode,

where there are M = 1113 equally spaced bunches. The betatron tune is �� = 19:6.

The lowest-negative-betatron-frequency line is at (qM+�)!0 + !� = �0:4!0, for mode

� = 1093 and q = �1. The closest damped betatron line (q = 0) is at (1113�0:4)!0,

but Re Z?

1
is only �

p
0:4=1112:6 the value at �0:4!0. The next anti-damped betatron

line (q = �2) is at �1113:4!0, with Re Z?

1
equal to

p
0:4=1113:4 the value at �0:4!0.

This is illustrated in Fig. 11.1. Thus, it is the �0:4!0 betatron line that dominates.

From Eq. (11.1), the growth rate for this mode can therefore be simpli�ed to

1

�m�

� � 1

1+m

eMIbc

4���E0

Re Z?

1
(!q)F

0

m(!q�L � �) ; (11.2)

where � = !��L and the form factor is

F 0

m(!�L) =
2�hm(!)

�L

Z
1

�1

hm(!)d!

; (11.3)

which is plotted in Fig. 11.2 for the sinusoidal modes. For zero chromaticity, only the

m = 0 mode can be unstable because the power spectra for all the m 6= 0 modes are

nearly zero near zero frequency. Since the perturbing betatron line is at extremely low
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Figure 11.2: Plot of form factor F 0m(!�L��) for modes m = 0 to 5. With the

normalization in Eq. (10.43), these are exactly the power spectra hm.

frequency, we can evaluate the form factor at zero frequency. For the sinusoidal modes,

we get F 0

0
(0) = 8=�2 = 0:811.

One method to make this coupled-bunch mode less unstable or even stable is by

introducing positive chromaticity when the machine is above transition. For the Tevatron

with slip factor � = 0:0028, total bunch length �L = 5 ns, and revolution frequency

f0 = 47:7 kHz, a chromaticity of � = +10 will shift the spectra by the amount � =

!��L = 2�f0��L=� = 5:4. The form factor and thus the growth rate is reduced by more

than 4 times. However, from Figs. 7.5 and 10.5, we see that the spectra are shifted by

!��L=� = 1:7 and the m = 1 mode becomes unstable. Another method for damping the

instability is to introduce a betatron angular frequency spread using octupoles, with the

spread larger than the growth rate.

A third method is to employ a damper. Let us derive the displacements of consecu-

tive bunches at a beam-position monitor (BPM). Suppose the �rst bunch is at the BPM

with betatron phase ��0 = 0; its displacement registered at the BPM is proportional

to cos ��0 = 1. At that moment, the next bunch has phase 2���=M in advance, where

�� = qM+� = �20. When this bunch arrives at the BPM, the time elapsed is T0=M and
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Figure 11.3: Di�erence signal at a BPM displaying the displacement of every 20th

bunch, when the � = 1093 mode of transverse coupled-bunch is excited by the

resistive wall impedance.

the change in betatron phase is !�T0=M = 2���=M . The total betatron phase on arrival

at the BPM is therefore ��1 = 2���=M + 2���=M = 2�(��+ ��)=M = (�0:4)2�=M , and

the displacement registered is cos��1 When the nth consecutive bunch arrives at the

BPM, its phase will be ��n = n(�0:4)2�=M . This is illustrated in Fig. 11.3 when the

BPM is registering every 20th bunch [2]. What we see at the BPM is a wave of frequency

�0:4 harmonic or about 19.1 kHz. Because we know that the bunches follow the pattern

of such a slow wave, we only require a very narrow-band feedback system to damp the

instability. Usually the adjacent modes � = 1092; 1091; � � � will also be unstable at

the �1:4!0, �2:4!0, � � � betatron lines; but the growth rates will be smaller.

When all the h = 1113 rf buckets are �lled with 6�1010 protons each in one scenario
of the Tevatron in the �xed-target mode, the average total current isMIb = 0:511 A. The

vertical resistive-wall impedance has a real part Re Z?

1
= 43:74 M
/m at the revolution

harmonic. Thus, at �0:4!0, it becomes Re Z?

1
= �69:16 M
/m. At the injection energy

of E0 = 150 GeV and zero chromaticity, the transverse coupled-bunch growth rate driven

by the resistive-wall impedance is ��1

� = 232 s�1 and the growth time is 4.30 ms or 204
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revolution turns. The mean radius of the Tevatron ring is R = 1 km. In fact, this

growth time is more or less the same for all accelerator rings [3]. For example, preceding

the Tevatron, there are the Main Injector and the Booster. All of them have the same

53-MHz rf. The Main Injector has 588 rf buckets and the Booster has 84 rf buckets.

First, if all the buckets of each ring are �lled, the average total current MIb should

be the same for all the 3 rings. Second, the beam energy E0 scales as the size of the

ring or the mean radius R and betatron tune �� scales as
p
R. Third, the resistive-wall

impedance, as given by

Z?

1
(!) = [1� i sgn(!)]

2Rc�

!b3Æskin
(11.4)

in Eq. (1.44), where b is the beam pipe radius, Æskin is the skin depth, and � is the

resistivity, scales as R3=2 because the revolution frequency scales as R�1. Substituting

into Eq. (11.2), we �nd that the growth rate turns out to be independent of the size of

the ring. Of course, usually there are di�erences in the vacuum chamber, and number

of particles per bunch, and also the residual betatron tune. However, it is safe to say

that the growth time of transverse couple-bunch instability for every completely �lled

accelerator ring should be of the order of a few to a few tens of milliseconds. Although

the growth time is independent of the size of the ring, the growth time in turn number is

inversely proportional to the size of the ring. Thus, for the Very Large Hadron Collider

(VLHC) under consider consideration with a circumference of 233 km, the growth time

will be only 5.5 revolution turns according to this scaling and assuming the residual

tune to be 1

2
. For this reason, large machines will require powerful feedback systems, for

example, criss-crossing feedback and/or one-turn correction scheme.

11.2 Narrow Resonances

The narrow higher-order transverse resonant modes of the rf cavities will also drive

transverse coupled-bunch instabilities. The growth rates are described by the general

growth formula of Eq. (11.1). When the resonance is narrow enough, only the betatron

lines closest to the resonant frequency !r=(2�) contribute in the summation. The growth

rate is therefore given by Eq. (11.2), where two betatron lines are included.

1

�m�

� � 1

1+m

eMIbc

4���E0

[Re Z?

1
(!q)F

0

m(!q�L � �)�Re Z?

1
(!q0)F 0

m(!q0�L � �)] ; (11.5)
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where q and q0 satisfy

� �!r � !q =(qM + �+ �� +m�s)!0

!r � !q0 =(q0M + �+ �� +m�s)!0 :
(11.6)

Similar to the situation of longitudinal coupled-bunch instabilities, mode � = 0 and

mode � = 1

2
M if M is even receive contributions from both the positive-frequency side

and negative-frequency side. In the language of only positive frequencies, there are the

upper and lower betatron sidebands anking each revolution harmonic line. The lower

sideband originates from negative frequency and is therefore antidamped. For these two

modes, both the upper and lower sidebands correspond to the same coupled-bunch mode.

If the resonant frequency of the resonance leans more towards the lower sideband, there

will be a growth. If the resonant frequency leans more towards the upper side band,

there will be damping. This is the Robinson's stability analog in the transverse phase

plane. However, sometimes it is not so easy to identify which is the lower sideband

and which is the upper sideband. This is because the residual betatron tune [��] or

the noninteger part of the betatron tune can assume any value between 0 and 1. If

[��] > 0:5, the upper betatron sideband of a harmonic will have a higher frequency than

the lower betatron sideband of the next harmonic.

There is one important di�erence between transverse coupled-bunch instabilities

driven by the resistive-wall impedance and by the higher-order resonant modes. The

former is at very low frequency and therefore the form factor F 0

0
is close to 1 when the

chromaticity is zero. The latter, however, is at the high frequencies of the resonances.

The form factor usually assumes a much smaller value unless the bunch is very short

and we sometimes refer this to \damping" from the spread of the bunch.

This instability can be observed easily in the frequency domain at the lower betatron

sidebands anking the harmonic lines. If a particular lower betatron sideband grows

strongly, we subtract the betatron tune �� (not [��]) to �nd out which harmonic line it

is associated with. Then from Eq. (11.6), we can determine which coupled-bunch mode �

it is. To damp this transverse coupled-bunch instability, one can identify the o�ending

resonant modes in the cavities and damp them passively using an antenna. A tune

spread due to the slip factor � or from an octupole can also contribute to the damping.

When the above are not eÆcient enough, a transverse bunch-to-bunch damper will be

required. If we can identify the annoying mode, a mode damper of narrow band will

do the job. To damp couple-bunch instabilities without knowing the annoying mode, a

wideband bunch-by-bunch damper is necessary.
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Similar to longitudinal coupled-bunch instabilities, transverse coupled-bunch insta-

bilities can also be damped by modulation coupling from an uneven �ll in the ring

discussed in Sec. 9.3.4.
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11.3 Exercises

11.1. For the example of resistive-wall driven coupled-bunch instability of the Tevatron

at the �xed target mode, try to sum up the contribution for all frequencies for the

� = 1093 mode and compare the result of taking only the lowest frequency line.

11.2. For the same example in Exercise 11.1, compare the growth rates of mode � =

1092; 1091; � � � ; with mode 1093. How many modes do we need to include so

that the growth rate drops to below 1

4
of that of mode 1093?

11.3. For a narrow resonance that has a total width larger than 2[��]!0 where [��] is

the residual betatron tune and the bunch power spectrum is much wider than the

revolution frequency, show that the growth rate is given by

1

�m�
� eMIbc

4���E0

hm(!r��=�L)
B
P

q0 hm(!q0��=�L)�

��Re Z?

1
[(q1M�����)!0�m!s]�Re Z?

1
[(q2M+�+��)!0+m!s]

	
; (11.7)

where q1 and q2 are some positive integer so that

(q1M � �� ��)!0 � !r ;

(q2M + �+ ��)!0 � !r : (11.8)

Such q1 and q2 are possible only when � = 0 or � = M=2 if M is even. There-

fore whether the coupled-bunch mode is stable or unstable depends on whether

the resonance is leaning more towards the upper betatron sideband or the lower

betatron sideband.
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Chapter 12

HEAD-TAIL INSTABILITIES

12.1 Transverse Head-Tail

Let us now consider the short-range �eld of the transverse impedance; i.e., Z?
1
(!) when

! is large. This is equivalent to replacing the discrete line spectrum by a continuous

spectrum. The summation in Eq. (10.33) or Eq. (11.1) can be transformed into an

integration. The coherent angular frequency for the mth azimuthal mode is therefore


m �m!s = � i

1+m

ecIb
4�E0!�

Z 1

�1

d! Z?
1
(!)hm(! � !�) ; (12.1)

where !� = �!0=� is the betatron frequency shift due to chromaticity �, � is the slip

factor, !0 is the revolution angular frequency, and E0 is the particle energy. Note that

the factor of M , the number of bunches, in the numerator and denominator cancel.

This is to be expected because the perturbation mechanism is driven by the short-range

wake �eld and the instability is therefore a single-bunch e�ect. This explains why we do

not include the subscript � describing phase relationship of consecutive bunches. The

growth rate, which is the imaginary part of Eq. (12.1) is given by

1

�m
= � 1

1+m

ecIb
4�E0!�

Z 1

0

d! Re Z?
1
(!) [hm(! � !�)� hm(! + !�)] ; (12.2)

where use has been made of the antisymmetry of Re Z?
1
(!). It is clear that there can be

no instability when the chromaticity is zero. When there is �nite chromaticity, however,

12-1
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the growth does not have a threshold. On the other hand, the tune shift, given by

�
m =
1

1+m

ecIb
4�E0!�

Z 1

0

d! ImZ?
1
(!) [hm(! � !�) + hm(! + !�)] ; (12.3)

does not vanish when the chromaticity is zero.

Let us demonstrate this by using the resistive wall impedance. We substitute the

expression of the resistive wall impedance of Eq. (1.44) into Eq. (12.1). The result of

the integration over ! is [1]

1

�m
= � 1

1+m

eIbc

4��E0

�
2

!0�L

�
1=2 ��Z?

1
(!0)

��Re Fm(�) ; (12.4)

where
��Z?

1
(!0)

�� is the magnitude of the resistive wall impedance at the revolution fre-

quency. The tune shift is given by

�
m =
1

1+m

eIbc

4��E0

�
2

!0�L

�1=2 ��Z?
1
(!0)

�� ImFm(�) ; (12.5)

The form factor is given by� Re Fm(�)

ImFm(�)

�
=

1

2
p
�

Z 1

0

dyp
y

h
hm(y�y�)� (y+y�)

i
; (12.6)

where hm are power spectra of the mth excitation mode in Eq. (10.41) written as func-

tions of y = !�L=� and y� = �=� = �!0�L=(��). The �rst term in the integrand comes

from contributions by positive frequencies while the second term by negative frequencies.

The form factors for m = 0 to 5 are plotted in Fig. 12.1.

This single-bunch instability will occur in nearly all machines. The m = 0 mode is

the rigid-bunch mode when the whole bunch oscillates transversely as a rigid unit. For

the m = 1 mode, the head of the bunch moves transversely in one direction while the

tail moves transversely in the opposite direction with the center-of-mass stationary, and

is called the dipole head-tail mode. This is the head-tail instability �rst analyzed by

Pellegrini and Sands [2, 3].

For small chromaticity phase � . 2:3, the integrand in Eq. (12.6) can be expanded

and the growth rate becomes proportional to chromaticity. The form factor has been

computed and listed in Table 12.1, where positive sign implies damping. We see from

Table 12.1 that modem=0 is stable for positive chromaticity (above transition or � > 0).
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Figure 12.1: Real and imaginary parts of the form factor Fm(�) for head-tail

instability resulting from the resistive-wall impedance, for modes m = 0 to 5.

This is expected because the excitation spectrum for this mode has been pushed towards

the positive-frequency side. All other modes (m> 0) should be unstable because their

spectra see relatively more negative Re Z?
1
. Looking into the form factors in Fig. 12.1,

however, the growth rate for m=4 is tiny and mode m=2 is even stable. This can be

clari�ed by looking closely into the excitation spectra in Fig. 7.5. We �nd that while

mode m=0 has a large maximum at zero frequency, all the other higher even m modes

also have small maxima at zero frequency. As these even m spectra are pushed to the

right, these small central maxima see more impedance from positive frequency than

negative frequency. Since these small central maxima are near zero frequency where

j Re Z?
1
j is large, their e�ect may cancel out the opposite e�ect from the larger maxima

which interact with the impedance at much higher frequency where j Re Z?
1
j is smaller.

This anomalous e�ect does not exist in the Legendre modes or the Hermite modes,

because the corresponding power spectra vanish at zero frequency when m > 0.

A broadband resonance can also drive the head-tail instability. However, the power

spectrum must be so frequency shifted by chromaticity that it overlaps with the reso-

nance peak. For example, the m = 0 mode must be shifted by negative chromaticity
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Table 12.1: Linearized form factor of trans-

verse head-tail modes driven by the resistive

wall impedance when � . 2:3.

Mode Form Factor

m Fm

0 +0:1495�

1 �0:0600�
2 +0:0053�

3 �0:0191�
4 �0:0003�
5 �0:0098�

(above transition) so that !� � �!r, where !r is the resonant frequency of the impe-

dance. Mode m peaks roughly at

!�L
�

� m + 1 ; (12.7)

where �L is the full bunch length. Therefore to be excited by the resonance impedance,

the betatron frequency shift due to chromaticity, !�, required is roughly given by

!� = �
�
!r � �(m+ 1)

�L

�
: (12.8)

Although the head-tail instabilities can be damped by the incoherent spread in

betatron frequency, it is advisable to run the machine at a negative chromaticity above

transition. In this case, all the higher modes with m 6= 0 will be stable, and the unstable

m = 0 mode can be damped with a damper.

Head-tail modes of oscillations can be excited by shifting the chromaticity to the

unstable direction and observed using a wideband pickup. These modes were �rst ob-

served in the CERN PS Booster [4] and depicted in Fig. 12.2. They have also been

measured in the Fermilab rings.

12.2 Longitudinal Head-Tail

The transverse head-tail instability comes about because of nonzero chromaticity or the

betatron tune is a function of energy spread. Most important of all, the introduction of
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m = 0 m = 0

� = 0 rad � = 2:3 rad

m = 1 m = 2
� = 6:9 rad � = 6:9 rad

Figure 12.2: A single bunch in the CERN PS Booster monitored in about

20 consecutive revolutions with a wideband pickup (bandwidth � 150 MHz).

Vertical axis: di�erence pickup signal. Horizontal axis: time (50 ns per di-

vision). The azimuthal mode number and chromaticity in each plot are as

labeled.
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a nonzero chromaticity breaks the symmetry of the transverse impedance times beam

power spectrum between positive and negative frequencies. There is also such an analog

in the longitudinal phase space when the synchrotron tune depends on the momentum

o�set. This comes about because the slip factor � is momentum-o�set dependent. In a

lattice we can write in general at a certain momentum-o�set Æ,

� = �0 + �1Æ + �2Æ
2 + � � � : (12.9)

Usually, because of the small momentum spread Æ, the contribution of the higher-order

terms is small. However, when the operation of the ring is near transition or �0 � 0,

most of the contribution of the slippage factor will come from the �1 term. When �0
and �1 are of the same sign, the phase drift of a particle will be larger in one half of

the synchrotron oscillation where the momentum spread is positive and smaller in the

second half where the momentum spread is negative. The inverse will be true when �0
and �1 have opposite signs. Similar to the transverse situation, this loss of symmetry

can excite an instability, which we call longitudinal head-tail instability. In fact, this

instability has been observed at the CERN SPS [5] and later at the Fermilab Tevatron.

Figure 12.3 shows the output of the rf-bunch phase detector at the CERN SPS, where the

bunch length, which was 7 ns at the beginning, is seen increasing for every synchrotron

oscillation. This is an instability in the dipole mode with � 1011 protons in the bunch.

The horizontal scale is 2 s per division or 20 s in total. Thus the growth rate is very slow.

To higher order in momentum spread, the o�-momentum orbit length can be written

as�

C(Æ) = C0

�
1 + �0Æ(1 + �1Æ + �2Æ

2 + � � � )� ; (12.10)

with C0 = C(0) being the length of the on-momentum orbit. It will be proved in

Sec. 18.1 that with the expansion of � in Eq. (12.9), the expressions for the higher-order

components of the slip factor are

�0 = �0 � 1

2
; (12.11)

�1 = �0�1 +
3�2

22
� �0
2

; (12.12)

�2 = �0�2 +
�0�1

2
� 2�4

2
+
3�0�

2

22
+

�0
4

; (12.13)

�In Europe, �0, �1, �2, etc. are usually referred to as �1, �2, �3, etc. There is also another common

de�nition, where C(Æ) = C0

�
1 + �0Æ + �1Æ

2 + �2Æ
3 + � � � )

�
.
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Figure 12.3: Longitudinal head-tail growth of the dipole synchrotron oscillation

amplitude recorded from the output of the rf phase detector at the CERN SPS for

a bunch with � 1011 protons. Horizontal scale is 2 s/div or 20 s total.

where � and � are the relativistic factors of the synchronous particle. For a high-energy

ring like the Fermilab Tevatron, we have almost �1 = �0�1. For a FODO lattice without

special correction, �1 is positive. Thus, the particle spends more time at positive mo-

mentum o�set than at negative momentum o�set. Then, the bunch becomes relatively

longer at positive momentum o�set than at negative momentum o�set, as is illustrated

in Fig. 12.4. The bunch will therefore lose more energy in the lower trajectory than in

the upper trajectory. The amplitude of synchrotron oscillation will therefore grow. The

energy loss by a beam particle per turn is

U(�� ) = 2�e2Nb

Z
d! j~�(!; ��)j2Re Zk

0
(!) ; (12.14)

where Nb is the number of particles in the bunch, and

~�(!; �� ) =
1

2�

Z
d� �(�; �� )e

i!� (12.15)
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τ

δ

+

-

Figure 12.4: A particle trajectory is asymmetric about the on-momentum axis when

the slippage factor is not an even function of momentum o�set. The bunch will be

longer at positive than negative momentum o�set when the �rst-order momentum

compaction �0�1 > 0 and above transition.

is the spectrum of the bunch of rms length �� with a distribution �(�; �� ) normalized to

unity. The rms bunch length �� and the rms energy spread �E are related by

!s�� =
j�j�E
�2E0

; (12.16)

where E0 is the synchronous energy of the beam and !s is the small-amplitude syn-

chrotron angular frequency. At the onset of the growth, bunch area is still approximately

constant for a proton bunch. Thus, we have

�� /
s
j�j
!s

/ j�j1=4 � j�0j1=4
�
1 +

�1Æ

4�0

�
; (12.17)

and

�� = ��0

�
1 +

�1Æ

4�0

�
; (12.18)

where ��0 is the rms bunch length in the absence of the �1 term. The bunch particle

gains energy for half a synchrotron period when Æ > 0 and loses energy for the other

half synchrotron period when Æ < 0. Averaging over a synchrotron period, the increase

in energy spread per turn is

�E =
dU

d��
��

����
Æ>0

� dU

d��
��

����
Æ<0

=
dU

d��
��0

Æ

2
� ; (12.19)
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where the asymmetry factor � is just the fractional di�erence in bunch length for Æ ? 0,

and is given, from Eq. (12.18), by

� =
�1
�0

=
�0�1 + (3

2
�2��0)�2
�0

� �1 +
3

2�02
� �1 ; (12.20)

for a proton beam at high energies so that �0 � �0. In above, Eq. (12.12) has been

used and  and � are the relativistic factors of the synchronous particle. Near transition

when �0 � �2, however, the asymmetry factor becomes

� �
�0

�
�1 +

3

2

�
�0

: (12.21)

Therefore, this phenomenon is best observed near transition when �0 is small. The

time development of the energy spread is given by �E / et=� . The growth rate of the

fractional energy spread is therefore [6]

1

�
= �f0

2

dU

d��

��0
�2E0

� ; (12.22)

where f0 is the revolution frequency and dU=d�� is usually negative. In parallel to

the transverse head-tail instability, this instability does not have a threshold although

the growth rate is intensity dependent. This instability is essentially a growth of the

amplitude of the synchrotron oscillation in the dipole mode. The frequency involved will

be the synchrotron frequency. The growth rate is usually very slow. For example, the

photo recorded at the CERN SPS, Fig. 12.3 has a horizontal time span of 20 s.

If the driving impedance Re Zk
0
comes from a narrow resonance with shunt impe-

dance Rs at resonant frequency !r=(2�) and quality factor Q, we have for the energy

loss per turn

U(�� ) =
�Rs!re

2Nb

Q
j~�(!r)j2 ; (12.23)

for a bunch containing Nb particles. For a broadband impedance, U(�� ) drops much

faster with bunch length. For a general resonance, we have computed the asymmetric

energy loss for a parabolic bunch distribution [7],

dU(�� )

d��
�� =

9e2Nb!rRs

4sQ

�
2

z3
�
e�2cz sin(2sz+2�)� sin 2�

�

+
4

z4
�
2e�2cz sin(2sz+3�) + sin 3�

�
+
12

z5
e�2cz sin(2sz+4�)
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+
6

z6
�
e�2cz sin(2sz+5�)� sin 5�

��
; (12.24)

where z =
p
5!r�� , c = cos � = 1=(2Q), and s = sin �. This is plotted in Fig. 12.5 for

the case of a sharp resonance and in Fig. 12.6 for the case of a broadband with Q = 1.

As is shown in Fig. 12.5, the asymmetric energy loss vanishes when the bunch

length goes to zero, because the change in bunch length from positive momentum o�set

to negative momentum o�set also goes to zero. On the other hand, when the bunch

length is very long, the asymmetric energy loss will also be small, because the energy

loss for a long bunch is small.

Let us apply the theory to the Fermilab Tevatron in the collider mode [7]. The

asymmetric factor in Eq. (12.20) has been measured to be � � +1:17. The fundamental

resonance of the 8 rf cavities serves as a good driving force for this instability. Each

cavity has resonant frequency fr = 53:1 MHz, Rs = 1:2 M
, and Q = 7000. For

Run I, where the rms bunch length was �� � 2:684 ns or fr�� � 0:1425, (dU=d�� )�� �
�0:3890 e2Nb!rRs=Q is large and leads to a growth rate of ��1 = 1:433 � 10�3 s�1

at the injection energy of E0 = 150 GeV for a bunch containing Nb = 2:70 � 1011

particles. However, for Run II, the bunch will be much shorter. With �� = 1:234 ns or

fr�� � 0:0655, the asymmetric energy loss (dU=d�� )�� � �0:1464 e2Nb!rRs=Q is much

smaller and the head-tail growth rate becomes ��1 = 0:539 � 10�3 s�1. As is shown

in Fig. 12.5, we are on the left side of the (dU=d�� )�� peak; therefore a shorter bunch

length leads to slower growth.

The broadband impedance can also have similar contributions since the resonance

frequency is usually a few GHz andRe Zk
0
is large although Z

k
0
=n is just a couple of ohms.

Now !r�� falls on the right side of the (dU=d�� )�� peak instead. We expect shorter bunch

lengths to have faster growth rates, as is indicated in Fig. 12.6. Table 12.2 shows the

longitudinal head-tail growth rates for di�erent resonant frequencies and quality factors;

Z
k
0
=n = 2 
 has been assumed. The growth rates driven by the fundamental rf resonance

are also listed in the last row for comparison. It is obvious that the longitudinal head-tail

instability for Run I is dominated by the rf narrow resonance and that for Run II by the

broadband impedance instead. We observed a growth time of � 250 s in Run I. From

Table VI, it is very plausible that the growth of this head-tail instability will be at least

as fast as that in Run I.

Let us go back to the observation at the CERN SPS. The bunch has a synchronous

momentum of 26 GeV/c. The transition gamma is t = 23:4, giving � = 5:26�10�4. For
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Figure 12.5: Plot of di�erential bunch energy loss (dU=d�� )�� versus fr��
due to a sharp resonance. Note that the e�ect on the Run II bunch is much

less than that on the Run I bunch because of the shorter Run II bunch

length.

Figure 12.6: Plot of di�erential bunch energy loss (dU=d�� )�� versus fr��
due to a broadband resonance with Q = 1. Note that the e�ect on the

Run II bunch is much more than that on the Run I bunch because of the

shorter Run II bunch length.
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Table 12.2: Growth rates for a broadband resonance of Z
k
0
=n = 2 
 at

various frequencies and quality factors.

fr (GHz) Q Growth Rate (s�1)

Run I Run II

1 1 0:178� 10�3 1:829� 10�3

1 3 0:022� 10�3 0:267� 10�3

2 1 0:089� 10�3 0:915� 10�3

2 2 0:023� 10�3 0:249� 10�3

1 5 0:009� 10�3 0:114� 10�3

2 3 0:011� 10�3 0:117� 10�3

2 4 0:006� 10�3 0:070� 10�3

Fundamental Rf Resonance 1:433� 10�3 0:539� 10�3

the horizontal chromaticity setting used during the observation of the longitudinal head-

tail growth in Fig. 12.3, a lattice-code simulation program gives the next higher-order

component of the momentum compaction to be �1 = �0:7. The asymmetry parameter

turns out to be � = 1:28. We therefore expect an instability if dU=d�� < 0 which is

normally the case. In order words, to observe such an instability, one should perform

the experiment above transition, but not too much above transition so as to enhance

the asymmetry parameter �.

The longitudinal head-tail instability can also be driven by the resistive wall impe-

dance. The di�erential energy loss in Eq (12.20) integrates to

dU

d��
�� = �3�

�
3

4

�
8�2

e2Nb[Re Zk]1
!
1=2
0

�
3=2
�

; (12.25)

where

[Re Zk]1 = R�

bÆ1
(12.26)

is the resistive part of the wall impedance at revolution frequency. The skin depth at

revolution frequency is

Æ1 =

r
2�

�0�r!0

; (12.27)

where �r is the relative magnetic permeability and � is the electric resistivity of the

beam pipe. �
�
3

4

�
= 1:2254167 is the Gamma function at 3

4
. Because of the �

3=2
� in the

denominator, the contribution can be important for very short bunches.
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The longitudinal head-tail instability can be important in quasi-isochronous storage

rings, because the the asymmetric factor as de�ned in Eq. (12.21) can become very large

when the ring operation is close to transition. Such rings have been designed for the

muon colliders. An isochronous ring is preferred because the muon bunches will be short,

roughly 3 mm, which requires an rf voltage in the 50 MV range [8]. Such an rf system

will be very expensive. In most of these designs, the muons only have a lifetime of about

1000 turns. If the ring is quasi-isochronous, even without rf, the debunching will be

rather insigni�cant. In order not to degrade the luminosity of the collider, however, one

must make sure that the growth time of the longitudinal head-tail instability will be

much longer than 1000 turns.
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12.3 Exercises

12.1. The degrees of freedom of a system are coupled internally. Some degrees of free-

dom continue to gain energy and grow while some lose energy and are damped.

When the system is not getting energy from outside, the sum of the damping or

antidamping rates of all degrees of freedom must add up to zero. If the head-tail

stability or instability for all azimuthal modes do not draw energy from outside,

energy must be conserved, or
1X

m=0

1

�m
= 0 ; (12.28)

where ��1m is given by Eq. (12.1), independent of chromaticity and the detail of the

transverse impedance. Show that Eq. (12.28) is only satis�ed if the factor (1+m)�1

in Eq. (12.1) is removed. We may conclude that either the factor (1+m)�1 should

not be present in Sacherer's formula or this is not an internal system.

Hint: Show that
P

m jhm(!)j2 is a constant independent of ! by performing the

summation numerically. This follows from the fact that the modes of excitation

�m(�) form a complete set. Then the integration over Re Z?
1
(!0) gives zero.

12.2. In an isochronous ring or an ultra-relativistic linacy, the particle at the head of the

bunch will not exchange position with the particle at the tail. Thus the particle

at the tail su�ers from the wake of the head all the time. We can consider a

macro-particle model with only two macro-particles, each carrying charge eN=2

and separated by a distance ẑ longitudinally. The head particle executes a free

betatron oscillation

y1(s) = ŷ cos k�s ; (12.29)

while the tail sees a deecting wake force hF?
1
i = e2NW1(ẑ)y1(s)=(2`) and its

transverse motion is determined by

y00
2
+ k2�y2 = �e2NW1(ẑ)

2E0`
; (12.30)

where k� = !�=v is the betatron wave number, ` is the length of the vacuum

chamber that supplies the wake. If one prefers, one can de�ne W1 as the wake

yFor all the proton linacs in existence, the highest energy is less than 1 GeV, or proton velocity less

than 0.875 of the velocity of light. Thus, normal synchrotron motion takes place, implying that head

and tail of a bunch do exchange position. Therefore, Exercise 12.2 applies mostly to electron linacs.
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force integrated over one rf-cavity period; then ` will be the length of the cavity

period. Show that the solution of Eq. (12.30) is

y2(s) = ŷ

�
cos k�s� e2NW1(ẑ)

4k�E0`
s sin k�s

�
: (12.31)

The second term is the resonant response to the wake force and grows linearly.

Show that the total growth in transverse amplitude along a length `0 of the linac

relative to the head particle is

� = �e2NW1(ẑ)`0
4k�E0`

: (12.32)

The above mechanism is called beam breakup.

12.3. Derive the asymmetric energy loss, [dU(�� )=d�� ]�� as given by Eq. (12.24) of a

particle in a bunch with linear parabolic distribution driven by a resonance.
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Chapter 13

MODE COUPLING

As the beam intensity increases, the shift of each longitudinal azimuthal mode be-

comes so big that two adjacent modes overlap each other. When this happens, the

longitudinal azimuthal mode number m is no longer a good eigennumber, and we can no

longer represent the perturbation distribution  1 as a single azimuthal mode. Instead,

 1 should be represented by a linear combination of all azimuthal modes. This phe-

nomenon has been referred to as \mode mixing," \mode coupling," \strong head-tail,"

and \transverse or longitudinal turbulence."

13.1 Transverse

Let us �rst consider transverse instability driven by a broadband impedance. This

implies a single-bunch mechanism. We also set the chromaticity to zero. For the mth

azimuthal mode and kth radial mode, Eq. (10.33) or (11.1) becomes

(
� !� �m!s)Æmm0Ækk0 =Mmm0kk0 (13.1)

where, with the aid of Eq. (10.33), the matrix M is de�ned as

Mmm0kk0 = � ieIbc

2!�E0�L

Z
d!Z?

1 (!)
~�m0k0(!)~��mk(!)Z

d!~�mk(!)~�
�
mk(!)

: (13.2)

The summations have been converted to integrations because the impedance is so broad-

band that there is no need to distinguish the individual betatron lines. A further sim-

13-1
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pli�cation is to keep only the �rst most easily excited radial modes. Then, the problem

becomes coupling in the azimuthal modes.

SinceRe Z?
1 (!) is odd in ! and ImZ?

1 (!) is even in !, only ImZ?
1 (!) will contribute

to the diagonal terms of the matrix M giving only real frequency shifts which will not

lead to instability. As the beam current becomes larger, two modes will collide and

merge together, resulting in two complex eigenfrequencies, one is the complex conjugate

of the other, thus introducing instability. Therefore, coupling should originate from the

o�-diagonal elements closest to the diagonal. We learn from Eq. (10.41) that the mth

mode of excitation ~�m(!) is even in ! when m is even, and odd in ! when m is odd.

Thus, it is Re Z?
1 (!) that gives the coupling.

The eigenfrequencies are solved by

det[(
� !� �m!s)I �M ] = 0 : (13.3)

We recall Eq. (10.21), Sacherer integral equation for transverse instability in Chapter 10,

(
� !� �m!s)�mRm(r) =

� i�e
2MNc

E0!�T 2
0

g0(r)
X
m0

im�m0

�m0

Z
r0dr0Rm0(r0)

X
q

Z?
1 (!q)Jm0(!qr

0)Jm(!qr) ; (13.4)

where g0(r) is the unperturbed normalized distribution in the longitudinal phase space

in circular coordinate. Clearly the equation is solvable if g0(r) is a Æ-function. This is

the air-bag model with beam particles residing only at the outer edge or g0(r) / Æ(r� �̂ )
with �̂ representing the half length of the bunch.

Let us choose a simple transverse wake which is a constant W1. The corresponding

transverse impedance is

Z?
1 (!) =

W1

! + i�
= }

�
W1

!

�
� i�W1Æ(!) : (13.5)

The in�nite matrix is truncated and the eigenvalues solved numerically. The solution

is shown in Fig. 13.1 [2]. This impedance corresponds to a real part that falls o� as

frequency increases. The imaginary part is a Æ-function at zero frequency, and therefore

interacts with the m = 0 mode only, since all m 6= 0 modes have spectral distribution
~�m(0) = 0. This explains why all other modes remain almost unshifted with the excep-

tion of m = 0. The downward frequency shift of the m = 0 mode as the beam intensity

increases from zero is a general behavior for short bunches. The transverse wake force
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�1 =
�eIbcW1

4E0!�!s

Figure 13.1: Transverse mode frequencies (
�!�)=!s versus the current inten-

sity parameter �1 for an air-bag bunch distribution perturbed by a constant wake

potential W1. The instability occurs at �1 � 1:8, when the m = 0 and m = �1

modes collide. The dashed curves are the imaginary part of the mode frequencies

or growth/damping rate for the two colliding modes.

produced by an o�-axis beam has the polarity that deects the beam further away from

the pipe axis. This force acts as a defocusing force for the rigid beam mode, and therefore

the frequency shifts downward. Such a downshift of the betatron frequency is routinely

observed in electron accelerators and serves as an important tool of probing the impe-

dance. Notice that unlike the situation of the longitudinal mode coupling described in

Chapter 7 and later in this chapter, there is no symmetry of the azimuthal modes about

the m = 0 mode. This is because these are now sidebands of the betatron lines, and the

betatron lines do not have any symmetry about the zero frequency. The implication is

that we need to include both positive and negative azimuthals in the discussion.

Eventually the m = 0 shifts downwards and meets with the m = �1 mode, thus
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exciting an instability. The threshold is at

�1 =
�eIbcW1

4E0!�!s
� 1:8 ; (13.6)

and is bunch-length independent. We can also obtain an approximate threshold from

Eqs. (13.1) and (13.2) by equating the frequency shift to !s, and get

eIbc Z
?
1

��
e�

2E0!�!s�L
� 1 ; (13.7)

where

Z?
1

��
e�

=

Z
d!Z?

1 (!)hm(!)Z
d!hm(!)

(13.8)

is called the e�ective transverse impedance for mode m. Comparing Eqs. (13.6) and

(13.7), we �nd the two thresholds are almost the same except for the bunch-length

dependency, which we think should be understood as follows. The imaginary part of the

impedance in Eq. (13.5) is a Æ-function at zero frequency which interacts only with the

m = 0 mode. As the bunch length becomes shorter, the spectrum spreads out wider,

so that the spectrum at zero frequency becomes smaller, and Z?
1

��
e�

is also smaller

accordingly. In fact, from Eq. (10.43), the normalization of the power spectrum in the

denominator of Eq. (13.8) is just ��1
L

and from Eq. (10.42), h(0) is �L independent. It is

clear that Z?
1

��
e�
/ �L, thus explaining why �1 in Eq. (13.6) is bunch-length independent.

Now consider the situation when the impedance is a broadband resonance. For a

very short bunch, the m = 0 mode extends to very high frequencies and will cover part

of the high-frequency capacitive part of the resonance. Thus, the e�ective impedance

Z?
1 je� can become small due to the cancellation of the inductive and capacitive parts. At

the same time, the peak of Re Z?
1 is far from the peak of the m = �1 mode, thus making

the coupling between the m = 0 and m = �1 mode very weak. Since the frequency shift

is small and the coupling is weak, it will take a much higher beam current for the m = 0

mode to meet with the m = �1 mode, thus pushing up the threshold current. For a long

bunch, the m = 0 mode has a small frequency spread. If it stays inside the inductive

region where ImZ?
1 is almost constant, ImZ?

1 can be taken out of the integral and

Z?
1

��
e�

will be almost constant. Therefore, the threshold current, given by Eq. (13.7),

increases linearly with the bunch length. When the bunch is very long, the m = �1 and
even m = �2 and m = �3 modes may stay inside the constant inductive region of the



13.1 Transverse 13-5

impedance. This implies that the higher azimuthal modes also interact strongly with

the impedance and these modes will have large shifts so that the threshold can become

much smaller. Several collisions may occur around a small beam-current interval and

the bunch can become very unstable suddenly.

The transverse mode-coupling instability was �rst observed at the DESY PETRA

and later also at the SLAC PEP and the CERN LEP. The strong head-tail instability

is one of the cleanest instabilities to observe in electron storage rings [1]. In particular,

one may measure the threshold beam intensity when the beam becomes unstable trans-

versely. Another approach is to measure the betatron frequency as the beam intensity is

varied. From the shift of the betatron frequency per unit intensity increase, the trans-

verse wake can be inferred. The transverse motion of the bunch across its length can

also be observed easily using a streak camera.

In the longitudinal mode-mixing instability, the bunch lengthens as the beam be-

comes unstable essentially without losing beam particles. This does not happen in the

transverse case. The instability is devastating; as soon as the threshold is reached,

the bunch disappears. However, so far no strong head-tail instabilities have ever been

observed in hadron machines.

Radiation damping is too slow to damp the strong head-tail instability. A damper

signi�cantly faster than the angular synchrotron frequency !s is required. As shown in

Fig. 13.1, it is modem = 0 that is shifted downward to collide with modem = �1 so as to
start the instability. But modem = 0 is the pure rigid dipole betatron oscillation without

longitudinal excitation. Therefore, if we can introduce a positive coherent betatron tune

shift, it will slow this mode from coming down and therefore push the threshold to a

higher value. A conventional feedback system is resistive; i.e., the kicker is located at

an odd multiple of 90Æ from the pickup. Here, a reactive feedback system is preferred

[2]. The kicker is located at an even multiple of 90Æ from the pickup. In a two-particle

model, where the bunch is represented by two macro-particles, the equations of motion

are, in the �rst half of the synchrotron period,

d2y1
dn2

+ (2���)
2y1 = �(y1 + y2) ;

d2y2
dn2

+ (2���)
2y2 = �(y1 + y2) + �y1 ; (13.9)

where y1 and y2 are, respectively, the transverse displacements of the head and tail

macro-particles, � is the gain of the reactive feed back, and � represents the e�ect of the
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transverse wake from head to tail. Notice that the reactive feedback acts on the center

of the bunch and is in phase with the particle displacements. It therefore modi�es ��
by introducing a tune shift. The instability threshold can then be raised by properly

choosing the feedback strength �. In low-energy hadron machines, the space charge tune

shift constitutes a natural reactive feedback system which tends to shift the m = 0 mode

upwards. We shall study this in more detail in the next section.

This instability can also be damped by Balakin-Novokhatsky-Smirnov (BNS) damp-

ing [3], which delivers a betatron tune spread from the head of the bunch to the tail. This

can be achieved by tilting the longitudinal phase space distribution of the bunch so that

the tail has a lower energy relative to the head through chromaticity. Another method to

implement BNS damping is to introduce a radio-frequency quadrupole magnet system,

so that particles along the bunch will see a gradual shift in betatron tune.

13.2 Space Charge and Mode Coupling

It was reported in a recent paper of Blaskiewicz [4] that the space charge tune shift can

strongly damp the transverse mode-coupling instability (TMCI), which is also known as

strong head-tail instability. The investigation was made on the basis of particle tracking

and the analytically solvable square-well air-bag model [5]. This is di�erent from the

air-bag model we used in the last section, although all the beam particles reside at the

edge of the bunch. The formation of this model is sketched in Fig. 13.2. From a ring of

particles in the longitudinal phase space on the left, the top semi-circle is stretched out

and so is the lower semi-circle as illustrated in the right plot. The stretching continues

until the top and lower semi-circles become two horizontal lines at energy o�set �d�E.
The lower one is described by the synchrotron phase � from �� to 0, while the upper

one by � from 0 to � for one synchrotron oscillation. Such a synchrotron oscillation

requires, of course, a special rf potential. The bunch will be very long. The head is

represented by � = 0 while the tail is represented by � = ��. We use the synchrotron

phase � and the energy o�set �E as a set of variables for the description of the particle

position in the longitudinal phase space. Although z remains the coordinate orthogonal

to �E, the linear position of the particle can also be referenced by �. The bunch particle

distribution is given by

 (�;�E) = 1
2
�(�)

h
Æ(�E �d�E) + Æ(�E +d�E)i ; (13.10)
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∆E∆E

φ
z

φ = −π 0to

φ = 0 to π

z

Figure 13.2: The ordinary air-bag model in the longitudinal phase space (left) is

transformed into the square-well air-bag model (right) by stretching out the upper

and lower semi circles until they become two in�nite parallel lines at the energy

spread �d�E. The longitudinal position of the particle remains speci�ed by � from

�� to 0 and from 0 to �.

where �(�) = 1=(2�) is the projection onto the synchrotron phase.

What is going to be presented here is a qualitative explanation why the space charge

helps TMCI. Without space charge, the bunch starts to be unstable when two neighbor-

ing synchro-betatron modes merge under the inuence of the wake forces. Typically, the

pure betatron mode (the azimuthal or synchrotron harmonic m = 0 mode, also known

as the rigid-bunch mode) is a�ected by the wake force and shifts downward, while the

other azimuthal modes are not much a�ected, at least at low intensity. The transverse

wake force produced by an o�-axis beam has the polarity that deects the beam further

away from the pipe axis. This force acts as a defocusing force for the rigid beam mode,

and therefore the frequency shifts downward. As a result, the instability threshold is

determined by the coupling of the 0 and �1 modes, as illustrated in the left plot of

Fig. 13.3, (see below for de�nition of parameters).

The space charge by itself also shifts all the frequencies downward, as illustrated

in the right plot of Fig. 13.3. The only exception is the azimuthal m = 0 mode, which

describes the motion of the bunch as a whole, and, therefore, is not inuenced by the

space charge at all. Thus, in the presence of space charge, the m = 0 mode will couple

with the m = �1 mode at a higher current intensity and therefore the threshold is raised
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Figure 13.3: Left: The transverse wake force shifts mostly the azimuthal m = 0

mode downward but not the other modes. Instability occurs when the m = 0 and

�1 modes meet with each other. Right: The space charge force in the absence of

the wake forces shifts all modes downward with the exception of the m = 0 mode.

in the presence of space charge. This is illustrated in the left plot of Fig. 13.4.

Let us go in more details with mathematics. The transverse displacement x(�) of a

particle at the synchrotron phase � satis�es the equation of motion:

d2x(�)

dt2
+ !2

�x(�) = F (�) + S�(�)[x(�)� �x(�)] ; (13.11)

where !�=(2�) is the unperturbed betatron frequency and the smooth approximation

for the betatron oscillations has been applied. To incorporate synchrotron oscillation,

the total time derivative takes the form

d

dt
=

@

@t
+ !s

@

@�
; (13.12)

with !s=(2�) being the synchrotron frequency. The right-hand side of Eq. (13.11) con-

tains the transverse driving forces. The �rst term is the transverse wake force

F (�) = �Nbe
2c2

E0C

Z j�j

0

W1[z(�
0)� z(�)]�(�0)�x(�0)d�0 ; (13.13)

where Nb is the number of particles in the bunch, W1 the transverse wake function, z(�)

the longitudinal position of the beam particle. The second term is the space charge

contribution. It is proportional to the linear density �(�) and the displacement relative
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Figure 13.4: Left: With the transverse space charge force added to the wake forces,

all modes except the m = 0 mode are shifted downward, thus requiring the m = 0

and �1 modes to couple at a much higher current threshold. Right: When space

charge reaches the critical value of � = 5, the m = �1 mode is shifted away from

the m = 0 mode by so much that they do not couple anymore.

to the local beam center, x(�)� �x(�), with the constant S representing the space charge

strength.

To solve the problem quantitatively, we expand the o�set into the synchrotron

harmonics (or azimuthals):

x(�; t) = e�i!�t�i
t
1X

n=�1

xne
in� ; (13.14)

where 
=(2�) is the collective frequency shift. In this air-bag model, all particles reside

at the edge of the bunch distribution in the longitudinal phase space. Note that because

of the square-well air-bag model, these synchrotron azimuthals are slightly di�erent from

the conventional ones. The average o�set at the synchrotron phase � is therefore given

by

�x(�; t) = 1
2

h
x(�; t) + x(��; t)

i
= e�i!�t�i
t

1X
n=�1

xn cos n� : (13.15)

Following basically Ref. [6], Eq. (13.11) transforms into an eigenvalue equation,�



!s
� n

�
xn = �K

1X
m=�1

xm
�Wnm + �Qnm

�
: (13.16)
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Here, the current parameter is written as

K =
Nbe

2c2W0

2�2!�!sCE0

: (13.17)

The wake matrix elements are then given by

Wnm =

Z �

0

d�

Z �

0

d�0w[z(�0)� z(�)] cos(n�) cos(m�0) ; (13.18)

where the wake function is presented as W (z) = �W0w(z) with W0 serving as a nor-

malizing constant. The space charge parameter

� =
�!�

2K!s
(13.19)

is a current-dependent ratio of the incoherent tune shift

�!� =
S�

2!�

(13.20)

to the current parameter K. The space charge matrix elements are

Qnm = Ænm � Æn;�m (13.21)

in the assumed air-bag distribution.

Without wake forces, the eigenvalue equation leads to the mode behavior presented

in the right plot of Fig. 13.3. For the simplest step-like wake function w(z) = H(z),

H(z) being the Heaviside step function, and without space charge (� = 0), the mode

coupling is shown in the left plot of Fig. 13.3, where the threshold is K = 0:73. Now

space charge is introduced with the space charge parameter � = 4. We do see in the

left plot of Fig. 13.4 that, because the m = �1 mode is shifted downward by the space

charge, the instability threshold has been pushed up to K = 1:25 as compared with the

left plot of Fig. 13.3.

Further increasing the space charge parameter to � = 5, we see in the right plot

of Fig. 13.4 that modes m = 0 and �1 do not merge any more. What is not shown

in the plot is a much higher new threshold where the 0 mode couples with the m = 1

mode instead. This new threshold is very much model dependent. In the present model,

it depends strongly on the number of modes included in the truncated matrix. For

truncation at modes jnj = 32, this new threshold is at least a factor of 30 higher than
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when space charge is absent. A dependence of the calculated threshold Kth on the mode

truncation number jnj was found as Kth / jnj1=2 for jnj � 10 and even weaker,

Kth / jnj1=3 ; (13.22)

for 10 � jnj � 32. The divergence is caused by the fact that the Fourier components of

the space charge in Eq. (13.21) do not roll o� at high frequencies. Taking into account

the �nite value of the ratio of transverse bunch size �? to longitudinal bunch size �k,

we estimate this roll-o� limit as jnj ' �?=�k ' 200 to 1000 for typical hadron bunches.

Extrapolation of the dependence Eq. (13.22) into this area brings to a conclusion that

the actual threshold can be 2 to 3 times higher than the result reported for jnj = 32.

So for this simpli�ed wake-beam model, the space charge is found to be able to increase

the TMCI threshold by one or two orders of magnitude.

As discussed in the previous section, a reactive feedback shifts modem = 0 upwards

resulting in pushing the threshold to a higher current. Here, the space charge force shifts

all the modes downwards except m = 0, and the result is also to have the threshold

pushed towards a higher current. Therefore, the space charge tune shift in a proton

machine, as discussed above, constitutes a natural inverse reactive feedback.

13.3 Longitudinal

The azimuthal modes are not a good description of the collective motion of the bunch

when the beam current is high enough. Therefore there is also mode coupling in the

longitudinal motion. Similar to the transverse coupled problem in Eqs. (13.1) and (13.2),

we have here

(
�m!s)Æmm0Ækk0 =Mmm0kk0 (13.23)

where, with the aid of Eq. (10.37), the matrix M is de�ned as

Mmm0kk0 =
im

1+m

4�2eIb�

3�2E0!s� 3L

Z
d!
Z
k
0(!)

!
~�m0k0(!)~��mk(!)Z

d!~�mk(!)~�
�
mk(!)

; (13.24)

where the unperturbed distribution has been assumed to be parabolic. Again here the

impedance is broadband so that the discrete summations over the synchrotron sidebands
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have been replaced by integrals. We have also thrown away all the higher-order radial

modes keeping the most easily excited k = 1. Exactly the same as in the transverse

situation, only ImZ
k
0 (!)=! contributes to the diagonal elements of the coupling matrix

and thus to the real frequency shifts of the modes. The coupling of two modes, mostly

adjacent, will give instability, which is determined by Re Zk
0(!)=! in the o�-diagonal

elements next to the diagonal ones. All the discussions about bunch-length dependency

on threshold in the transverse case apply here also. A rough estimate of the threshold

can be obtained from Eq. (13.24) by equating the frequency shift to !s. The threshold

is therefore

�2 =
4�2eIb�

3�2E0!2
s�

3
L

Zk
0

!

�����
e�

� 1 ; (13.25)

where the e�ective longitudinal impedance for mode m is de�ned as

Z
k
0

!

�����
e�

=

Z
d!
Z
k
0(!)

!
hm(!)Z

d!hm(!)
; (13.26)

For convenience, let us introduce a parameter x = !�L=�, so that, with the exception

of m = 0 which is not an allowed mode in the longitudinal motion, the mth mode of

excitation peaks at x � m+1 and has a half width of �x � 1. Now consider the Fermilab

Main Ring with a revolution frequency 47.7 kHz and total bunch length �L � 2 ns.

Assume the impedance to be broadband centered at xr = 7:5 or fr � 1:88 GHz and

quality factor Q = 1. Numerical diagonalization of the coupling matrix gives frequency

shifts as shown in Fig. 13.5 [8]. We see the �rst instability occurs when mode m = 6

couples with mode m = 7, and in the vicinity of the threshold, there are also couplings

between modes m = 4 and 5 and modes m = 8 and 9. This happens because the

resonance centered at xr = 7:5 has a half width �xr = xr=(2Q) = 3:75. Thus the

Re Zk
0=! resonant peak encompasses modes m = 4 to 9, which peak at x = 5 to 10. This

is a typical picture of mode-coupling instability for long bunches. From the �gure, the

�rst instability occurs at

� =
4�2eIb�

3�2E0!2
s�

3
L

Rs

!r
� 0:93 : (13.27)

On the other hand, the Keil-Schnell criterion of Eq. (6.22) gives a threshold of

eIb�

�2E0!2
s�

3
L

Rs

!r

=
1

6�

1

F
; (13.28)
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� =
4�2eIb�

3�2E0!2
s�

3
L

Rs

!r

Figure 13.5: Coupling of modes m = 6 and 7 in the presence of a resonance at

xr = 7:5 and Q = 1 above transition.

where F is the form factor. This is equivalent to

� =
2�

9

1

F
: (13.29)

Thus, the mode-coupling threshold is very close to the Keil-Schnell threshold. However,

mode-coupling instability is quite di�erent from microwave instability. In the latter, pure

reactive impedance can drive an instability; for example, the negative-mass instability

just above transition is driven by the space charge force. It can be demonstrated that

pure capacitive impedance will only lead to real frequency shifts of the modes. Although

two modes may cross each other, they will not be degenerate to form complex modes.

Thus, there is no instability (Exercise 13.2).

When the bunch is short, for example, electron bunches, the modes of excitation

spread out to higher frequencies. Therefore when the bunch is short enough, the resonant

peak of Re Zk
0=! will encompass only modes m = 1 and 2. Thus, we expect these two
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modes will collide �rst to give instability. Them = 1 is the dipole mode and is not shifted

at low beam current because the bunch center does not see any reactive impedance.

The m = 2 is the quadrupole mode, which is shifted downward above transition. This

downshift is a way to measure the reactive impedance of the ring.

When the beam current is above threshold and instability starts, the energy spread

increases and so does the bunch length. In an electron ring where there is radiation

damping, there is no overshooting and the increase stops when the stability criterion is

ful�lled again. The bunch lengthening is therefore determined by the stability criterion.

If the bunch samples the impedance at a frequency range where Z
k
0(!) / !a, the e�ective

impedance is

Z
k
0

!

�����
e�

/

Z
d! !a�1hm(!)Z
d! hm(!)

/ � 1�a
L

; (13.30)

where use has been made of the fact that the power spectrum hm is a function of the

dimensionless quantity !�L according to Eq. (10.42) and the result is independent of the

functional form of hm. From the threshold condition in Eq. (13.25), we have

4�2eIb�

3�2E0!2
s�

2+a
L

= constant independent of Ib; �; E0; !s; �L : (13.31)

Thus the bunch length obeys the scaling criterion of

�L / �1=(2+a) ; (13.32)

where

� =
�Ib
�2sE0

(13.33)

is the scaling parameter introduced by Chao and Gareyte [2].

Longitudinal mode coupling is di�erent from transverse mode coupling. In the

latter, the betatron frequency (m = 0) is shifted downward to meet with the m = �1
mode. The amount of shift is small, since �s=[��] � 1, where [��] is the residual

betatron tune. Transverse mode coupling has been measured in many electron rings

and the results agree with theory. In the longitudinal case, the synchrotron quadrupole

frequency (m = 2) has to be shifted downward to meet with the synchrotron dipole

frequency (m = 1) and this shift is 100% of the synchrotron tune. At the CERN LEP

which is above transition, we expect the synchrotron quadrupole mode to shift downward
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when the beam current increases from zero. However, it was observed that this mode

shifts slightly upward instead. Since the dipole frequency is not shifted, it is hard to

visualize how the two modes will be coupled. Some argue that the coupling may not

be between two azimuthal modes, but instead between two radial modes that we have

discarded in our discussion. But the coupling between two radial modes is generally

much weaker. Some say that the actual coupling of the two modes has never been

observed experimentally, and the scaling law for bunch lengthening may have been the

result of some other theories. Anyway, the theory of longitudinal mode coupling is far

from satisfactory.

13.4 High Energy Accelerators

So far transverse mode-coupling instability has never been observed in hadron machines.

In this section, we would like to analyze how this instability would a�ect the higher

energy accelerators under design.

For protons, particle energy E0 is directly proportional to the size of the accelerator.

So we have

E0 / R and !0 / 1

R
: (13.34)

The resistive-wall impedance is

Zk
0

n
= [1� i sgn(!)]

R�

nb

r
�!

2�
; (13.35)

where � is the resistivity and � the magnetic permeability of the beam pipe of radius b.

At a �xed frequency !, we have

Z
k
0

n
� 1

b
p
!
; (13.36)

Z?
1 �

R

b3
p
!
: (13.37)

For M pairs of strip-line BPM's at low frequencies ! . c=`, where ` is the length of the
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strip lines,

ImZ
k
0

n
= �i2MZc

�
�0
2�

�2
`

R
; (13.38)

ImZ?
1 =

c

2b2

�
4

�0

�2

sin2
�0
2

ImZ
k
0

!
: (13.39)

where Zc is the characteristic impedance and �0=� is the fraction of the beam pipe

covered by the strip lines. The betatron functions �x;y scale as
p
R. Thus, the betatron

tunes and the number of BPM's required also scale as
p
R. At a �xed frequency we have

ImZ
k
0

n
� `p

R
; (13.40)

ImZ?
1 �

`

b2

p
R : (13.41)

We see that when the size of an accelerator is increased, the resistive-wall impedance

will dominate over all other contributions. We also see that Z
k
0=n at a �xed frequency

remains roughly independent of the size of the accelerator. From now on, we will consider

resistive-wall impedance only.

The Keil-Schnell criterion for longitudinal microwave instability is�����Z
k
0

n

����� < 2�j�jE0�
2
Æ

eIpeak
: (13.42)

For a large accelerator, the energy is usually very much larger than the transition energy.

The slip factor � � �2t � ��2� for a FODO lattice. We therefore have � � R�1. The

peak current is Ipeak � Nb=�� . Putting in the wall resistivity at ! � ��1� , the stability

criterion takes the form p
��
b
.
A�Æ
NbR

; (13.43)

where the bunch area in eV-s is

A = E0�Æ�� : (13.44)

For an accelerator of higher energy, if we want to have roughly the same fractional energy

spread and bunch length, the bunch area will scale as R. The above stability criterion

becomes p
��
b
.
���

2
Æ

Nb
: (13.45)
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This leads to the conclusion that longitudinal microwave instability will not be worsen

for higher energy accelerators.

Now let us turn to transverse mode-coupling instability and consider Eq. (13.7),

which we rewrite as a stability criterion

Z?
1

��
e�
.

4�E0!0���s�L
e2Nbc

: (13.46)

The e�ective impedance on the left side will be taken as the resistive-wall impedance

of Eq. (13.37) multiplied by a constant. When we substitute E0 � R, !0 � 1=R, and

�� �
p
R, we obtain

R
p
��

b3
.

p
R�s��
Nb

: (13.47)

Thus, transverse mode-coupling instability will occur when the size of the accelerator

becomes bigger and bigger.

According to all the accelerator rings ever built, for electron machines, particle

energy scales as E0 �
p
R instead. This implies that there will be no

p
R on the right

side of Eq. (13.47), or
R
p
��

b3
.
�s��
Nb

; (13.48)

and the instability will come at a smaller accelerator size. This may explain why elec-

tron machines are more susceptible for transverse mode-coupling instabilities. For the

longitudinal microwave instability, Eq. (13.45) becomes

p
��
b
.

���
2
Æ

Nb

p
R
; (13.49)

showing that this instability will be worsen as the size of the ring increases. For electron

rings, because of the short bunch length, the longitudinal mode-coupling instability is

more of interest. The stability condition for azimuthal modes m = 2 and 1 colliding is

given by Eq. (7.10), or �����Z
k
0

n

�����
ind

.
4��2s!

2
0 �̂

3�2E0

3e2N j�j : (13.50)

Assuming again that the resistive-wall impedance dominates, we obtain

��
b
.

�2s�
3
�

NbR1=2
; (13.51)
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again showing that this threshold becomes more severe for a larger ring.

In Chapter 10, we show that for a proton ring, the growth rate for transverse

coupled-bunch instability driven by the resistive-wall impedance should be more or less

independent of the size of the accelerator ring. However, for electron rings we have

E0 /
p
R instead. The growth rate for this instability now increases according to

p
R for

large electron rings. The growth time in revolution turns therefore decreases according

to R�3=2, making it much harder for the feedback damper to damp the instability in

Very Large Lepton Colliders (VLLC) than in Very Large Hadron Colliders (VLHC).
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13.5 Exercises

13.1. There is a simple two-particle model which gives a clear picture of transverse mode

coupling [2]. Assume the head and tail particles are always separated by ẑ for one

half of a synchrotron period Ts and exchange position for the other half. Similar

to Exercise 12.2, we have during 0 < s=v < Ts=2,

y001 + k2�y1 = 0 ;

y002 + k2�y2 = �
e2NW1(ẑ)

2E0C
y1 : (13.52)

(1) Show that the solution is

~y1(s) = ~y1(0)e
�ik�s ;

~y2(s) = ~y2(0)e
�ik�s � i

e2NW1(ẑ)

4E0Ck�

�
~y�1(0)

k�
sin(k�s) + ~y1(0) s e

�ik�s

�
; (13.53)

where

~y` = y` + i
y0`
k�
; ` = 1; 2 : (13.54)

The term with sin(k�s) in Eq. (13.53) can be dropped because !�Ts=2 � 1. We

can therefore write�
~y1
~y2

�
s=vTs=2

= e�i!�Ts=2
�

1 0

i� 1

��
~y1
~y2

�
s=0

; (13.55)

where

� = ��e
2NW1v

2

4E0C!�!s
: (13.56)

(2) During Ts=2 < s=v < Ts, show that we have instead

y001 + k2�y1 =
e2NW1(ẑ)

2E0C
y2 ;

y002 + k2�y2 = 0 ; (13.57)

so that for one synchrotron period,�
~y1
~y2

�
s=vTs

= e�i!�Ts
�
1 i�

0 1

��
1 0

i� 1

��
~y1
~y2

�
s=0

: (13.58)
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(3) Show that the two eigenvalues are

�� = e�i� ; sin
�

2
=

�

2
; (13.59)

and stability requires � � 2. Compare the result with Eq. (13.6). Note that for a

short bunch W1(ẑ) < 0; thus � is positive.

13.2. In the two-particle model in Exercise 13.1, if the beam current is slightly above

threshold; i.e.,

� = 2 + � ; (13.60)

where � � 1, compute the complex phase � of the eigenvalues ��. The growth

rate is then
1

�
=
Im�

Ts
=

2
p
�

Ts
: (13.61)

Show that for an intensity 10% above threshold, the growth time is of the order

of the synchrotron period.

13.3. For longitudinal mode coupling, the coupling matrix of Eq. (13.24) can be written

as, after keeping only the lowest radial modes,

Mmm0 = �!sAmm0 (13.62)

where � is given by Eq. (13.27),

Amm0 =
im

1+m

Z
d!
!rẐ

k
0(!)

!
~�m0(!)~��m(!)Z

d!~�m(!)~�
�
m(!)

; (13.63)

and Ẑ
k
0(!) has been normalized to the shunt impedance Rs.

If the coupling is not too strong, we can truncate the matrix to 2 � 2 for the

coupling between two modes:�������



!s0
�m� �Amm �Amm0

�Am0m



!s

�m0 � �Am0m0

������� = 0 : (13.64)

(1) Show that the collective frequency is given by


 = 1
2
!s

h
(�m + �m0)�

p
(�m0 � �m)2 + 4�2Amm0Am0m

i
; (13.65)
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where �k = k + �Akk, k = m or m0.

(2) For simplicity, let us neglect the factorm=(1+m) on the right side of Eq. (13.63).

For two adjacent modes (m0 = m + 1) that are coupled by a resonant peak, the

higher-frequency mode samples mostly the capacitive part of the resonance while

the lower-frequency mode samples the inductive part. Therefore Amm�Am0m0 > 0.

Show that Amm0Am0m = �jAmm0 j2 and the threshold of instability �th is given by

j�thAmm0 j = 1
2
j�th(Amm � Am0m0)� 1j : (13.66)

The solution is di�erent depending on whether the bunch energy is above or below

transition:

�th =
1

2jAmm0 j+ jAm0m0 � Ammj above transition; (13.67)

j�thj = 1

2jAmm0 j � jAm0m0 � Ammj below transition: (13.68)

The above shows that the threshold will be higher when the ring is below transition.

In fact, the system becomes completely stable below transition if the coupling

provided by the real part of the impedance is not strong enough (or 2jAmm0 j <
jAm0m0�Ammj). For this reason, it is advantageous for the ring to be of imaginary

t [9].

(3) When the impedance is purely reactive, the next-to-diagonal elements are

zero. So we talk about coupling of two modes m and m0 = m + 2 instead. Show

that Amm0Am0m = jAmm0 j2 and instability cannot occur.

(4) Show that the same conclusions in Parts (2) and (3) can be drawn when the

factor m=(1+m) is not neglected in Eq. (13.63), although Eqs. (13.66) and (13.68)

will be slightly modi�ed.
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Chapter 14

LANDAU DAMPING

As we have seen in previous chapters, collective instabilities occur in bunched and

unbunched beam as a result of the interaction of the beam particles with their own

wake �elds. There are various way to damp these instabilities. Aside from mechanical

dampers, there is a natural stabilization mechanism against collective instabilities when

the beam particles have a small spread in their frequencies, such as betatron frequency,

synchrotron frequency, or revolution frequency as the situation requires. This damping

mechanism is called Landau damping, which was �rst formulated by Landau [1]. Un-

fortunately, Landau's original paper is rather diÆcult to understand. Later, Jackson [2]

wrote an article on longitudinal plasma oscillations and had the concept well explained.

Neil and Sessler [3] �rst formulated the theory of Landau damping on longitudinal

instabilities, while Laslett, Neil and Sessler [4] �rst applied the theory to transverse

instabilities. There have been quite a number of good papers written on this subject by

Hereward [5], Hofmann [6], and Chao [7].

We encountered Landau damping in Chapter 6 when we formulated the dispersion

relation for longitudinal microwave instability using the Vlasov equation. There, we

came across the ambiguity of a singularity in the denominator which is critical in de-

termining whether the system will be stable or unstable. That ambiguity can only be

avoided when the problem is treated as an initial-value problem. This will be covered in

this chapter. We �rst study the beam response of an harmonic driving force, the beam

response of shock or Æ-pulse excitation. After that, we try to understand the physics of

Landau damping and derive dispersion relations for bunched and unbunched beam in

transverse and longitudinal instabilities.

14-1
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14.1 Harmonic Beam Response

Consider a particle having a natural angular frequency ! and is driven by a force of

angular frequency 
. The equation describing its displacement x(t) is

�x + !2x = A cos 
t ; (14.1)

where the overdot represents derivative with respect to time and A denotes the amplitude

of the force. The most general solution is

x(t) = x0 cos!t+ _x0
sin!t

!
+

A

!2 � 
2

�
cos 
t� cos!t

�
; (14.2)

where x0 and _x0 are, respectively the initial value of x and _x at t = 0. The �rst two

terms are due to a shock or Æ-pulse excitation. Although they are important, we shall

postpone the discussion to the next section.

Let us pay attention to the excitation by the harmonic force. Notice that the

response is well-behaved even at ! = 
. For a large number of particles having a

distribution �(!) in frequency and normalized to unity, the displacement of the center

of mass is

hx(t)i = A

Z 1

�1
d!

�(!)

!2 � 
2

�
cos 
t� cos!t

�
: (14.3)

As is the case in particle beams, the distribution is mostly a narrow one centered at

angular frequency �!. For simplicity, let us assume that this distribution does not peak

at any other frequency, not even the negative frequencies. In order to drive this system of

particles, the driving frequency must also be close to this center frequency, or 
 � �!. We

can therefore do the expansion ! = 
+(!�
), and the Eq. (14.3) can be approximated

by

hx(t)i = A

2�!

�
cos 
t

Z 1

�1
d! �(!)

1�cos(!�
)t
!�
 + sin
t

Z 1

�1
d! �(!)

sin(!�
)t
!�


�
:

(14.4)

Notice that we have separated the fast-oscillating term of angular frequency 
 and the

slow-oscillating envelope-like terms with angular frequency !�
. We also see a part, the

cos 
t term, that is not driven in phase� by the force, and the other part, the sin
t term,

that is driven in phase by the force. More discussion will follow later. The functions

p(!) =
1� cos!t

!
and d(!) =

sin!t

!
(14.5)

�Actually, \in phase" here implies the driving phase is in phase with the velocity _x.



14.1 Harmonic Beam Response 14-3

Figure 14.1: Plots of the functions p(!) and d(!) with t being a parameter. As

t!1, p(!)! }!�1 and d(!)! �Æ(!), where } denotes principal value.

are illustrated in Fig. 14.1. The function p(!) always vanishes at ! = 0 and decays as

!�1 when ! ! �1. It has peaks of value �at at �b=t, where b = 2:3311 is the root of

b = tan(b=2) and a = 2b=(1 + b2) = 0:7246. These peaks grow linearly with t and move

closer to ! = 0 as t increases. We therefore have

lim
t!1

p(!) = }
1

!
; (14.6)

where } stands for the principal value. On the other hand, d(!) has a peak of value t at

! = 0 and rolls o� as !�1 for large !, having the �rst zeroes at ! = ��=t. As t !1,

the peak at ! = 0 grows linearly while its width also shrinks inversely with t; the area

enclosed is always �. Outside the peak, the function oscillates very fast as t ! 0. We

therefore have

lim
t!1

d(!) = �Æ(!) : (14.7)

Coming back to Eq. (14.4), as t � 1=�!, where �! is a measure of the width of the

frequency distribution �(!), all the transients die, leaving us with

hx(t)i = A

2�!

�
cos 
t }

Z 1

�1
d!

�(!)

! � 

+ ��(
) sin
t

�
: (14.8)

Let now us repeat the derivation with the force A sin
t and combine the solution
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with the former to get the long-term response to the force Ae�i
t:

hx(t)i = Ae�i
t

2�!

�
}

Z 1

�1
d!

�(!)

! � 

+ i��(
)

�
=

Ae�i
t

2�!�!
R(u) ; (14.9)

where the beam transfer function (BTF) is de�ned as

R(u) = f(u) + ig(u) ; (14.10)

with

u =
�! � 


�!
; (14.11)

and

f(u) = �! }

Z 1

�1
d!

�(!)

! � 

and g(u) = ��!�(�!�u�!) ; (14.12)

where again �! is a measure of the width of the frequency distribution. The BTF is an

important function, because it can be measured and it gives valuable information to the

distribution function �(!) and also the impedance of the vacuum chamber, as will be

demonstrated below. We can also combine the two expressions in Eq. (14.12) into one

and obtain

R(u) = f(u) + ig(u) = �!

Z 1

�1
d!

�(!)

! � 
� i�
with u =

�! � 


�!
: (14.13)

There is a singularity in R(u) when 
 = ! � i� or u�! = �! � ! + i�. This implies

that R(u) is an analytic function with singularities only in the upper u-plane. Notice

that instead of the derivation starting from the initial condition, the displacement of the

center of the bunch, Eq. (14.9), can also be obtained directly by writing the force as

Ae�i(
+i�)t = Ae�i
te�t ; (14.14)

where � is an in�nitesimal positive number, so that the solution becomes

hx(t)i = Ae�i
t

2�!

Z 1

�1
d!

�(!)

! � 
� i�
=

Ae�i
t

2�!

�
}

Z 1

�1
d!

�(!)

! � 

+ i��(
)

�
; (14.15)

which is exactly the same as Eq. (14.9). The addition of the small � implies that the

force in Eq. (14.14) is zero at t = �1 and increases adiabatically.
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14.2 Shock Response

The beam is suddenly excited by a shock or a Æ-pulse, imparting to the beam particles

either a displacement x0 or a velocity displacement _x0, but not both. From Eq. (14.2),

we have the shock response de�ned by either

G(t) =
hx(t)i
x0

= H(t)

Z 1

�1
d! �(!) cos!t ; (14.16)

or

G(t) =
h _x(t)i
_x0

= H(t)

Z 1

�1
d! �(!) cos!t ; (14.17)

where H(t) is the Heaviside step function. Thus the shock response function (SRF) is

always real and vanishes when t < 0. The SRF is important because it is an easily

measured function and it can give information about the distribution function of the

frequency as well as the BTF.

It is interesting to show that there is a relation between the the SRF and the BTF.

The Fourier transform of the SRF is

~G(!) =
1

2�

Z 1

0

dtG(t)ei!t : (14.18)

where attention has to be paid that the integral starts from zero. The real part is

Re ~G(!) =
1

2�

Z 1

0

dtG(t) cos!t

=
1

2�

Z 1

0

dt cos!t

Z 1

�1
d!0 �(!0) cos!0t

=
1

4�

Z 1

�1
d!0�(!0)

Z 1

�1
dt cos!t cos!0t

=
1

4

Z 1

�1
d!0�(!0)

�
Æ(!0 � !) + Æ(!0 + !)

�
=

1

4
�(!) ; (14.19)

where Æ(!0 + !) has no contribution because the distribution is narrow and is centered
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at only one positive frequency. The imaginary part is

Im ~G(!) =
1

2�

Z 1

0

dtG(t) sin!t

=
1

2�

Z 1

0

dt sin!t

Z 1

�1
d!0 �(!0) cos!0t

=
1

4�

Z 1

�1
d!0�(!0)

Z 1

0

dt

�
sin(! � !0)t + sin(! + !0)t

�

=
1

4�

�
}

Z 1

�1
d!0

�(!0)
! � !0

+ }

Z 1

�1
d!0

�(!0)
! + !0

�
(14.20)

where again the last principal-value integral involving ! + !0 can be neglected because

of the narrow spread of the distribution �. We write these integrals as principal-value

integrals because during the derivation, one integrand vanishes when !0�! = 0 and the

other vanishes when ! + !0 = 0. Combining the result,

~G(!) =
�i
4�

�
}

Z 1

�1
d!0

�(!0)
!0 � !

+ i��(!)

�

=
�i

4��!

�
f(u) + ig(u)

�
=

�i
4��!

R(u) : (14.21)

In other words, the Fourier transform of the SRF is equal to the BTF multiplied by

�i=(4��!). This also provides us with a way to compute the BTF. The procedure is:

compute the SRF G(t), �nd its Fourier transform ~G(!), and then infer the BTF R(u).

As an example, take the Lorentz distribution

�(!) =
�!

�

1

(! � �!)2 + (�!)2
: (14.22)

The SRF is

G(t) = H(t)Re
Z 1

�1
d!

�!

�

ei!t

(! � �!)2 + (�!)2

= H(t)Re ei(�!+i�!)t = H(t)e��!t cos �!t : (14.23)
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Next the Fourier transform,

~G(!) =
1

2�

Z 1

0

dt cos �!t e(��!+i!)t

=
1

4�

Z 1

0

dt
�
ei(�!+i�!+!)t + ei(��!+i�!+!)t

�
=

1

4�

�
1

�i(�! + ! + i�!)
+

1

i(�! � ! � i�!)

�

=
�i

4��!

1

u� i
=

�i
4��!

u+ i

u2 + 1
; (14.24)

where again the smaller term involving !r + ! has been removed. Thus the BTF is

R(u) = f(u) + ig(u) =
u+ i

u2 + 1
; (14.25)

which is equal to the Fourier transform of the SRFG(t) multiplied by �i=(4��!). These
results are depicted in Fig. 14.2. As expected the shock excitation is the decay of the

center displacement hxi or the center velocity displacement h _xi. The decay comes from

the distribution �(!) so that each particle oscillates with a slightly di�erent frequency.

The particles will spread out and therefore the decay of the center displacement or the

center velocity displacement. This is usually known as decoherence or �lamentation.

For the Lorentz distribution, the decay turns out to be exponential. However, it is

important to point out that the center h _xi decays because initially we have a nonzero

x0 but _x0 = 0. In case _x0 6= 0, the Lorentz distribution does not gives a decay of the

center displacement, (Exercise 14.1).

Table 14.1 lists the BTF and SRF for some commonly used frequency distributions

(Exercise 14.2): the Lorentz distribution, the rectangular distribution, the parabolic

distribution, the elliptical distribution, the bi-Lorentz distribution, and the Gaussian

distribution.

Because the BTF is the Fourier transform of SRF, G(t) is also the inverse Fourier

transform of R(u):

G(t) = Re �i
4��!

Z 1

�1
d! R

�
�! � !

�!

�
e�i!t : (14.26)

The Re should not be there. It is there because we have consistently neglected the

frequencies around ��!.
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Figure 14.2: For Lorentz frequency distribution, plots showing beam transfer func-

tion R(u) = f(u) + ig(u) (top) and shock response function G(t) (bottom).
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14.3 Landau Damping

After understanding the BTF and the SRF, let us come back to the transient response

of a harmonic excitation; i.e., Eq. (14.4). The term proportional to sin
t is driven in

phase by the harmonic force, and the particle should be absorbing energy. Let us rewrite

Eq. (14.3) in the approximation that the frequency distribution �(!) is narrow around

�!:

hx(t)i = A sin �!t

�!

Z 1

�1
d! �(!)

sin 1
2
(! � 
)t

! � 

: (14.27)

Consider a component corresponding to the frequency !, its envelope is

Amplitude(!) =
A

�!

sin 1
2
(! � 
)t

! � 

: (14.28)

This means that all particles having frequency ! are excited at t = 0, increase to a

maximum of A=[�!(!�
)] at t � �=(!�
), and die down to zero again at t = 2�=(!�
).
Thus, energy is gained but is given back to the system. For ! closer to 
, the response

amplitude rises to a larger amplitude and the energy is given back to the system at

a later time. For those particles that have exactly frequency 
, the amplitude grows

linearly with time and the energy keeps on growing. This is called Landau damping. An

illustration is shown in Fig. 14.3, where the solid curve shows a particle having exactly

the same frequency as 
 and growing linearly, while the dashed curve shows a particle

with frequency 95% of 
 decaying after about 10 oscillations. In other words, particles

with ! far away from 
 get excited, but the energy is returned to those particles having !

close to 
, which are still absorbing energy. As time increases, particles with frequencies

closer to 
 give up their energies to particles with frequencies much closer to 
. Thus,

as time progresses, less and less particles are still absorbing energy. As t ! 1, only

particles with frequency exactly equal to 
 will be absorbing energy, and there are only

very few particles doing this. So particles with frequencies very close to 
 will have

their amplitudes keep on increasing. In practice, when these growing amplitudes hit the

vacuum chamber, the process will stop. This sets the time limit for Landau damping

to stop. The damping process starts when the amplitude of the �rst particle is damped

and this time is t � 2�=�!.

Let us study the energy in the system. The energy is proportional to the square of

the amplitude. Therefore the energy of all the particles is

E =
NA2

�!2

Z 1

�1
d! �(!)

sin2(! � 
)t=2

(! � 
)2
; (14.29)
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Figure 14.3: Solid: the response of a particle having exactly the same frequency 


as the driving force grows linearly in time. Dashes: the response of a particle having

frequency 95% of 
 gives up its energy after about 10 oscillations.

where N is the total number of beam particles in the system. We see that as time

progresses the amplitude square,

Amplitude(!)2 =
sin2(! � 
)t=2

(! � 
)2
; (14.30)

becomes sharper and sharper while its width shrinks. This veri�es that energy is being

transfered by the particles having frequencies far away from 
 to particles having fre-

quencies closer to 
. Since the square of the amplitude always has an area of �t=2, we

have

lim
t!1

Amplitude(!)2 = lim
t!1

sin2(! � 
)t=2

(! � 
)2
=

�t

2
Æ(! � 
) : (14.31)

Thus, at t!1, the steady-state energy of the system is

E =
�

2

NA2

�!2
�(
)t ; (14.32)

which increases linearly with time, and all this energy goes into those few particles

having exactly the same frequency as 
. However, we do see in the asymptotic solution

of Eq. (14.8) that hx(t)i does not go to in�nity. This is not a contradiction, because
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even when a few particles have very large and still growing amplitudes, the centroid will

not be a�ected.

In our study so far, the amplitude A of the driving force is independent of the system

of particles. For an instability in a particle beam, the situation is slightly di�erent.

The driving force comes from the wake �elds of the beam particles interacting with the

discontinuities of the vacuum chamber, and usually has an amplitude proportional to the

center displacement of the beam. When there is a kick to the beam that creates a center

displacement hx(0)i or a center displacement velocity h _x(0)i, a force with amplitude

A / hx(0)i or h _x(0)i is generated and drives the whole system of particles with the

coherent frequency 
. Each frequency component of the beam will receive the amount

of response according to Eq. (14.28). Now two things happen. First, the particles give

up their excited energy gradually to those particles having frequencies extremely close

to 
, the frequency of the driving force, and the center of displacement approaches the

BTF R(u). Second, the center of displacement of the beam starts to decay according

to the SRF G(t). As hx(t)i decreases, the driving force decreases also. Finally, the

disturbance goes away. This is how Landau damping takes place in a beam. In fact, this

process starts whenever the disturbance is of in�nitesimal magnitude. This implies that

any disturbance will be damped as soon as it occurs. We say that there will be enough

Landau damping to keep the beam stable. Notice that no frictional force has ever been

introduced in the discussion. Thus, there is still conservation of energy in the presence

of Landau damping, which merely redistributes energy from waves of one frequency to

another.

In case the frequency spread �! is very very narrow, it will take t � �=�! for the

�rst wave to surrender its energy to another that has frequency closer to 
. This time

will be very long. Before this time arrives, all frequency components continue to receive

energy and hx(t)i increases and so will be the driving force. This is the picture of how an

instability develops when the spread of frequency is not large enough to invoke Landau

damping. However, the conservation of energy still holds. The energy that feeds the

instability may be extracted from the longitudinal kinetic energy of the beam resulting

in a slower speed, or from the rf system that replenish the beam energy.



14.4 Transverse Bunched Beam Instabilities 14-13

14.4 Transverse Bunched Beam Instabilities

Consider a bunch with in�nitesimal longitudinal length but with �nite transverse extent.

We call this a slice bunch. We want to study its transverse motion. The frequency of

interest here is the is the betatron frequency !� which has the incoherent tune shift

included. The equation of motion of a particle with transverse displacement y is

d2y

ds2
+
!2�
v2
y =

hF (�y)i
m�2c2

; (14.33)

where v = �c is the particle longitudinal velocity and �y is the average displacement

of the bunch (sometimes we use the notation hyi). This is the same as Eq. (4.4) in

Chapter 4, but with the average wake force linear in y absorbed into !2�. The force on

the right side of Eq. (14.33) is related to the transverse wake function,

hF (�y)i = �e
2N

C

1X
k=1

�y(s� kC)W1(kC) (14.34)

where the summation is over previous turns. The negative sign shows that the force

is opposing the displacement. Because this is a slice bunch, the wake force can only

come from the passage of the same bunch in previous turns. Let us denote a collective

excitation of the dipole moment D of the bunch center �y(s) at the collective frequency


 by the ansatz

�y(s) = De�i
s=(�c) ; (14.35)

where 
 ! 
 + i� is assumed. Expressing in terms of the transverse impedance Z?
1 ,

Eq. (14.33) becomes

d2y

ds2
+
!2�
v2
y =

ie2ND

mcC2

1X
p=�1

Z?
1 (
 + p!0)e

�i
s=(�c) : (14.36)

If we average the equation over all the particles in the bunch, we get the equation of

motion of the center of the bunch, �y, and therefore the coherent betatron tune shift

(�!�)coh = � ie
2N�2cZ?
2!�mC2

; (14.37)

where we have introduced a short-hand form for the impedance

Z? =
1X

p=�1
Z?
1 (
 + p!0) : (14.38)
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The imaginary part of the impedance contributes a real coherent tune shift. However,

when ReZ? < 0, the coherent tune shift has a positive imaginary part and the bunch

will be unstable. If the driving impedance is narrow and covers less than one revolution

harmonic centering roughly at q!0, only two terms, p = �q, survive and Eq. (14.38)

becomes

ReZ? � Re Z?
1

h
(q + [��])!0

i
�Re Z?

1

h
(q � [��])!0

i
; (14.39)

where [��] denotes the residual or decimal part of the betatron tune. The bunch will be

stable/unstable if the impedance peaks above/below q!0 giving an example of Robinson

Instability in the transverse plane. The above summarizes what we have learned before

without Landau damping.

Now let us introduce a distribution �(!�) for the betatron frequency among the

beam particles. This distribution is centered at �!� with a spread �!. The solution of

Eq. (14.36) becomes

�y(s) =
ie2ND�2cZ?
2�!�mC2

e�i
s=(�c)
Z 1

�1
d!�

�(!�)

!� � 
� i�

=
ie2ND�2cZ?
2�!��!mC2

e�i
s=(�c)R(u) ; (14.40)

where the relation has been made to the BTF R(u) with u = (�!��
)=�!. If the ansatz

of Eq. (14.35) is employed for �y(s), we obtain

ie2N�2cZ?
2�!��!mC2

=
1

R(u)
; (14.41)

or

�(�!�)coh
�!

=
1

R(u)
: (14.42)

The is an equation of the coherent frequency 
. Given the impedance Z?, the left side is
a constant and 
 can be solved. More practically, we start with a �xed Im
, and solve

for the impedance Z while varying Re
. The result plotted in the complex impedance

plane will be a contour for a �xed growth rate. In particular, we are interested in the

contour for the threshold when Im
 = 0+. This will be exactly the same as the loci of

Re u in the complex 1=R(u) plane with Imu = 0. Such threshold contours are plotted in

Fig. 14.4 for various distributions. Remember that instability is generated by 
! 
+i�

with � real and positive. This translates to u! u� i�. For the Lorentz distribution,

1

R(u)
= u� i ; (14.43)
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Figure 14.4: Threshold curves in the 1=R(u) plane, where in every case the stability
region is to the top of the curve and the instability region to the bottom. (1) Lorentz

distribution, (2) rectangular distribution (a circle touching the V -axis), (3) parabolic

distribution, (4) elliptical distribution (part of the dashed circle centered at origin),

(5) bi-Lorentz distribution, (6) Gaussian distribution.

and it will be unstable if

1

R(Re u� i�)
= Re u� i(1 + �) : (14.44)

Therefore the unstable region is below ImR(u)�1 = �i, while the stable region is above

ImR(u)�1 = �1. Since the various distributions have been introduced with all di�erent

de�nitions of frequency spread �!, Fig. 14.4 is not a good plot for the comparison of

various distributions. Instead, we would like to reference everything with respect to the

HWHM frequency spread �!HWHM. Thus, we de�ne a new variable x to replace u:

u = xS with S =
�!HWHM
�!

: (14.45)
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Equation (14.42) is rewritten as

�(�!�)coh
�!HWHM

=
1

R̂(x)
: (14.46)

where

R̂(x) = f̂(x) + iĝ(x) = [f(u) + ig(u)]S : (14.47)

It is customary to call the left side of Eq. (14.46) �i(U + iV ), following the counterpart

in longitudinal microwave threshold, or

U + iV =
i

R̂(x)
=

if̂(x) + ĝ(x)

f̂ 2(x) + ĝ2(x)
: (14.48)

so that U / �ReZ? and V / �ImZ?. The threshold curves for various frequency

distributions are plotted in Fig. 14.5. Thus, whatever values of (U; V ) lie to the left of

the locus will be stable and whatever is on the right will be unstable. Without Landau

damping, any U > 0, which implies betatron frequency shift with a positive imaginary

part, will be unstable. Now, with Landau damping, the threshold has shifted to, for

example, U = 1 for the Lorentz distribution. There is one point on the stability curve

that is simple to obtain. It is the point at x = 0. There f̂(x) = 0, so that V = 0

and U = 1=ĝ(0). This point is important because it gives a rough idea of the threshold

of instability. Similar to the Keil-Schnell stability circle for longitudinal microwave

stability, we try to enclose the stability region in the U -V plane by a circle of radius 1p
3
,

which is shown in Fig. 14.5 as a dashed circle. This threshold circle coincides with the

semi-circle of the elliptical distribution. Thus, the stability limit can be written as

��(�!�)coh
�� . 1p

3
(�!�)HWHMF ; (14.49)

where F is a form factor depending on the distribution and is equal to unity for the

elliptical distribution. Form factors for various distributions are tabulated in Table 14.2

(Exercise 14.3). Figure 14.5 shows how far a frequency distribution has its instability

threshold deviated from the Keil-Schnell type circle of Eq. (14.49). We see that the

deviation of F from unity or the threshold curve from the Keil-Schnell circle increases

as the distribution goes from elliptical, parabolic, rectangular, Gaussian, bi-Lorentz, to

Lorentz.

Thus, a betatron tune spread can provide Landau damping for instabilities driven by

the discontinuities of the vacuum chamber, provided that the driving impedance is not
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Figure 14.5: Threshold curves in the U -V plane plotted with reference to the

HWHM frequency spread. In every case the stability region is to the left of the

curve and the instability region to the right. (1) Lorentz distribution, (2) rectangular

distribution (a circle touching the V -axis), (3) parabolic distribution, (4) elliptical

distribution (part of the dashed circle centered at origin), (5) bi-Lorentz distribution,

(6) Gaussian distribution. The Keil-Schnell type stability circle is depicted in dashes

by (7).

too large. The transverse mode-mixing or mode-coupling instabilities that we studied in

Chapter 13 have not had Landau damping included. However, mode-coupling instability

involves the coherent shifting of a betatron spectral line by as much as the synchrotron

frequency. In order for Landau damping to work, a betatron tune spread of the order of

the synchrotron frequency will be necessary. This amount of tune spread is quite simple

for proton machines where the synchrotron tune is of the order �s � 0:001. This provides

for another explanation why transverse mode-mixing instabilities are usually not seen in

proton machines. On the other hand, the synchrotron tunes for electron machines are

usually �s � 0:01. A betatron tune spread of this size is considered too large. For this

reason, transverse mode-mixing instabilities in electron machines are usually alleviated

by reactive dampers instead.
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Table 14.2: U -intercept and form factor F de�ned in Eq. (14.49) for various distri-

butions.

Distribution g(0)�1 S=
(�!�)HWHM

�!

U -intercept

ĝ(0)�1=g(0)�1S�1
Form factor

F =
p
3ĝ(0)�1

Lorentz 1 1 1
p
3

rectangular
2

�
1

2

�

2
p
3

�

parabolic
4

3�

1p
2

4
p
2

3�

4

�

r
2

3

elliptical
1

2

p
3

2

1p
3

1

bi-Lorentz
1

2

qp
2� 1

1

2
pp

2� 1

1

2

s
3p
2� 1

Gaussian

r
2

�

p
2 ln 2

1p
� ln 2

r
3

� ln 2

14.5 Longitudinal Bunched Beam Instabilities

In a bunch, Landau damping proceeds through the spread in synchrotron frequency.

Consider a short bunch consisting of N particles. The arrival time � ahead of the

synchronous particle is governed by the equation of motion

d2�

ds2
+
!2s
v2

� =
e2N�

v�2E0C

1X
k=�1

W 0
0 [kT0 + ��(s� kC)� ��(s)]

=
e2N�

v�2E0C

1X
k=�1

[��(s� kC)� ��(s)]W 00
0 (kT0) ;

(14.50)

where v = �c is the particle velocity, and a Taylor's expansion has been made because

the amplitude of synchrotron oscillation is much smaller than the circumference of the

ring. Comparing with Eq. (9.42), we have ignored the wake �eld within the bunch

because the bunch is very short, and only included the e�ects from the bunch passage
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through a �xed location of the accelerator ring in previous turns. Introduce the ansatz

��(s) = Be�i
s=v ; (14.51)

with 
 being the collective angular frequency to be determined. We next go to the

frequency domain by introducing the longitudinal impedance Z
k
0 . Equation (14.50) can

be written as
d2�

ds2
+
!2s
v2
� = � ie

2N�B!0Zk
�2E0C2

e�i
s=v ; (14.52)

where we have used and the short-hand notation

Zk =
1X

p=�1

��
p+




!0

�
Z
k
0(p!0 + 
)� pZ

k
0(p!0)

�
: (14.53)

Averaging Eq. (14.52) over all the particles in the bunch, we obtain the equation of

motion for the center of the bunch, and therefore the coherent synchrotron frequency

shift

(�!s)coh = 
� !s =
ie2N!0c

2�Zk
2!sE0C2

: (14.54)

If the impedance is a narrow resonance of centered at !r near q!, only two terms

contributes to ReZk:

ReZk � !r

!0

�Re Zk
0 (
 + p!0)�Re Zk

0(p!0 � 
)
�
; (14.55)

where the coherent frequency 
 is close to the synchrotron frequency !s. Above transi-

tion (� > 0), this leads to stability/instability if the resonance peak leans towards the

lower/upper synchrotron sideband, in agreement with Robinson stability criterion. So

far no Landau damping has been included.

Suppose that the particles in the bunch has a distribution �(!s) in synchrotron

frequency, centering at �!s with spread �!s. We solve for �(s) in Eq. (14.52). Then

integrate with the distribution to get

�� (s) = � ie
2N�B!0c

2Zk
2�!sE0C2

e�i
s=v
Z

d!s
�(!s)

!s � 
� i�
: (14.56)

Substituting the ansatz of Eq. (14.51), self-consistency leads to the relation

� ie2N!0v
2�Zk

2�!s�2E0C2�!s

=
1

R(u)
; (14.57)
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with u = (�!s � 
)=�!s. Thus, from Eq. (14.54), we can again write

�(�!s)coh
�!s

=
1

R(u)
: (14.58)

Therefore, we can de�ne

U + iV = �i (�!s)coh
�!sHWHM

=
i

R̂(x)
=

ĝ(u) + if̂(x)

f̂ 2(x) + ĝ2(x)
with u = x

�!sHWHM

�!s
: (14.59)

The stability threshold curve in the U -V plane is exactly the same as in the transverse

bunch instability analyzed in the previous section. The Keil-Schnell like stability circle

is

j(�!s)cohj . 1p
3
(�!s)HWHMF ; (14.60)

where (�!s)HWHM is the half-width-at-half-maximumof the synchrotron frequency spread,

and the form factors F for various distribution are exactly the same as given in Ta-

ble 14.2.

The above example is a demonstration of Landau damping in the presence of Robin-

son stability or instability. Therefore, even if the rf resonant peak is shifted in the wrong

way so that the beam is Robinson unstable, there is still Landau damping from the spread

in synchrotron frequency that may be able to stabilize the beam. However, this will not

help much because the synchrotron frequency spread is usually not large enough unless

there is a higher-harmonic rf system.

14.6 Transverse Unbunched Beam Instabilities

Consider an unbunched beam containing N particles oscillating in the transverse plane.

The beam has a transverse dipole D(s; t) density (per unit longitudinal length) which

depends on the location s along the ring and also time t. This is in fact the perturbed

part of the beam: i.e., with the stationary distribution subtracted. Assume the ansatz

D(s; t) =
eN

C
hy(s; t)i = eN�

C
exp

�
i
n

R
s� i
t

�
: (14.61)

where � is the maximum transverse deviation, n is a revolution harmonic, R = C=(2�)

is the ring mean radius, and 
 is the coherent frequency to be determined. This is a
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snapshot view of the deviation of the perturbed beam and therefore must be a periodic

function of the ring circumference. The ansatz in Eq. (14.61) assumes that the revolution

harmonics are not related and each one can be studied independently.

A test particle at a �xed location s along the ring experiences a transverse force left

by the dipole wave. At time t, this force is

hF?(s; t)i = � e

C

Z 1

t

vdt0W1(vt
0 � vt)D(s; t0) =

iev�D(s; t)Z?
1 (
)

C
; (14.62)

where v = �c is the velocity of the beam particles. Since the impedance is at a �xed

location, observing the dipole density of Eq. (14.61), the impedance at s will see the time

variation only and sample only the frequency 
 of the dipole wave. The impedance will

have no knowledge about the harmonic variation of the wave around the ring. However,

as will be shown below, the solution of 
 does depend on the revolution harmonic.

For a particle inside the beam, the situation is di�erent because it moves with the

beam at velocity v. Consider the speci�c particle which passes the location S at time

t = 0. Its location at a later time changes according to s = S + vt. Its transverse

displacement y(s; t) is governed by the equation of motion,

d2y

dt2
+ !2�y =

hF (S + vt; t)i
m

=
ie2NcZ?

1 (
)�

E0T 2
0

einS=R�i(
�n!0)t ; (14.63)

where E0 = mc2 is the energy of the beam particle, m is its mass and T0 is revolution

period. Although the impedance is still sampling the frequency 
, the transverse motion

of the particle is driven by a force at the frequency 
�n!0, with !0 = v=R denoting the

revolution angular frequency of the particle around the ring. It is important to point

out that the time derivative in this equation is the total time derivative, because we are

studying the particle displacement while traveling with the particle longitudinally. That

explains why we have substituted s = S + vt in the exponent on the right hand side. In

order to have a clearer picture, let us travel with the particle longitudinally and at the

same time count the number of transverse oscillations the particle makes in a revolution

turn. The result is the incoherent tune of the particle ��, which equals (
 � n!0)=!0.

On the other hand, from a beam-position monitor (BPM) at a �xed location monitoring

the transverse motion of the particle, what it measures is the frequency 
 or the residual

betatron tune (the fractional part of the betatron tune) of the particle.

This force-driven di�erential equation (14.63) can be solved easily, giving the solu-
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tion �
!2� � (
� n!0)

2
�
y(s; t) =

ie2NcZ?
1 (
)�

E0T 2
0

einS=R�i(
�n!0)t : (14.64)

Self-consistency requires y(s; t) = �ei(ns=R�
t), which cancels the exponential on both

sides. For small perturbation, there are two solutions for the coherent frequency, 
 �
n!0 � !�. For a coasting beam, when we are talking about positive and negative revo-

lution harmonics, we will arrive at the same physical conclusion when we choose either

n!0+!� or n!0�!�. This is because (1) the beam spectra of the two choices are related

by symmetry and (2) Z?
1 (!) has de�nite symmetry about ! = 0. This reminds us of

the similar situation when we studied synchrotron sidebands in Chapter 7. However,

one must be aware that for a bunch beam, there will be synchrotron sidebands around

the betatron line and the beam spectrum will no longer possess this property. With the

convention in Fig. 10.1 or Eq. (10.17), we need to choose the positive sign, or there is

only upper betatron sidebands. This leads us to the coherence betatron tune shift of

the beam

(�!�)coh = 
� (n!0 + !�) � � ie2Nc

2!�E0T 2
0

Z?
1 (n!0 + !�) : (14.65)

The imaginary part of the transverse impedance provides a true betatron tune shift. The

real part, Re Z?
1 , however, will lead to damping/instability if the frequency sampled by

the impedance is positive/negative. Actually when n!0+!� = (n+ ��)!0 < 0, we write

n + �� = �(jnj � ��) so that the betatron line appears to be the lower sideband of the

positive harmonic jnj. Thus, we have the conclusion that the beam is stable when a

sharp resonance is driving at the upper sideband and unstable when it is driving at the

lower sideband. Here, one must be careful that not all upper sidebands of a negative

revolution harmonics will become lower sidebands in the language of positive frequency

and hence can be unstable. This is because the betatron tune �� = �I� + [��] has an

integer part �I� and a residual (or decimal) part [��]. The upper sideband of the harmonic

n can be unstabley only if (n + �I�) < 0.

To introduce Landau damping, let us allow a distribution �(!�) in betatron fre-

quency among the beam particles. The distribution is centered at �!� with a narrow

spread Æ!�. From Eq. (14.65) we obtain the dispersion relation

1 =
ie2NcZ?

1 (
)

2�!�E0T 2
0

Z
d!�

�(!�)

!� � (
� n!0)
: (14.66)

yThere is no such complexity with the synchrotron sidebands, because the synchrotron tune does

not have an integer part.
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This is a dispersion relation because it gives the relation between the wave number n=R

and frequency 
. Or

�(�!�)coh
�!�

=
1

R(u)
; (14.67)

where u = (�!� � 
� n!0)=�!�. This relation is exactly the same as Eq. (14.42). The

only di�erence is the dependence of the coherent betatron tune shift on impedance is

di�erent. Thus, we have also the Keil-Schnell like stability threshold

(�!�)coh .
1p
3
(�!�)HWHMF : (14.68)

Some comments are in order.

1. In the dispersion relation of Eq. (14.66), the solution gives, for small driving im-

pedance, 
 � (n + ��)!0. Depending on whether n + �I� is positive or negative,

this corresponds to two di�erent dipole waves, one with a higher velocity is called

the fast wave, while the one with a lower velocity is called the slow wave. As per

discussion above, only the slow wave will lead to beam instability.

2. We have introduced a spread of the betatron frequency in order to arrive at Landau

damping. In fact, the revolution frequency !0 in the denominator of the integrand

of Eq. (14.66) also has a spread and can therefore contribute to Landau damping.

Instead of the betatron frequency distribution �(!�), it will be more general to

introduce the particle momentum distribution �(Æ). We can develop the local

betatron frequency up to the terms linear in the fractional momentum spread Æ:

(n+ ��)!0 = (n+ ���)�!0 +
h
� � (n + ���)�

i
�!0Æ ; (14.69)

where � is the chromaticity and � the slip factor in the longitudinal phase space,

while ��� and �!0 represent the nominal betatron tune and revolution frequency. For

the dangerous slow wave, let us denote n̂ = �(n + �I�) where n̂ > 0. The above

leads to

�(n + ��)!0 =
h
� + (n̂� [���])�

i
�!0Æ : (14.70)

The integral in the dispersion relation becomesZ
d!�

�(!�)

!� � (
� n!0)
�!

Z
dÆ

�(Æ)h
� + (n̂� [���])�

i
�!0Æ � 
̂

; (14.71)
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with 
̂ = 
� (n+ ���)�!0. One immediate conclusion is that when the chromaticity

is negative and the ring is operating above transition (� > 0), it may happen for

some n̂ that �+(n̂� [���])� � 0. When this happens there will not be any Landau

damping at all. The same is true for a positive chromaticity below transition. The

dispersion relation can be rewritten as

� (�!�)coh�
� + (n̂� [���])�

�
�!0�Æ

=
1

R(u)
; (14.72)

where

u =
1

�Æ

"
�Æ � 
̂�

� + (n̂� [���])�
�
�!0

#
; (14.73)

�Æ is the spread in momentum spread, and �Æ (usually zero) is the momentum

spread where the distribution �(Æ) peaks at. The Keil-Schnell like stability thresh-

old becomes

(�!�)coh .
1p
3

���� + (n̂� [���])�
��� �!0(�Æ)HWHMF ; (14.74)

which, with the help of the coherent betatron tune shift in Eq. (14.65), can be

rewritten as ��Z?
1

�� . 4�!�E0p
3eI0c

���� + (n̂� [���])�
��� (�Æ)HWHMF : (14.75)

Zotter [8] was the �rst to derive this Keil-Schnell like transverse stability criterion

for a coasting beam. His numerical coeÆcient on the right side is 8 which is very

close to our value of 4�=
p
3. Of course, the spread in betatron tune can also come

from the betatron oscillation amplitude, and this spread should also be included

in Eq. (14.69) for a more complete description.

14.7 Longitudinal Unbunched Beam Instabilities

For the last three categories, the transverse bunched beam instabilities, the transverse

unbunched beam instabilities, and the longitudinal bunched beam instabilities, the treat-

ment had been very similar. In each case, we �rst derived the tune shifts. Landau

damping was next introduced by including the distribution of the tune. The dispersion

relation derived was related to the BTF R(u), from which the stable and unstable re-

gions in the impedance phase space could be identi�ed. The longitudinal instabilities

of an unbunched beam is very much di�erent, because there is no stabilizing oscillation
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like the betatron motion or synchrotron motion. Thus, there is no betatron frequency

or synchrotron frequency, from which a coherent frequency spread can be obtained to

provide Landau damping. As a result, the derivation of the stability criterion will be

very di�erent from the last three categories. Here, the collective beam instability is

the longitudinal microwave instability, and Landau damping is supplied by the spread

in revolution frequency of the beam particles. The dispersion relation, Eq. (6.13), has

been derived in Chapter 6 and the stability curves are shown in Fig. 6.4. Over there,

the dispersion relation was derived employing the Vlasov equation which deals with the

evolution of the particle distribution. We will show another derivation in this section

making use of only the equations of motion without resorting to the Vlasov equation.

Let us start from the linear distribution �(s; t) which has a stationary part �0 and

a perturbation ��̂. The stationary part is just a uniform distribution

�0 =
N

C
; (14.76)

where N is the total number of particles in the unbunched beam. For the perturbation,

we postulate the ansatz

��(s; t) = ��̂eins=R�i
t ; (14.77)

where ��̂ represents the maximum modulation of the longitudinal density and is as-

sumed to be small, and the harmonic n = 0 is excluded because of charge conservation.

A snapshot view at a speci�c time will show the n-fold modulation of the linear density.

For a test particle at the �xed location s, the average longitudinal force experienced

from the longitudinal wave is

hF (s; t)i = �e
2

C

Z
vdt0W 0

0(vt� vt0)��(s; t0) = �e
2vZ

k
0(
)

C
��(s; t) ; (14.78)

where the impedance only samples the collective frequency 
.

Next consider a particle moving with the beam. It passes the location S at time

t = 0 and is at location s = S+vt at later time t. The motion of a beam particle consists

of its phase drift and energy drift in the longitudinal phase space. The particle's o�-

momentum spread Æ(s; t) increases per unit time as a result of the wake force and is

governed by
dÆ(s; t)

dt
= �e

2c2

CE
Z
k
0 (
)��̂ e

ins=R�i
t : (14.79)
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while the rate of the phase drift is governed by

dz(s; t)

dt
= ��vÆ(s; t) ; (14.80)

where � is the slip parameter and we have actually employed a distance drift z(s; t)

rather than a phase. Here,
d

dt
=

@

@t
+
ds

dt

@

@s
(14.81)

is the total time derivative. Thus, in solving Eqs. (14.79) and (14.80), we must �rst

make the substitution s = S + vt. The momentum-o�set equation can be integrated

readily to give

Æ(s; t) =
e2c2

CE
Z
k
0(
)��̂

eins=R�i
t

i(
� n!0)
: (14.82)

Substituting the result into the phase-drift equation, we obtain by another integration

z(s; t) = �e
2�c2v

CE0

Z
k
0(
)��̂

einS=R�i
t

(
� n!0)2
: (14.83)

Notice that in the above solution we have kept only the contribution due to the wake

�eld.

If we can relate the particle longitudinal displacement z(s; t) to the longitudinal

density perturbation ��, the loop will be closed in Eq. (14.83) and a dispersion relation

will result. There is in fact such a relation from the equation of continuity. The particles

in the original unperturbed volume from s to s+�s at time t are displaced into the new

perturbed volume between s+ z(s; t) and s+�s+ z(s+�s; t) at time t in the presence

of the wake force. The number of particles in each of the volumes is

�0ds =
�
�0 +��(s; t)

�n�
s+�s + z(s +�s; t)

�� �s + z(s; t)
�o

; (14.84)

from which we obtain, for small �s,

��(s; t) = ��0@z
@s

=
ineI0�!

2
0Z

k
0 (
)

2��2E0

��̂
eins=R�
t

(
� n!0)2
; (14.85)

where we have introduced the average beam current I0 = eN!0=(2�) with !0 = v=R

being the angular revolution frequency. Self-consistency allow us to cancel ��(s; t) on

both sides. The growth rate of the longitudinal wave !G is given by the imaginary part

of 
, which can be readily obtained from Eq. (14.85),

!2
G
= � ieI0Z

k
0 (
)n�

2��2E0
!20 ; (14.86)
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which is very similar to the de�nition of the synchrotron frequency, if we identify the

rf voltage as I0Z
k
0 and the rf harmonic as n. For this reason, the growth rate can be

visualized as the synchrotron angular frequency inside a bucket created by the volt-

age the beam experiences from the impedance. We can draw the immediate condition

that the longitudinal wave perturbation is stable above/below transition (7) only if the

impedance is purely inductive/capacitive.

Landau damping can now be introduced by allowing a spread in the revolution fre-

quency inside the beam. Let �(!0) be the distribution in revolution frequency centering

at �!0 with a spread �!0. Multiplying both sides of Eq. (14.85) by �(!0) and integrating

over d!0, we obtain the dispersion relation

1 =
ieI0Z

k
0(
)n�

2��2E0

Z
d!0

�(!0)

(
� n!0 + i�)2
: (14.87)

The dispersion relation can be rewritten as

1 =

�
!2
G

n2(�!0)2

� �
n(�!0)

2

Z
d!0

�0(!0)
n!0 � 
� i�

�
=

�
!2
G

n2(�!0)2

�
Rk(u) ; (14.88)

where an integration by part has been performed. The function Rk on the right is de�ned
as

Rk(u) = fk(u) + igk(u) = (�!0)
2

�
}

Z
d!0

�0(!0)
!0 � 
=n

+ i��0
�



n

��
; (14.89)

and

u =
�!0 � 
=n

�!0
: (14.90)

Usually one writes

V � iU =
!2
G

n2(�!0)2
=

fk(u)� igk(u)
f 2k (u) + g2k(u)

; (14.91)

so that U / �Re Zk
0 and V / �ImZ

k
0 This will give the threshold and growth curves

for longitudinal microwave instability in Chapter 6.
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14.8 Beam Transfer Function and Impedance Mea-

surements

Consider a coasting beam. In addition to the transverse wake, if we give an extra

sinusoidal kick with harmonic n and frequency 
, the equation of motion is

�y + !2�y = �2(�!�)coh!�hyi+ Aeins=R�i
t ; (14.92)

where the coherent betatron tune shift (�!�)coh is given by Eq. (14.37). For the partic-

ular solution, try the ansatz

hy(s; t)i = Beins=R�i
t : (14.93)

As before, s = S + vt, and we obtain

y(s; t) =

��2(�!�)coh!�B + A
�
eins=R�i
t

!2� � (n!0 � 
)2
: (14.94)

Consistency requires

B � �2(�!�)coh!�B + A

2!�

Z
d!

�(!)

! � (
� n!0)
=
�2(�!�)coh!�B + A

2!��!
R(u) ; (14.95)

and after rearranging,
A

2!��!B
=

1

R(u)
+

(�!�)coh
�!

: (14.96)

In a measurement, the beam is kicked at a certain harmonic but with various fre-

quencies ! and the response is measured in its amplitude and phase. If the beam is of

very weak intensity, the coherent tune shift term can be neglected and one can therefore

obtain the BTF R(u). Next, the beam intensity is increased to such a large value that

the beam is still stable. The measurement of the beam response will give a stability

curve shifted by (�!�)coh=�!. From the shift one can infer the impedance Z?
1 of the

vacuum chamber as illustrated in the left plot of Fig. 14.6

For the longitudinal BTF, we add a longitudinal kicking voltage per unit length,

A with revolution harmonic n and frequency 
. Then the longitudinal force seen by a

particle changes from Eq. (14.78) to

hF (s; t)i = �e
2

C

Z
vdt0W 0

0(vt� vt0)��(s; t)�(!0) + Aeins=R�i
t : (14.97)
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Figure 14.6: Left: Transverse beam response function of a coasting beam. Dash

curve is for a very low-intensity beam, thus showing the threshold curve. But it

is shifted to the solid curve at high intensity. The transverse impedance can be

inferred from the shift indicated by the arrow. Right: Longitudinal beam response

function of a coasting beam. The dashed curve is for low intensity and is shifted

to the solid curve at high intensity. The arrow is proportional to the longitudinal

impedance.

Assume the ansatz

��(s; t) = Beins=R�i
t : (14.98)

Then the solution of the momentum spread and longitudinal drift become

Æ(s; t) =

�e2c2
CE

Z
k
0(
)B + A

�i(
 � n!0)
eins=R�i
t : (14.99)

z(s; t) = �v

�e2c2
CE

Z
k
0 (
)B + A

(
� n!0)2
eins=R�i
t : (14.100)

Doing the same as Eqs. (14.85) and (14.87), we obtain

B =

�
!2
G

n2(�!)2
B +

i2��vN

n2(�!)2C2
A

�
Rk(u) : (14.101)
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Or,
i2��vN

n2(�!)2C2

A

B
=

1

Rk(u)
� !2

G

n2(�!)2
: (14.102)

Exactly in the same way as the transverse counterpart, for a very low-intensity beam,

the response of the kick gives the threshold curve. For an intense beam, this threshold

curve will be shifted. The amount and direction of shift will be proportional to the

magnitude and phase of the longitudinal impedance. This is shown in the right plot of

Fig. 14.6.

BTF and impedance measurements have been attempted by Spentzouris [9] at the

Fermilab Accumulator Antiproton Storage Ring. The Accumulator stores antiprotons at

E0 = 8:696 GeV with an rms spread of 1{4� 10�4. The ring has a revolution frequency

f0 = 628:955 kHz and a slip parameter � = 0:023. There are 3 rf cavities in the ring,

ARF2 and ARF3 are at rf harmonic h = 2. The third one ARF1 at rf harmonic 84 has

been used as a kicker. The impedance of cavity ARF3 was the target for measurement.

The hardware setup for the BTF measurement is shown in Fig. 14.7. The network

Amp

Beam

BW: 20 kHz - 6 GHz

Out In

Amp

Broadband 5 kHz - 6 GHz pickup

+20 db Sonoma Amp

HP 8753C
Netweork Analyzer

ARF2

BW: 250 kHz - 150 MHz

+55 db ENI Amp

Reisistive Wall
Pickup

h=2 suppressed bucket rf cavity
Wideband (Q<5)

Figure 14.7: Block diagram of Accumulator transfer function measurement setup.

analyzer excited the beam longitudinally by applying a swept frequency of sinusoidal

wave to the broadband cavity ARF2 (quality factor Q < 5). The resulting frequency
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Figure 14.8: (color) Top left and bottom left: Amplitude and phase response of

S21 measurement at h = 2 in the Accumulator with cavity ARF3 shorted mechani-

cally. Frequency sweeps were injected at cavity ARF2. Beam parameters: intensity

68 mA and energy 8.696 GeV with rms spread 2.6 MeV. Network analyzer setup:

401 data points, sweep time 41 s, and resolution bandwidth 10 Hz. Top right: Un-

calibrated stability threshold curve from data displayed at the left. Bottom right:

Same stability threshold curve (blue dashes) as in above, but �tted to the theoreti-

cal threshold curve (solid) after scaling and rotational corrections. Dotted red curve

shows another set of measurement.

response of the beam picked up by a resistive wall monitor was directed to the return

port of the analyzer.

Cavity ARF3 was �rst shorted mechanically and the signals of the beam response

of the frequency sweep was monitored. A typical BTF measurement is shown in two

left plots of Fig. 14.8, where the sweep was centered at 2f0 = 1:25791 MHz with a span

of 100 Hz which was wide enough to encompass the frequency content of the beam.
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Figure 14.9: (color) Left: BTF measurements of the Accumulator with the ARF3

cavity shorted mechanically (blue-dashes) and with the mechanical short removed

(solid red). Right: Stability threshold curves in the impedance complex plane with

the ARF3 cavity shorted mechanically (blue-dashes) and with the mechanical shorts

removed (solid red). The shift, indicated by the arrow, is the impedance per har-

monic of the ARF3 cavity. The origin of the threshold curve with shorts out is shifted

by approximately (x; y) = (900;�390) 
, which gives an ARF3 cavity impedance of

Z
k
0=n = 490 � 110 
 with a phase angle of �23Æ.

Notice that the response monitored shows more uncertainty at both ends of the sweep

because of the decreasing particle population at those outlying frequencies. The setup of

the network analyzer were 401 data points, sweep time 41 s, and resolution bandwidth

10 Hz. Inverting the BTF gives the stability threshold curve of the Accumulator as

depicted in top right plot of Fig. 14.8. A series of corrections were made to convert this

uncalibrated threshold curve to the one in blue dashes in the bottom right plot. This

includes scaling, rotation, and �tting to the central part of the theoretical threshold

curve which is shown as solid in the same plot. The red dotted curve is the result of

another set of sweep measurement.

The mechanical shorts in cavity ARF3 were removed and the BTF measurement

repeated. The frequency response or the BTF is shown in solid red in the left plot of

Fig 14.9. The original BTF with the ARF3 shorted (top left plot of Fig 14.8) is also

shown in blue dashes for comparison. The BTF's are inverted and are displaced in the

impedance complex plane in the right plot of Fig 14.9. The calibrated threshold curve

is shifted from the one with the mechanical shorts (blue dashes) to the one without the

mechanical shorts (red solid). The shift represented by the arrow is the impedance per

unit harmonic of the ARF3 cavity: Z
k
0=n = 490� 110 
 with a phase angle of �23Æ.
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14.9 Exercises

14.1. A shock excitation is given to a bunch with a Lorentz frequency distribution �(!)

so that at t = 0 each particle has _x(t) = _x0. Compute the response of the

displacement of the center of the bunch hx(t)i and show that it does not decay to

zero. Show that this is because �(0) 6= 0.

14.2. Derive the shock response function G(t) and beam transfer function R(u) for the

various frequency distributions as listed in Table 14.1. Fill in those items that

have been left blank.

14.3. Derive the U -intercept and the form factor F de�ned in Eq. (14.49) for various

distributions as listed in Table 14.2.
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Chapter 15

BEAM BREAKUP

In a high-energy electron linac�, the relative longitudinal positions of the beam

particles inside a bunch do not change. Thus, the tail particles are always a�ected by

the head particles. We have shown that the longitudinal wake will cause the tail particles

to lose energy. This loss, accumulated throughout the whole length of the linac, can be

appreciable, leading to an undesirable spread in energy within the bunch. If the linac is

the upstream part of a linear collider, this energy spread will have chromatic e�ect on

the �nal focusing and eventually enlarging the spot size of the beam at the interaction

point. We have also discussed how this energy spread can be corrected by placing the

center of the bunch at an rf phase angle where the rf voltage gradient is equal and

opposite to the energy gradient along the bunch.

Here, we would like to address the e�ect of the transverse wake potential. A small

o�set of the head particles will translate into a transverse force on the particles following.

The deections of the tail particles will accumulate along the linac. When the particles

hit the vacuum chamber, they will be lost. Even if the aperture is large enough, the

transverse emittance will be increased to an undesirable size. This phenomenon is called

beam breakup. This is not a collective instability, however.

Recently, there is a lot of interest in isochronous or quasi-isochronous rings, where

the spread in the slippage factor for all the particles in the bunch is very tiny, for example,

�� . 10�6. In some of these rings, like the muon colliders where the beam is stored

�All proton linacs in existence are not ultra-relativistic. The highest energy is less than 1 GeV.

Therefore synchrotron oscillations occur.

15-1
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to about 1000 turns, the head and tail particles hardly exchange longitudinal position,

and we are having a situation very similar to linacs. Problems of beam breakup will

also show up in these rings. The beam breakup discussed in this chapter does not allow

particles to exchange longitudinal positions or change their longitudinal positions. We

therefore assume that their velocities are equal to the velocity of light.

15.1 Two-Particle Model

v v

eN=2 eN=2ẑ

Figure 15.1: The two-particle model, where the bunch is represented by two macro-

particles each carrying half the charge of the bunch separated by a distance ẑ.

Take the simple two-particle model in Fig. 15.1, by which the bunch is represented

by two macro-particles of charge 1
2
eN separated by a distance ẑ. The transverse dis-

placements of the head, y1, and the tail, y2, satisfy

d2y1
ds2

+ k2�1y1 = 0 ; (15.1)

d2y2
ds2

+ k2�2y2 = �
e2NW1(ẑ)

2LE0

y1 ; (15.2)

where E0 is the energy of the beam particles and s is the longitudinal distance measured

along the designed particle path, W1 is the transverse wake function for one linac cavity

of length L, and k� is the betatron wave number. For an isochronous ring, L will be

taken as the ring circumference C = 2�R and

k� =
��
R

=
1

h�i ; (15.3)

where �� is the betatron tune and h�i is the average betatron function. We can also

de�ne a betatron tune �� = Lk�=(2�) for a linac as the number of betatron oscillations

a particle makes along the whole length L of the linac. This model has been giving

a reasonably accurate description to the beam breakup mechanism for short electron

bunches when ẑ is taken as the rms bunch length. The head makes simple harmonic

motion y1(s) = y10 cos k�s according to Eq. (15.1), where y10 is its initial displacement.



15.1 Two-Particle Model 15-3

If the tail is initially at y2 = y10 with y02 = dy2=ds = 0, its displacement can be readily

solved and the result is

y2(s) = y10 cos �k�s cos
�k�s

2
� y10 sin �k�s

�
�k�
2

+
e2NW1(ẑ)

4LE0
�k�

�"
sin�k�s=2

�k�=2

#
; (15.4)

where �k� = 1
2
(k�1 + k�2) is the mean of the two betatron wave numbers of the head

and tail. When the tune di�erence �k� = k�2 � k�1 approaches zero, the tail is driven

resonantly by the head and its displacement grows linearly with s:

y2(s) = y1(s)� e2NW1(ẑ)

4E0Lk�

�
y10 sin k�1s

�
s : (15.5)

In the length `, the displacement of the tail will grow by � folds, where [2]

� = �e
2NW1(ẑ)`

4E0Lk�
= �e

2NW1(ẑ)h�i`
4E0L

; (15.6)

and W1(ẑ) is negative for small ẑ. In the above, we have written the growth in term of

the average betatron function h�i. This is because the transverse impedance initiates

a kick y0 of the beam and the size of the kicked displacement depends on the betatron

function at the location of the impedance. This can be easily visualized from the transfer

matrix.

For a broadband impedance, the transverse wake function at a distance z behind

the source particle is, for z > 0,

W1(z) = �!
2
rZ

?
1

Q�!
e��z=c sin

�!z

c
; (15.7)

where Z?
1 is the transverse impedance at the angular resonant frequency !r, which is

shifted to �! =
p
!2
r � �2 by the decay rate � = !r=(2Q) of the wake with Q being the

quality factor. Let us introduce the dimensionless variables

v =
!r�`
c

; t =
z

�`
; and � = vt cos�0 =

�!z

c
; (15.8)

where the angle �0 is de�ned as

cos�0 =

r
1� 1

4Q2
or sin�0 =

1

2Q
; (15.9)
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Figure 15.2: Transverse wake function for a broadband impedance with Q = 1 in

units of !rZ
?
1 as a function of � = �!z=c behind the source. With resonant angular

frequency !r = 50 GHz, the position for z = �` for the 4-cm bunch is marked, which

is certainly outside the linear region and the 2-particle model will not apply.

assuming that Q > 1
2
. Then, the transverse wake in Eq. (15.7) can be rewritten as, for

� > 0,

W1(�) = �2!rZ
?
1 tan�0 sin� e

�� tan�0 ; (15.10)

The wake function decreases linearly from zero when � = �!z=c � 1 and reaches a

minimum

W1jmin = �2!rZ
?
1 tan�0 cos�0 e

�(�2��0) tan�0 (15.11)

at

� =
�

2
� �0 or

�z

c
=
��
2
� �0

�
tan�0 : (15.12)

After that it oscillates with amplitude decaying at the rate of � = !r=(2Q), crossing

zero at steps of �� = �!z=c = �. This is illustrated in Fig. 15.2.

Obviously, the growth expression of Eq. (15.6) does not apply to all bunch lengths.

For example, if ẑ just happens to fall on the �rst zero of W1(ẑ), Eq. (15.6) says there is
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no growth at all. However, particles in between will be deected and they will certainly

a�ect the tail particle. Thus, the criterion for Eq. (15.6) to hold is the variation of the

wake function along the bunch must be smooth. In other words, we must be in the

linear region of the wake function, or

� =
�!z

c
� 1 �! �` � 1

2

�

2�
; (15.13)

i.e., the rms bunch length must be less than half the reduced wavelength � of the

resonant impedance. As an example, if the broadband impedance with Q � 1 has

resonant frequency 7.96 GHz (!r = 50 GHz), the two-particle model works only when

the rms bunch length �` � 3 mm. Therefore, the model cannot be applied to the usual

proton bunches. For the 50 GeV on 50 GeV muon collider, the muon bunches have an

rms length of 4 cm, and will not be able to �t into this model also.

15.2 Long Bunch

For a bunch with linear density �(z), the transverse motion y(z; s) at a distance z behind

the bunch center and at position s along the linac is given by

d2y(z; s)

ds2
+ k2�y(z; s) = �

e2N

LE0

Z z

�1

dz0�(z0)W1(z � z0)y(z0; s) : (15.14)

This equation can be solved �rst by letting y(z; s) be a free oscillation on the right-hand

side and solving for the displacement y(z; s) on the left-hand side. Then, iterations are

made until the solution becomes stable. Therefore, when � is large, the growth will be

proportional to powers of � and even exponential in �. Thus, h�iZ?
1 , !r, as well as Q

can be very sensitive to the growth.

Simulations have been performed for the 4-cm and 13-cm muon bunches in a quasi-

isochronous collider ring, with a betatron tune �� � 6:24, interacting with a broadband

impedance with Q = 1 and Z?
1 = 0:1 M
/m at the angular resonant frequency !r =

50 GHz. Initially, a bunch is populated with a vertical Gaussian spread of �y = 3 mm

and y0 = 0 for all particles. There is no o�set for the center of the bunch. Ten thousand

macro-particles are used to represent the bunch containing 4�1012 beam particles. The

half-triangular bin size is 15 ps (or 0.45 cm). In Fig. 15.3 we show the total growth of

the normalized beam size �y � hy2 + (h�iy0)2i1=2 relative to the initial beam size up to
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1000 turns for various values of h�i, respectively, for the 13-cm and 4-cm bunches. The

turn-by-turn decay of the muons has been taken into account. We see that the beam

size grows very much faster for larger betatron function. Also the growths for the 4-cm

bunch are much larger than those for the 13-cm bunch because the linear charge density

of the former is larger.

15.2.1 Balakin-Novokhatsky-Smirnov Damping

Kim, Wurtele, and Sessler [2] suggested to suppress the growth of the transverse beam

breakup by a small tune spread in the beam, coming either through chromaticity, am-

plitude dependency, or beam-beam interaction. This is because a beam particle will be

resonantly driven by only a small number of particles in front that have the same be-

tatron tune. This is a form of Balakin-Novokhatsky-Smirnov (BNS) damping suggested

in 1983 [3].

To implement this, we add a detuning term

���i = a[y2i + (h�iy0i)2] (15.15)

to the ith particle, as if it is contributed by an octupole or sextupole. In Fig. 15.4, we plot

the growths of the normalized beam size relative to the initial beam size with various rms

tune spreads ��� = ah�2
y + (h�i�y0)2i. Here, an average betatron function of h�i = 20 m

has been used. This is because BPMs, which contribute signi�cantly to the transverse

impedance, are usually installed at locations where the betatron function is large. We see

in the top plot that to damp the growth of the 13-cm bunch to less than 1%, we need an

rms tune spread of ��� = 0:0008 or a total tune spread of ��� = 3��� = 0:0024. On the

other hand, to damp the growth of the 4-cm bunch to less than 1%, we need (lower plot)

an rms tune spread of ��� = 0:006 or a total tune spread of ��� = 3��� = 0:018. We also

see a saturation of the emittance growth for the 4-cm bunch. However, if the transverse

impedance is larger, the average betatron function is larger, the resonant frequency is

larger, or the quality factor is smaller, this required tune spread may become too large

to be acceptable. This is because a large amplitude-dependent tune spread can lead to

reduction of the dynamical aperture of the collider ring.

For the lattice of the muon collider ring designed by Trbojevic and Ng [1], in order

to allow for a large enough momentum aperture, the amplitude-dependent tune shifts
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Figure 15.3: Beam-breakup growth for 1000 turns of a muon bunch interacting with a

broadband impedance of Q = 1, Z?
1 = 0:1 M
/m at the angular resonant frequency of

!r = 50 GHz. Top: rms 13 cm bunch has total growths of 32.50, 7.4, 2.0, 1.09, 1.006,

respectively for h�i = 30, 25, 20, 15, 10 m. Bottom: rms 4 cm bunch has total growths

of 29713, 3361, 287, 16.2, respectively for h�i = 25, 20, 15, 10 m.
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Figure 15.4: Total growth in 1000 turns in the presence of an amplitude dependent

tune shift, such as provided by an octupole. An average betatron function of h�i =

20 m has been assumed. Top: growths of the rms 13 cm bunch are 1.36, 1.08,

1.02, 1.007, respectively for rms tune spread of ��� = 0:0002, 0.0004, 0.0006, 0.0008.

Bottom: growths of the rms 4 cm bunch are 1.58, 1.23, 1.08, 1.03, 1.012, respectively

for rms tune spread of ��� = 0:002, 0.003, 0.004, 0.005, 0.006.
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are

��x = 8:126� 100�x � 4140�y
��y = 6:240� 4140�x � 50:6�y

(15.16)

for the on-momentum particles, where the unnormalized emittances �x and �y are mea-

sured in �m. For the 4-cm bunch, the normalized rms emittance is �Nrms = 85�10�6 �m.
Since the muon energy is 50 GeV, the unnormalized rms emittance is �rms = 1:80 �
10�7 �m, and becomes 1:62 � 10�6 �m when 3� are taken. Thus, the allowable tune

spread for the on-momentum particles is ��� = 4140 �y = 0:0067. Tune spreads larger

than this will lead to much larger tune spreads for the o�-momentum particles, thus

reducing the momentum aperture of the collider ring. For 4-cm bunch, to damp beam

breakup to about 1% when Z?
1 = 0:1 M
=m and h�i = 20 m, one needs ��� = 0:018.

However, we do not know exactly what h�i and Z?
1 are. Simulations show that if h�iZ?

1

becomes doubled, 2.5 times, 5 times, and 10 times, the tune spreads required jump to,

respectively, � 0:054, 0.073, 0.18, and 0.54. Thus, it appears that pure tune spread may

be able to damp beam breakup for the 13-cm bunch but may not work for the 4-cm

bunch. Although tune spreads due to chromaticity and beam-beam interaction will also

damp beam breakup, it is unclear how much the momentum aperture will be reduced

due to these tune spreads.

15.2.2 Autophasing

The transverse beam breakup can be cured by varying the betatron tune of the beam

particles along the bunch, so that resonant growth can be avoided. In the two-particle

model, if we allow

�k� = �
e2NW1(ẑ)

2LE0
�k�

(15.17)

in Eq. (15.4), it appears that the linear increasing term will be eliminated and the tail

particle motion

y2(s) = y10 cos �ks cos
�ks

2
(15.18)

will be bounded. However, if we set

�k� = �
e2NW1(ẑ)

4LE0
�k�

=
�(`)

`
(15.19)
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instead, the tail particle motion becomes

y2(s) = y10

�
cos �ks cos

�k�s

2
� sin �ks sin

�k�s

2

�
= y10 cos k1s ; (15.20)

which is exactly the same as the head particle. Being in phase all the time, the tail

cannot be driven by the head at all. This is another form of BNS damping known as

autophasing [4]. Exactly the same result will evolve if we solve Eq. (15.2) directly by

enforcing y2(s) = y1(s) = y10 cos k1s. Thus autophasing implies

�k�
k�

=
�
�k�`

: (15.21)

For a particle-distributed bunch, in order that all particles will perform betatron

oscillation with the same frequency and same phase after the consideration of the per-

turbation of the transverse wake, special focusing force is required to compensate for the

variation of unperturbed betatron tune along the bunch. With the linear distribution

�(z), the equations of motion of Eq. (15.2) in the two-particle model generalize to

d2y(z; s)

ds2
+
�
k� +�k�(z)

�2
y(z; s) = �e

2N

LE0

Z z

�1

dz0�(z0)W1(z � z0)y(z0; s) ; (15.22)

where z > 0 denotes the tail and z < 0 the head, or the bunch is traveling towards the

left. We need to choose the compensation �k�(z) along the bunch in such a way that

the betatron oscillation amplitude

y(z; s) � sin
�
k�s+ '0

�
(15.23)

is independent of z, the position along the bunch, with '0 being some phase, because

only in this way any particle will not be driven by a resonant force from any particle in

front. The solution is then simply

2k��k� +�k2�(z) = �
e2N

LE0

Z z

�1

dz0�(z0)W1(z � z0) ; (15.24)

or, for small compensation �k�(z),

�k�(z)

k�
= � e2NR

2LE0k2�

Z z

�1

dz0�(z0)W1(z � z0) : (15.25)
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If the linear bunch distribution �(z) is a Gaussian interacting with a broadband

impedance, the integration can be performed exactly to give

�k�(z)

k�
=

e2N

2LE0k2�

!2
rZ

?
1

2�!Q
e�z

2=(2�2
`
) Imw

�
vei�0p

2
� izp

2�`

�
; (15.26)

where

w(z) = e�z
2

�
1 +

2ip
�

Z z

0

et
2

dt

�
: (15.27)

is the complex error function while sin�0 = 1=(2Q) and v = !r�`=c as de�ned in

Eqs. (15.8) and (15.9). For long bunches and high resonant frequency, or v � Q, the

complex error function behaves as

w(z) =
ip
�z

+O
�

1

jzj3
�

: (15.28)

This is certainly satis�ed by both the 4-cm and 13-cm muon bunches, where v = 6:67

and 21.7, respectively, but not by the short electron bunches. Let us �rst discuss the long

muon bunches in a storage ring. For convenience, we convert the betatron number to

betatron tune by k� = ��=R and the length L to the ring circumference C = 2�R. Thus

�k�, the shift in betatron wave number in a cavity length L, becomes ���=R, where

��� is the betatron tune shift in a turn. Then, the relative tune shift compensation in

Eq. (15.26) can be simpli�ed to

���(z)

��
� e2N!rZ

?
1 R

2(2�)3=2�2�QvE0

�
1 +

z

vQ�`

�
e�z

2=(2�2` ) : (15.29)

This is the situation for the autophasing of the longer muon bunches, which is very

di�erent from the autophasing for the short electron bunches. The relative tune shift

compensations required for the two long bunches are shown in the top plot of Fig. 15.5.

Note that in Eq. (15.29), vQ controls the asymmetry of the tune shift compensation

curve. When vQ ! 1, there is no asymmetry and the compensation curve reduces to

just a Gaussian, and, at the same time, ���=�� decreases to zero. On the other hand,

when v � Q for short bunches or low broadband resonant frequency, the relative tune

shift becomes rather linear as depicted by the 1.8 mm (v = 0:3) curve in the lower plot

of Fig. 15.5. The curves for the 5.0 mm, 1.0 cm, and 4 cm bunch (v = 0:83, 1.67, and

6.67) are also shown for comparison. Note that as the bunch length gets shorter, the

frequency components of the tune compensation become much lower. For a very short

bunch, the compensation becomes nearly linear in the region of the bunch.
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Figure 15.5: Relative tune shift autophasing compensation at distance z=�` behind

the bunch center (or bunch going to the left) to cure beam breakup. Impedance is

broadband resonating at !r = 50 GHz. Top: for the rms 4-cm and 13-cm bunches,

where v = !r�`=c = 6:67 and 21.7 respectively, with bunch pro�le plotted in dashes

as a reference. Bottom: for short bunches, rms 1.8, 5.0, 10.0 mm, with v = 0:3, 0.83,

1.67, respectively. The curve for the 4-cm bunch is plotted as comparison. Note

that when v is small, the compensation is of much lower frequencies.
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To cure beam breakup with autophasing damping in an electron linac, the elec-

tron bunch is usually placed o� the crest of the rf wave so that the head and tail of

the bunch will acquire slightly di�erent energies, and therefore slightly di�erent beta-

tron tunes through chromaticity. For muon bunches in the collider ring, however, this

method cannot be used. If one insists on having autophasing, an rf quadrupole must be

installed and pulsed according to the compensation curve for each bunch as the bunch

is passing through it. The variation of a quadrupole �eld at such high frequencies is

not possible at all. Another method is to install cavities that have dipole oscillations

at these frequencies, which is not simple either. For this reason, autophasing for long

bunches is not practical at all.

15.3 Linac

15.3.1 Adiabatic Damping

Let us come back to the short electron bunches in a linac. An expression was given in

Eq. (15.6) for the deection of the tail particle in the two-particle model. In a linac,

the bunches are accelerated and the energy change of the beam particles cannot be

neglected. The equations of motion of the head and tail macro-particles now become

1



d

ds

�

dy1
ds

�
+ k2�y1 = 0 ; (15.30)

1



d

ds

�

dy2
ds

�
+ k2�y2 = �

e2NW1(ẑ)

2LErest

y1 ; (15.31)

where Erest is the particle rest energy. The betatron wave number, which we have set

to be the same for the two macro-particles, can have di�erent dependency on energy.

One way is to have k� energy independent or the particle makes the same number of

betatron oscillations per unit length along the linac. This is actually the operation of

a synchrotron, where the quadrupole �elds are ramped in the same way as the dipole

�eld. If we further assume a constant acceleration

(s) = i(1 + �s) ; (15.32)

where i is the initial gamma and � is a constant, the equation of motion of the head

becomes
d

du

�
u
dy1
du

�
+
k2�
�2

uy1 = 0 ; (15.33)
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where u = 1+�s. Usually the acceleration gradient � is much slower than the betatron

wave number k�. For example, in the L0 = 3 km SLAC linac where electrons are

accelerated from Ei = 1 GeV to Ef = 50 GeV, � = 0:0163 m�1, while the betatron wave

number is k� = 0:06 m�1. In that case, the solution is (Exercise 15.1)

y1(s) =
ŷp

1 + �s
cos k�s ; (15.34)

which is obtained by letting y1 = A cos k�s with A a slowly varying function of u. In

fact, Eq. (15.33) is the Bessel equation; Eq. (15.34) is just the asymptotic behavior of

y1(s) = ŷJ0[k�(1 + �s)=�].

The equation of motion of the tail becomes

d

du

�
u
dy2
du

�
+
k2�
�2

uy2 = �e
2NW1(ẑ)

2LEi�2

ŷp
u
cos k�s : (15.35)

To obtain the particular solution, we try y2 = D sin k�s=
p
u with D a slowly varying

function of uy. The �nal solution is

y2(s) =
ŷp

1 + �s

"
cos k�s�

e2NW1(ẑ)

4LEi�k�
ln(1 + �s) sin k�s

#
: (15.36)

Noticing that Ei� � Ef=L0, the growth for the whole length L0 of the linac is

� = �e
2NW1(ẑ)L0

4k�EfL
ln
Ef

Ei

: (15.37)

This is to be compared with Eq. (15.6), where we gain here a factor of

F =
Ei

Ef

ln
Ef

Ei

(15.38)

For the SLAC linac, this factor is F = 1=12:8 = 0:0782, meaning that the tail will be

deected by 12.8 less with the acceleration. This e�ect is called adiabatic damping..

15.3.2 Detuned Cavity Structure

The dipole wake function of a cavity structure is given by

W1(z) = �2
X
n

Kn sin
2��nz

c
e���vz=(cQn) z > 0 ; (15.39)

yOne can also try y2 = D sin k�s with D a slowly varying function of u.
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where Kn, �n, and Qn are the kick factor, resonant frequency, and quality factor of the

nth eigenmode in the structure, and the particle velocity has been set to c. The kick

factor is de�ned as

Kn =
�Rn�n
Qn

; (15.40)

with Rn being the dipole shunt impedance of the nth mode. To reduce beam break up,

it is important to reduce this dipole wake function.

One way to reduce the dipole wake is to manufacture the cavity structure with cell

dimension varying gradually so that each cell has a slightly di�erent resonant frequency.

In this case, the e�ect of the wake due to each individual cell will not add together and

the wake of the whole structure will be reduced. Such a structure is called a detuned

cavity structure [5].

Let us �rst study the short-range part of the dipole wake. The assumption that

all the cells do not couple can be made, and the wake function of Eq. (15.39) can be

considered as the summation of the wake due to each individual cell. Thus, Kn, �n, and

Qn become the kick factor, resonant frequency, and quality factor of the nth cell. Since

the variation from cell to cell is small, the summation can be replaced by an integral

W1(z) � �2
Z

d� K
dn

d�
sin

2��z

c
: (15.41)

Some comments are in order. First, the decays due to the quality factors have been

neglected, because these are high-Q cavities and we are interested in the short-range wake

only. Second, K(dn=d�) is considered a function of � and the normalization of dn=d�

is unity because W1(z) in Eq. (15.41) is referred to as the dipole wake per cell. Since

K(dn=d�) must be a narrow function centered about the average resonant frequency of

the cells ��, the wake can be rewritten as

W1(z) � �2 Im
�
e2i���z=c

Z
dxK(�� + x)

dn

d�
(�� + x)e2�ixz=c

�
; (15.42)

with � = �� + x. We see that the wake consists of a rapidly varying part, oscillating

at frequency ��, and a slowly varying part, the envelope, that is given by the Fourier

transform of the function K(dn=d�) after it has been centered about zero. For uniform

frequency distribution with full frequency spread ��, the wake is given by

W1(z) � �2 �K sin
2���z

c

sin(���z=c)

���z=c
; (15.43)
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with �K the average value of K. If the frequency distribution is Gaussian with rms width

�� , then

W1(z) � �2 �K sin
2���z

c
e�2(���z=c)

2

: (15.44)

In this case, the envelope also rolls o� as a Gaussian. It seems reasonable to expect that

the proper Gaussian frequency distribution is near ideal in the sense of giving a rapid

drop in the wake function for a given total frequency spread, and this is the motivation

for choosing the Gaussian detuning.

Take the example of the Next Linear Collider (NLC). Consider a detuned structure

with N = 206 cells. The central frequency is �� = 15:25 GHz. The detuned frequency

distribution is Gaussian with �2:5��, where the rms spread �� is chosen as 2.5% of ��.

It is found that the average kick factor is �K = 40 MV/nC/m2. The envelope of such a

wake is shown in the top plot of Fig. 15.6. Notice that the wake function in fact does

start from zero and has a �rst peak around 80 MV/nC/m2 at z � c=(4��) = 4:91 mm. It

is important to point out that the dipole wake function de�ned in this way di�ers from

our usual de�nition; it is equal to our usual W1=L with L = 1 m. The designed rms

bunch length is �` = 0:150 mm which is much less than the �st peak. Therefore, the

detuned structure will not help the single-bunch breakup at all. The bunch spacing is

42 cm in one scenario and 82 cm in another. At the location of the second bunch, the

wake has dropped by more than two orders of magnitude. Thus, this lowering of the

wake will de�nitely help the multi-bunch train beam breakup.

There are some comments on the wake depicted in the top plot of Fig. 15.6. First,

the wake does not continue to drop as a Gaussian (the dashed curve) after about 0.4 m.

Instead, it rises again having another peak around 4.2 m, although this peak is very

much less than the �rst one. The main reason is due to the �nite number of cells

in the structure and the Gaussian distribution has been truncated at �2:5�� . It is

easy to understand the situation when we look at the uniform frequency distribution of

Eq. (15.43). The envelope is dominated by the sinx=x term which gives a main peak at

x = 0 and starts to oscillate after the �rst zero at z = c=��. Second, the coupling of the

cells will nevertheless become important at some larger distance. Thus, the long-range

part of the wake cannot be trusted at all. Bane and Gluckstern [5] used a circuit model

with coupled resonators to give a more realistic computation of the long range wake.

Later, Kroll, Jones, et al. [6] introduced four damping manifolds with four holes in the

cells to carry away the dipole wave generated by the beam. Their �nal wake is shown

in the bottom plot of Fig. 15.6. We see that the short-range part of the wake is almost
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Figure 15.6: Envelope of the dipole wake function of a Gaussian detuned structure.

Top: Coupling between cells has been ignored. Bottom: Coupling between cells

has been included using a model with 2 circuits coupled to 4 manifolds. The dots

represent the 82 bunches with 84-cm bunch spacing in one scenario.
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Figure 15.7: A drawing of the detuned structure consisting of 206 cavities coupled

to 4 damped manifolds.

the same as is given by the top plot of Fig. 15.6. On the other hand, the long-range

wake has been kept much below 1 MV/nC/m2. This wake has been computed �rst in

the frequency domain as a spectral function and is then converted to the time or space

domain via a Fourier transform. For this reason, we do not expect it to deliver the

correct values at very short distances. The interested readers are referred to Refs. [5]

and [6]. The dots on the plot represent the scenario of 82 bunches with 84-cm bunch

spacing. A picture of the detuned structure consisting of 206 cavities coupled to four

damped manifolds is shown in Fig. 15.7.

For the NLC, assuming a uniform energy independent betatron focusing with 100

betatron oscillations in the linac of total length L = 10 km, the betatron wave number

is k� = 0:06283 m�1. Initially at 10 GeV, the NLC bunch has a vertical rms beam size of

�y0 = 4:8 �m, or the e�ective normalized rms vertical emittance �y = 0:028 �m. At the

linac exit (500 GeV), the deection of the tail particle in the two-particle model is multi-

plied only � � 2:1 fold per unit o�set of the head particle (see Exercise 15.3). Assuming

1 �m initial o�set of the head particle, and conservation of normalized emittance in the

absence of beam breakup, the normalized vertical emittance becomes �y = 0:30 �m. For
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autophasing, assuming a chromaticity � = 1 de�ned by

�k�
k�

= �Æ ; (15.45)

an energy spread of 0.34% will be suÆcient to damp the growth of the tail. These values

are in close agreement of the simulations performed by Stupakov [10], as illustrated in

Fig. 15.8.

15.3.3 Multi-Bunch Breakup

The NLC delivers a train of 95 bunches with bunch spacing 42 cm. Even if there is no

beam breakup for a single bunch, the bunches in the train can also su�er beam breakup

driven by the bunches preceding them. The �rst thing to do to ameliorate the situation

is to design the linac cavities in such a way that the long-range dipole wake function

will be as small as possible. The Gaussian detuned structure has been a way to lower

the dipole wake by as much as two orders of magnitudes. According to the lower plot

of Fig. 15.6, at 42 cm, the dipole wake is only � 0:21 MV/nC/m2.

The two-particle model can be extended to accommodate the study of multi-bunch

beam breakup. Each bunch is visualized as a macro-particle containing N electrons.

Then the equation governing the displacement of the �rst bunch is

d2y1
ds2

+ k2�y1 = 0 ; (15.46)

and that of the second bunch is

d2y2
ds2

+ k2�y2 = �
e2NW1(ẑ)

LE
y1 ; (15.47)

where L is the cavity length andW1 is the transverse wake per cavity. The �rst equation

is the free betatron oscillation and is the same as Eq. (15.1). The second equation di�ers

slightly from Eq. (15.2) in not having the factor 2 in the denominator. This is because in

the two-particle model of a bunch, each macro-particle contains 1
2
N electrons and here

each macro-particle represents one bunch which is composed of N electrons. Also the

dipole wake W1(ẑ) in Eq. (15.47) is evaluated at the bunch spacing ẑ. Recall that the

two-particle model will not work when the bunch length is too long and falls out of the

linear region of the dipole wake, because some particles in between the head and the tail
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Figure 15.8: The normalized vertical emittance of a NLC bunch from the beginning

to the end of the main linac, assuming an initial vertical o�set of 1 �m. Top: The

emittance increases to � 0:3 �m because of beam breakup. Bottom: An energy

spread of � 0:8% is added across the bunch by o�setting the rf phase. The emittance

increase has been damped.
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will su�er more beam-breakup deections than the tail. However, this model still works

for a long train of bunches, because unlike a long bunch, there are no particles between

the point bunches.

Now the solution for the �rst bunch is

y1(s) = Re ŷeik�s : (15.48)

The solution for the second bunch is

y2(s) = Re ŷ �seik�s ; (15.49)

where

� =
ie2NW1(ẑ)

2k�LE0

; (15.50)

and we have neglected the general solution

y2(s)jgeneral = ŷe�ik�s ; (15.51)

which is much smaller than the particular solution in Eq. (15.49) which grows linearly

as s. The equation for the deection of the third bunch is

d2y3
ds2

+ k2�y3 = �
e2NW1(2ẑ)

LE0

y1 � e2NW1(ẑ)

LE0

y2 : (15.52)

Here, we are going to retain only the largest driving force on the right-side. This means

that the driving force from y1 can be neglected and so is the force from the general

solution of y2. Substituting Eq. (15.49) in Eq. (15.52), we solve for the most divergent

solution

y3(s) = Re ŷ 1
2
�2s2eik�s : (15.53)

Continuing this way, the deection for the mth bunch will be (Exercise 15.4)

ym(s) = Re ŷ 1

(m� 1)!
�m�1sm�1eik�s : (15.54)

Stupakov [11] tries to estimate how much energy spread will be required to BNS

damp the multi-bunch beam breakup. In order to damp the deection of the second

bunch, the amount of tune spread is

�k�
k�

= �e
2NW1(ẑ)

2k2�Ef

ln
Ef

Ei

; (15.55)
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taking the linac acceleration into account. It is reasonable to assume that nb times the

spread necessary for the second bunch will be required for nb bunches. Next the natural

chromaticity for a FODO lattice of phase advance � is

� = � 2

�
tan

�

2
: (15.56)

For 95 bunches, one gets the required energy spread of 2.7% (Exercise 15.5). The

simulations by Stupakov are shown in Fig. 15.9. The initial bunch o�set is 1 �m and it

takes an rms energy spread of 0.8% among the bunches to damp the growth.

Figure 15.9: The relative change in vertical emittance of the 95th bunch, taking

the vertical size as the vertical o�set of the bunch center added to the actual rms

vertical size in quadrature. The initial vertical o�set is 1 �m. Curve 1 shows the

growth without any energy variation in the bunches. Curve 2 shows that the beam-

breakup growth has been damped with a 0.8% rms energy spread varying linearly

from the �rst to the 95th bunch.

15.3.4 Analytic Treatment

Analytic computation of beam breakup for a bunch train has been attempted by many

authors [8, 7]. In all these papers, the dipole wake has been taken as a single dipole
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resonance and BNS damping has not been included. Recently, Bohn and Ng [9] have been

able to include an energy chirp and derive analytic expressions for the BNS damping of

a train of point bunches. Essentially, the energy chirp gives rise to a spread in betatron

wave number among the bunches. An outline of the analytic derivation is given below.

Introduce the dimensionless spatial parameter � = s=L0 normalized to the total

linac length L0. The real time t is reduced to the dimensionless time parameter � =

!r(t� s=c), with !r being the dipole resonant angular frequency, to describe the arrival

of the a particle of the beam at position s along the linac, with � = 0 as the arrival time

of the �rst particle. Thus, � measures the longitudinal position of the particle inside the

beam. The transverse displacement of a particle in the beam, represented by y(�; �),

depends on both � and � and its motion is governed byz�
1



@

@�

�

@

@�

�
+ �2(�; �)

�
y(�; �) = ��(�)

Z �

0

d� 0w(��� 0)F (� 0)y(�; � 0) ; (15.57)

which is just another way of writing Eq. (15.14) with beam particle acceleration included

as in Eq. (15.31). This equation is usually referred to as the multi-bunch cumulative

beam breakup (MBBU) equation. Here, the normalized betatron wave number is � =

k�L0. The beam pro�le F (�) will be de�ned in Eq. (15.60) below. The normalized dipole

wake isx

w(�) = �H(�) e��=(2Q) sin � ; (15.58)

where Q is its quality factor and H(�) is the Heaviside step function. All the rest is

lumped into the dimensionless beam-breakup coupling strength

�(�) =
e2Nw0L

2
0

Erest!r�
; (15.59)

where w0 is the sum-wake amplitude or twice the kick factor of the dipole resonance

measured in V/C/m2 and N=(!r�) is the number of electrons per longitudinal time �.

For a train of bunches with temporal spacing � , N becomes the number per bunch. When

these bunches are further considered as points, the beam pro�le in above is represented

by

F (�) =
1X

n=�1

Æ

�
�

!r�
� n

�
: (15.60)

zThe arrival time is � = 0 for the �rst particle and � > 0 for later particles, or it represents a arrival

time behind the �rst particle.
xThis is another convention of de�ning the transverse wake so that it increases with a positive slope

at the beginning. This is also called the sum wake because it represents the sum of the wake �elds left

by all preceding particles.
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All bunches with arrival time � < 0 will be excluded by the causal property of the wake.

A betatron linear chirp is now introduced,

�(�; �) = �0(�) + �1(�; 0)� ; (15.61)

where �0(�) is the normalized betatron wave number without the chirp and �1(�; 0)

represents the strength of a linear chirp across the bunches. With the assumption that

the acceleration gradient is much less than the betatron wave number, we can introduce

a new transverse o�set variable

�(�; �) =
p
(�) y(�; �) e�i��(�) ; (15.62)

where �(�) =
R �

0
d�0�1(�

0; 0). Now Eq. (15.57) can be rewritten as{�
@2

@�2
+ �20(�)

�
�(�; �) ' ��(�)

Z �

0

d� 0w�(�; ��� 0)F (� 0)�(�; � 0) ; (15.63)

where the assumption of strong focusing, @�(�; �)=@� ' i�0�(�; �), has been used. Strong

focusing actually implies that the quadrupole focusing is the most important force, while

the wake, the acceleration gradient, and the variation of focusing due to chirping are

small. The chirped-modi�ed wake in Eq. (15.63) is de�ned as

w�(�; �) = w(�)e�i��(�) ; (15.64)

where obviously the exponential comes from the de�nition of �(�; �). This exponential,

when combined with the exponential of the original wake of Eq. (15.58), gives an e�ective

quality factor Qe� , where
1

2Qe�
=

1

2Q
+ i� : (15.65)

Immediately, a result can be drawn that the chirp will be important if the quality factor

Q of the transverse wake is high, but will be masked if Q is suÆciently low.

The transformation into Eq. (15.63) is important, because the operator on the left

side no longer depends on �, and the chirp has been incorporated into the dipole wake. To

proceed, we Fourier transform the whole equation with respect to the variable � = n!r�

to obtain �
@2

@�2
+ �20(�)

�
~�(�; �) ' ��(�)!r� ~w�(�; �)~�(�; �) ; (15.66)

{(0)2 and 00 will be neglected in below, where the prime implies derivative with respect to �, but

0�0 will be retained.
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where

~�(�; �) =
1X

m=0

e�im��(�;m!r�) ;

~w�(�; �) =
1X

m=0

e�im[�+!r��(�)]wm = w(�;m!r�) : (15.67)

In this form, the WKB method can be employed to give a formal solution

~�(�; �) =

s
�(0; �)

�(�; �)
exp

�
i

Z �

0

d�0�(�0; �)

�
; (15.68)

where

�2(�; �) = �20(�) + �(�)!r� ~w�(�; �) : (15.69)

Here �(�; �) is an auxiliary function reecting the coupling between the bunch spacing

and the deecting-mode frequency, and when ~w�(�; �) is substituted, it takes the form

�(�; �) = �0(�)

�
1� �(�)

4�20(�)

!r� sin!r�

cos[�+!r��(�)]� cos!r�

�
: (15.70)

Denoting the displacement for the (m + 1)th bunch as ym(�) = y(�;m!r�), the

inverse Fourier transform give [8, 12]

ym(�)=
1

2�

mX
n=0

e�n!r�=(2Q)

Z �

��

d� e�in�
�
ym�n(0)C(�; �;m) + y0m�n(0)

S(�; �;m)

�(0; �)

�
;

(15.71)

in which� C(�; �;m)

S(�; �;m)

�
=

s
Ei�(0; �)

E��(�; �)

� Re
Im

�
exp

�
im!r��(�) +

Z �

0

d�0�(�0; �)

�
(15.72)

are cosine-like and sine-like functionals, respectively. In above, we have written, for

convenience, the energy of the beam particle at location � as E� = (�)Erest and the

initial energy as Ei = (0)Erest. Later we will also write the energy at linac exit as

Ef = (1)Erest.

It is evident from Eq. (15.71) that upon taking � ! �� and remembering that ym
is real, the algebraic sign of �(�) a�ects only the phase of ym(�) but not the envelope.

This demonstrates that, as expected intuitively, the e�ect of a linear increase in focusing

from head to tail is the same as a linear decrease.
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In order for the derivation to go through analytically further, it is necessary to

make the assumption that the betatron wave number decreases as �1=2. This focusing

arrangement implies that all the quadrupoles are identical and they can be on one

common bus, because the focusing �eld gradient will be exactly the same along the

linac. This implies the focusing becomes weaker as the energy increases. In fact, the

NLC quadrupoles are deployed roughly in this way, although the quadrupoles there are

all on separate buses for the ease of beam alignment. With this assumption, �(�)=[4�20(�)]

in the de�ning equation of �(�; �) above will no longer be dependent on �. This simpli�es

the integration to be performed later.

For further discussion, let us set the initial conditions ym(0) = y0 and y0m(0) = 0

for every bunch, and assume a constant acceleration gradient in the linac. The sum

in Eq. (15.71) can be decomposed into two parts:
Pm

0 =
P1

0 �
P1

m . The �rst part

pertains to the steady-state displacement yss that would arise were the deecting wake

�rst seeded with an in�nitely long bunch train immediately preceding the actual bunch

train. Given strong focusing, the steady-state displacement is

yss(�;m!r�) ' y0

�
Ei

E�

�1=4
cos

�
m!r��(�) +

Z �

0

d�0�0(�
0)

�
: (15.73)

The second part pertains to the transient displacement Æym = ym�yss. Saddle-

point integration gives a closed-form solution for Æym, whose bounding envelope takes

the form:

jÆymj
y0

'
�
Ei

E�

�1
4
pE exp [q(�)E �m!r�=(2Q)]

4m
p
2� j sin(!r�=2)j

�

8>><
>>:
j1� �2j�1

4 � not near 1�
4

3

� 1
6 E 1

6
�
�
1
3

�
p
2�

� = 1:

(15.74)

The auxiliary relations comprising Eq. (15.74) are:

E(�;m) =

�
4mw0e

2NL2
0

��0Ei

�1=2 h�pEf=Ei � 1
��p

E�=Ei � 1
�i1=2

Ef=Ei � 1
;

�(�;m) =
��0jfj
2E

m

M

p
E�=Ei � 1p
Ef=Ei � 1

;
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q(�) =

8>><
>>:

p
1��2
2

+
1

4�
tan�1

 
2�
p
1��2

1�2�2
!

� < 1

�

4�
� � 1 ;

in which ��0 is the focusing strength averaged over the linac and is related to the focusing

strength at entrance �0(0) by

��0 =
2�0(0)p
Ef=Ei + 1

; (15.76)

M is the total number of bunches in the train, jfj is the magnitude of the total fractional
energy spread across the bunch train, or twice the total fractional focusing variation.

The expression for jÆymj in Eq. (15.74) reects a number of physical processes. The
coeÆcient involving beam energy manifests adiabatic damping. The factor j sin(!r�=2)j
is a relic of a resonance function deriving from the coupling between the bunch spac-

ing and the deecting-mode frequency. Resonances lie near even-order wake zero-

crossings [8]; because the solution is valid only away from zero-crossing, resonance is

removed. The focusing variation represented by jfj regulates exponential growth, and
�nite Q yields exponential damping. Yet \�=1" does have special physical signi�cance;

it demarks the onset of saturation of exponential growth and, with in�nite Q, algebraic

decay of the envelope. For � � 1 the \growth factor" q(�)E is independent of bunch

number m and of linac coordinate �; temporal \damping" then ensues through a neg-

ative power of m, and spatial \damping" ensues adiabatically as already mentioned.

Therefore � = 1 corresponds to a global maximum in the envelope jÆymj. The e�ect

of the focusing variation is the saturation of the exponential growth, not damping; its

action distinctly di�ers from that of a real e�ective Q.

We now apply the solution to designs of the SLAC NLC and DESY TESLA. Some

parameters are listed in Table 15.1.

15.3.5 Amount of Energy Chirp

The transient displacements of the 90 bunches of the NLC at the linac exit were simulated

and shown in Fig. 15.10 for energy spreads f = 1:5 and 3.0%. The plots are made with

the scenario that the linac is L0 = 10 km long, accelerating 90 bunches with bunch

spacing � = 2:8 ns from 10 GeV to 1 TeV. Each bunch contains 1 nC of charges or
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Figure 15.10: Analytic envelope at the linac exit (solid curve) plotted against

the transverse displacement of bunches calculated numerically, with total en-

ergy spreads of 1.5% (top) and 3% (bottom).
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Table 15.1: Some parameters of the SLAC NLC and DESY TESLA.

NLCy TESLA

Linac length ` (km) 10.0 14.4

No of betatron wavelengths �� 100 60

Entry/exit energy (GeV) 10/1000 5/250

No of bunches per train M 90 2820

Bunch charge q (nC) �1:0 �1:6
Bunch spacing � (ns) 2.8 377

Transverse wake:

amplitude w0 (V/pC/m/mm) 1 0.015

frequency !r=(2�) (GHz) 14.95 1.70

e�ective quality factor Q 1 � 125000

yThe above belong to an older model of the SLAC NLC. and are chosen to

illustrate MBBU. The parameters w0 and Q represent a worst-case wake.

N = 6:24� 109 electrons, making 100 betatron oscillations along the linac. The dipole

wake of the SLAC NLC cavities is of resonant frequency !r=(2�) = 14:95 GHz. Its

long-range transverse behavior is shown in Fig. 15.6, which is computed using a circuit

model. We see that the envelope of the wake is almost constant for the �rst 30 m or the

�rst 36 bunch spacings. This allows us to assign an e�ective quality factor of Q = 1
and sum-wake amplitudek w0 � 1 MV/nC/m2. It is clear that BNS damping is helping

to control the emittance growth. The relative displacement of the 90th bunch would

be as large as 2.1 when f = 0. We also see that with f = 3:0% the envelope reaches

a maximum at the 48th bunch and decays algebraically afterward approaching steady

state slowly. An e�ective BNS damping requires an energy spread suÆcient to have the

maximum to reach some bunches before they leave the linac.

The special signi�cance of � = 1 translates into a criterion for the focusing variation

to be e�ective. Speci�cally, one should choose a value of f that ensures �(1;M)> 1,

i.e., that � = 1 is reached somewhere along the bunch train before it leaves the linac.

kThe plot in Fig. 15.6 shows w0 � 0:3 MV/nC/m2. Here, we use w0 � 1 MV/nC/m2 as a reference

model.
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Figure 15.11: (color) Critical energy chirp required for BNS damping in the SLAC

NLC versus deecting wake amplitude, with number of betatron wavelengths �� =

75, 100, 125, and 150.

According to the auxiliary relations to Eq. (15.74), the criterion is

jfj > 2E(1;M�1)
��0

=
E(1;M�1)

���
; (15.77)

which is plotted in Fig. 15.11 versus the wake amplitude for various strength of betatron

focusing. For example, for the parameters in Table 15.1, an energy chirp of jfj&2:18%

in the NLC will be required. However, as will be seen in the next subsection, this is not

the only criterion to control emittance growth.

15.3.5.1 Emittance Growth

The steady-state and transient displacements, being uncorrelated, comprise a measure

of the total projected normalized emittance as

" � �jyssj2 + jÆymj2max

� �0
L0

; (15.78)

wherein jyssj = y0[Ei=E�]
1=4 per Eq. (15.73), and jÆymjmax is the maximum value of the

transient envelope reached along the bunch train. If �<1 always, then the maximum is
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Figure 15.12: Total normalized transverse multi-bunch emittance at the linac exit,

referenced to its steady-state value, versus total energy spread across the bunch

train, plotted for various sum-wake amplitudes w0.

reached at the last bunch m = M . Otherwise, the maximum corresponds to the value of

jÆymj at which �=1. Imposing a focusing variation will reduce the transient envelope,

but it also will establish a harmonic variation of yss with m and thereby introduce a

nonzero steady-state emittance "ss. For this reason the quantity of interest is the ratio

("� "ss)="ss =

� jÆymjmax

jyssj
�2

; (15.79)

from which one sees the bene�t of keeping the ratio of envelopes small. This quantity,

calculated from the analytic expressions given in Eqs. (15.73) and (15.74), is plotted

against jf j in Fig. 15.12 for various values of the sum-wake amplitude w0. Fig. 15.12

points to the region of parameter space that, respecting multi-bunch beam breakup, ad-

mits viable linear-collider designs. In particular it shows that to achieve low multi-bunch

emittance without aid from a focusing variation requires small sum-wake amplitudes,

w0
<� 0:5 V/pC/mm/m. Otherwise, as depicted, a few-percent energy spread relieves

the constraint on sum-wake amplitude. There are, of course, practical limitations on

the energy spread, to include longitudinal beam requirements at the interaction point,
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lattice chromaticity, degradation in acceleration, etc. Nonetheless, introducing a mod-

est energy spread constitutes a backup in case suÆciently low wake amplitudes prove

generally infeasible.

It is worth mentioning that the plots in Figs. 15.10 and 15.12 have been performed

with the data of the upgraded NLC. If we use the present lower energy design of acceler-

ating the bunches up to only 500 GeV and 1:1� 1010 particles per bunch, the reduction

in adiabatic damping will increase the growths of the bunch deections at the linac

exit tremendously. To BNS damp such growths, an energy chirp of 10 to 15% will be

necessary. Certainly this is not workable because of the large momentum spread of the

bunches which later translates into unacceptable transverse bunch sizes at the interac-

tion point. The acceleration gradient will also be largely reduced. Needless to say, the

linac itself will hardly have such large energy aperture for the bunches to pass through.

What we actually want to point out is that BNS damping is only feasible when the

actual beam breakup is not too large, because only a small amount of energy chirp is

acceptable in reality.

15.3.5.2 The Quality Factor

Now let us apply the computed displacement envelope to the DESY TESLA. If the

quality factor of the deecting wake were in�nite, Eq. (15.77) would require an energy

chirp of jfj = 9:27%. This chirp is rather large because of the long bunch train of

2820 bunches. Even with such a large chirp, Eq. (15.74) predicts a normalized transient

displacement envelope of j�ym=y0j=296 for the last bunch at the linac exit, and such

emittance growth is totally unacceptable. Fortunately, the transverse long-range wake

of the TESLA linac in Fig. 15.13 shows considerable amount of damping [14]. However,

the wake does not correspond to a damped resonance of a single frequency. Assuming a

resonant frequency of 1.7 GHz, one obtains a quality factor of Q=22400 by comparing

the wake envelope at the �rst and 10th bunch spacings, Q = 69000 by comparing the

wake envelope at the �rst and 100th bunch spacings, and Q = 124000 by comparing

the wake envelope at the �rst and 265th bunch spacings (which is the end of the wake

displayed in Fig. 15.13). In the discussion below, the quality factor of Q = 125000 is

assumed. Numerically, we �nd that j�ym=y0j never exceeds 0.012 and damps to less

than 0.010 within the �rst 150 bunches, where no energy chirp has been applied (see

top plot Fig. 15.13 below). It is important to mention that the theoretical prediction

of Eq. (15.74) may not apply to the TESLA linac, where MBBU is not severe because
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Figure 15.13: Plot of transverse long-range wake of the TESLA linac.

of the rather small e�ect from the transverse wake. Instead of the method of steepest

descent, the MBBU equation should be solved by iteration with the coupling coeÆcient

� considered as a small quantity.

We can also visualize a �nite quality factor Q of the deecting wake as acting like

an energy chirp. From the growth exponent of Eq. (15.74), it is evident that a �nite

quality factor will o�set a certain amount of growth [13]. Setting �=1 in the exponent,

we obtain for the last bunch at the linac exit

jfj = 2M!r�

�2Q��
; (15.80)

which is the equivalent amount of energy-chirp-like damping provided by the quality

factor. In Fig. 15.14, we plot the normalized envelope displacement of the last bunch at

the exit of the SLAC NLC linac as a function of the energy chirp jfj for various values of
the quality factor. The large dots are the equivalent energy-chirp-like damping provided

by the quality factor. The dashed curve joining all the large dots depicts Eq. (15.80).

Notice that the displacement is approximately independent of the energy chirp until

the stated threshold is exceeded, after which the displacement drops o� relatively fast

with increasing jf j. As an illustration, recall that for a wake with an in�nite quality

factor, jfj = 2:18% is required for BNS damping. However, when the quality factor is

lowered to Q = 5000, Fig. 15.14 indicates an equivalent energy chirp of 0.96%. Thus,



15-34 15. BEAM BREAKUP

Figure 15.14: (color) Plot of normalized transient displacement envelope of the

last bunch at the linac exit of the SLAC NLC versus energy chirp jf j for various

quality factors Q of the deecting wake. The amount of equivalent energy-chirp-like

damping provided by the �nite quality factor is also shown as dashes.

only jf j=2:18�0:96=1:22% will now be required. This is demonstrated in Fig. 15.15,

where we can see the maxima of the displacement envelopes reside at the last bunch at

the linac exit in both situations. A smaller quality factor not only reduces the amount of

energy chirp required for BNS damping; it also helps to reduce the transient transverse

displacement along the bunch train from j�ym=y0j=0:76 to a very much smaller value

of 0.15. Thus, for the sake of controlling emittance growth and damping MBBU, it

is bene�cial to have lower quality factors for the deecting modes. Returning to the

TESLA linac, Eq. (15.80) gives an \e�ective" energy chirp of jfj=4600% for the last

bunch of the bunch train and 1.6% for the second bunch (M = 1). This explains why

the transient displacement envelope was so heavily damped.

15.4 Misaligned Linac

So far we have been considering linacs with perfect alignment, which is impossible in

reality. Suppose that the quadrupole at location � has misalignment yQ(�) and the

cavities have misalignment yA(�) at location �. The equation of motion governing the
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Figure 15.15: (color) Plot of normalized transient displacement envelope at the

linac exit of the SLAC NLC when envelope maximum occurs at the last bunch.

Notice that the energy chirp jf j is reduced from 2.18% to 1.22% when the quality

factor is reduced from Q =1 to 5000.

transverse motion of the beam will be modi�ed from Eq. (15.57) to [15]

�
1



@

@�

�

@

@�

�
+ �2(�; �)

�
[y(�; �)� yQ(�)]

= ��(�)
Z �

0

d� 0w(��� 0)F (� 0) [y(�; � 0)� yA(�)] : (15.81)

To arrive at an analytic solution, some assumptions are necessary. Consider the linac to

be comprised of girders. On each girder is an accelerating length there are some number

of rf structures and an optical element. Assume that the structures and quadrupoles are

suÆciently well-aligned on the girders, leaving the girder misalignments as the dominat-

ing o�set errors. If there are a large number of girders in each betatron wavelength, the

beam will experience the same number of kicks due to the girder misalignments. Since

the betatron wavelength is the characteristic dynamic length, the kicks act roughly as

white noise on the beam. With these considerations, the quadrupole misalignment er-

ror yQ(�) and structure misalignment error yA(�) in Eq. (15.81) are the same random
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variable. In other words,

hyQ;A(�1)yQ;A(�2)i =
d2g
Ng

�(�) Æ(�1 � �2) ; (15.82)

where Ng is the total number of girders in the linac and dg is the rms girder misalignment.

When the betatron focusing is strong, the MBBU equation can be solved in the same way

as before when there were no misalignments. The result can be expressed analytically

as

h�yem(�)2i
1
2

�ym(�)
� dg

y0

2���p
Ng

8>>>><
>>>>:

1pE(�;m)
� � 1

r
2

3
� > 1 ;

(15.83)

where �yem(�) is the transient displacement of the mth bunch in the bunch train which

enters the misaligned linac without any displacement errors, while �ym(�), given by

Eq. (15.74), is the transient displacement of the mth bunch in the bunch train which

enters a perfectly aligned linac with initial displacement y0 for all the bunches. The

result is remarkable. First, it is simple. Second, it is independent of the amount of

energy chirp f either when � � 1 or � > 1. For � = 0, Eq. (15.83) reduces to Eq. (5.6)

of Yokoya [16], which was derived without any energy chirp. The other di�erence from

Yokoya is that his derivation is for the square roots of the total emittances rather than

the transient displacements.

15.4.0.3 Comparison with Simulations

In order to reduce the uctuations due to betatron oscillation, we try to compute the

transient square-root-emittance ��em
1
2 instead of the transient displacement �yem, where

the former is de�ned as��

��em
1
2 =

h
(yem)

2 + (�y0em)
2
i1
2 �

h
(yms)

2 + (�y0ms)
2
i1
2
; (15.84)

with � being the betatron function at the location along the linac under consideration

and y0em the divergence of the particle bunch. The subscript s denotes steady state. Thus,

the left side of Eq. (15.83) is replaced by
��h��em(�)12 i��=��m(�)12 .

��The emittance de�ned here when divided by the betatron function is the usual unnormalized emit-

tance.
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Figure 15.16: (color) Plot of ratio of transient square-root-emittance with girder

misalignments but no beam o�sets to that with beam o�set but no girder misalign-

ments at the linac exit of the SLAC NLC. The results verify the N
�1=2
g dependency

of the theoretical predictions which are shown here in dashes. The energy chirp is

1.0%.

We performed simulations of the SLAC NLC linac and computed beam quantities

at its exit (� = 1). In order to reduce the large spreads of the bunch displacements due

to the randomness of the girder misalignments, each situation was simulated with 20

seeds and the results averaged. Figure 15.16 shows the simulated results when girder

numbers Ng = 2500, 10000, 40000, and 160000 were used, while the energy chirp was

kept at f = 1:0% all the time. The plot actually veri�es the N
�1=2
g dependency stated in

Eq. (15.83). The theoretical predictions are also shown in dashes with the understanding

that � is always less than unity. We see that Eq. (15.83) agrees with the simulated results,

although it tends to underestimate the results in generalyy. Actually, there will not be

Ng = 160000 girders in the NLC linac. This number is created only for the purpose

to check the theoretical prediction. With a linac length of ` = 10 km and �� = 100

yyThe agreement of theoretical predictions with simulations would be as good as in Figs. 11 and 12

of Ref. [16] if we had plotted the simulation results of all seeds instead of just the averages and also

with the vertical axis in a logarithmic scale.
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Figure 15.17: (color) Plot of ratio of transient square-root-emittance with girder

misalignments but no beam o�sets to that with beam o�sets but no girder mis-

alignments at the linac exit of the SLAC NLC with energy chirp f = 0:5, 1.0, 1.5,

and 2.0%. The results appears to be f-independent and follow the trend of the

theoretical prediction for � < 1 shown here in dashes.

betatron wavelengths, Ng = 2500 may be a reasonable number, which will be used in

the discussions below.

Next we vary the energy chirp to f = 0:5%, 1.0%, 1.5%, and 2.0%. In all these

cases, � < 1. We see in Fig. 15.17 that the simulation results fall on each other implying

that there is no dependency on f . Careful examination reveals that the ratio of the

emittances appears to become larger for larger energy chirp especially when f = 2:0%.

This is understandable, because the parameter � is closer to unity. The theoretical

prediction is also shown; it appears to underestimate the simulation results.

Now let us examine the situation when � > 1. At the linac exit, � turns unity at

the 48th bunch when the energy chirp jfj = 3:0%, at the 18th bunch when jfj = 5:0%,

and at the 10th bunch when jf j = 7:0%zz. Simulations for these values of energy chirp

zzjf j = 5 and 7% would be unrealistically too high to survive the dispersive regions of the linear
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Figure 15.18: (color) Plot of ratio of transient emittance with girder misalignment

errors but no initial displacement errors to that with initial displacement errors

but no misalignment errors at the linac exit of the SLAC NLC with energy chirp

f = 3:0, 5.0, and 7.0%. The results appear to be f-independent and follow the

trend of the theoretical prediction for � > 1 shown in dashes.

are shown in Fig. 15.18. First, these results appear to be f-independent. Second, the

ratios of emittances are de�nitely larger than those in Fig. 15.17 where � < 1. Third,

these results are mostly bunch-number-independent, unlike those in Fig. 15.17. These

observations lead us to conclude that the results follow the theoretical prediction for

� > 1.

15.4.0.4 Application

We learn from Figs. 15.17 and 15.18 that the ratios of the normalized transient square-

root-emittances are, respectively, of the order 5 (� < 1) and 10 (� > 1) for the SLAC

NLC linac, implying that the emittance growth from girder misalignments is much more

serious than the growth from beam misalignment at linac entrance. In Fig. 15.19, we

collider; jf j = 3% is marginal.
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Figure 15.19: (color) Plot of transient square-root-emittance with girder misalign-

ments but no beam o�sets at the linac exit of the SLAC NLC with energy chirp

f = 0:0, 3.0, 5.0, and 7.0%. Compared with Fig. 15.10, larger energy chirp will be

necessary for BNS damping.

show the simulated normalized growth of transient square-root-emittance at the linac

exit due to girder misalignment errors but without initial beam displacement errors.

This growth is larger than the same growth of an initially displaced beam but without

misalignment errors shown in Fig. 15.10. As a result, a larger energy chirp will be

necessary to damp MBBU and control emittance growth. We see that although the

growth saturates at an energy chirp of f < 3%, the normalized growth has been 4-fold,

and one needs an energy chirp of 5 to 7% to lower the growth to within 2-fold. On

the other hand, for an initially displaced beam in a perfectly aligned linac, a 3% energy

chirp controls the growth to less than 0.5 as indicated by Fig. 15.10.

Let us come back to the TESLA linac. Because of the small inuence of the trans-

verse wake, the displacements of the bunches possess rather good memory of their initial

o�sets when injected into the linac. As a result, in the absence of an energy chirp, the

transient displacements, �ym(�), for all the bunches are more or less in phase during

their betatron oscillations along the linac. The envelope of �ym(�) will become rather

sensitive to the location of observation. To avoid ambiguity, the transient square-root-

emittance, ��m
1
2 , de�ned in Eq. (15.84) must be used. The top plot of Fig. 15.20 shows
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Figure 15.20: (color) Simulated normalized transient square-root-emittances for

the �rst 300 TESLA bunches without energy chirp at the linac exit. Top plot is

for bunches injected all with o�set y0 but no divergence in a perfectly aligned linac.

Lower plot is for no injection o�set, but the 2500 linac girders have rms misalignment

dg. Theoretical predictions are shown as dashes.

the simulated normalized transient square-root-emittance for a TESLA beam without

energy chirp at the linac exit, where the linac elements are perfectly aligned while the

beam is injected with the same o�set y0 but no divergence for all the bunches. We

see that with an e�ective quality factor of Q = 125000, the maximum normalized tran-

sient square-root-emittance is small and completely acceptable, around � 0:012 near the

beginning of the bunch train and rolling o� to � 0:005 near the 300th bunch. The the-

oretical prediction [Eq. (15.74)] is shown as dashes, and unexpectedly agrees well with

simulations for bunch number m & 150. The lower plot shows the beam without o�set

at injection into the linac, but there are random misalignment errors in the 2500 girders.

(Actually, each TESLA linac has less number of girders.) Although the normalized tran-

sient square-root-emittance becomes almost 4 times larger than the top plot, starting
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with the maximum of � 0:045 and rolling o� to � 0:012 near the 300th bunch, it is still

acceptable. The theoretical prediction is shown as dashes and highly overestimates the

simulation results. The disagreement is not hard to understand. Both Eqs. (15.83) and

(15.81) do not apply well to the TESLA situation where the wake e�ect and MBBU are

small. This prediction here is the product of the expressions in Eqs. (15.83) and (15.81)

and therefore accumulates more uncertainty.
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15.5 Exercises

15.1. (1) Assuming that the acceleration gradient is much less than the betatron wave

number, derive the beam-breakup solutions, Eqs. (15.34) and Eq. (15.36), for the

displacements of the head and tail in the two-particle model.

(2) The dipole transverse wake function of the SLAC linac per cavity cell at 1 mm

is 62.9 V/pC/m. The bunch is of rms length 1 mm containing 5� 1010 electrons.

The cavity accelerating frequency is 2.856 GHz, with each cavity having the length

of 1
3
wavelength. The betatron wave number is k� = 0:06 m�1. In a two-particle

model, compute the ratio of the deection of the tail particle versus that of the

head particle along the whole linac. Compute the same ratio if the linac stays at

1 GeV without acceleration.

15.2. A linac has a lattice consisting of N FODO cells. In between two consecutive

quadrupoles, there is an acceleration structure of length `, which is half of the

FODO cell length. The acceleration is linear with Ef=Ei = 1 + 2N�` where Ei

and Ef are, respectively, the initial and �nal energy across the N FODO cells.

(1) Show that the transverse transfer matrix across the nth acceleration structure

is 0
BB@

1
1 + n�`

�
ln
1 + (n+ 1)�`

1 + n�`

0
1 + n�`

1 + (n+ 1)�`

1
CCA : (15.85)

(2) Is the transfer matrix symplectic? Give a physical answer.

Hint: Solve Eq. (15.33) with k� = 0.

15.3. The NLC bunch has an rms length of �` = 150 �m containing 1:1� 1010 electrons.

The linac has a length of 10 km, accelerating electrons from 10 GeV to 500 GeV.

Assume a uniform betatron focusing with 100 betatron oscillations in the linac

The accelerating structure has a transverse mode at the mean frequency of �� =

15:25 GHz with an rms spread �� = 25% of ��.

(1) Use Eq. (15.44) to compute the transverse wake function at a distance �`,

assuming that the average kick factor is �K = 40 MV/nC/m2.

(2) Compute the multiplication factor of the tail particle in the two-particle model

at the end of the linac.

(3) Assuming the natural chromaticity of � = (�k�=k�)=Æ = �1 for the FODO-

cell lattice, compute the energy spread between the head and tail of the bunch in
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order to damp the deection of the tail.

15.4. (1) Complete the derivation of the beam-breakup deection of the mth bunch as

given by Eq. (15.54).

(2) For the NLC with 95 bunches with spacing 42 cm, estimate the deection of

the last bunch if the �rst bunch has an initial o�set of 1 �m. You may take the

mean energy of the linac in the computation and the dipole wake at one bunch

spacing as 0.21 MV/nC/m2.

15.5. Fill in the steps and give the estimate of the energy spread from the �rst to the

95th bunch in order to damp the beam breakup instability of the bunch train as

outlined in Sec. 15.3.3.
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Chapter 16

TRANSITION AND SPACE

CHARGE MISMATCH

The slippage factor has been de�ned as

� =
1

2
t

� 1

2
(16.1)

in earlier chapters, where E0 = Erest is the total energy of the synchronous particle

having rest energy Erest, and tErest is the transition energy of the lattice. As the particle

crosses transition through ramping, the slippage factor passes through zero and switches

sign from negative to positive. To maintain phase stability, it is also necessary for the

the synchronous phase �s to jump from 0 � �s <
1
2
� to 1

2
� < �s � �. The synchrotron

angular frequency is de�ned as

!s =

s
�eh�Vrf cos �s

2��2E0

!0 ; (16.2)

where Vrf is the rf voltage, h is the rf harmonic, � is the velocity of the synchronous

particle with respect to the velocity of light, and !0 is the revolution angular frequency.

Because of its dependency on �, the synchrotron frequency also slows down as transition

is approached. Thus, the motion of the particle cannot follow the rf bucket in the

longitudinal phase space when it is close to transition. Here, we �rst study the kinematics

as the bunch is ramped through transition, and then the space charge mismatch of the

bunch length below and above transition.

16-1
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16.1 Equations of Motion

Physically, � measures the amount of time or phase slippage of a bunch particle with

respect to the synchronous particle. Thus, for a particle with energy deviation �E, its

rf phase �� slips at a rate of�

d��

dt
=
h� !0

�2E0

�E : (16.3)

At the same time, this o�-energy particle receives additional energy from the rf cavities

at the rate of
d�E

dt
=
eVrf!0

2�
[ sin(�s +��)� sin�s] : (16.4)

Formerly, when we characterize the beam particle by � , its arrival time ahead of the

synchronous particle, the right side of d�=ds in Eq. (2.9) or (2.11) is preceded by a

negative sign, implying that the particle will arrive late (� < 0) above transition (� >

0) for a positive momentum o�set. Here, �� is the slip in rf phase relative to the

synchronous particle. When the particle arrives late at the cavity gap, the rf phase

will have evolved more than 2�h. Thus, the rf phase slip is positive and so is the sign

preceding the right side of Eq. (16.3). Eliminating �E, we obtain for small �� the

equation governing the motion of the phase of the particle:

d

dt

�
�2E0

h�!0

d��

dt

�
� eVrf cos�s!0

2�
�� = 0 : (16.5)

Unlike our previous discussion, �, E0, �, and !0 vary with time and should not be taken

out from the �rst derivative operator. This is especially true for � which appears in the

denominator. However, as an approximation, we can neglect the slow time variations of

all the parameters except �=E0. This leads to

d

dt

�
E0

�

d��

dt

�
�
�
heVrf cos�s!

2
0

2��2

�
�� = 0 : (16.6)

Under the approximation that the second bracketed term is considered time independent

and also the variation of �=E0 is linear in time near transition,y or

�

E0

=
2 _t t

4
t
Erest

; (16.7)

�d��=dt is the rf phase slip in one revolution period of the synchronous particle, not the o�-energy

particle under consideration. Therefore, this is not equal to ��!=h where �! is the slip in angular

frequency of the particle. See Sec. 18.1 for detail
ySome authors assume � to be linear in t instead. In that case, one needs also the additional

assumption that _
t
Tc � 1.
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Eq. (16.6) can be solved exactly in terms of Bessel functions of fractional orders [3].

However, all the important features of the solution can be estimated easily without

going into the di�erential equation and Bessel functions [1]. Best of all, through the

estimation, one can have a clear picture of what is going on during transition. In

Eq. (16.7), the time t is measured from transition. Thus, t < 0 is below transition and

t > 0 is above. On the other hand, the subscript t implies evaluation of the respective

quantity at the moment when transition is crossed. Thus,

_t =
eVrf!0

2�Erest

sin�s (16.8)

is the rate at which  is ramped right at transition.

We can also rewrite Eq. (16.6) in the form

d

dt

�
1

!2
s

d��

dt

�
+�� = 0 ; (16.9)

where !s is given by Eq. (16.2). However, Eq. (16.2) should be considered as a de�nition

of !s only. This is because the beam particle does not follow the invariant trajectory

of the Hamiltonian when it is near transition and therefore does not make synchrotron

oscillations, so that !s, as de�ned by Eq. (16.2), loses its meaning of frequency.

16.2 Nonadiabatic Time

When ��1 is not changing rapidly, a bucket can be de�ned. The bucket height is given

by

(�E)
bucket

/
�
E0

j�j
�1=2

: (16.10)

However, as the bunch particle passes through transition, ��1 changes rapidly. Here, we

follow the assumption of a linear time variation for �=E0 as given by Eq. (16.7), while all

other parameters such as the rf voltage and the synchronous phase, aside from ipping

from �s to � � �s, are held �xed near transition. This means that when transition is

approached, synchrotron frequency slows down to zero and the bucket height increases

to in�nity. In other words, when it is close enough to transition, the particle will not be

able to catch up with the rapid changing of the bucket shape. This time period, from
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t = �Tc to t = Tc is called the nonadiabatic region, and Tc the nonadiabatic time. Here,

we de�ne this region by

!s � 2

(�E)
bucket

d(�E)
bucket

dt
: (16.11)

This just implies that inside this region, the rate at which the bucket height is changing

is faster than the rate of executing synchrotron oscillations. The right side is

2

(�E)
bucket

d(�E)
bucket

dt

����
t=�Tc

= 2
d

dt

r
Tc
�t

�����
t=�Tc

=

s
Tc

(�t)3

�����
t=�Tc

=
1

Tc
: (16.12)

Evaluating at t = �Tc, the left side of Eq. (16.11) is

!sjt=�Tc =
s
h _tTceVrf cos �s

�4tErest

!1 ; (16.13)

where !1 = !0=� and is time independent. We then obtain the nonadiabatic time from

Eq. (16.11):

Tc =

��
�t

4
t

2!1h

�� j tan�sj
_2
t

��1=3
; (16.14)

where the expression of _t in Eq. (16.8) has been used. Note that the nonadiabatic time

is just an approximate time. The factor 2 on the right side of Eq. (16.11) was inserted for

the purpose that Tc given by Eq. (16.14) is exactly the same as the adiabatic time quoted

in the literature. We have written Eq. (16.14) in such a way that the factor in the �rst

brackets contains parameters of the lattice, while _t in the second brackets is determined

by the ramp curve and �s, the synchronous phase at transition, is determined by the

rf-voltage table.

16.3 Bunch Shape at Transition

For the sake of simplicity, we adopt a model which states that,

(1) when jtj > Tc, the beam particles follow the bucket with synchrotron oscillations,

and

(2) when jtj < Tc, the beam particles make no synchrotron oscillations at all.
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At t = �Tc, the beam particle still follows the bucket. Therefore, From Eq. (16.3),

the bunch length �� is related to the rms energy spread �
E
by

�s�� =
hj�j

�2
t tErest

�
E
; (16.15)

where � is to be evaluated at t = �Tc, and the energy E0 is evaluated approximately

right at transition since the change is slow. The 95% bunch area is de�ned as

S = 6����E ; (16.16)

where this expression should hold in the adiabatic region. From Eqs. (16.15) and (16.16),

we obtain the rms bunch length in time �� = h!0�� as

�� =

�
Sj�j

6��s!0�2
t tErest

�1=2
: (16.17)

Substituting �(�Tc) from Eq. (16.7) and !s(�Tc) from Eqs. (16.11) and (16.12), we

arrive at

�� =
1p
3�

�
ST 2

c _t
�2
t 

4
t
Erest

�1=2
: (16.18)

Our simple model requires no synchrotron oscillation inside the nonadiabatic region.

This is equivalent to having � = 0 in Eq. (16.3); or the phase of each particle will not

change at all. Therefore, Eq. (16.18) is also the bunch length right at transition, where

the exact expression from solving the di�erential equation is

�� =
2

35=6�(1
3
)

�
ST 2

c _t
�2
t 

4
t
Erest

�1=2
: (16.19)

This just amounts to the replacement of 1=
p
3� = 0:326 by 2=[35=6�(1

3
)] = 0:300, where

�(1
3
) = 2:678939 is the Gamma function. Our estimate is about 8.8% too large because

our simple model does not allow the bunch to continue to shrink in the nonadiabatic

region.

On the other hand, without synchrotron oscillations, the energy of each beam parti-

cle is accelerated by the focusing rf force according to Eq. (16.4). From t = �Tc to t = 0,

a particle at a phase o�set �� from the synchronous particle will acquire an energy

�E = TcErest

d _

d��
�� ; (16.20)
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where, according to Eq. (16.4),
d _

d��
� _t

tan�s
; (16.21)

and the small phase-o�set approximation has been made. At t = �Tc, when there are

still synchrotron oscillations in our simple model, if we write the phase o�set as

�� = c�� cos!st ; (16.22)

according to the phase-drift equation, the energy spread of the particle is

�E = ��s�
2
t tErest

h�
c�� sin!st = ��s�2

t tErest

h�

qc��2 � (��)2 ; (16.23)

where c�� =
p
6��h!0 is the half width of the bunch at t = �Tc as given by Eq. (16.18).

When evaluated at t = �Tc, it is found that the coeÆcient of Eq. (16.23) is equal to

that of Eq. (16.20), and we denote it by

a = ��s�
2
t tErest

h�
= TcErest

d _

d��
: (16.24)

Therefore, the total energy spread at transition is given by

(�E)
total

= a

�qc��2 � (��)2 +��

�
: (16.25)

The maximum total energy spread comes out to be

(�E)
total;max

=
1p
�

�
S�2

t 
4
t
Erest

T 2
c _t

�1=2
(16.26)

at �� = 2�1=2c��. The exact value from the solution of a di�erential equation is

(�E)max =
�(1

3
)

31=621=2�

�
S�2

t 
4
t
Erest

T 2
c _t

�1=2
; (16.27)

or just a replacement of 1=
p
� = 0:564 by �(1

3
)=(31=621=2�) = 0:502. By the same token,

the particle at the tail of the bunch will be decelerated by the same energy. Particles in

between will be accelerated accordingly. The bunch shape at transition is therefore given

by Fig. 1, which is slanted at an angle from the �E-axis. Our estimate of (�E)total is

about 11% too large. This is to be expected because we allow pure increment in energy
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by the focusing rf potential in the nonadiabatic region without any motion in the phase

direction.

As we recall, the maximum energy spread at transition is not derived via Eq. (16.16)

and one should not expect Eq. (16.16) to hold in the nonadiabatic region. Here, we derive

another expression for the bunch area right at transition. Using Eqs. (16.18) and (16.26)

and the fact that the maximum half bunch length is �̂ =
p
6�� , we obtain the bunch

area

S =
1p
2
��̂d�E (16.28)

If the exact solutions in Eqs. (16.19) and (16.30) are used, one gets instead

S =

p
3

2
��̂d�E ; (16.29)

or the replacement of 1=
p
2 = 0:707 by

p
3=2 = 0:866. Notice that so far we are still

within a Hamiltonian system, the bunch area should be conserved. The fact that the

bunch area is now less than ��̂d�E indicates that the bunch ellipse has been tilted, as

illustrated in Fig. 16.1. This is because phase motion in the nonadiabatic region has

almost (totally in our simpli�ed model) been frozen and the energy change has been

uneven along the bunch. This problem will be studied again in the next section.

To conclude this section, let us write the rms time spread and rms energy spread

at transition as well as the nonadiabatic time in terms of the parameters that we can

control, namely, the synchronous phase �s and ramping rate _t (Exercise 16.1):

�� / tan
1

3 �s

_
1

6

t

; �
E
/ _

1

6

t

tan
1

3 �s
; Tc / tan

1

3 �s

_
2

3

t

: (16.30)

16.4 More Sophisticated Approximation

16.4.1 Adiabatic Region

We now discard the simple model in the previous section and come back to Eq. (16.9),

the equation governing motion of small phase o�set. Instead of solving the di�erential



16-8 16. TRANSITION AND SPACE CHARGE MISMATCH

E
ne

rg
y 
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re

ad

Phase Spread

A

Figure 16.1: The evolution of the bunch, according to the simple model, from

t = �Tc (dashes) to the time when transition is crossed (solid). In the exact solution

of the di�erential equation, there is an additional shrinkage in the phase spread of

the ellipse. Point A indicates that when the phase o�set is at a maximum, the

energy o�set is not at a maximum.

equation exactly, we are looking into approximates instead. In the adiabatic region that

is not too far away from transition, the particle is performing synchrotron oscillations

with a slowly changing frequency !s=2� given by Eq. (16.2). The solution of Eq. (16.9)

is therefore of the form

�� = Aei
R
!sdt ; (16.31)

where the amplitude A is also slowly changing with time. We then have

d

dt

�
1

!2
s

d��

dt

�
= ��� +

" 
2i _A

!s
� iA _!s

!2
s

!
+

 
�A

!2
s

� 2 _A _!s
!3

!#
ei

R
!sdt : (16.32)

Since �� varies much faster than A and !s, we can neglect �A, �!s, and _A _!s, and set

2 _A

!s
=
A _!s
!2
s

; (16.33)



16.4 More Sophisticated Approximation 16-9

so that Eq. (16.9) is satis�ed. The relation in Eq. (16.33) leads to

A2

!s
= constant ; (16.34)

implying that the solution of Eq. (16.9) or the rf phase of a beam particle in the adiabatic

region can be written as

�� = B
p
!s e

i
R
!sdt ; (16.35)

with B being constant.

The dropping of the slowly varying terms from Eq. (16.32) is equivalent to assuming

�A

!2
s

� A _!s
!2
s

; (16.36)

2 _A _!s
!3
s

� A _!s
!2
s

: (16.37)

Again, with the assumption of constant rf voltage Vrf, constant synchronous phase �s,

and linear time variation of �=E0, we can write, using Eqs. (16.2), (16.7), and (16.8),

!2
s(t) = bjtj with b =

_theVrf j cos�sj!2
1

�4
t
Erest

: (16.38)

Then, together with Eq. (16.34), it is easy to show that (Exercise 16.2),

Eq: (4:6) =) jtj �
�
3

8

�2=3 �
1

b

�1=3
; (16.39)

Eq: (4:7) =) jtj �
�
1

2

�2=3 �
1

b

�1=3
: (16.40)

In other words, the adiabatic solution is only valid if Eqs. (16.39) and (16.40) hold. A

nonadiabatic time Tc can therefore be de�ned by letting

Tc =

�
1

b

�1=3
; (16.41)

which turns out to be exactly the same expression as our former de�nition in Eq. (16.12).

Here, we arrive at a neat way to remember the nonadiabatic time:

!2
s =

jtj
T 3
c

or !sjt=�Tc =
1

Tc
: (16.42)
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Now, let us continue the study of the bunch shape in the adiabatic region. Di�er-

entiating Eq. (16.35) and using Eq. (16.34), we get

d��

dt
= iB!3=2

s

"
1� i

4

�
Tc
jtj
�3=2#

ei
R
!sdt ; (16.43)

or

d��

dt
= i!s��

"
1 +

1

16

�
Tc
jtj
�3#1=2

e�i' ; (16.44)

with

' = tan�1
1

4

�
Tc
jtj
�3=2

: (16.45)

Then, using Eq. (16.3), we arrive at the energy o�set of the particle

�E = i!s��
�2Erest

j�jh!0

"
1 +

1

16

�
Tc
jtj
�3#1=2

e�i' : (16.46)

We see from Eq. (16.35) that, as the bunch is approaching the nonadiabatic region,

its width shrinks in the same way as the decrease of
p
!s. On the other hand, from

Eq. (16.46), the height of the bunch increases because of the square root term and the

t�1=4 dependency in the front factor. We also see that there is a phase advance ' of

the energy o�set, or a tilt in the bunch shape in the longitudinal phase space. This

tells us that there is already slowing down in the phase motion in the adiabatic region

when transition is approached. This reminds us again that there is no clearcut boundary

between the adiabatic and nonadiabatic regions.

The next task is to relate the constant B to the bunch area. The motion of the

particle described by Eqs. (16.35) and (16.46) is of the form

�� = c�� cos � ; �E = d�E sin('� �) ; (16.47)

which map out a tilted ellipse of area

S = �
c��
h!0

d�E cos' ; (16.48)

inscribed inside the rectangle of half-width c��=(h!0) and half-height d�E, and this is

the bunch area in eV-s.
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The half bunch length in the adiabatic region can be read o� from Eq. (16.35):

c�� = B!1=2
s : (16.49)

Substituting into Eq. (16.46), we obtain the half energy spread

d�E =
�2Erest

j�jh!0

!3=2
s

"
1 +

1

16

�
Tc
jtj
�3
#1=2

: (16.50)

where the last square bracket term is just sec', as given by Eq. (16.45). When they are

substituted in the bunch area in Eq. (16.48), the constant B will be determined,

S =
B2eVrf j cos�sj

2h
; (16.51)

which is time independent as anticipated.

Using the linear time dependency of !2
s from Eq. (16.42) and replacing the constant

B with Eq. (16.51), we obtain the time dependency of the half bunch length,

c�� =

�
2hS

eVrfj cos�sjTc

�1=2 � jtj
Tc

�1=4

; (16.52)

and also

d�E =
!0

�

�
hSeVrf j cos�sjTc

2

�1=2�Tc
jtj
�1=4

"
1 +

1

16

�
Tc
jtj
�3
#1=2

: (16.53)

Through the de�nition of the nonadiabatic time, the half bunch length and half energy

spread can be written in the form that resembles the expressions in Eqs. (16.19) and

(16.27):

c�� = h!0

�
2ST 2

c _t
��2

t 
4
t
Erest

�1=2 � jtj
Tc

�1=4

; (16.54)

and also the

d�E =

�
S�2

t 
4
t
Erest

2�T 2
c _t

�1=2 �
Tc
jtj
�1=4

"
1 +

1

16

�
Tc
jtj
�3
#1=2

: (16.55)
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16.4.2 Nonadiabatic Region

We can also study the nonadiabatic region of the Eq. (16.14), which can be transformed

to
d

dx

�
1

jxj
d��

dx

�
+�� = 0 ; (16.56)

where x = t=Tc and use has been made of Eq. (16.38). However, we �nd it easier to

solve instead the di�erential equation governing energy o�set, which reads

d2�E

dx2
+ jxj�E = 0 : (16.57)

We would like to introduce a normalized energy-o�set

�p(x) =
2�

!0eVrf cos�sTc
�E(x) =

tan�s
_tErestTc

�E(x) ; (16.58)

so that �p(x) will have the same dimension as ��, the energy equation of motion

becomes the simple relation

�� = � sgn(x)
d�p

dx
: (16.59)

For the sake of convenience, we concentrate on the situation above transition only when

x � 0 so that the absolute-value sign can be dropped and sgn(x) can be ignored. At the

end, we can replace x by jxj everywhere in the solution so that it applies to both above

and below transition. Note that both cos�s and tan�s are now negative.

To seek a solution within the nonadiabatic region where jxj < 1, it is natural to

resort to power series:

�p =
1X
n=0

anx
n+k ; (16.60)

where k is to be determined. Substitution into of Eq. (16.57) leads to

1X
n=�3

an+3(n+ k + 3)(n+ k + 2)xn+k+1 +
1X
n=0

anx
n+k+1 = 0 : (16.61)

The indicial equations determine that k = 0 and a2 = 0. The solution can be written as

�p =

�
a0 + a3x

3 + a6x
6 + � � �

�
+

�
a1x + a4x

4 + a7x
7 + � � �

�
; (16.62)
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where the coeÆcients are related by the recurrence relation

an+3 = � an
(n + 3)(n+ 2)

: (16.63)

Thus, there are two free constants a0 and a1, which are to be expected from a second-

order di�erential equation. It is more convenient to rewrite Eq. (16.62) as

�p = a0

�
1 + a03x

3 + a06x
6 + � � �

�
+ a1

�
x+ a04x

4 + a07x
7 + � � �

�
; (16.64)

where we have rede�ned the coeÆcients as a0n = an=a0 for n = 3; 6; 9; � � � , and a0n = an=a1
for n = 4; 7; 8; � � � . They can be readily computed from the recurrence relation:8>><>>:

a03 = �
1

(3:2)
; a06 = +

1

(6:5)(3:2)
; a09 = �

1

(9:8)(6:5)(3:2)
; � � � ;

a04 = �
1

(4:3)
; a07 = +

1

(7:6)(4:3)
; a010 = �

1

(10:9)(7:6)(4:3)
; � � � ;

(16.65)

where the periods or dots in above denote multiplication. The phase o�set can now be

obtained using Eq. (16.59):

�� = �a0
�
3a03x

2 + 6a06x
5 + � � �

�
� a1

�
1 + 4a04x

3 + 7a07x
6 + � � �

�
: (16.66)

Now we are going to derive the trajectory of a particle which is at its maximum

phase o�set right at transition. Thus we obtain

�a1 = c��0 = 23=2h!0

31=3�(1
3
)

�
ST 2

c _t
�2
t 

4
t
Erest

�1=2
; (16.67)

with the aid of Eq. (16.19), where an extra subscript \0" has been added to denote

\right at transition" or x = 0 for the sake of clarity. This position of the beam particle

corresponds to Point A in Fig. 16.1, where the energy o�set is not at its maximum, but

is related to it by

�E = d�E0 sin' ; (16.68)

where ' is the tilde angle referenced in Eq. (16.47), and it modi�es the expression of

bunch area to S = �b�0d�E0 cos'. However, from Eq. (16.29), the angle is found to be

cos' =
p
3=2. We therefore have

a0 =
1

2
c�p0 = 1

2

j tan�sj
_tErestTc

d�E0 =
1

2

31=6�2(1
3
)

2�
c��0 ; (16.69)



16-14 16. TRANSITION AND SPACE CHARGE MISMATCH

where Eqs. (16.19) and (16.27) have been used, and obtain the relation

a1
a0

= �2c��0c�p0 =
4�

31=6�2(1
3
)
: (16.70)

The trajectory of the beam particle is governed by

�p(x) = c��0 ��x �1 + a04x
3 + a07x

6 + � � � �� a0
a1

�
1 + a03x

3 + a06x
6 + � � � �� ; (16.71)

��(x) = c��0 ��1+4a04x
3+7a07x

6+� � � �+ a0
a1

�
3a03x

2+6a06x
5+9a09x

8+� � � �� : (16.72)

However, we are not so interested in the motion of a single particle. What we

wish to derive are the half width and half energy spread of a bunch at di�erent times.

For this, we have to solve an envelope equation given by Eq. (16.89) below with the

space charge coeÆcient nspch set to zero. However, that is a nonlinear equation which is

diÆcult to tackle. Instead, we try to extract the bunch length energy from the solution

we obtained in Eqs. (16.71) and (16.72). To accomplish this, we introduce an ensemble

of beam particles at the phase ellipse. This can be easily done by writing out the general

solution of the di�erential equation [Eq. (16.57)] by a taking a linear combination of the

Eq. (16.71) or (16.72) and another solution of the di�erential equation. Thus, we have

�p(x) =c��0
(
cos 

"
�x
�
1 + a04x

3 + a07x
6 + � � �

�
� a0
a1

�
1 + a03x

3 + a06x
6 + � � �

�#

� sin 

"p
3a0
a1

�
1 + a03x

3 + a06x
6 + � � �

�#)
; (16.73)

��(x) =c��0
(
cos 

"�
1+4a04x

3+7a07x
6+� � �

�
+
a0
a1

�
3a03x

2+6a06x
5+9a09x

8+� � �
�#

+ sin 

"p
3a0
a1

�
3a03x

2+6a06x
5+9a09x

8+� � �
�#)

; (16.74)

where �p3a0=a1 is included purely for convenience and the relation �� = �d�p=dx
still holds. One constant in these equation is c��0, the maximum phase o�set of the

phase ellipse at x = 0. In fact, it solely determines bunch area or the area of the ellipse

(Exercise 16.4). The other constant is the phase angle  , which represents di�erent

particles on the ellipse in the longitudinal phase space.
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As a �rst application, at x = 0, Eq. (16.73) becomes

�p(x) = �c��0 a0a1
�
cos +

p
3 sin 

�
; (16.75)

whose maximum occurs when  = �=3. This gives the normalized energy spread at

transition c�p0 = �2a0
a1

c��0 ; (16.76)

agreeing with what we have in Eq. (16.70). The phase spread at transition is trivial

because only the cosine term in Eq. (16.74) contributes.

Now let us proceed up to the order x. The energy spread in Eq. (16.73) gives

�p(x) = �c��0 a0a1
�
cos 

�
1 +

a1
a0
x

�
+
p
3 sin 

�
: (16.77)

For the maximum,

cos =
1

2

�
1 +

3a1
4a0

x

�
and sin =

p
3

2

�
1� a1

4a0
x

�
: (16.78)

Thus, the half energy spread is

c�p(x) = c�p0 �1 + a1
4a0

x

�
= c�p0

"
1� �

31=6�2
�
1
3

� x# : (16.79)

There is no O(x) in the correction to the half bunch length. The next order is O(x2):

��(x) = c��0
"
cos 

�
1� a0

2a1
x2
�
� sin 

p
3a0
2a1

x2

#
; (16.80)

whose maximum occurs when  = O(x2). Thus the half bunch length becomes

c��(x) = c��0 �1� a0
2a1

x2
�
= c�p0

"
1 +

31=6�2
�
1
3

�
8�

x2

#
: (16.81)

Higher orders in x of the half energy spread and half bunch length of the bunch can

therefore be computed.

It is evident that from time jtj in the nonadiabatic region to the time when transition

is crossed, the shrinkage of the bunch length is of order (jtj=Tc)2 and is therefore small,
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while the increase in energy spread is of order (jtj=Tc) which is much larger. This

explains why in the simple model of Sec. 16.3, we can just approximate the bunch

length at transition to be the bunch length at the nonadiabatic time. On the other

hand, we have to compute the increase in energy spread within the nonadiabatic region

more accurately.

There is an important comment on why that particular combination of independent

solutions are used for the phase ellipse in Eq. (16.73) or (16.74). We choose the trajectory

in Eqs. (16.71) and (16.72) as one of the independent solution so as to ensure that at the

time when transition is crossed the bunch ellipse will be tilted to the correct amount, so

that the half bunch length and half energy spread will be correct. Any other combination

is also a valid solution of the di�erential equation, but it will lead to the bunch ellipse to

be tilted di�erently at transition, which in turn implies the possible unphysical situation

that the bunch does not �t the rf bucket when it is well below transition.

In passing, we list the exact solution for the phase o�set and energy o�set:

�p(x) = Ay1=3
�
cos 1J�1=3(y) + sin 1N�1=3(y)

�
;�

2

3

�1=3

��(x) = Ay2=3
�
cos 1J2=3(y) + sin 1N2=3(y)

�
; (16.82)

where y = 2
3
jxj3=2, and J and N are the Bessel and Neumann functions or order 2

3
or

�1
3
. Here, A and  1 are the two constants. Unlike our solution, this solution is valid for

all x. When we are very far from transition, or jxj � 1, the Bessel functions have the

asymptotic expansions:

J�(y) �
r

2

�y
cos

�
y � �

2

�
� +

1

2

��
;

N�(y) �
r

2

�y
sin

�
y � �

2

�
� +

1

2

��
: (16.83)

Thus, �p and �� are 90Æ out of phase, or the bunch �ts the bucket far from

transition. Therefore, at the moment when transition is crossed, the bunch ellipse will

be tilted to the right amount so that one can read o� the correct half bunch length and

the half energy spread. This explains why we have chosen the combination of J�1=3 and

N�1=3 for �p in Eq. (16.82) instead of, for example, J�1=3 and J1=3. This method of

asymptotic behavior cannot be applied to the power-series solution we pursuit in this

section, because the power-series solution is only valid when jxj < 1.
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16.5 Space Charge Mismatch

In the previous section, the equations of motion are symmetric about the transition time.

This means that the bunch becomes shorter and taller while approaching transition, but

restores its shape after crossing transition. Most important of all, the equilibrium bunch

length is continuous across transition and the bunch area remains constant. However, the

introduction of space charge breaks this symmetry. Below transition, the space charge

force is repulsive. The rf potential well is distorted, resulting in the lengthening of the

bunch. But the situation is di�erent above transition. With the switching of sign of the

slippage factor, the space charge force changes sign also. Now it becomes attractive. It

adds constructively to the rf focusing force and the equilibrium bunch length becomes

shorter instead. This is illustrated in the top plot of Fig. 16.2.

A space charge parameter can easily be de�ned. We have derived in Eq. (3.19) the

reactive force on a beam particle due to a reactive impedance, which is proportional to

the gradient of the longitudinal beam pro�le. If we assume a parabolic beam pro�le, this

reactive force is linear. Thus, for a linearized rf voltage, the space charge force implies

the replacement,h
eVrf cos�s

i
�� �!

h
eVrf cos�s

i
��� 3�Nbr0Erestg0h

2

R2
t
c��3 �� ; (16.84)

where Nb is the number of particles per bunch with half width c�� in rf radian, r0 the

classical particle radius, and R the accelerator radius. Use has been made of the fact

that the reactive impedance is the space charge impedance Z
k
0=n = iZ0g0=(2�t

2
t
) at

transition energy as given by Eq. (3.15). Notice that cos�s changes sign from positive

to negative on crossing transition. Thus, the space charge force counteracts the rf force

below transition and enhances the rf force above. The ratio of the space charge force to

the rf force is

�spch =
3�Nbr0Erestg0h

2

R2
t
eVrfj cos�sjc��3 : (16.85)

This ratio is, however, time dependent, because the bunch length changes with time.

One can evaluate this ratio right at transition and called it the space charge parameter.

Thus

�spch(0) =
9�3(1

3
)

16
p
2

Nbr0g0h

R

�
�tErest

Sh!0

�3=2�
h!0

�t _t

�1=2
; (16.86)

where use has been made of Eq. (16.19). Figure 16.2 is computed according to the space

charge parameter �spch(0) = 2.
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Figure 16.2: Bunch length is plotted versus x, time normalized to the nonadia-

batic time Tc, across transition. Below transition (negative time), the space charge

force is repulsive, thus giving a longer equilibrium bunch length. Above transition

(positive time), the space charge force becomes attractive and therefore shortens the

equilibrium bunch length. Top plot shows the mismatch of equilibrium bunch length

across transition. A possible transition jump from x = t�=Tc to x = t+=Tc should

have bunch length matched from the beginning to the end of jump, and is therefore

asymmetric with respect to x = 0. Lower plot shows the bunch that matches to the

space charge distorted bucket below transition overshoots after crossing transition

and oscillates about the shorter equilibrium length.
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Thus, as soon as transition is crossed, the bunch will �nd itself not able to �t the rf

bucket. The bunch tumbles inside the bucket performing synchrotron oscillations in the

quadrupole mode. In the worst situation, there will be beam loss. Even if the bucket is

large enough to hold the bunch, the bunch area will increase due to �lamentation. Such

phenomenon has been observed in the Fermilab Booster, Main Ring, and the present

Main Injector. A longitudinal quadrupole damping has been installed in each of the rings

to cope with the oscillations. Such a damper consists mainly of a pickup which sends

signals of the bunch length to modify the rf voltage, which in turn damp the oscillations.

Figure 16.3 shows such a mismatched oscillation at the Fermilab Main Ring. In the top

plot, the quadrupole damper is turned o�. The lowest trace, which is green in color,

measures the bunch length by comparing the spectral signal of the third rf harmonic

to the fundamental. The bunch length goes through a minimum around 0.78 s when

transition is crossed. After that it oscillates at twice the synchrotron frequency in the

quadrupole mode with increasing amplitude, as a result of the space charge mismatch

of the equilibrium bunch lengths before and after transition. Note that the quadrupole

synchrotron period is diminishing away from transition due to the fact the slippage factor

� is increasing. In the lower plot, the quadrupole damper is turned on. The lowest trace,

which is green in color, measures the bunch length. It is evident that although there are

some quadrupole oscillations after transition, they are of much smaller amplitudes and

are completely damped later.

16.5.1 Mathematical Formulation

Mathematically, this phenomenon can be formulated as follows. As a result of Eqs. (16.84)

and (16.86), the equation of motion governing �� is modi�ed from Eq. (16.9) to

d

dt

�
1

!2
s

d��

dt

�
+��+ sgn(t)

nspchc��3 �� = 0 ; (16.87)

where nspch = �spchc��3 and is no more time dependent. In terms of the normalized time

coordinate x = t=Tc, the di�erential equation becomes

d

dx

�
1

x

d��

dx

�
+ sgn(x)��+

nspchc��3 �� = 0 : (16.88)
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Figure 16.3: (color) A bunch is crossing transition at the Fermilab Main Ring.

The lowest (green) trace of the top plot measures the bunch length. It dips to a

minimum at � 0:78 s when transition is crossed. It then oscillates at twice the

synchrotron frequency with large amplitudes due to space charge mismatch. In the

lower plot, the quadrupole damper is turned on. Quadrupole oscillations of small

amplitudes are seen in the lowest (green) trace after transition and are completely

damped later.
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The half bunch length c��, however, satis�es a slightly di�erent di�erential equation,
d

dx

"
1

x

dc��
dx

#
+ sgn(x)c��+ nspchc��2 � x

(SN=�)
2c��3 = 0 ; (16.89)

where SN is a normalized dimensionless bunch area when the bunch ellipse is transformed

to a circle. It is related to our usual bunch area S in eV-s (true area of the tilted ellipse

not just � multiplied by the width and height) by

SN =
2h2!2

0 _tT
2
c

�2
t 

4
t
Erest

S : (16.90)

The derivation was �rst given by S�renssen [3]. This is just an envelope equation in

the longitudinal phase space and can be derived easily (Exercise 16.6). Comparing

with the single-particle equation, Eq. (16.88), there is one extra term proportional to

the square of the emittance and inversely to the third power of the the bunch lengthc��. Such an extra last term also arises in the Kapchinskij-Vladimirskij beam envelope

equation for transverse oscillation [4]. In fact, it occurs also in the equation satis�ed

by the betatron function, where the betatron function takes the place of c�� while

the transverse emittance takes the place of (SN=�)
2. This equation cannot be solved

analytically. However, when it is far away from transition, jxj � 1, the variation of c��
with respect to x should be small, and we obtain the algebraic equation

c��4 + sgn(x)nspchc�� =
S2
N

�2
jxj : (16.91)

In the absence of space charge, nspch = 0, we recover the solution in Eq. (16.54), namely,

c�� =

�
SN
�

�1=2
jxj1=4 = h!0

�
2ST 2

c _t
��2

t 
4
t
Erest

�1=2
jxj1=4 : (16.92)

If we wish, we may also consider this as a derivation of the half-bunch-length di�erential

equation [Eq. (16.89)], since we have already derived this expression for half bunch

length and we know that such a term proportional to
�c����3 must exist in an envelope

equation.

Equation (16.91), the quartic in bunch length, can be further simpli�ed to

�4 + sgn(x)�N0� = jxj ; (16.93)
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where the normalized bunch length � is de�ned as

c�� =

r
SN
�
� = h!0

s
2 _tT

2
c S

��2
t 

4
t
Erest

� =

s
2h!0 _tT

2
c Sc

��t4t
� ; (16.94)

and the normalized space charge parameter is

�N0=nspch

�
�

SN

�3=2
=
3�2Nbr0g0h

2R

�
�tErest

Sh!0

�3=2� h!0

2��t _t

�1=2
=
3�2Nbr0g0h

2RS
3=2
c

�
h!0

2��t _t

�1=2
;

(16.95)

where the explicit expression of Tc has been used. In above, Sc is another commonly

used dimensionless bunch area, which is de�ned as

Sc = �\�(�)c�� =
h!0

�Erest

S : (16.96)

Written in terms of these normalized quantities, the di�erential equation satis�ed by the

bunch length is also simpli�ed and becomes

d

dx

�
1

x

d�

dx

�
+ sgn(x)� +

�N0

�2
� x

�3
= 0 : (16.97)

Notice that c��=� is proportional to the bunch length at transition,

c��0 = 23=2h!0

31=3�(1
3
)

�
ST 2

c _t
�2
t 

4
t
Erest

�1=2
: (16.98)

Thus, aside from a constant, � can also be considered as normalized to the bunch length

at transition. In fact, evaluated at transition without space charge, � = 2�1=23�1=3=�(1
3
) =

0:91748 radian, as indicated in Fig. 16.2. Comparing the original space charge parameter

�spch(0) in Eq. (16.86) with the normalized space charge parameter �N0, we �nd

�N0 =
8�3=2

3
�
�(1

3
)
�3 �spch(0) = 0:77233 �spch(0) : (16.99)

The lower plot in Fig. 16.2 is derived from solving Eq. (16.97) numerically starting with

a bunch that is matched to the equilibrium bunch length far below transition.

We conclude this section by listing in Table 16.1 some transition crossing properties

as well as the space charger parameters of the Fermilab Booster, Fermilab Main Ring,

and Fermilab Main Injector. We have used in the table the designed intensity of 6�1010
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for the Main Injector. At its former commissioned intensity of 4 � 1010, the space

charge parameter was �spch(0) = 0:303 only. Notice that the space charge parameter

for the Fermilab Booster is about ten times those for the Main Ring and Main Injector.

Thus, bunch-length oscillations due to space charge mismatch can be very serious at the

Booster before the installation of the quadrupole damper. In fact, this has been one of

the reasons of bunch area increases due to �lamentation after crossing transition.

Table 16.1: Some transition crossing properties and the space charge parameters

of the Fermilab Booster, Main Ring, and Main Injector.

Booster Main Ring Main Injector

Circumference 474.203 6283.185 3319.419 m

Transition t 5.373 18.85 21.80

Revolution frequency f0 621.157 47.646 90.220 kHz

Rf harmonic h 84 1113 588

Rf voltage Vrf 0.763 2.5 2.78 MV

Synchronous angle �s 53.6 60.0 37.6 degrees

Ramp rate _t 406.7 109.94 163.10 s�1

nonadiabatic time Tc 0.216 3.00 2.14 ms

Number per bunch Nb 3� 1010 3� 1010 6� 1010

95% bunch area S 0.025 0.15 0.15 eV-s

Rms bunch length at t 0.237 0.335 0.217 ns

Space charge g0 4.5 4.89 4,34

jZk
0=njspch 29.9 2.63 1.72 Ohms

space charge parameter �spch(0) 2.117 0.277 0.455

16.6 Transition Jump

A transition jump is a way to go around transition crossing so that all the demise can be

avoided [5, 6, 7]. It consists of the following steps. At some time t = t� < 0, the currents

of some quadrupoles are triggered so that t of the ring is sudden raised and the beam

becomes far below transition (usually �t � �1). Next, at some time t = t+ > 0, these

quadrupoles are triggered back to their original currents and the t of the ring returns to
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its original value. However, at this moment the beam is far above (usually �t � 1) the

original t already. Because we need to avoid the bunch-length mismatch due to space

charge, we need to make sure that the equilibrium bunch lengths at t� and t+ are equal.

This means that jt�j < t+, or the transition jump will be asymmetric about t = 0. This

is illustrated in the top plot of Fig. 16.2 (see also Exercise 16.7).

It is important to understand that a transition jump scheme does not really elimi-

nate the crossing of transition. This is because when the transition gamma is returned

to its original value by triggering the quadrupoles the second time, the beam particles

that were below transition suddenly �nd themselves above transition. In other words,

transition is crossed by changing suddenly the value of t of the lattice instead of ramp-

ing the particles. However, crossing transition this way is much faster than ramping,

usually faster by a factor of more than 10. The e�ective _t is therefore very large and the

e�ective nonadiabatic time becomes very small. The manipulation of the quadrupoles

at t = t� can be much slower because there is no transition crossing during that ma-

nipulation. We win here because the demise of crossing transition will not have enough

time to develop. On the other hand, changing the lattice of the accelerator ring so fast

can bring about other problems also. One possibility is a sudden increase in dispersion

resulting in a sudden increase in the horizontal beam size which may lead to beam loss.

Recently, Visnijic has been able to limit the propagation of this dispersion wave by the

installation of a three-quadrupole cell [8].

In the nonadiabatic region, the particles near the head/tail of the bunch will be

gaining/losing excess energy than the synchronous particle. The momentum spread of

the bunch may be increased by such an extent that the momentum acceptance will be

passed and beam loss occurs. There is a suggestion to add a third or second harmonic

to the rf wave so that the latter becomes at within the length of the bunch. In this way

all particles in the bunch will accelerate equally and the excess increase in momentum

spread will be suppressed reducing most of the particle loss. This method had been

applied to the former Fermilab Main Ring [9].
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16.7 Exercises

16.1. Derive the variation of the nonadiabatic time Tc and the rms time and energy

spreads of a bunch right at transition with respect to the synchronous phase �s
and the ramping rate _t, as given in Eq. (16.30).

16.2. Show that the time evaluation of the phase o�set,

��(t) = B
p
!se

i
R
!sdt ; (16.100)

where B is a constant, is valid only in the adiabatic region.

Hint: Show that the approximations made in Eqs. (16.36) and (16.37) are in

accordance with t� Tc, where Tc is the nonadiabatic time.

16.3. Show that the half bunch length and half energy spread given by Eqs. (16.52) and

(16.53) can also be obtained by relation from the phase equation:

c�� =
hj�j!0

�2E0!s
d�E ; (16.101)

together with the assumption of linear time variation of �=E0.

16.4. (1) If f(x) and g(x) are two independent solutions of the di�erential equation

(16.57), show that the Wronskian W (f; g) � f(x)g0(x)� f 0(x)g(x) is independent

of x and can therefore be evaluated at any x, especially at x = 0.

(2) The solution can be written as

�p = B [f(x) cos + g(x) sin ] ;

�� = �B [f 0(x) cos + g0(x) sin ] ;
(16.102)

where B is a constant. Show that these two equations trace out an ellipse by

varying  , with the ellipse area A given by

A2 / (f 2 + g2)(f 0
2
+ g0

2
)� (ff 0 + gg0)2 : (16.103)

(3) Show that the right side of Eq. (16.103) is equal to the Wronskian W (f; g)

and the bunch area is therefore conserved and is determined only by the constant

B.

16.5. Show that the power-series expansion of the Eqs. (16.82) gives exactly the same

solution as Eqs. (16.73) and (16.74). Note that  in the two solutions can be

di�erent.
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16.6. (1) Using as canonical coordinates

�� and p =
h!0

�2Erest

�E ; (16.104)

derive the envelope equation for ~� =
ph��2i far away from transition:

�~�+ !2
s
~�+

!2
snspchc��3 ~�� E3

0

~�3
= 0 ; (16.105)

where the half length of the bunch is c�� =
p
5~� for the parabolic distribution.

The symbol nspch=c��3 is the ratio of the space charge force to the rf force de�ned
in Eqs. (16.85) and (16.87),

E0 =
p
h��2ihp2i � hp��i2 (16.106)

is proportional to the longitudinal emittance, and !s is the angular synchrotron

frequency. Then convert the envelope equation to one for the half bunch lengthc��.
(2) Near transition, !2

s = t=T 3
c = x=T 2

c , where Tc is the nonadiabatic time. Because

of the rapidly varying !2
s , show that in the former derivation we need to make the

substitution
1

!2
s

d2c��
dx2

�! d

dx

 
1

!2
s

dc��
dx

!
: (16.107)

Then derive the envelope equation of Eq. (16.89).

16.7. A transition jump is to be designed for the Fermilab Main Injector with a total

jump of �t = 2:0. Because of space charge mismatch of the bunch length near

transition, the jump will be asymmetric; i.e., jt�j < t+, where t� is the start-

jump time before transition and t+ the end-jump time after transition. Using

Eq. (16.93), compute t�, t+, �t�, and �t+, where the latter are, respectively,

the amounts of jump from t = t� to t = 0 and from t = 0 t = t+. For the Main

Injector, the ramp rate across transition is _t = 163:1 s�1 and the nonadiabatic

time is Tc = 2:14 ms.



Bibliography

[1] K.Y. Ng Bunch Shape Evolution Near Transition, | an Intuitive Approach, Fermi-

lab report FN-644, 1996.

[2] I. Kourbanis, private communication; E.C. Raka, Damping Bunch shape Oscilla-

tions in the Brookhaven AGS, IEEE, NS16, 3, 182 (1969).

[3] A. S�renssen, The E�ect of Strong Longitudinal Space-Charge Forces at Transition,

CERN Report MPS/Int. MU/EP 67-2, 1967.

[4] I.M. Kapchinskij and V.V. Vladimirskij, Limitations of Proton Beam Current in a

strong Focusing Linear Accelerator Associated with the Beam Charge, International

Conference on High Energy Accelerators and Instrumentation, CERN 1959, p.274.

[5] S. Holmes, Main Injector Transition Jump, Fermilab Report MI-0008, 1989.

[6] T. Risselada, CERN 4th General Accel. School, J�ukuch, Germany, 1990, p.161.

[7] K.Y. Ng and A. Bogacz, Dispersion t Jump for the Main Injector, Proceedings

of the 1995 Particle Accelerator Conference and International Conference on High

Energy Accelerators, Dallas, May 1-5, 1995, p.3340.

[8] V. Visnjic, Local Dispersion Insert: the t Knob for Accelerators, Fermilab Report

TM-1888, 1994.

[9] C.M. Bhat, J. GriÆn, J. MacLachlan, M. Martens, K. Meisner, K.Y. Ng, Transition

Crossing in Proton Synchrotrons using a Flattened rf Wave, Phys. Rev. E55, 1028

(1997).

16-27



16-28 BIBLIOGRAPHY



Chapter 17

NEGATIVE-MASS INSTABILITY

Near transition, the slippage factor � decreases rapidly, thus decreasing the revo-

lution frequency spread coming from the energy spread. Landau damping therefore di-

minishes and the beam is subject to instability. Below transition, most proton machines

are dominated by space charge impedance. If the resistive part of the total impedance

is small, the proton bunches should be stable against microwave instability. However, as

soon as transition is crossed, the space charge force switches sign which together with

the vanishingly small value of the slippage factor will drive the beam to instability. This

is called negative-mass instability, the name coming from the fact that particle behaviors

above transition, for example, attractive space charge force and repulsive inductive force,

are the same as if they are having negative mass. All low-energy proton machines will

su�er from negative-mass instability while crossing transition. However, this instability

grows for a limited time only until the slippage factor � becomes large enough to damp

the instability. If the ring is well-designed so that the time interval of growth and the

growth rate are both small, negative-mass instability just results in a small increase in

bunch area. If the ring is not well-designed, the increase in bunch area will be so large

that the bunch may exceed the bucket height and even the momentum aperture of the

vacuum chamber resulting in beam loss. In a machine like the Fermilab Main Ring

where bunch coalescence is required to feed the Tevatron which is a colliding storage

ring, the growth in bunch area is especially important. This is because too large a bunch

area after transition will lead to undesirable large bunch area after coalescence, which

will in turn lower the luminosity of the Tevatron.

As was discussed in Sec. 6.1.3, while the Landau damping rate decreases as �, the

17-1
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microwave instability growth rate decreases as
pj�j as well. The growth rate is therefore

time dependent, thus complicating the calculation of the total amount of growth in bunch

area.

17.1 Growth at Cuto�

In the absence of space charge or other coupling impedances, the motion of a particle in

the longitudinal phase space can be derived analytically [3] at any time near transition in

terms of Bessel function J 2

3

and Neumann function N 2

3

. With the introduction of space

charge, the growth rate of a small excitation amplitude can be evaluated by integrating

the Vlasov equation when the bunch has either an elliptical or bi-Gaussian distribution

in the longitudinal phase space. The total growth can then be tallied up by small time

steps across transition. Lee and Wang [1] made such a calculation for the Relativistic

Heavy Ion Collider (RHIC) at Brookhaven before the machine was built. The emittance

growth was taken as two times the growth of the excitation amplitude at the cuto�

frequency of the beam pipe, and the result was considered satisfactory. The choice of

the cuto� frequency comes from the assumption that electromagnetic waves emitted by

the bunch at higher frequencies will not bounce back from the beam pipe to interact

with the bunch. Wei [2] later studied the emittance growth of the Alternating Gradient

Synchrotron (AGS) at Brookhaven using similar approach. His simulation showed that

the emittance blowup had been very much overestimated. Wei pointed out that the

bunch emittance had been kept constant by Lee and Wang in the computation of the

growth for each time step. The bunch emittance was in fact growing and would provide

more Landau damping to counteract the instability. With the emittance updated at

each time step, he found the numerical calculations agree with the simulations.

17.1.1 Simple Model

With some suitable assumptions, the model of Lee-Wang-Wei can be made analytic,

resulting in some simple formulas for easy estimation [3]. First, let us begin with the

dispersion relation of Eq. (6.19) derived in Chapter 6 for the revolution harmonic n:

1 = �
�
�
0

n

�2 Z F 0(!)
�
=n� !

d! ; (17.1)
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where �
 = 
 � n!0 is the coherent angular frequency shift, 
 the coherent angular

frequency of the instability, and !0 the revolution angular frequency. In above, �
0 is

the coherent frequency shift driven by the longitudinal impedance Z
k
0=n without Landau

damping, which can be expressed as�
�
0

n

�2

=
ie�!2

0Ipk
2��2E0

Z
k
0

n
; (17.2)

and F (!) is the distribution in angular revolution frequency !,

F (!) =
1p
2��!

e�!
2=(2�2!) ; (17.3)

with

�! =
j�j!0

�2E0
�E (17.4)

the rms angular frequency spread in the bunch, �E the rms energy spread, E0 the

energy and !0 the angular revolution frequency of the synchronous particle, and Ipk =

eNb=(
p
2��� ) the peak current of the bunch of Nb particles and rms length �� = 1=�!.

Dimensionless variables are now introduced,

u =
!

�!
; z =

�


n�!
; (17.5)

and the dispersion relation takes the form

1 = �
�
�
0

n�!

�2 Z
G0(u)
z � u

du ; (17.6)

with

G(u) =
1p
2�

e�u
2=2 : (17.7)

Again, we assume the slip factor � to be linear in time near transition as given by

�

E0
=

2 _t
4
t
Erest

t =
eVrf!0 sin�s
�4

t
Erest

t ; (17.8)

where t is the time measured from the moment transition is crossed, Erest the rest energy

of the beam particles and Vrf the rf voltage. We get, from Eqs. (17.2), (17.6), and (17.8),

1 = �ia
t

Z
G0(u)
z � u

du ; (17.9)
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where

a =
eNb(Z

k
0=n)�

24
t
E2

rest

2
p
2�!0���2EVrf sin�s

; (17.10)

is a slowly varying function of t. Written in this form, all accelerator and bunch param-

eters have been embedded in the variable a and integral in Eq. (17.9) becomes machine

and beam independent.

Next, we want to compute the time t0 when � increases to such a value that stability

is regained. There are two simple situations. The �rst one is when the longitudinal

impedance is purely space charge or capacitive. Therefore, the parameter a is positive

imaginary number or �ia is real and positive. The integral must therefore be real. At

the edge of instability �
=n is replaced by �
=n+ i�, where � is a positive in�nitesimal

real number. The imaginary part of the integral is just �i�G0(z) = 0 or z = 0. This

corresponds to Point A on the threshold curve shown in Fig. 17.1. The principal value

part of the integral can now be performed easily and it integrates to unity exactly. We

obtain the solution

t0 = �ia(t0) ; (17.11)

where we write a(t0) because a is a function of �� , �E, !0, etc, which depend on time.

The quantities of largest variation with time in a(t) are �� and �E. It turns out that t0
in most cases is of the order of the nonadiabatic time Tc or larger, so that the bunch

area, which is conserved, is close to S = 6����E. Thus a(t) / �� . We notice from

Eqs. (16.19) and (16.54) that the variation of �� from t = 0 to t = Tc is at most � 10%.

Therefore, we can make the approximation that a(t) � a(t0) for all the later time at

which the bunch is unstable. With this approximation, we can compute from Eq (17.9)

the growth rate at other time t = t0t0, where 0 � t0 � 1. The equation to solve is

t0 =
Z

G0(u)
z � u

du : (17.12)

The solution is simple because the imaginary part of the right side has to vanish, leading

to z = iy, where y is real. We obtain�

t0 = 1�
r
�

2
y ey

2=2 erfc

�
yp
2

�
; (17.13)

�First express the right side of Eq. (17.12) in terms of the complex error function w(iy=
p
2) and then

use another representation of the complex error function to cast the result in the form of Eq. (17.13).
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Figure 17.1: The threshold dispersion curve for Gaussian distribution. Point A

corresponds to the situation where the longitudinal impedance is purely capacitive

such as space charge. Point B corresponds to the situation where the longitudinal

impedance is purely real such as the peak of a broad resonance.

where erfc(x) = 1� erf(x) is the complimentary error function. The integrated growth

per harmonic is given by

S+
n

=

Z t0

0

Im �


n
dt = t0

Z 1

0

�! Imz dt0 =
�EeVrf sin�s!

2
0t

2
0

��2
t 

4
t
E2

rest

Z 1

0

t0 Imz dt0 ; (17.14)

where Eqs. (17.4) and (17.8) have been used. In Fig. 17.2(a), we plot t0 Imz as a function

of t0 with the aid of Eq. (17.13). The last integral in Eq. (17.14) is 0.10346. With the

aid of Eqs. (17.10) and (17.11), the integrated growth per harmonic becomes

S+
n

= F spch
1 ��

�
e2NbjZk

0=nj�t2tErest

�2
S3eVrf sin�s

; (17.15)

where the constant is machine independent and is given by

F spch
1 = 27�

Z 1

0

t0 Imz dt0 = 8:776 : (17.16)
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Figure 17.2: Plot of t0 Imz, which is proportional to the growth rate as a function

of normalized time t0 = t=t0, where t is measured from the moment when transition

is crossed (t < 0 below transition and t > 0 above transition), and t0 is the time

when the slip factor � becomes large enough so that stability is achieved. Plot (a)

is the situation when the longitudinal impedance is purely capacitance like space

charge. Plot (b) is the situation when the longitudinal impedance is purely real like

the peak of a broad resonance. Note that there is no growth below transition when

the impedance is purely capacitive.

In above, we have used the fact that the 95% bunch area is S � 6����E, since t0 & Tc.

The rms bunch length �� will be evaluated using Eq. (16.52).

Another possibility to have a simple solution to Eq. (17.9) is to assume Z
k
0=n to

be purely real, for example at the peak of a broad resonance. Now the variable a in

Eq. (17.9) is real and positive. Therefore, we require the real part of the dispersion

integral to vanish. To derive the time t0 where the beam regains stability, we seek the

solution z = x + i�, where � is a positive in�nitesimal number. We �nd that x satis�es

1�
p
2 x e�x

2=2

Z x=
p
2

0

et
2

dt = 0 : (17.17)

This gives x=
p
2 = 0:924139 or

t0 =

r
�

2
x e�x

2=2 = 0:6972853 a(t0) : (17.18)
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This solution corresponds to Point B in Fig.17.1. Again, we approximate the problem

by evaluating a(t) at t0. Substituting back into the dispersion relation, the Eq. (17.9)

becomes

0:697285 t0 = �i
Z

G0(u)
z � u

du = �i
�
1 + i

r
�

2
z w

�
zp
2

��
; (17.19)

where t0 = t=t0 and w(z) is the complex error function. Next we need to relate the

growth rate, which is proportional to Imz, to the time t0 before stability is regained.

For each value of y = Imz, we require

1� Im
�r

�

2
z w

�
zp
2

��
= 0 ; (17.20)

by solving for x, where z = x + iy. This has to be solved numerically. The relation

of t0 Imz as a function of t0 is plotted in Fig. 17.2(b). The area under the growth-rate

curve is 0.211765 for 0 � t0 � 1. Unlike the situation of a purely capacitive impedance,

there is microwave growth both after and before transition. In this particular model

of a purely real impedance, the growth is symmetric about the time when transition

is crossed. The integrated growth above transition per harmonic S+=n is exactly the

same expression in Eq. (17.14) except that we now have t20 = (0:697285 a)2 instead of

the former t20 = jaj2. Thus, we also have the same Eq. (17.15) but with the constant

F spch
1 replaced by another universal constant F real

1 , where

F real
1 = 27�(0:697285)2

Z 1

0

t0 Imz dt0 = 27�(0:697285)2(0:211765) = 8:734 ; (17.21)

which happens to be very close to F spch
1 . The integrated growth per harmonic S�=n

below transition is exactly equal to S+=n.

When the condition that Zk
0=n is purely reactive or real is relaxed, the solution of

the dispersion relation will not be so simple. The result can also be expressed in the

form of Eq. (17.15). The numerical constant F1 will deviate from F spch
1 and F real

1 . Also

there will be a di�erent F1 for a di�erent phase in Z
k
0=n.

Here, we will apply these formulas to the Fermilab Booster, Main Ring, and Main

Injector, as listed in Table 17.1. Since the total growth is exponential, it is very sensitive

to the bunch area, impedance, number per bunch, and the growth harmonic. Even a

factor of two decrease in the bunch area or a factor of two enhancement in one of the

other quantities can increase the the total growth tremendously. Notice that some total

growths are more than 10000 fold. But this is only the growth of a spectral component
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and it is not easy to relate it to the growth of the bunch area. For this reason, the theory

of growth at cuto� is not so enlightening. We will analyze all the shortcomings of the

model and study the model of Hardt [6], which may provide a more reasonable criterion

of beam blowup across transition.

Table 17.1: Growth-at-cuto� theory applied to the Fermilab Booster, Main Ring,

and main Injector when the impedance is purely space charge or purely resistive.

Booster Main Ring Main Injector

95% Bunch Area S 0.025 0.15 0.15 eV-s

Number per bunch Nb 3� 1010 3� 1010 6� 1010

Beam pipe radius 5.00 3.50 2.66 cm

Nonadiabatic time Tc 0.216 3.00 2.14

Cuto� harmonic n 1510 28600 19900

Cuto� frequency 0.938 1.36 1.79 GHz

Purely Space Charge

jZk
0=njspch 30.0 2.63 1.72 Ohms

t0 2.23 2.30 2.71 ms

�� at t0 0.463 0.342 0.251 ns

Growth rate per harmonic S+=n 0.00619 7:40� 10�6 2:10� 10�5

Growth index S+ 9.35 0.203 0.416

Total growth exp(S+) 11400 1.23 1.52

Resistive Impedance

Z
k
0=n 15.0 10.0 1.6 Ohms

t0 0.549 8.58 1.52 ms

�� at t0 0.326 0.475 0.217 ns

Growth rate per harmonic S+=n 0.000125 1:66� 10�5 1:78� 10�6

Growth index S++S� 3.30 8.31 0.619

Total growth exp(S++S�) 27.0 4060 1.86

17.1.2 Shortcomings

In order to discuss the shortcomings of the Lee-Wang-Wei method, let us �rst review

some theory of the negative-mass instability. If we ignore Landau damping, the growth
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rate at peak current Ipk at the revolution harmonic n is given by

G(n; t) = n!0

 
j�jeIpkjZk

0=njspch
2��2Erest

!1=2

; (17.22)

where Erest is the particle rest energy, � the slippage factor, t the time measured from

the moment of transition crossing, and the space charge impedance given by"
Z
k
0

n

#
spch

= i
Z0g

2�2
: (17.23)

Here, Z0 � 377 ohms is the free-space impedance,  and � the relativistic parameters

of the bunch particle at or near transition, and g the space charge geometric parameter,

which has been derived in Sec. 3.2 at low frequencies as

g0 = 1 + 2 ln
b

a
; (17.24)

where a is the beam radius and b the beam pipe radius. A more accurate derivation

which is valid for high frequencies has been given by Keil and Zotter [7] in terms of Bessel

functions. The result of Eq. (17.24) arrives from the expansion of the Bessel functions

at zero frequency. At frequencies of the order c=b, c=a, or higher, the space charge

geometric parameter g rolls o�. When b=a is not too big, numerical �ttings show that

g(n) can be approximated by

g(n) =
g0

1 + (n=n 1

2

)2
; (17.25)

with the half-value revolution harmonic given roughly by

n 1

2

= R

�
1:6

b
+
0:52

a

�
; (17.26)

where R is the radius of the accelerator ring. It is clear from Eq. (17.22) that at

frequencies below the roll-o� of the space charge impedance, the growth rate for negative-

mass instability is directly proportional to the harmonic n. It will be shown later in

Eq. (17.56) that, when Landau damping is taken into account, the growth rate will be

modi�ed and the integrated growth becomesZ t0

0

G(n; t) dt / n
p
g(n) ; (17.27)
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where t0 is the time after crossing transition when the slip factor � becomes large enough

so that stability is restored. Thus, the integrated growth exhibits a maximum at nmax =

n 1

2

=
p
3. Taking as an example the Fermilab Main Ring, which has a radius of 1 km

and transition gamma t = 18:8, this corresponds to 77.6 GHz when a = 5 mm and

b = 35 mm. On the other hand, the cuto� frequency is only about 1.36 GHz. For

a typical cycle at an intensity of 3 � 1010 per bunch and emittance 0.15 eV-s, the

total growth across transition due to the space charge impedance for a spectral line is

1:74�105 times at the former frequency but only 1.23 at the latter frequency. Similarly,

the maximum integrated negative-mass growths for the Fermilab Main Injector and the

Fermilab Booster occur at 98.5 and 23.9 GHz, respectively. As a result, it is diÆcult

to justify the correctness of the description of Lee-Wang-Wei. In addition, in Wei's

simulation, the bunch was divided into bins with the bin width equal to the cuto�

wavelength of the beam pipe. In other words, all large-growth-rate amplitudes at high

frequencies had been neglected. Here, we want to point out that the �rst simulation

across transition to exhibit negative-mass instability was done by Lee and Teng [4] on

the Fermilab Booster, where they also divided the bunch up into cuto� wavelengths

only. Later, similar simulations on the same booster were performed by Lucas and

MacLachlan [5], and they also failed to include the high-frequency amplitudes.

Measurements were made near transition for the Fermilab Main Ring [8]. The top

row of Fig. 17.3 displays the observed signals around transition at frequencies 4, 5, and

6 GHz for proton bunches with initial longitudinal emittance 0.07 eV-s and 2:3 � 1010

protons. The units on the vertical axis are 5 db per division and on the horizontal

axis 2 ms per division. The transition time is marked with an arrow. As seen in the

�gure, the signals are getting stronger and more persistent with increasing frequency

as expected from the negative-mass instability. In this case, the longitudinal emittance

after transition was 0.25 eV-s corresponding to a blowup of 3.6. Next a phase mismatch

at injection was introduced to blowup the longitudinal emittance from 0.06 to 0.10 eV-s.

The lower row of Fig. 17.3 displays the signals observed at 5.0 GHz, with two di�erent

longitudinal emittances before transition. As expected, the 5.0 GHz signal is smaller

for the bigger longitudinal emittance, and dies away faster compared to the signal in

the case with the smaller emittance. The emittance blowup at transition is also much

smaller for the bigger initial emittance, a factor of 2 compared with 3.7.

One may raise the question that a typical proton bunch which is usually much

longer than the radius of the beam pipe will have a spectrum not much higher than the

cuto� frequency. In order to have a growth at harmonic n = nmax or n 1

2

, the original
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amplitude or the seed of the growth has to be supplied by Schottky noise, which is

extremely small, so that the growth e�ect to the bunch at such high frequencies may or

may not be signi�cant. This question will be discussed in Sec. 17.2.1 below, after we go

over the Schottky-noise model of Hardt [6].

Figure 17.3: Top row: negative-mass signals at 4.0, 5.0, and 6.0 GHz for bunches

with emittance of 0.07 eV-sec and 2:2� 1010 protons. The signals are stronger and

more persistent with increasing frequencies. The arrow marks the transition time.

Lower row: negative-mass signals at 5.0 GHz for bunches with the same intensity

but with longitudinal emittances 0.06 and 0.10 eV-s. The signals are smaller for the

larger emittance.

17.2 Schottky-Noise Model

Hardt assumed that the seeds of the negative-mass growth are provided by the sta-

tistical uctuations of the �nite number of particles Nb within the bunch on top of a



17-12 17. NEGATIVE-MASS INSTABILITY

smooth linear pro�le distribution F (��), where �� is the rf phase o�set measured from

synchronous angle. The smooth distribution F (��) has an average of unity but is nor-

malized to 2c��, the total bunch length. The bunch is divided into M bins in the rf

phase coordinate ��. There are NbF (��)=M particles in the bin at ��, and each bin

has a width 2c��=M . Due to the statistical uctuations, the mth bin contains ÆNm extra

particles. So a step function f(��; t), which is a perturbation to F (��), can be de�ned:

f(��; t) =
ÆNm

�N
if

m�1
M

<
��+ c��
2c�� <

m

M
; (17.28)

where �N = Nb=M is the average number of particles in a bin. The function can be

expanded in a Fourier series

f(��; t) =
1X

kb=�1
ckb(t)e

i2�kb��=(2c��) ; (17.29)

where

ckb(t) =
1

2c��
Z
c��

�c��

f(��; t)e�i2�kb��=(2c��)d�� ; (17.30)

and c0(t) = 0 because of charge or particle conservation. Notice that the expansion has

been made in bunch modes kb, or the number of wavelengths in a wave that can reside

in a bunch with periodic boundary condition at �c��. It should not be confused with

the revolution harmonic n, which is the number of wavelengths in a wave around the

circumference of the accelerator ring. The two are, however, related to each other by

kb
n

=
2c��
2�h

; (17.31)

where h is the rf harmonic. If we work with waves that vanish at the ends of the bunch

or �c��, we need only to include positive integral kb which represents the number of

nodes in the waves across the bunch. However, we are working here with waves that

satisfy periodic boundary conditions at �c��; we need to include all integral kb, positive

and negative.

Let us compute the statistical expectation

E
h
jckb(0)j2

i
=

1

(2c��)2
Z
c��

�c��

d��

Z
c��

�c��

d��0E
�
ÆNmÆNn

(�N)2

�
ei2�kb(�����0)=(2c��) : (17.32)
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Initially, without any contamination of instability, the statistical uctuations in the bins

are random, or

E
h
ÆNmÆNn

i
= Æmn�NF (��) ; (17.33)

where the right side is the expected number of particles in the mth bin, in which F (��)

is to be evaluated. This means that both �� and ��0 have to be in the same bin in

order to be nonvanishing. If we neglect the small uctuation of the phase inside a bin,

we can perform the integration over d��0, which just gives the width of the bin. What

is left behind in Eq. (17.32) becomes trivial, and we readily get

E
h
jckb(0)j2

i
=

1

(2c��)2
Z
c��

�c��

F (��)

�N

2c��
M

d�� =
1

Nb
: (17.34)

This result is important because it is independent of mode number kb and the number

of binsM , otherwise the model will become meaningless. This also explains why F (��)

has been de�ned to have an average of unity. The evolution of each mode amplitude ckb
is

jckb(t0)j �
1p
Nb

exp

Z t0=Tc

0

G(n; x) dx ; (17.35)

where G(n; x), the growth per unit x = t=Tc with Tc being the nonadiabatic time. The

following derivation will be very similar to what we did in the growth-at-cuto� model.

The integration is up to time t0 when the growth rate decreases to zero as the slippage

factor � increases.

Hardt employed an elliptical initial particle distribution in the longitudinal phase

space,y

 (��;�E) =
3

2�c��d�E
s
1� ��2c��2 � �E2d�E2 ; (17.36)

so that the linear distribution

�(��) =
3

4c��
 
1� ��2c��2

!
(17.37)

becomes parabolic. The o�set of angular revolution frequency �! = ! � !0 from that

of the synchronous particle is related to the energy o�set �E by

�! = � �!0

�2Erest

�E : (17.38)

yWe outline here our understanding of the original paper of Hardt, which is very condensed and is

diÆcult to read.
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Therefore, at a point ��1 along the bunch pro�le, the distribution in �! is

f(�!) =
2

�d�!
s
1� ��21c��2 � �!2d�!2

1� ��21c��2
: (17.39)

Starting from the Vlasov equation, a dispersion relation is derived and is given by

Eq. (6.19). For a perturbative wave with revolution harmonic n, the dispersion rela-

tion is

1 = �
�
�
1

n

�2 Z df(�!)=d�!

�
=n��!
d�! ; (17.40)

where �
 is the deviation of coherent angular frequency 
 of the collective motion from

n!0. We are working with the revolution harmonic now and will go to bunch modes

later. The factor before the integral can be written as [Eq. (6.19)]

�
�
1

n

�2

=
ieIlocal�!

2
0

h
Z
k
0(
)=n

i
spch

2��2Erest
; (17.41)

where we substitute for the local current

Ilocal =
3eNb!0

4c��
 
1� ��21c��2

!
; (17.42)

and the space charge impedance "
Z
k
0

n

#
spch

= i
Z0g(n)

2�2
(17.43)

with the geometric factor g(n) given by Eq. (17.25). The result is�
�
1

n

�2

= �3Nbrpg�h!
2
0

4�23Rc��
 
1� ��21c��2

!
=

�
�
0

n

�2
 
1� ��21c��2

!
; (17.44)

where R is the radius of the accelerator ring and rp the classical radius of the beam

particle. Notice that the last factor involving ��1 will cancel the same factor in the

denominator of the distribution function f(�!) in the dispersion relation.
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Changing the variable of integration from �! to

y =
�!

d�!s1� ��21c��2
; (17.45)

the dispersion relation simpli�es to

1 =
2

�

�
�
0

nd�!
�2 Z 1

�1

ydy

(�� y)
p
1� y2

; (17.46)

where

� =
�


nd�!s1� ��21c��2
: (17.47)

The integral on the right side of Eq. (17.46) can be readily performed to give �� +

��=
p
�2 � 1. We therefore obtain from the dispersion relation

� = � ap
a2 � 1

; with a = 1 +

 
nd�!p
2�
0

!2

: (17.48)

Now the dispersion relation has been solved. The imaginary part of 
 gives the growth

rate if positive and damping rate if negative. It is clear from Eqs. (17.47) and (17.48)

that the growth rate will be largest at the center of the bunch pro�le where ��1 = 0.

From now on we are going to concentrate on the bunch center and drop ��1.

The maximum half spread in angular revolution frequency d�! can be written in

terms of the half bunch length c�� via

d�! =
j�j!0

d�E
�2Erest

=
j�j!0Sc

��c�� ; (17.49)

where, for convenience, the dimensionless bunch area Sc = �c�c�� [Eq. (16.96)] has

been used. Thus,  
nd�!p
2�
0

!2

= � 2�RS2
c

3�2rpgNbhc�� : (17.50)

Notice that this is essentially the inverse of the bunch length multiplied by the space

charge force.
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Since we are after the growth of each bunch mode component near transition, all

quantities including the bunch length will be approximated by their values at transition.

Recall that under the assumption of a linear time variation of �=E, we de�ned in Sec. 16.5

a normalized space charge parameter �N0 in Eq. (16.95) and a normalized half bunch

length � in Eq. (16.94). Here, we want to introduce �N which is the same as �N0 with the

exception that the space charge geometric parameter g0 at zero frequency is replaced by

the more general g(n) which covers high frequencies. With the expression in Eq. (17.50),

it just turns out that  
nd�!p
2�
0

!2

= � x

�N�
; (17.51)

where x = t=Tc and Tc is the nonadiabatic time. The maximum half spread in angular

revolution frequency can also be expressed in terms of � via Eqs. (16.94) and (17.49) as

d�! =
j�jt
�Tc

s
Sc!0

2�h _t�t
=
jxj
�2

t

s
2Sc!0 _t
�h�t

; (17.52)

where the linear dependency of � near transition has been used.

With the help of Eqs. (17.47), (17.48), and (17.51), the growth rate (for x > 0) can

be expressed as

Im
 = nd�! Im� = nd�! �N�

x
� 1r

2�N�

x
� 1

: (17.53)

Now substitute ford�! from Eq. (17.52) and the de�nition of the nonadiabatic time. We

arrive at the growth per unit x = t=Tc,

G(n; x) = Tc Im
 =
n�N
h

s
Scj tan�sj�t

� _tTc

1� x

�N�r
2�N�

x
� 1

: (17.54)

As a reminder, on the right side of the above equation, n is the revolution harmonic

while �N is the normalized space charge parameter. We see that this growth rate starts

at zero right at transition (x = 0), increases to a maximum, and decreases to zero at

x = �N�. Thus the time when the beam regains stability is t0 = xTc = �N�Tc. The

accumulated or integrated growth Eacc is obtained by an integration over x from x = 0
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to x = �N�,

Eacc(n) =

Z �
N
�

0

G(n; x) dx : (17.55)

The integration can be performed easily with the change of variable u = x=(2�N�), and

the result is

Eacc(n) =
n�2

N
�

h

�
1� �

4

�sScj tan�sj�t
� _tTc

: (17.56)

We have computed the accumulated growth of a spectral line with revolution har-

monic n. Since the normalized space charge parameter �N is linear in the geometric

parameter g(n) of the space charge impedance, the dependence on frequency is therefore

Eacc(n) / n 
1 +

n2

n21
2

!2 : (17.57)

The maximum is denoted by

Emax =
3
p
3n 1

2

�2
N0�

16h

�
1� �

4

�sScj tan�sj�t
� _tTc

; (17.58)

where �N0 is the same as �N with the exception of the replacement of g(n) by g0, and

occurs when n = nmax = n 1

2

=
p
3. The accumulated growth Eacc will be exponentiated

to arrive at the total growth for a harmonic.

A criterion for negative-mass instability is required. Hardt made the assertion that

there is no negative-mass blowup if

1X
kb=�1

jckb(t0)j2 . 1 ; (17.59)

where t0 is the time when stability is regained. The meaning of this criterion will be

explored later. From Eq. (17.35), such a criterion is equivalent to

1X
kb=�1

exp
h
2Eacc(kb)

i
. Nb ; (17.60)

where Nb is the number of particles in the bunch and the summation is over all possible

bunch modes. Because exp [Eacc] assumes a maximum at n = nmax and falls o� rapidly
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later, the method of steepest decent will be employed. First, we �nd thatz

Eacc(n) � Emax

241� 3�n

2n 1

2

!2
35 ; (17.61)

with �n = n� nmax. Next, the summation over all the bunch modes is converted into

an integral

1X
kb=�1

exp
h
2Eacc(kb)

i
= exp

�
2Emax

� Z 1

�1
exp

24�2 3
p
Emax�kb
2kb 1

2

!2
35 d�kb ; (17.62)

where the bunch mode number kb has been used instead of the revolution harmonic

n. The relation between the two are given by Eq. (17.31). In particular the half-value

bunch mode is

kb 1
2

=
c��
�h

n 1

2

: (17.63)

The criterion of no blowup can be written as

Emax . Ecrit ; (17.64)

where the critical total growth Ecrit is obtained through Eq. (17.60) by equating the

right side of Eq. (17.62) to Nb; or

kb 1
2

3

r
2�

Ecrit
exp

�
2Ecrit

�
= Nb ; (17.65)

after performing the Gaussian integration. This is a transcendental equation which can

be solved by iteration, giving

Ecrit � 1

2

"
lnNb � ln

 
2kb 1

2

3

r
�

lnNb

!#
: (17.66)

The leading term, 1
2
lnNb, is usually an order of magnitude larger than the second term.

Take for example the Fermilab Main Ring which has a radius of R = 1 km and transition

gamma t = 18:8. The beam has a radius of a = 5 mm and the beam pipe radius is

zIn Eq. (17.61), we obtain [3�n=(2n 1

2

)]2 for the second order term, while it is [3�n=(4n 1

2

)]2 in

Ref. [6], which we think is incorrect. Therefore, we are getting slightly di�erent results for Eqs. (17.62),

(17.65), and (17.66).
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b = 3:5 cm. The half-value harmonic number n 1

2

= 2:81� 106 according to Eq. (17.26)

and the half-value bunch mode is kb 1
2

= n 1

2

!0
c��=� = 268 if we assume a half bunch

length of c�� = 1 ns. For a bunch consisting of Nb = 1011 particles the leading term is
1
2
lnNb = 12:7 and the second term is 0:57.

Finally, we will write out the criterion of no negative-mass blowup, Eq.(17.64), in

terms of the more familiar parameters of the accelerator ring and the particle bunch.

First, let us list the relevant expressions. They are the normalized space charge param-

eter at zero frequency

�N0 =
3�2Nbrpg0h

2RS
3=2
c

s
h!0

2��t _t
=

3�2Nbrpg0
2RS3=2!0

s
E3

rest�
2
t

2� _t
; (17.67)

and the normalized half bunch length at transition

� =

s
��t4t

2h!0 _tT
2
c Sc

c�� =
2
p
�

31=3�
�
1
3

� = 0:91749 : (17.68)

where the conversion, Sc=S = h!0=(�tErest) has been used. Substituting into the ex-

pression for Emax in Eq. (17.58), the threshold for no negative-mass blowup [Eq. (17.64)]

can be formulated by introducing a critical parameter c less than unity in the following

expression:

� nmax

�rp
R

�2 E
5=2
rest�

7=6
t

h1=3!
4=3
0 

2=3
t

! 
N2
b g

2
0j tan�sj1=3
S5=2 _

7=6
t

!
= cEcrit : (17.69)

When the critical parameter c < 1, there is no blowup. In above, the coeÆcient � is

� =
325=6�2�

�
2
3

�
241=6

�
1� �

4

�
= 2:44656 ; (17.70)

where �
�
2
3

�
= 1:354118 is the Gamma function, rp the classical proton radius, Erest

the proton rest energy, R the ring radius, g0 the geometric space charge parameter

at zero frequency, S bunch area in eV-s, �s the synchronized rf phase, t the transition

gamma, _t the rate at which transition is crossed, nmax the revolution harmonic at which

the accumulated growth is a maximum, which is related to the half-value revolution

harmonic by nmax = n 1

2

=
p
3, and kb 1

2

the half-value bunch mode which is given by

kb 1
2

= n 1

2

c��=(�h). We have written Eq. (17.69) in such a way that the last factor on
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the left side pertains to the properties of the beam while the two factors in front pertain

to the properties of the accelerator ring.

Some comments are in order:

(1) The critical condition
P

kb
jckb(t0)j2 = 1 implies, through Parseval theorem, that

1

2c��
Z
jf(��; t0)j2d�� = 1 : (17.71)

From the de�nition of the function f(��), the above integral can be re-written as

summation over the M bins,X
m

�
ÆN

�N

�2

m

(��)b

2c�� =
X
m

�
ÆN

�N

�2

m

1

M
; (17.72)

where �N is the average number of particles inside each bin and (��)b is the width of

the bin. Then Eq. (17.71) becomesP
m (ÆN)2m
M

= (�N)2 : (17.73)

The assertion of a negative-mass blowup is equivalent to the situation when the rms

uctuation in each bin is comparable to the average number of particles in each bin,

which is really a large particle uctuation or a big blowup in the bunch. This blowup

implies violent changes in the bunch, such as a total bunch breakup. However, the

assertion of Eq. (17.59) is a bit hand-waving, because even when the rms uctuation is

much less than �N , there can be a big blowup of the bunch emittance already. Hardt's

paper provides no recipe to compute the increase in bunch emittance in this regime.

(2) The derivation so far has been a perturbative approach. Here, we want to examine

its validity. The perturbation expansion is, in fact,

F (��) + f(��; t) = F (��) +
1X

kb=�1
ckb(t)e

i2�kb��=(2c��) ; (17.74)

where F (��) is the smooth linear pro�le distribution and f(��; t) represents the uc-

tuation from the smooth distribution. Notice that the unperturbed distribution F (��)

has an average of unity. Since Hardt only studied the situation of no blowup or when

the uctuation function f(�; t), as demonstrated in Eq. (17.71), has a rms of less than

unity, the perturbation is therefore justi�ed although the amount of growths of the ckb 's

from t = 0 to t = t0 are tremendous.
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We are going to apply this Schottky-noise model to the Fermilab Main Ring, where

many properties have been listed in Tables 16.1 and 17.1. Here, we want to study

the negative-mass instability when the ramping rate across transition is _t = 90:0 s�1.

Table 17.2 lists and Fig. 17.4 plots the computed critical parameter c for bunches of

Nb = 2:2� 1010 and 4:0� 1010 protons for various bunch areas according to Eq. (17.69).

The half bunch length is evaluated right at transition. We see that the parameter c

increases very rapidly as the bunch area shrinks to a certain size, S . 0:11 eV-s for the

4:0�1010 bunch and S . 0:07 eV-s for the 2:2�1010 bunch. In any case, there should not
be any negative-mass blowup when the bunch area is around 0.15 eV-s, as demonstrated

by experiment. For the Fermilab Main Injector, the ramp rate at transition has been

increased to _t = 160:1 s�1. Compared with the Main Ring at Nb = 4 � 1010 per

bunch, the blowup across transition does not occur until the bunch area is about or

smaller than S = 0:07 eV-s (Fig. 17.5). The Fermilab Booster ramps at _t = 406:7 s�1

across transition and can therefore accommodate bunches at much smaller areas without

blowup as indicated in Fig. 17.6.

Table 17.2: Critical parameter c for negative-mass instability for a proton bunch in

the Fermilab Main Ring with Nb = 2:2�1010 or 4:0�1010 particles. The ramp rate

across transition is _t = 90:0 s�1. A value of c & 1 implies negative-mass blowup.

Bunch area Half bunch width Nb = 2:2� 1010 Nb = 4:0� 1010

(eV-s) (ns) c Ecrit c Ecrit

0.040 0.439 3.84 10.23 12.70 10.54

0.050 0.490 2.21 10.18 7.31 10.48

0.060 0.537 1.41 10.13 4.65 10.44

0.070 0.580 0.96 10.09 3.18 10.40

0.080 0.620 0.69 10.06 2.28 10.36

0.100 0.693 0.40 10.00 1.31 10.31

0.120 0.760 0.25 9.96 0.84 10.26

0.140 0.820 0.17 9.92 0.57 10.22

0.160 0.877 0.12 9.89 0.41 10.19

0.180 0.930 0.09 9.86 0.31 10.16

0.200 0.981 0.07 9.83 0.24 10.13

0.220 1.028 0.06 9.81 0.19 10.11

0.240 1.074 0.05 9.78 0.15 10.09
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Figure 17.4: Plots showing the critical negative-mass parameter c as a function of

the Fermilab Main Ring bunch area for bunches with Nb = 2:2�1010 and 4:0�1010

protons. The ramp rate across transition is _t = 90:0 s�1. Negative-mass blowup

occurs when c & 1.

Figure 17.5: Plots showing the critical negative-mass parameter c as a function

of the Fermilab Main Injector bunch area for bunches with Nb = 4:0 � 1010 and

6:0 � 1010 protons. The ramp rate across transition is _t = 160:1 s�1. Negative-

mass blowup occurs when c & 1.
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Figure 17.6: Plots showing the critical negative-mass parameter c as a function of

the Fermilab Booster bunch area for bunches with Nb = 3:0 � 1010 and 6:0 � 1010

protons. The ramp rate across transition is _t = 406:7 s�1. Negative-mass blowup

occurs when c & 1.

17.2.1 Comparison of Growths at Cuto� and High Frequencies

For a parabolic bunch, the unperturbed linear distribution is

F (��) =
3

2

 
1� ��2c��2

!
; (17.75)

which is normalized to have an average of unity. It is expanded in a Fourier series at

t = 0,

F (��) =
1X

kb=�1
�akb(0)e

i2�kb��=(2c��) ; (17.76)

where the mode amplitude is, for kb > 0,

akb(0) = �akb(0) + �a�kb(0) =
3

�2
(�1)kb+1

k2b
: (17.77)

The bunch mode number kb which corresponds to the cuto� harmonic ncuto� = R=b, with

R and b being, respectively, the radii of the ring and the beam pipe, can be estimated
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Table 17.3: Final uctuation power spectra at cuto� and high-frequency Schottky

harmonics.

_t Nb Initial Bunch Emittance Final Power Spectrum of Fluctuation

(s�1) (1010) (eV-s) at ncuto� at nmax sum

90 2.2 0.05 3.70 1:50� 109 4:03� 1010

90 2.2 0.06 2.21 1:08� 102 3:97� 103

90 2.2 0.07 1.67 1:19� 10�2 5:74� 10�1

90 2.2 0.08 1.41 4:86� 10�5 2:93� 10�3

90 2.2 0.09 1.26 1:41� 10�6 1:06� 10�4

120 4.0 0.06 7.44 4:37� 1018 1:00� 1020

120 4.0 0.07 3.80 1:94� 109 5:83� 1010

120 4.0 0.08 2.54 4:40� 103 1:67� 105

120 4.0 0.09 1.95 1:02� 100 4:76� 101

120 4.0 0.10 1.64 3:57� 10�3 2:00� 10�1

using Eq. (17.31). Then, the �nal value of a power spectral line can be computed:

jakb(t0)j2 = jakb(0)j2 exp
"Z t0=Tc

0

2G(ncuto� ; x)dx

#
: (17.78)

The results are listed in Table 17.3 for various run cycles of the Fermilab Main Ring.

The beam pipe radius and the beam radius are kept �xed at b = 35 mm and a = 5 mm,

respectively. The synchronous phase is 60Æ. Alongside, we have also tabulated the

�nal size of the Schottky power spectral line at the high harmonic nmax according to

Eq. (17.35). The sum of all the Schottky power spectral modes has been derived in

Eqs. (17.35), (17.62), and (17.65) to be

1X
kb=�1

jckb(t0)j2 � jckb(t0)j2n=nmax
�
kb 1

2

3

�
2�

Ep

� 1

2

; (17.79)

where

Ep =

Z t0=Tc

0

G(nmax; x)dx (17.80)

is the integrated growth at the peak harmonic nmax and jckb(t0)j2n=nmax
= e2Emax=Nb is

just the absolute square of the component coeÆcient at n = nmax. This is also listed in

the last column of the table.
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We can see that the Hardt's blowup criterion of Eq. (17.59) appears to be critical,

where the growth changes tremendously. When the criterion is exceeded, the Schottky

modes are always larger than the mode at cuto�, showing that the inclusion up to cuto�

frequency is inadequate. On the other hand, below the blowup limit, the mode at cuto�

is larger than the high-frequency Schottky modes, implying that there should be modest

emittance growth below the Hardt's blowup limit. However, this does not tell us how

large the emittance growth is. It will be best if we can sum up the �nal power spectrum

of the bunch distribution:X
kb

jakb(t0)j2 =
X
kb

9

�4k4b
exp
h
integrated growth

i
: (17.81)

Unfortunately, this sum is divergent because the integrated growth is directly propor-

tional to kb. Even when we take into account of the space charge roll-o�, the sum still

becomes unreasonably large. The reason behind this is the breakdown of the linear per-

turbation when the perturbed spectral mode becomes larger than the unperturbed one.

As a result, it remains unclear whether the high-harmonic Schottky noise is dominating

in the growth of the bunch emittance. A simulation seems to be the best solution.

17.2.2 DiÆculties in Simulation

A simulation of the negative-mass instability is not trivial. There are two main diÆcul-

ties:

(1) Inclusion of high-frequency components

The growth of the Schottky noise peaks at nmax, which corresponds to roughly

78 GHz for the Fermilab Main Ring, while the half-value space charge roll-o� harmonic

n 1

2

corresponds to 134 GHz. Therefore, in simulations we need a bin size of about

1=(2� 134) or 0.00373 ns. The tracking code ESME [9] developed at Fermilab divides

the whole rf wavelength or 18.8 ns up into 2n bins where n is an integer, and the number

of bins will have to be at least 4096 which is too large. As a rule of thumb, the bins

should have a width less than a=, where a is the beam radius. Simulations of the Main

Ring across transition had been performed using ESME. As we increase the bin number

from 128 to 256 and 512, we do see self-bunching in the phase plot corresponding to the

highest frequency of 3.40, 6.81, and 13.6 GHz, respectively, in each of the situations,

as illustrated in Fig. 17.7. This suggests that the negative-mass growths at the high
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Schottky frequencies do play a role across transition [10]. In an actual simulation, the

space charge force is usually implemented by a di�erentiation of the bunch pro�le. To

maintain the same numerical accuracy, we need to follow the \three-in-one rule" [11],

which states that whenever the bin width is reduced by a factor of 2, the number of

macro-particles needs to be increased by a factor of 23. As a result, the tracking time

will increase by a factor of 24.

However, a typical Main Ring bunch has a full length of only 1 ns at transition. If

we divide just two or three times the bunch region into bins, there will be only 256 or

512 bins, which will reduce the tracking time drastically. S�renssen [12] had successfully

performed simulation with a bin width of a=. But he did not overcome the second

diÆculty that we are going to discuss next.

(2) The right amount of Schottky noise

In a simulation of microwave instability, there is usually ample time for the insta-

bility to develop to saturation. Therefore, we do not care so much about the size of

the initial excitation or seed of the growth. Across transition, however, the bunch is

negative-mass unstable only for a short time until the frequency-ip parameter � be-

comes large enough to provide enough Landau damping, and this time is typically of

the order of the nonadiabatic time, which is about 3 ms for the Fermilab Main Ring.

Therefore, the initial excitation amplitude needs to be tailored exactly. To have the

exact Schottky noise level, we need to use in the simulation micro-particles instead of

macro-particles. The Fermilab Main Ring bunch has typically Nb = 2:2� 1010 particles,

which is certainly unrealistically too many in a simulation.

A suggestion is to populate the bunch by NM macro-particles according to a Ham-

mersley sequence [13] instead of randomly. This is a population according to some

pattern so that the statistical uctuation will become much less. In fact, the number of

particles in each bin in excess of the smooth distribution will become O(1) initially, or
the uctuation function de�ned in Eq. (17.28) starts from f(��; 0) � 1=�NM =M=NM ,

where M is the number of bins and �NM = NM=M is the average number of macro-

particles per bin. The expectation of the initial bunch mode amplitude turns out to

be

E
h
jckb(0)j2

i
=

M

N2
M

: (17.82)

Comparing with Eq. (17.34) for a randomly distributed bunch, the required number of
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Figure 17.7: ESME simulations of a Fermilab Main Ring bunch containing 4�1010

particles with initial emittance of 0.1 eV-sec just after transition with (a) 256 bins

and (b) 512 bins in an rf wavelength; 20,000 and 160,000 macro-particles have been

used in the two cases. Excitations of 6.81 and 13.6 GHz corresponding to the

respective bin widths are clearly seen in the two plots.
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macro-particles becomes

NM = (MNb)
1

2 ; (17.83)

which is more reasonable (� 2:4 to 3:6� 106), but may be still too large to be managed

in a simulation.

There are, however, two other diÆculties with the Hammersley-sequence method.

In reality for a bunch containingNb particles, at themth bin, the step function f(��m; t)

de�ned in Eq. (17.28) has an initial expectation of

E
h
f 2(��m; 0)

i
= E

�
ÆN2

m

�N2

�
=
F (��m)

�N
=
M

Nb

F (��m) ; (17.84)

which is proportional to the initial unperturbed bunch distribution F (��). Here, �N =

Nb=M is the average number of micro-particles in each bin and ÆNm is the excess number

of particle in the mth bin because of statistically uctuation.. Now it changes to, for

the Hammersley population, E[f 2(��; 0)] = (M=NM)2 which is independent of F (��).

Thus, the relative uctuations in the bins cannot be made to resemble those in the

randomly populated bunch, and the initial uctuation spectrum would have been altered.

In order to have the bunch to �t the space charge modi�ed rf bucket before tran-

sition, we usually switch on the space charge force adiabatically over many synchrotron

periods so that the initial populated bunch emittance will be preserved. However, the

favored Hammersley statistics can often be lost after several synchrotron oscillations.

A test was performed with 2 � 105 particles in a truncated bi-Gaussian distribution.

The bunch was projected onto one coordinate, where it was divided into 20 equal bins.

To simulate synchrotron oscillation, the bunch was then rotated in phase space with an

angular velocity which decreases linearly by 1% from the center to the edge of the bunch.

The uctuation or number of particles in excess of the smooth projected Gaussian dis-

tribution in each bin was recorded for every rotation, and the rms was computed. The

results are plotted in Fig. 17.8 as a function of rotation number. We see that although

the rms uctuation starts from 7 initially, it increases rapidly to � 12 after 5 rotations,

� 20 after 20 rotations, and will approach its statistical value of 100 eventually. This

might have been an overestimation, because the actual decrease in synchrotron frequency

is not linear and the decrease near the core of the bunch where most particles reside is

very much slower. Nevertheless, this test gives us an illustration of restoration to ran-

domness. To cope with the fast restoration to randomness, one possibility is to compute

exactly the initial distribution of the bunch in the space charge modi�ed rf bucket right

at transition and populate the bunch according to a Hammersley sequence. In this way,
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Figure 17.8: Plot of rms uctuation of excess particles per bunch versus num-

ber of synchrotron rotations, showing the rapid loss of Hammersley statistics and

restoration to randomness.

the tracking of the bunch particles across the negative-mass unstable period, which is

usually of the order of one synchrotron period, may reveal the reliable growth from the

correct Schottky noise level.

17.3 Self-Bunching Model

Microwave instability can be viewed as self-bunching. The beam current Ipk, seeing the

impedance ZI , gives rise to an rf voltage IpkZI, and creates a self-bunching rf bucket

with an energy half height

�E

E
=

�
2�2eIpkZI

��nZErest

� 1

2

; (17.85)

where nZ denotes the revolution harmonic of the impedance. If this bucket height is less

than the energy spread of the bunch, there will not be any extra energy spread and the

bunch will be stable. If the bucket height is larger than the energy spread of the bunch,

the bunch particles will travel outside the original energy boundary of the bunch, giving

rise to an emittance growth as a result of �lamentation. In fact, this is just another way
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of expressing the Keil-Schnell criterion [14].

Here, we want to make the conjecture that this self-bunching bucket height deter-

mines the �nal energy spread of the bunch. Inside this bucket, the angular synchrotron

frequency is given by

!s =

�
nZ�IpkZI

2��2Erest

� 1

2

!0 : (17.86)

Since the frequency-ip parameter � is changing rapidly at transition, we substitute

�


=

2 _t
4t

t : (17.87)

If we denote by �syn the angle of rotation in the longitudinal phase space, we have

!s = d�syn=dt. Integrating Eq. (17.86), we obtain the time to reach a quarter of a

synchrotron oscillation (��syn = �=4) from the moment of transition crossing as

T �
�
3�

4

� 2

3

�
�Erest�

2
t 

4
t

nZIpkZI _t!2
0

� 1

3

: (17.88)

This will be the time required for some particles to reach the top of the bucket. Of

course, the height of the self-bunching bucket is also changing, and the value of � at

this moment should be substituted in Eq. (17.85). At this moment, the unperturbed

energy spread of an elliptical bunch with emittance S and without space charge distortion

is, from Eq. (16.79),

�E

E
=

�
�
1
3

�
21=231=6�

�
S�2

t 
2
t

ErestT 2
c _t

� 1

2

 
1� �

31=6�2
�
1
3

� T
Tc

!
; (17.89)

where

Tc =

�
�2
t 

4
t j tan�sj
2h!0 _2t

� 1

3

: (17.90)

is the nonadiabatic time. The correction in the second term of Eq. (17.89) is usually

small. Thus, the growth in energy spread can be computed easily, and assuming �la-

mentation the growth in emittance can be obtained. This estimate will be valid if T

is less than the time to regain stability. The growths for some situations of the Fermi-

lab Main Ring are given in Table 17.4. The corresponding growths obtained from the

growth-at-cuto� model are also listed for comparison.

There is at present no reliable simulation of emittance growth. Experimental mea-

surements are also marred by other mechanisms, such as bunch tumbling due to bunch-

length mismatch, particles with di�erent momentum crossing transition at di�erent time,
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Table 17.4: Growth of emittance for the self-bunching and growth-at-cuto� models.

_t Nb Initial Bunch Emittance Fractional Emittance Growth

(s�1) (1010) (eV-s) Self-Bunching Model Cuto� Model

90 2.2 0.05 4.09 4.06

90 2.2 0.06 3.03 2.43

90 2.2 0.07 2.35 1.83

90 2.2 0.08 1.89 1.54

90 2.2 0.09 1.52 1.38

120 4.0 0.06 5.32 8.16

120 4.0 0.07 4.12 4.17

120 4.0 0.08 3.31 2.78

120 4.0 0.09 2.72 2.14

120 4.0 0.10 2.29 1.80

etc. Another example at the Fermilab Main Ring is that the bunch emittance usually

grows to such a value that scraping occurs. Therefore, it is hard to judge at this mo-

ment the reliability of this crude model. On the other hand, this model can certainly be

improved to a certain degree by including, for example, the space charge distortion of

the bunch shape, the tilt e�ect in phase space near transition, as well as the mechanism

of overshoot when stability is regained.
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17.4 Exercise

17.1. The Alternating Gradient Synchrotron (AGS) at Brookhaven is a proton ring

with a circumference of 807.11 m. The beam crosses transition at t = 8:8 with

_t = 63 s�1. The rf harmonic is h = 12 and the synchronous phase is �s = 27:3Æ.
(1) With beam pipe radius 2.356 cm and beam radius 0.5 cm, compute the space

charge impedance at transition and the frequency at which the integrated negative-

mass growth is at a maximum.

(2) For a bunch withx 1 � 1012 protons, compute the critical stability parameter

c de�ned in Eq. (17.69) for various bunch areas. Determine the smallest bunch

area to avoid negative-mass blowup. Repeat the computation with the intensity

of 3� 1012 protons.

17.2. It is possible that the AGS described in the previous problem is dominated by

a broad-band impedance of Zk
0=n � 20 
 at 1.5 GHz. Use the simpli�ed model

developed in Sec. 17.1.1 to compute the total growth across transition. The bunch

area is assumed to be 6 eV-s.

xThe AGS is currently running at the intensity of � 1� 1013 particles per bunch with a transition

jump. Here, we are estimating the growth without transition jump.
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Chapter 18

INSTABILITY OF

ISOCHRONOUS RINGS

In a storage ring, sometimes there are advantages to work with a lattice having a

smaller slippage factor �. One reason is the achievement of shorter bunch lengths. It

can be shown easily that, in electron rings where the energy spread is determined by

synchrotron radiation, the bunch length is proportional to j�j1=2. For proton or muon

storage rings where there is no synchrotron radiation, the bunch length at �xed rf voltage

is proportional to j�j1=4. Another reason for having a small slip factor is the possible

reduction of the expensive rf system. To maintain a bunch at the required rms length

�� and momentum spread �Æ, the synchrotron tune is

�s =
j�j�Æ
!0��

; (18.1)

and the rf voltage is therefore

Vrf =
2�j�j�2E0�

2
Æ

eh!2
0�

2
� j cos�sj

(18.2)

which decreases linearly as j�j. In above, h is the rf harmonic, �s is the synchronous phase

angle, E0 is the total energy of the synchronous particle which has angular revolution

frequency !0 and velocity �c where c is the velocity of light. Ideally, when � = 0, no

rf will be necessary, because there will not be any drift in phase. A ring with � = 0,

i.e., operating right at transition energy, is called an isochronous ring. However, there

is always a spread in energy in the beam particles. As a result, it is not possible

18-1
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for every beam particle to see isochronicity. In addition, the slippage factor � is a

nonlinear function of the momentum spread. Usually, isochronicity is de�ned when the

slippage factor vanishes in the �rst order of the momentum spread. The higher-order

contributions will provide a �nite slippage. Thus, the ring is actually quasi-isochronous.

For such a ring, the parameters of interest are (1) � for the synchronous particle and (2)

the total spread in � seen by all the beam particles. It is necessary to design the lattice

so that both � and the spread in � are small. When � is vanishing small, there will not

be any Landau damping and collective instabilities will emerge as an important issue,

which we are going to investigate in this chapter.

18.1 Higher-Order Momentum Compaction

Transition crossing is de�ned as the moment when the relativistic gamma of the particle

is equal to t of the accelerator ring. Let us recall that the transition gamma is de�ned

as t = �
�1=2
0 , where �0 is the momentum-compaction factor which is the fractional

increment of the circumferential orbit length of a particle with fractional momentum

o�set Æ. Hence, if C(Æ) is the length of the o� momentum orbit,

C(Æ) = C0(1 + �0Æ) ; (18.3)

with C0 = C(0) being the length of the on-momentum orbit. Thus, the slippage factor �

is exactly zero at transition. However, Eq. (18.3) only gives the linear dependence of the

orbit length on momentum o�set. In general, this is never the case for any accelerator

lattice. Therefore, Eq. (18.3) should be extended to�

C(Æ) = C0

�
1 + �0Æ(1 + �1Æ + �2Æ

2 + � � � )� ; (18.4)

where �1, �2, etc. are called the high-order components of the momentum-compaction

factor. Now the slippage factor � also becomes momentum spread dependent. Its higher

orders must be carefully de�ned so that it enters correctly into Eq. (16.3), the phase-slip

equation of motion
d��

dt
= h!0�Æ : (18.5)

Here, we follow a derivation of Edwards and Syphers [1]. A particle with momentum

o�set Æn sees an accumulated rf phase �n on its nth passage of the rf cavity, which is

�In Europe, �0, �1, �2, etc. are usually referred to as �1, �2, �3, etc. There is also another common

de�nition, where C(Æ) = C0

�
1 + �0Æ + �1Æ

2 + �2Æ
3 + � � �

�
.
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considered to have an in�nitesimal length. On its (n+1)th passage, at a time Tn+1+�Tn+1
later, the accumulated rf phase seen becomes

�n+1 = �n + !rf(Tn+1 +�Tn+1) ; (18.6)

where !rf=2� is the rf frequency, Tn+1 is the revolution period of the synchronous particle

during its (n+1)th turn and �Tn+1 is the extra time taken by the o�-momentum particle

to complete the revolution. On the other hand, the rf phase seen by the synchronous

particle accumulates according to

�sn = !rftn ; (18.7)

where tn is the total accumulated time up to the nth passage of the cavity. Naturally,

we like to measure the rf phase seen by the o�-momentum particle relative to the syn-

chronous particle. This leads to the introduction of the rf phase o�set or rf phase slip

��n de�ned by

��n = �n � �sn = �n � !rftn : (18.8)

Substituting into Eq. (18.6) and noting that Tn+1 = tn+1 � tn, we arrive at

��n+1 = ��n + !rf�Tn+1 : (18.9)

In order for the synchronous particle to be synchronized, one must adjust the rf frequency

so that !rfTn+1 = 2�h for all turns, where h is the rf harmonic number. Now, we can

de�ne the slippage factor as the slip in revolution period at the (n+1)th passage of the

cavity by
�Tn+1
Tn+1

= �n+1Æn+1 : (18.10)

Here, the subscript of � implies its dependence on the momentum o�set of the particle

at the (n+1)th passage and not its higher-order expansion terms. With this de�nition,

Eq. (18.9) becomes
��n+1 ���n

Tn+1
= �n+1!rfÆn+1 : (18.11)

When smoothing is applied, we obtain the phase-slip equation of Eq. (16.10),

d��

dt
= h!0�Æ : (18.12)

Since the revolution period T can be expressed as

T =
C

�c
; (18.13)
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we can easily expand T as a Taylor series in Æ, from which each higher-order of the

slippage factor can be identi�ed. For example, we have

T 0
0

T0
=
C 0
0

C0
� � 00
�0

;

T 00
0

T0
=

2C 0
0
2

C2
0

� 2� 00C
0
0

�0C0
� � 000
�0

+
2� 00

2

�20
;

T 000
0

T0
=
C 000
0

C0

� 3� 00C
00
0

�0C0

� 3� 000C
0
0

�0C0

+
6� 00

2C 0
0

�20C0

� � 0000
�0
� � 00�

00
0

�20
� 6� 00

3

�30
; (18.14)

where the prime denotes di�erentiation with respect to Æ and all variables are evaluated

at the synchronous particle, which explains why all the variables above carry the sub-

scriptions zero, although these subscripts may have been suppressed in many occasions

for the sake of convenience. The derivatives of C can be read o� easily from Eq. (18.4).

The derivatives of � can be computed straightforwardly. They are:

� 00
�0

=
1

20
;

� 000
�0

= �3�20
20

;

� 0000
�0

= �3�20(1� 5�20)

20
: (18.15)

With the expansion of the slippage factor

� = �0 + �1Æ + �2Æ
2 + � � � ; (18.16)

we obtain the expressions for the higher-order components of the slippage factor [Exer-

cise 18.1]:

�0 = �0 � 1

20
; (18.17)

�1 = �0�1 +
3�20
220

� �0
20

; (18.18)

�2 = �0�2 +
�0�1

20
� 2�40

20
+
3�0�

2
0

220
+
�0
40

: (18.19)
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Looking at the phase-slip equation above, one may be tempted to equate d��=dt to

��!=h, where �! is the slip in angular velocity of the o�-momentum particle relative

to the synchronous particle. However, this will translate the de�nition of � to

�!

!0
= ��Æ ; (18.20)

which is di�erent from Eq. (18.10) and therefore will lead to incorrect expressions for the

higher-order terms of �. This misconception comes about in the smoothing procedure

from Eq. (18.11) to Eq. (18.12), where we divide throughout by the revolution period

of the synchronous particle. If �! of the o�-momentum particle is desired, one should

divide instead by Tn+1+�Tn+1, the revolution period of the o�-momentum particle. In

other words, d��=dt in the phase equation describing the motion of an o�-momentum

particle does not imply the rate of change of rf phase slip of the o�-momentum particle

according to the clock that registers the revolution period of that particle. Instead, it is

referenced to the clock that registers the revolution period of the synchronous particle.

Because of this easily-forgotten detail, it will be more convenient to use s = v0t as the

independent `time' variable, where s is the distance measured along the closed orbit of

the synchronous particle and v0 is the velocity of the synchronous particle.

Another de�nition in the literature is [2]

� = � 1

!0

d!

dÆ
; (18.21)

which is incompatible with the phase-slip equation in Eq. (18.12). This de�nition

originates from the lowest order expansion in ! [2], and is therefore insuÆcient when

higher-orders in � are studied. This is, in fact, a variation of the incorrect de�nition of

Eq. (18.20).

18.2 �1-Dominated Bucket

To save the cost of rf power, suggestions have been made to make storage rings isochronous

or quasi-isochronous, implying an operation when �0 � 0. Since the drift of the longi-

tudinal phase is small, a small rf system will be adequate. However, when �0 is small

enough, we need to include the next lowest nonlinear term of the slippage factor, namely

�1. When the rf phase slip �� and the fractional momentum spread Æ are used as canon-

ical coordinates with time t being the independent variable, the Hamiltonian describing
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Figure 18.1: (a) When j�0=�1j is not too small, the longitudinal phase space shows

2 series of distorted pendulum-like buckets. (b) As j�0=�1j decreases to the critical

value in Eq. (18.23), the 2 series merge. (c) Further reduction of j�0=�1j leads to

new pairing of stable and unstable �xed points and the buckets become �-like. In

each case, the dotted line is the phase axis at zero momentum spread, and the small

circles are the stable �xed points.

the motion of a particle in the longitudinal phase space becomes

H =

�
�0Æ

2

2
+
�1Æ

3

3

�
h!0 +

eVrf!0
2��2E0

�
cos(�s +��) + �� sin�s

�
; (18.22)

where �s is the synchronous phase. With the presence of �1, the symmetry of the higher-

and lower-momentum parts of the phase space is broken. As a result, the phase-space

structure will be very much disturbed. This Hamiltonian gives stable �xed points at

(2n�; 0), (2(n + 1)� � 2�s;��0=�1) and unstable �xed points at (2(n + 1)� � 2�s; 0),

(2n�;��0=�1), where n is any integer. When the contribution of �1 is much smaller

than that of �0, the buckets are still roughly pendulum-like as shown in Fig. 18.1(a) for

the case of �s = 0. Note that there is another series of buckets at momentum spread

��0=�1. As j�0=�1j decreases to a point when the values of the Hamiltonian through all

unstable �xed points are equal, the two series merge as illustrated in Fig. 18.1(b). This
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happens when �����0�1
���� =

�
6eVrf

��2h�0E0

h��
2
� �s

�
sin�s � cos�s

i�1=2

: (18.23)

The right side is just
p
3 times the half bucket height when the �1 term in the Hamiltonian

is absent. As j�0=�1j is further reduced, the pairing of the stable and unstable �xed points
is altered, and the buckets become �-like as illustrated in Fig. 18.1(c). The buckets in

one series have heights given by

Æ̂ =

8>>>><
>>>>:

+

���� �02�1
���� Æ > 0 ;

�
�����0�1

���� Æ < 0 :

(18.24)

For the other series, the buckets are just inverted and are centered at Æ = �j�0=�1j. Note
that the heights of the buckets will vanish if the lattice approaches truly isochronous

(�0 = 0).

Let us now review some very peculiar properties of the �-like bucket.

(1) Since the height of the �-shape bucket is �xed, the bucket width � is propor-

tional to V
�1=2
rf and so is the bucket area A [3]. In fact,

� =

� j�0j3=2
j�1j

��
2��2hE0

3eVrfj cos�sj
�1=2

; (18.25)

A =
6

5

� j�0j5=2
�21

��
2��2hE0

eVrf j cos�sj
�1=2

; (18.26)

where the narrow width of the bucket has been assumed and its maximum momentum

spreads of j�0=(2�1)j and �j�0=�1j have been used. Unlike the usual pendulum-like

bucket where the bucket width is �xed and the bucket height and area increase with the rf

voltage, here, this �-like bucket has �xed height while its width and area will be increased

by lowering the rf voltage. As an example, set the bucket height to j�0=�1j = kÆÆmax

and the bucket half width to ^̀= k``max, where Æmax and `max are the maximum bunch

momentum spread and length in m. The required rf voltage multiplied by the rf harmonic

required to maintain the bunch in the bucket is, according to Eq. (18.25),

hVrf =
2��2E0R

2j�0jk2ÆÆ2max

3ek2` `
2
maxj cos�sj

: (18.27)
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The maximum momentum spread and bunch length are also related by the Hamiltonian,

Vrf
h

=
��2E0j�0jÆ2max

2e sin2 1
2
�max

�
1 +

2

3kÆ

�
; (18.28)

where we have set �s = 0 or �. The maximum half phase spread is �max = h`max=R.

Therefore, when the rf harmonic h� 2R=`max, Eqs. (18.27) and (18.28) give

�
kÆ
k`

�2

= 3 +
2

kÆ
; (18.29)

which is universally true, independent of the bunch and lattice parameters.

(2) The asymmetry between positive and negative momentum spreads brought in

by �1 will lead to bunch length oscillations. Since the energy loss due to the resistive part

of the impedance of the vacuum chamber is proportional to the bunch length, this may

lead to a continuous growth of the synchrotron oscillation amplitude. This instability

is called longitudinal head-tail, which had been observed in the CERN SPS [4]. The

instability can become very strong here because �0 has been made negligibly small.

(3) The synchrotron frequency as a function of oscillation amplitude can be com-

puted easily [3]. As the oscillation amplitude increases, the synchrotron frequency inside

the �-like bucket decreases much more slowly than that inside an ordinary pendulum-like

bucket. However, it drops to zero very abruptly near the edge of the bucket. Thus, the

�-like bucket resembles a resonance island more than the usual pendulum-like bucket.

Because of the sudden drop of the synchrotron frequency near the separatrix, higher-

order resonances due to small jitters or modulations of the rf phase or rf voltage overlap

creating a thick stochastic layer thus further reducing the stable area inside the bucket.

(4) Although there are disadvantages of the �-like bucket, nevertheless, this bucket

is intrinsically narrow in phase spread, as is depicted in Eq. (18.26). For a pendulum-

like bucket, the bucket width is always equal to the rf wavelength, whereas for a �-like

bucket, the bucket width is mostly much less than the rf wavelength. Moreover, for

a bunch in an ordinary pendulum-like bucket, the bunch width varies as (j�0j=Vrf)1=4;
thus reducing the momentum-compaction factor or increasing the rf voltage is not very

eÆcient in reducing the width of the bunch. On the other hand, a bunch in the �-like

bucket has a width proportional to j�j3=2=V 1=2
rf .
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18.3 �2-Dominated Bucket

The �1 term will lead to a small bucket area and possibly longitudinal head-tail in-

stability, thus limiting the beam dynamic when the machine is near isochronous. The

Æ-asymmetric bucket can lead to unpleasant longitudinal head-tail instability. Further-

more, �1 can destroy the isochronicity of the ring. For example, if we want to have a

2 TeV on 2 TeV isochronous ring for the muon collider with j�j <� 1� 10�6, the �1 term

can contribute a a spread of �2
t

of � 70� 10�6 at the momentum spread of jÆj < 0:3%

[5]. A large spread in �2
t

implies large slippage factors for some particles, so that an un-

usually large rf system will be required for bunching. Therefore, �1 should be eliminated.

Then, the Hamiltonian with the next nonlinear term �2 included becomes

H =

�
�0Æ

2

2
+
�2Æ

4

4

�
h!0 +

eVrf!0
2��2E0

�
cos(�s +��) + �� sin�s

�
: (18.30)

A quadrupole bends particles with positive and negative o�-momenta in opposite direc-

tions. To the lowest order, it contributes to �0 of the momentum-compaction factor. On

the other hand, a sextupole bends particles with positive and negative o�-momenta in

the same direction, and therefore contributes to �1. In fact, through �rst-order pertur-

bation theory, one can show that �2 can be corrected with octupoles, �3 with decapoles,

and so on [6, 7]. Having the ability to change �2 with octupoles may be useful because

it may be easier than adjusting �2 with sextupoles since the latter also a�ect �1.

With the contribution of �1 eliminated, it is possible to adjust �0 to zero so that

the Hamiltonian becomes

H =
1

4
h!0�2Æ

4 +
eVrf!0
2��2E0

�
cos(�s +��) + �� sin�s

�
; (18.31)

Now for �s = 0, the bucket looks pendulum-like with the usual width of �� = 2�. The

bucket half height is Æ̂ = [4eVrf=(��
2E0hj�2j)]1=4. When the half bunch length `max is

short, it is related to the half momentum spread Æmax by

Æ4max =

�
eVrfh

��2E0j�2j
��

`max

R

�2

: (18.32)

If we let Æ̂ = kÆmax, we can solve for the necessary rf voltage and rf harmonic:

Vrf =
��2E0Rk

2��Æ2max

2`max
; h =

2R

`maxk2
; (18.33)
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where �� = j�2jÆ2max is the desired spread of the slippage factor of the bunch. Note that

the rf voltage is proportional to ��, the desired spread in momentum-compaction, and

Æ2max, the momentum spread of the bunch squared. Thus, if we reduce the momentum-

compaction spread, the rf voltage will be reduced by the same factor. On the other

hand, the rf frequency is independent of the choice of �� and Æmax.

For small phase spread, Eq. (18.31) describes a particle oscillating in a quartic

potential (with �� and Æ interchanged). This is a well-known situation when a higher

harmonic cavity is present and the two cavity voltages are inversely proportional to the

square of their respective harmonics (see Sec. 9.3.1). For such a system, the synchrotron

frequency is zero at zero oscillating amplitude and increases linearly with respect to the

momentum o�set Æmax, or the 4th root of the Hamiltonian. The synchrotron frequency

increases to a maximum for larger oscillation amplitude and drops to zero again at

the edge of the bucket. Simple derivation gives the synchrotron tune �s = �s0F (H),

where �s0 =
p
h��eVrf=(2��2E0) with �� = j�2jÆ2max just the synchrotron tune of a

synchronous particle in an ordinary single rf system with a slippage factor equal to ��.

For a constant �2, the �s0 is directly proportional to the momentum-o�set excursion

Æmax. The form factor F (H) can be written as (Exercise 18.5)

F�1(H) =
23=4

2�

Z �=2

0

dz
p
cos z

q
1� sin2 �max

2
sin2 z

: (18.34)

The form factor is evaluated at the Hamiltonian value,

H =
eVrf!0
��2E0

sin2
�max

2
= 1

4
hj�2j!0Æ4max ; (18.35)

where �max and Æmax are equal to, respectively, the phase and momentum-o�set ex-

cursions of the beam particle under investigation. A large spread in synchrotron fre-

quency can be advantageous in providing Landau damping to mode-coupling instabil-

ities. For small �max, from Eqs. (18.33) and (18.35), one obtains sin2(�max=2) = k�4,

where k = Æ̂=Æmax. Thus, the form factor of Eq. (18.34) is almost a constant for any

reasonable k, and is roughly equal to F (H) = 1:45.
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18.4 Microwave Instability Near Transition

18.4.1 Analytic Solutions

In an operation near the transition energy (�0 � 0), at least the next order, �1 in

Eq. (18.16), must be included for a meaningful discussion of the beam dynamics. Bogacz

analyzed the stability of a coasting beam right at transition, �0 = 0 [8], by including

the �1 term but neglecting other higher-order terms. For a Gaussian distribution with

rms energy spread �E, he obtained an analytic expression for the growth rate at the

revolution harmonic n:

1

�n
= �2�1n!0

�
�E
E0

�2

�n with tan�n =

"
ImZ

k
0

Re Zk
0

#
n

; (18.36)

where ImZ
k
0 > 0 implies capacitive and !0=(2�) is the revolution frequency of the

on-energy particle which has energy E0. He drew the conclusion that the beam will

be completely stable. However, when he made this conclusion, he had in mind the

assumption of �1 > 0 and �n > 0, which is not always true. As a result, there will be

microwave growth in general.

Holt and Colestock studied the same problem with coasting beam and Gaussian

energy distribution, but allowing �0 6= 0 [9]. The dispersion relation is expressed in

terms of the complex error function. Their conclusion is that there is no unstable region

in the complex Z
k
0 -plane below transition. On the other hand, there are both stable

and unstable regions above transition. They also claimed that their conclusion was

supported by simulations. However, they did not specify the values of �0 and �1 in

the simulations they presented or in their stability plots in the complex Zk
0 -plane. It is

hard to understand at least the situation below transition. It is clear that when j�0j is
not too small, the contribution of �1 is irrelevant. Thus their claim as stated can be

interpreted as no microwave instability below transition, no matter how far away it is

from transition. For this reason, this claim is quite questionable. When we look into the

stability plots of Holt and Colestock, Fig. 18.2, we can see something that resembles a

stability curve below transition. The presence of a stability curve implies the existence

of both stable and unstable regions, in contradiction to their conclusion.

We performed some simulations and got di�erent results. A coasting beam at

100 GeV was considered in a hypothetical ring of circumference 50 m, with an initial rms
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Figure 18.2: (color) Dispersion relation plots in the complex impedance plane. The

thick blue curves with circles are for real frequencies and therefore should exhibit

the stability boundaries. The red curves with +'s are for complex frequencies. Top

plot is below transition and bottom plot is above transition.
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parabolic fractional momentum spread of 0.001, interacting with a broadband impedance

of Z
k
0=n = 3:00 
 at the resonance frequency of 600 MHz and quality factor Q = 1.

This unrealistic small size of ring was chosen because we wanted to limit the number

of longitudinal bins around the ring so that not so many macro-particles would be

necessary. In the tracking, the bin size had been chosen to be 0.25 m, which was half the

wavelength at 600 MHz. With the slip factor �xed at j�j = 0:005, the beam intensity

was adjusted so that the Keil-Schnell circle-approximated criterion [10] gave a stability

limit of jZk
0=nj = 1:00 
. All higher-order slip factors were set at zero. The tracking

results are shown in Fig. 18.3: the top 4 plots for � = �0:005 (below transition) and

the lower 4 plots for � = +0:005 (above transition) at 0, 1200, 2400, and 3600 turns.

We see that below transition irregularities develop at the low-momentum edge. Ripples

corresponding to the frequency of 600 MHz (wavelength = 0:5 m) are clearly seen.

The momentum spread broadens at the low-momentum side until the total spread is

about 1100 MeV, about 2.75 times the original total spread of about 400 MeV. This is

partly because of the energy loss as a result of the resistive part of the impedance. The

observation de�nitely con�rms the occurrence of microwave instability below transition,

and the eventual self-stabilization by overshooting. Above transition, irregularities also

develop at the low-momentum edge and the momentum spread also broadens at the

low-momentum edge. The total spread appears to be broader than the situation below

transition. In addition, we see small bomb-like droplets launched at the low-momentum

side, which are not observed below transition. Instability above transition appears to

be more severe than below transition. We will come back to the simulations of coasting

beam near transition later in Sec. 18.4.3.

18.4.2 Bunched Beam Simulations

In this section, we study the stability of a bunched beam very close to transition. As

an example, take a muon bunch in the proposed 50� 50 GeV muon collider, which has

a slip factor of j�j = 1� 10�6. Everything we discuss here will apply to a proton bunch

also, with the exception that the muons decay while the protons are stable. We will �rst

discuss the situation with the decay of the muons taken into consideration, and later

push the lifetime to in�nity. We assume that sextupoles and octupoles are installed and

adjusted so that the contributions of �1 and �2 become insigni�cant compared with �0.

The muon bunch we consider has an intensity of Nb = 4 � 1012 particles, rms width

�` = 13 cm and rms fractional momentum spread �Æ = 3 � 10�5 or �E = 1:5 MeV.
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Figure 18.3: The top 4 plots and lower 4 plots are for � = �0:005 (below transition)

and � = +0:005 (above transition), respectively, at 0, 12000, 24000, and 36000 turns.

The impedance is a broadband with Q = 1, Z
k
0=n = 3:0 
 at the resonant frequency

of 600 MHz.
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The impedance is assumed to be broadband with Z
k
0=n = 0:5 
 at the angular resonant

frequency of !r = 50 GHz with quality factor Q = 1. The muons have an e-folding

lifetime of 891 turns at 50 GeV in this collider ring. During the muon lifetime, there is

negligible phase motion. Thus a bunching rf frequency system is not necessary. However,

as will be explained below, rf systems are needed for the cancellation of potential-well

distortion.

For bunched beams, there is the issue of potential-well distortion which must not be

mixed up with the collective microwave instability. Potential-well distortion will change

the shape of the bunch to something that looks like the plot of Fig. 18.4, with the

di�erence that the distortion of the beam does not come from the space charge force,

but mainly from the inductive part of the broadband impedance.

The wake potential seen by a particle inside a Gaussian bunch at a distance z behind

the bunch center is shown in Fig. 18.5 and is given by

V (z)=e

Z z

�1

dz0�(z0)W0(z � z0)=� eN!rRk

2Q cos�0
Re ei�0�z2=(2�2

`
)w

�
�`!re

i�0

c
p
2

� izp
2�`

�
;

(18.37)

where �(z) is the bunch distribution, W0(z) the longitudinal wake function, sin�0 =

1=(2Q), and w is the complex error function. This distortion can be cancelled up to

�3�` by 2 rf systems [11], which at injection are at frequencies !1=(2�) = 0:3854 GHz

and !2=(2�) = 0:7966 GHz, with voltages V1 = 65:40 kV and V2 = 24:74 kV, and phases

'1 = 177:20Æ and '2 = 174:28Æ. This compensation is shown in Fig. 18.5. Since only 2

sinusoidal rf's are used, the cancellation is not complete; however, the error is less than

1% of the original wake potential and is considered to be not important. Because of the

lifetime of the muons, we �rst performed tracking for only 1000 turns in the time domain

using the broadband wake function W0(z). The initial and �nal bunch distributions are

shown in Fig. 18.6. During the simulation the compensating rf voltages were lowered

turn by turn to conform with the diminishing bunch intensity due to the decay of the

muons.

We see from the right plot of Fig. 18.6 that the bunch distribution has been very

much distorted after 1000 turns. This comes mostly from the fact that the original

distribution of the bunch in the left plot is not exactly Gaussian. It consists of 2� 106

macro-particles randomly distributed according to a bi-Gaussian distribution. As a re-

sult, the wake potential of the actual bunch shown as a red dotted curve in Fig. 18.7

deviates slightly from and wiggles around the ideal wake potential curve of a smooth
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b)

 -40                         0                          40
Figure 18.4: E�ects of a strong space charge or potential-well distortion force result
in a N -shape vertical shear on the bunch.

Figure 18.5: (color) Wake potential, compensating rf voltages, and net voltage seen

by particles in the 13-cm bunch at injection. The compensating rf is the sum of two

rf's represented by dashes.
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Figure 18.6: Simulation of the 13-cm bunch of 4� 1012 muons subject to a broad-

band impedance with quality factor Q=1 and Zk=n=0:5 
 at the resonant angular

frequency !r=50 GHz. The half-triangular bin width is 15 ps (0.45 cm) and 2�106

macro-particles are used. Left plot shows initial distribution with �E=1:5 MeV and

�`=13 cm. Right plot shows distribution after 1000 turns with compensating rf's

depicted in Fig. 18.5.

Gaussian bunch shown in solid. The di�erence is the magenta dotted jitter curve in the

center of the plot. The uctuation seen in the right plot of Fig. 18.6 is the result of

the accumulation of this dotted jitter curve in 1000 turns with muon decay taken into

account. Although this tiny uctuation leads to a small potential-well distortion in one

turn (� 0:02 MeV), it is unfortunate that this distortion accumulates turn after turn

and will never reach a steady state, since the beam is so close to transitiony. (For an

electron bunch, this growth will stop when it is balanced by radiation damping.) This

accumulated distortion can be computed exactly from the the dotted jitter curve. Any

growth in excess will come from collective microwave instability. Note that the uncom-

pensated potential-well distortion is quite di�erent from the growth due to microwave

instability. For the former, the growth in energy uctuations every turn will be exactly

yMore exactly, a steady state will be reached when the momentum o�set becomes so large that phase

drift due to the small slip factor becomes signi�cant. However, this will not happen in reality because

of the �nite momentum aperture of the storage ring.
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Figure 18.7: (color) Wake potential seen by the simulated bunch shown as red dots

is interlaced with the wake potential of an ideal smooth Gaussian bunch shown in

solid. The di�erence (center magenta curve) represents the random uctuation of

the �nite number of macro-particles.

by the same amount as given by the dotted jitter curve in Fig. 18.7 (if muon decay is

neglected). This is because the wake potential of particles along the bunch does not

depend on the energy distribution of the bunch, but only on its linear density and the

latter is essentially unchanged since the particles do not drift much during the �rst 1000

turns. On the other hand, the initial growth due to microwave instability at a particular

turn is proportional to the actual energy uctuation at that turn and the evolution of

the growth is exponential. Thus, although the growth due to microwave instability is

small at the beginning, it will be much faster later on when the accumulated energy

uctuations become larger. It is worth mentioning that even if the wake potential of

the initial bunch with statistical uctuations has been compensated exactly by the rf's,

the bunch can still be unstable against microwave instability. An in�nitesimal deviation

from the bunch distribution can excite the collective modes of instability corresponding

to some eigenfrequencies. In other words, the accumulated growth due to potential-

well distortion is a static solution and this static solution converges very slowly close to
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transition until the momentum spread is large enough for the small j�j to smooth the

distribution. Microwave instability, on the other hand, is a time dependent solution.

In Fig. 18.8, the 3 plots on the left are for a 4000-turn simulation of the same muon

bunch using 2 � 106 macro-particles with the decay of the muons considered. The two

compensating rf systems are turned on. The �rst plot is for � = 0 so that microwave

instability cannot develop. All the uctuations are due to the residual potential-well

distortion or the accumulation of the uncompensated jitters. The second and third

plots are for, respectively, � = �1� 10�6 (below transition) and � = +1� 10�6 (above

transition). We see that they deviate from the �rst plot, showing that there are growths

due to microwave instability although the e�ect is small. The 3 plots on the right are

the same as on the left with the exception that the muons are considered stable, or,

in other words, the particles can be protons. We see that the second and third plots

di�er from the �rst one by very much (note the change in energy scale), indicating

that microwave instability does play an important role for proton bunches in a quasi-

isochronous ring. We also see that microwave instability is more severe above transition

than below transition even when the beam is so close to transition. In the simulations,

the jitters, or the statistical uctuation around the smooth distribution might have

been very much exaggerated because of the small number of macro-particles included

in the tracking. In a realistic beam, these statistical uctuations should be very much

smaller. However, these jitters can also come from other sources, such as electronic

noises, rf acceleration, rf maneuvering, etc. These jitters will be very much larger than

the Schottky noise. As a result, in the design of a quasi-isochronous ring, the sources of

all jitters should be carefully considered in order to estimate the growth in energy o�set

due to potential-well distortion or microwave instability.

18.4.3 Coasting Beam Simulations

For coasting beams, we do not have the inverted tilted \N"-shape wake potential as in

Fig. 18.5. Thus, no rf compensation will be required. However, the noise in the beam

does result in a wake potential similar to the small residual wake-potential jitters in

Fig. 18.5 after wake-potential compensation. Near transition where the phase motion

is negligibly slow, these jitters will add up turn after turn without limit exactly in the

same way as the bunched beam after having optimized the rf compensation. Thus, near

transition, there is essentially no di�erence between a coasting beam and a bunched beam

after the rf compensation. The only exception is that microwave instability develops
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Figure 18.8: Phase-space plots of energy spread in MeV versus distance from bunch

center in cm at the end of 4000 turns. All are simulating 4�1012 micro-particles with

2�106 macro-particles. In the left 3 plots, the decay of the muons has been taken into

account. The �rst left plot is for � = 0 so that it just gives the amount of potential-

well distortion. The second and third plots are for, respectively, � = �1 � 10�6

and +1 � 10�6. The small deviations from the �rst plot are results of microwave

instability. The right 3 plots are the same as the left, except that the muons are

considered stable. Here, large microwave growths develop (note the change of energy

scale).
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most rapidly near the center of the bunch where the local intensity is highest, whereas

in a coasting beam, microwave instability develops with equal probability along the

bunch depending on the statistical uctuations in the macro-particles.

In Fig. 18.9, we show some coasting beam simulations near transition by having

�0 = 0 or �5 � 10�5 and �1 = 0 or �0:05. The coasting beam consists of 3:27 � 1015

protons (or nondecaying muons) having an average energy of 100 GeV in a hypothetic

ring with circumference 50 m. The initial momentum spread is Gaussian with rms

fractional spread �Æ = 0:001 or �E = 100 MeV. Thus, at 1�, the contribution of j�1j =
0:05 is the same as the contribution of j�0j = 5� 10�5. The simulations are performed

with 8�105 macro-particles in 400 triangular bins. The impedance is a broadband with

Q = 1 and Z
k
0=n = 2 
 at the resonant frequency of fr = 300 MHz.

All the plots in Fig 18.9 are illustrated with the same scale for easy comparison.

The horizontal axes are longitudinal beam position from 0 to 166.7 ns, while the vertical

axes are energy spread from �4000 to 3000 MeV. Plot (a) shows the initial particle

distribution in the longitudinal phase space. All the other plots are simulation results at

the end of 54,000 turns. Plot (b) is the result of having �0 = 0 and �1 = 0. It shows the

accumulation of the wake-potential jitters over 54,000 turns. These jitters originate from

the statistical uctuation of the initial population of the macro-particles. Therefore, any

deviation from Plot (b) implies microwave instability. Plots (c) and (d) are with �0 = 0,

but with �1 = +0:05 and �0:05, respectively. We see the growths curl towards opposite

phase directions nonlinearly as expected. This is due to the nonlinearity in Æ of the

time slip given by Eq. (18.16), similar to the simulations in Fig. 18.4(a). It appears

that Plot (c) with �1 = �0:05 gives a larger growth. Plots (e), (g), and (i) are for

�0 = �5� 10�5 (below transition), but with �1 = +0:05, �0:05, and 0, respectively. We

see that the microwave instability is most severe when �1 = 0, indicating that �1 has the

ability to curb instability. This is, in fact, easy to understand. The phase drift driven

by j�1j = 0:05 is much faster than that driven by j�0j = 5:0� 10�5 at larger momentum

spread; for example, it will be 4 times faster at 2�Æ, 9 times faster at 3�Æ, etc. As a

result, a nonvanishing j�1j tends to move particles away from the clumps, thus lessening

the growth due to microwave instability.

Plots (f), (h), and (j) are for �0 = +5�10�5 (above transition), but with �1 = +0:05,

�0:05, and 0, respectively. Again microwave instability is most severe when �1 = 0, and

�1 does curb instability to a certain extent. Comparing Plots (e), (g), and (i) with

Plots (f), (h), and (j), it is evident that the beam is more unstable against microwave
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Figure 18.9: Energy spread (MeV) versus bunch position (ns) of coasting beam

simulations. See text for explanation.
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instability above transition (�0 > 0) than below transition (�0 < 0) independent of the

sign of �1. For a �xed �0, we also notice that negative �1 is more unstable than positive

�1. The theoretical implications of these results are nontrivial and will be discussed in

a future publication.

Now let us come back to the analytic investigations by Bogacz, Holt, and Colestock.

Their results appear to contradict the simulations presented here. Analytic analysis often

starts with the Vlasov equation. The time-dependent beam distribution  (�;�E; t) can

be separated into two parts:

 (�;�E; t) =  0(�;�E) +  1(�;�E) e
�i
t : (18.38)

Here,  0 is the steady-state solution of the Hamiltonian and  1 describes the collective

motion of the beam with the collective frequency 
=(2�). After linearization, the Vlasov

equation becomes an eigenequation with  1 as the eigenfunction and 
=(2�) the eigen-

frequency. The equation also depends on  0. Thus we must solve for the steady-state

solution �rst before solving the eigenequation. The steady-state solution is the time-

independent solution of the Hamiltonian which includes the contribution of the wake

function. In other words,  0 is the potential-well-distorted solution. Far away from

transition, this distortion is mostly in the � coordinate, for example, that brought about

by the space charge or inductive forces. Therefore, for a coasting beam, there will not

be any potential-well distortion at all. The situation, however, is quite di�erent close to

transition. As was pointed out in above, the potential-well distortion is now in the �E

coordinate. For this reason, not only bunched beams, even coasting beams will su�er

from potential-well distortion as a result of the nonuniformity of the beam. In simula-

tions, the nonuniformity arrives from the statistical uctuation of the distribution of the

macro-particles. This nonuniformity will accumulate turn by turn until the momentum

spread is so large that the small j�j is able to smooth out all nonuniformity. In other

words, the steady-state distribution  0 that goes into the Vlasov equation will be com-

pletely di�erent from the original distribution in the absence of the wake. In the analysis

of Bogacz, Holt, and Colestock, the ideal smooth Gaussian distribution in energy was

substituted for  0 in the Vlasov equation. However, this is a very unstable static dis-

tribution; even a small perturbation will accumulate turn by turn with extremely slow

convergence. For this reason, it is hard to understand what their results really represent.
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18.5 Exercises

18.1. (1) Derive Eqs. (18.14) and (18.15), the expansions of the revolution period T and

velocity � as powers of the momentum o�set Æ.

(2) Derive Eq. (18.20), the expansion of the slippage factor.

18.2. Figure 18.1 indicates that there are two series of pendulum-like longitudinal buck-

ets unless it is very close to the transition energy. Explain why we see only one

series under most condition. Use the Fermilab Main Injector as an example. The

Main Injector has a t = 21:8 (20.45 GeV) and �1 = 0:50. Compute the distance

between the two series of buckets in fractional momentum spread when it is in a

coasting mode at the injection energy of 8 GeV and at 18.5 GeV.

18.3. For a proton storage ring with t = 21:8 and �1 = 0:50. The rf voltage is 2.5 MV

and the synchrotron phase is 0Æ. Compute the energy at which the two series of

longitudinal buckets merge.

18.4. Keeping up to �1, for the �-like bucket,

(1) derive the relation between width and height of the bucket [Eq. (18.25)],

(2) derive the bucket area [Eq. (18.27)],

(3) derive Eq. (18.29), the universal relation between width and height of a bunch

�t to the bucket.

18.5. Derive the synchrotron tune of a �2-dominated bucket starting from the Hamilto-

nian of Eq. (18.31).

Answer: �s = �s0F , where F is given by Eq. (18.34)
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Chapter 19

TWO-STREAM INSTABILITY

19.1 Introduction

An intense particle beam forms a potential well for oppositely charged particles and

will therefore trap particles of the opposite charge. These trapped particles can often

accumulate to such an extent that they provide a potential well for particles of the

original beam. Thus, the secondary beam can oscillate transversely in the potential well

of the primary beam and the primary beam can oscillate transversely in the potential

well of the secondary beam. This coupled-beam oscillation may grow in amplitude and

lead to beam loss eventually. This is called two-stream instability. One way to eliminate

the accumulation of particles of opposite charge is to leave a gap in the primary beam

so that the secondary particles can be cleared. However, sometimes the accumulation

of secondary particles produced by one single passage of the primary beam can be so

intense that instability develop even before the clearing gap is reached.

19.2 Trapped Electrons

Proton beam trapping electrons was �rst observed in the Bevatron [1] and later in the

CERN Intersecting Storage Ring (ISR) [2]. The ISR was a collider with an intense coast-

ing proton beam in each of the intersecting vacuum chambers. It had been observed that

electrons were trapped in the potential of the proton beams with oscillation frequency

19-1
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Figure 19.1: (color) Turn-by-turn electron signals are shown in relation to the

proton beam pulse at PSR. Electrons start to appear at the back end of the beam

pulse and are cleared in the bunch gap.

around 100 MHz. The instability was intermittent. It stopped when the electrons,

driven to large amplitudes, were shaken out to the walls, or out of resonance with the

protons. It restarted when a suÆcient number of new electrons had been accumulated.

Slow beam blowup and background problems were the result.

The Proton Storage Ring (PSR) at Los Alamos (LANL) running with 2.3 to 4:2�
1013 protons has always been troubled by the electrons trapped inside the proton beam [3].

A turn-by-turn picture of the electron signal in relation to the circulating proton beam

pulse at the end of a 500 ms store is shown in Fig. 19.1. The proton beam has a full

width of about 240 ns. The timing between electrons and proton beam is good to a

few ns. The electron detector was designed and built at Argonne National Laboratory

(ANL). It has a repeller grid, so that it can decouple the electron energy analysis from

collection. The repeller voltage of 5 volts means that the electrons have to have a kinetic

energy above 5 eV in order to get through to the collector. Electrons start to appear

after the peak of the beam pulse has passed and the peak of the electrons appears at

the end of the beam pulse. Higher repeller voltage shows a smaller, and narrower pulse.

The electron ux hitting the wall is sizeable, about 25 mA/cm2 at the peak or about

2 pC/cm2/pulse or 60 pC/cm/pulse integrated over the circumference of the beam pipe.
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Figure 19.2: (color) Top trace: vertical di�erence signals of the beam reveal a

growing instability about 300 �s after the end of injection. Lower trace: sum signals

of the beam showing beam loss as the instability grows.

Figure 19.3: (color) Turn-by-turn vertical di�erence signals from a short stripline

beam-position monitor at the �nal 300 �s of the store show a vertical instability

starting at the back end of the bunch and spreading into the whole bunch with

increasing amplitude. The bunch sum pro�les from a wall current monitor are also

shown revealing a beam loss as the instability develops.
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It is interesting to compare this with the 420 pC/cm average line density of the proton

beam. Unfortunately, one cannot deduce from this one picture alone how much electron

multi-pactoring is occurring on the backside of the beam pulse without additional data

and assumptions.

An instability is clearly seen in Fig. 19.2 when beam is stored for about 300 mi-

croseconds after the end of injection. A rapidly growing vertical di�erence signal (top

trace) can be seen shortly before beam loss occurs (lower trace), indicating beam cen-

troid oscillations. In Fig. 19.3, the growth of the instability can be seen turn by turn

at the �nal � 300 �s of the store. Here the vertical di�erence signal is compared to the

wall current monitor trace. The beam transverse instability starts on the backside of

the pulse and broadens out as it grows in strength. Some beam loss is evident at the

last turn before extraction.

The Brookhaven booster running in the coasting beam mode su�ers sudden beam

loss due to a vertical instability [4], which cannot be identi�ed with any reasonable

amount of transverse impedance. This has been considered to be the result of two-

stream instability between the proton beam and the electrons it traps.

The Fermilab antiproton ring traps positive ions and limits the intensity of the

storage [5]. The newly built Advanced Photon Source (APS) at ANL is a synchrotron

light source using a positron beam. It has been observed that electrons are trapped

causing instability [6].

19.2.1 Single-Electron Mechanics

Coupled-centroid oscillation of the proton beam and the trapped electron beam will

occur only when the amount of electrons becomes very intense. Therefore, to prevent

such instability, we would like the electrons in the vacuum chamber not to accumulate.

The electrons inside the vacuum chamber are supposed not to move longitudinally. As

the proton bunch passes through them, they are attracted towards the central axis of

the proton bunch with vertical electron bounce frequency 
e=(2�) given by [12]


2
e =

4Nprec
2

aV (aV + aH)Lb
: (19.1)

Here, Np is the number of protons in the bunch which has an elliptical cross section

with vertical and horizontal radii aV and aH, Lb is the full bunch length, and re the



19.2 Trapped Electrons 19-5

electron classical radius. In our derivation, we assume that the proton beam has uniform

longitudinal and transverse distributions and has a cylindrical cross section with radius

a inside a cylindrical beam pipe of radius b. Thus aV (aV + aH) can be replaced by

2a2. The images of the proton beam and the electron cloud in the walls of the vacuum

chamber will modify the electron bounce frequency depicted in Eq. (19.1), but their

e�ects are neglected in this study. Only linear focusing force acting on the electrons by

the proton beam will be considered. The bounce frequency in Eq. (19.1) can be derived

exactly as the space charge self-force tune shift in Chapter 4. In Eq. (4.24), for example,

we make the replacement 2�V;H0 ��V;H0 !2
0 ! 
2

e and 2a2 ! aV (aV + aH). We delete one

factor of  from the denominator because the trapped electrons are assumed to have no

longitudinal motion. We delete the other factor of 2 from the denominator because the

trapped electrons, having no longitudinal velocity, do not interact with the magnetic

�eld of the proton beam.

An electron trapped inside the proton beam performs betatron oscillations with an

equivalent betatron function� �b = �c=
e with a total betatron phase advance �b =


eLb=v, where �c is the velocity of the protons. After the passage of the proton bunch,

the motion of the electron in the gap is equivalent to a drift of length Lg = �rf � Lb

with �rf being the rf wavelength or width of the stationary bucket. Here, we assume all

rf buckets are �lled. The transfer matrix for an rf wavelength is [7]

M=

�
1 Lg

0 1

�0@ cos�b �b sin�b

� 1

�b
sin�b cos�b

1
A=

0
B@cos�b�Lg

�b
sin�b �b sin�b+Lg cos�b

� 1

�b
sin�b cos�b

1
CA :

(19.2)

In order that the electron will not be trapped inside the proton bunch, its motion has

to be unstable or
1

2
jTrM j =

����cos �b � Lg

2�b
sin�b

���� > 1 : (19.3)

If the electron is unstable, we can write

1

2
jTrM j = cosh� ; (19.4)

where ��1 is the growth of the electron oscillation amplitude in one rf bucket, and

the growth rate is ��c=�rf. Here, we study the e�ect of trapped electrons in three

�The electron bounce tune is Qe
e=!0 and the equivalent betatron function is �b = R=Qe, where R

is the mean radius of the accelerator ring.
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synchrotron rings: the storage ring of the Spallation Neutron Source (SNS) to be built

at Oak Ridge National Laboratory (ORNL), the Los Alamos PSR, and the booster at

Brookhaven (BNL). Some information of the three rings are listed in Table 19.1.

Table 19.1: Some data of the Oak Ridge SNS, the Los Alamos PSR, and the

Brookhaven booster at injection.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Circumference C (m) 220.6880 90.2000 201.769

Injection kinetic energy (GeV) 1.000 0.797 0.200

 2.0658 1.8494 1.2132

� 0.8750 0.8412 0.5662

Revolution frequency f0 (MHz) 1.1887 2.7959 0.8412

Revolution period T0 (ns) 841.3 357.7 1189

Total number of protons Np 2:1�1014 4:2�1013 2:4�1013
Rf harmonic (no. of bunches) h 1 1 1

Number of injection turns 1225 2000 300

Repetition rate (Hz) 60 12 7.5

Equation (19.3) appears to be a simple criterion. In fact, it is much more complex

in application, because the electron bounce frequency turns out to be usually very high.

Take for example the PSR, we �nd 
e = 1:254 GHz, which gives an equivalent betatron

function �b = �c=
e = 0:201 m. With the gap length 30.07 m, Lg=�b = 150. Although


e is not sensitive to Lg=�b, it is very sensitive to the phase �b = 
eLg=v � 299 rad

and therefore to sin�b and cos�b. Thus, a very slight change in the number of protons

in the beam will alter the electron bounce frequency, the betatron phase, and give rise

to a large change in the trace. Since the electron bounce frequency usually has a large

spread, it is more reasonable to consider the rms value of the trace instead.

The results of 1
2
jTrM j are listed in Table 19.2. We see that for all the 3 rings, the

electrons trapped should be able to escape to the walls of the beam pipe in the beam

gap. In fact, with such high electron bounce frequency, Lg=�b will be large and it will

not be easy to trap electrons if the gap is clean. When the intensity of the proton beam

is raised, the electron bounce frequency will increase, making the electrons easier to

escape at the gap.
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Table 19.2: Instability and escape time through the bunch gap of a single electron

trapped inside the proton bunches of the ORNL SNS, LANL PSR, and BNL booster.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Injection full bunch length (m) 143.39 60.13 100.89

Gap length (m) 77.30 30.07 100.89

Proton beam radius a (m) 0.0380 0.0150 0.0150

Bounce angular frequency 
e (MHz) 713.3 1253.9 462.6

Bounce betatron phase �b (rad) 309.9 299.0 435.2
1
2
jTrM j (rms) 52.55 37.38 108.8

Escape time in no. of rf buckets 0.2148 0.2318 0.1858

Sometimes, the gap is not totally free of protons. The space charge e�ect of the

protons will distort the rf bucket reducing its momentum acceptance. As a result,

some protons may leak out of the bucket and end up in the bunch gap. If a fraction

� of the protons leaks into the gap, the electron will oscillate with bounce frequency


eb=(2�) inside the proton beam and bounce frequency 
eg=(2�) in the bunch gap.

These frequencies are given by [7, 10]


2
eb = 
2

e(1� �) and 
2
eg = 
2

e�
Lb

Lg

: (19.5)

Again, only linear focusing force by the proton beam is considered. The betatron phase

advances in the beam and in the gap are, respectively, �b = 
ebLb=(�c) and �g =


ebLg=(�c). The transfer matrix is therefore

M =

0
@ cos�g �g sin�g

� 1

�g
sin�g cos�g

1
A
0
@ cos�b �b sin�b

� 1

�b
sin�b cos�b

1
A

=

0
B@ cos�g cos �b � �g

�b
sin�g sin�b �b cos�g sin�b + �g cos �b sin�g

� 1

�g
cos�b sin�g � 1

�b
cos�g sin�b ��b

�g
sin�b sin�g + cos�g cos�b

1
CA ; (19.6)

where the equivalent betatron functions in the bunch and in the gap are, respectively,

�b =
�c


eb

and �g =
�c


eg

: (19.7)
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The condition for the electrons to escape is therefore

1

2
jTrM j =

����cos�g cos�b � 1

2

�

eb


eg
+

eg


eb

�
sin�g sin�b

���� > 1 : (19.8)

It is easy to demonstrate that Eq. (19.8) reduces to Eq. (19.3) when � ! 0.

Figure 19.4 show 1
2
TrM as a function of the fractional proton leakage � into the

gap, respectively, for the ORNL SNS, LANL PSR, and BNL booster. The plots for the

ORNL SNS and LANL PSR are very similar; 1
2
TrM oscillates rapidly with the fractional

leakage and becomes bounded by �1 or electrons will be trapped when � . 0:05. The

situation for the BNL booster is di�erent. Even up to � = 0:20, the oscillation of 1
2
TrM

still has an amplitude larger than 1. This is mainly due to the fact of a larger gap-to-

bunch-length ratio in the BNL booster. Thus, we may conclude that electrons are not

so easily trapped in BNL booster as in the ORNL SNS and LANL PSR when protons

are spilled into the bunch gaps. We also try to vary the electron bounce frequency in

each case and �nd that the results remain relatively the same. The only changes in the

plots are faster oscillations when the bounce frequency is increased.

19.2.2 Centroid-Oscillation Instability

Consider coupled oscillation of the proton beam and the electron `beam' in the vertical

direction. The displacements of a proton and electron from the central axis of the

vacuum chamber are denoted, respectively, by yp and ye. Here, we assume both the

proton and electron beams are coasting beams having the same transverse sizes and

uniform distribution longitudinally and transversely. The coupled equations of motion

are [12, 7, 4, 14]

�
@

@t
+ !0

@

@�

�2

yp +Q2
�!

2
0yp = �Q2

p!
2
0(yp � �ye) +Q2

ps!
2
0(yp � �yp) ; (19.9)

d2ye
dt2

= �Q2
e!

2
0(ye � �yp) +Q2

es!
2
0(ye � �ye) ; (19.10)

where �yp and �ye are the vertical displacements of the centroids of, respectively, the proton

and electron beams from the axis of the vacuum chamber, !0 is the angular revolution

frequency, � is the azimuthal angle around the ring, Q� is the betatron tune, and Qp

and Qe are, respectively, the oscillation tune of the electrons inside the proton beam and
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Figure 19.4: The ORNL SNS: Electrons will be trapped if 1
2TrM falls between the �1

dashed lines. The 3 plots are, from top down, for the ORNL SNS, LANL PSR, and BNL

booster.
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the oscillation tune of the protons inside the electron beam. We have


2
e = (Qe!0)

2 =
4Nprec

2

aV (aH + aV )C
; (19.11)


2
p = (Qp!0)

2 =
4Nprpc

2�e
aV (aH + aV )C

; (19.12)

where �e is the neutralization factor, or the ratio of the electron distribution to the

proton distribution. In above, rp is the classical proton radius, re the classical electron

radius, and C the circumference of the accelerator ring. The negative signs on �rst terms

on the right hand sides of Eqs. (19.9) and (19.10) indicate that the protons are focused

by the electron beam and the electrons are focused by the proton beam. The factor 

in the denominator of 
2
p comes about because the protons are circulating around the

ring while the electrons do not. Notice that there are no magnetic force contributions.

For 
e, the electron has no velocity although it sees a magnetic �eld from the proton

beam. For 
p, the proton, although at a high velocity, does not see a magnetic �eld

in the stationary electron beam. Again, we are considering uniformly and cylindrical-

symmetrically distributed proton and electron beams of radius a; or aV (aH +aV )! 2a2.

Image e�ects in the walls of the vacuum chamber as well as nonlinear focusing forces

are neglected.

The last term in the proton equation denotes the oscillations of the proton under

the self-�eld of the proton beam. Here,

(Qps!0)
2 =

4Nprpc
2

aV (aH + aV )3C
(19.13)

is proportional to the linear space charge tune shift of the proton beam. Similarly the

last term in the electron equation, with

Q2
es = Q2

e�e (19.14)

denoting the space charge tune shift of the electron beam, depicts the corresponding

oscillations of the electron in the self-�eld of the electron beam.

Averaging over the proton displacements and electron displacements, we obtain the

equations for the coupled motion of the proton-beam centroid �yp and the electron-beam

centroid �ye. Notice that the space charge terms, Q2
ps and Q2

es, drop out. If there is a

coherent instability occurring at the angular frequency 
 = Q!0, we can write

�yp � ei(n��
t) and �ye � ei(n��
t) ; (19.15)
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where n is the longitudinal harmonic number. The coupled equations can be readily

solved to give

(Q2 �Q2
e)[(n�Q)2 �Q2

� �Q2
p]�Q2

eQ
2
p = 0 ; (19.16)

which is a quartic. For a solution when Q is near Qe, we can expand Q around Qe.

When Qp or the neutralization factor �e is large enough, the solution becomes complex

and an instability occurs. The limiting Qp for stability is given by

Qp .
j(n�Qe)

2 �Q2
� �Q2

pj
2
p
Qejn�Qej

; (19.17)

from which the limiting neutralization factor �e can be obtained. Once above threshold,

the growth rate, given by

1

�
� Qp!0

2

s
Qe

jn�Qej ; (19.18)

is very fast. Notice that Q2
p on the right side of Eq. (19.17) in the numerator can be

neglected because usually Q2
p � Q2

�.

A proper employment of Eq. (19.17) is important, because it can give meaningless

result. For example, in the situation:

[Qe] = [Q�] or [Qe] + [Q�] = 1 ; (19.19)

where [Qe] and [Q�] are, respectively, the residual betatron tune and the residual electron

bounce tune, there will always exist a harmonic n which leads to instability for Qp ! 0

or neutralization �e ! 0. However, the growth rate will go to zero also. In reality,

there is always a variation in the proton linear density or the electron bounce tune Qe

usually has a spread. Furthermore, the betatron tune can be suitably adjusted. To

obtain something meaningful, �rst let us separate the numerator of the right side of

Eq. (19.17) into the fast and slow waves and keep only the dangerous slow wave:

j(n�Qe)
2 �Q2

� �Q2
pj � 2Q�jn�Qe �Q�j (19.20)

Compute Qe from Eq. (19.11). Then the most o�ending harmonic n is determined as

the integer closest to Qe +Q�. We next modify Qe slightly so that

n�Qe �Q� =
1

2
: (19.21)
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Table 19.3: Coherent centroid-oscillation instability for proton-electron coasting

beams.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Total number of protons Np 2:10�1014 4:2�1013 4:42�1013
Betatron tune Q� 5.82 2.14 4.80

Proton beam radius a (m) 0.0380 0.0150 0.0150

Qp=
p
�e 1.2501 1.000 1.070

Most o�ending harmonic n 83 61 67

Qe = n�Q� � 1
2

76.68 58.36 79.70

Limiting Qp 0.1378 0.0957 0.1227

Limiting neutralization �e 0.0122 0.0093 0.0132

Growth rate in number of turns 0.637 0.637 0.637

Landau damping with (�Q��2�Qsc)=Q� = 0:03 and �Qe=Qe��e = 0:25

Limiting Qp 0.5040 0.1853 0.4157

Limiting neutralization �e 0.1626 0.0343 0.151

Growth rate in number of turns 0.176 0.340 0.386

As a result, the stability condition of Eq. (19.17) reduces to

Qp .
1

2

s
Q�

Qe
; (19.22)

and the growth rate of Eq. (19.18) reduces to

1

�
� Qp!0

2

s
Qe

Q�

: (19.23)

The latter becomes ��1 � !0=4 when the threshold values in Eq. (19.22) are substituted.

With this consideration, the results are listed in Table 19.3. Here, the intensity of

4:42�1013 protons is used for the Brookhaven booster, where coasting beam experiments

with possible e-p instabilities have been observed. We notice that the neutralization

threshold is about 1.2% for the ORNL SNS, 0.9% for the LANL PSR, and 1.3% for the

BNL booster. Once the thresholds are reached, the growth rates are very fast and the

corresponding growth times are less than one turn for all the 4 machines.
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There is another consideration of the stability of the two beam centroids, since the

coherent oscillation can be stabilized by Landau damping. The equation of motion of the

electron, Eq. (19.10), can be viewed as an undamped oscillator driven by �yp, the centroid

of the proton beam. Thus, spreads in the proton betatron tune Q� and/or proton bounce

tune Qp alone will not be able to damp the electron oscillations. To damp the electron

oscillation, there must be a spread in the electron bounce tune Qe. The same applies to

the equation of motion of the proton, Eq. (19.9), driven by the centroid of the electron

beam. Therefore, to provide Landau damping to the coupled-centroid oscillation, there

must exist large enough spreads in both the betatron tune �Q� and the electron bounce

tune �Qe.

First, we rewrite Eqs. (19.9) and (19.10) as�
@

@t
+ _�

@

@�

�2

yp +Q
02
p !

2
0yp = Q2

p!
2
0�ye �Q2

ps!
2
0�yp ; (19.24)

d2ye
dt2

+Q
02
e !

2
0ye = Q2

e!
2
0 �yp �Q2

es!
2
0�ye ; (19.25)

where we have denoted

Q0
p
2
= Q2

� +Q2
p �Q2

ps and Q0
e
2
= Q2

e �Q2
es : (19.26)

Second, with the ansatz in Eq. (19.15), the coupled di�erential equations becomes

yp =
Q2

p�ye �Q2
ps�yp

Q02
p �

 
Q� n _�

!0

!2 ; (19.27)

ye =
Q2

e�yp �Q2
es�ye

Q02
e �Q2

: (19.28)

Third, we need to integrate both sides with the suitable distribution functions. In doing

so, two approximations are to be made: (1) only the denominators of Eqs. (19.27) and

(19.28) depend on the distributions which appear in di�erences of squares but not the

numerator, and (2) only the slow wave will be included. It is then easy to obtain

�yp =
Q2

p

2Q0
pÆQ

0
p

�ye �
Q2

ps

2Q0
pÆQ

0
p

�yp ; (19.29)

�ye =
Q2

e

2Q0
eÆQ

0
e

�yp � Q2
es

2Q0
eÆQ

0
e

�ye ; (19.30)
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where
1

ÆQ0
p

=

Z
Fp(s)ds

Q0
p � n+Q + Æps

; (19.31)

1

ÆQ0
e

=

Z
Fe(s)ds

Q0
e �Q+ Æes

; (19.32)

Æp =
@

@s

 
Q0

p(s)�
n _�(s)

!0

!
s=0

; (19.33)

Æe =

�
@Q0

e(s)

@s

�
s=0

; (19.34)

and Qp, Q
0
p, Qps, Qe, Q

0
e, Qes in Eqs. (19.29) to (19.32) are all evaluated at s = 0. Here,

s being a generic variable, which can represent amplitude, momentum spread, etc, while

Fp(s) and Fe(s) are distributions normalized to unity for the protons and electrons.

From Eqs. (19.29) and (19.30), it is easy to get�
2ÆQ0

p +
Q2

ps

Q0
p

��
2ÆQ0

e +
Q2

es

Q0
e

�
� Q2

pQ
2
e

Q0
pQ

0
e

= 0 : (19.35)

Now following Laslett, et al, semi-circular distributions,

Fp(s) =
2

�ŝ2p

q
ŝ2p � s2 and Fe(s) =

2

�ŝ2e

p
ŝ2e � s2 ; (19.36)

are assumed for both the protons and electrons. One obtains(
2ÆQ0

p = Q0
p � n+Q+ i ��p ;

2ÆQ0
e = Q0

e �Q� i ��e ;
(19.37)

where 8<
:

��p =
q
�Q2

p � (Q� n +Q0
p)

2 ;

��e =
p
�Q2

e � (Q�Q0
e)

2 ;
(19.38)

while �Qp and �Qe are the actual half spread of Q0
p and Q0

e in these distributions and

are related to Æp and Æe in Eqs. (19.33) and (19.34) by

�Qp = ŝpÆp = ŝp
@

@s

 
Q0

p(s)�
n _�(s)

!0

!
s=0

; (19.39)

�Qe = ŝeÆe = ŝe

�
@Q0

e

@s

�
s=0

: (19.40)
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Equation (19.35) is obtained via the integral [9]

Z 1

�1

p
1� x2 dx

x + x1 � i�
= �

�
x1 + i

q
1� x21

�
: (19.41)

Substitution into Eq. (19.35) leads to a quadratic equation in the coherent coupled-

oscillation tune Q, the solution of which is

Q = Q0
e +

Q2
es

Q0
e

+ d1 � i

2
( ��e + ��p)� i

(
Q2

pQ
2
e

Q0
pQ

0
e

�
�
d1 +

i

2
( ��e � ��p)

�2)1=2

; (19.42)

where

d1 =
1

2

��
n�Q0

p �
Q2

ps

Q0
p

�
�
�
Q0

e +
Q2

es

Q0
e

��
: (19.43)

It is clear that stability requires in Eq. (19.42)

Re
(
Q2

pQ
2
e

Q0
pQ

0
e

�
�
d1 +

i

2
( ��e � ��p)

�2)1=2

� 1

2
( ��e + ��p) : (19.44)

This criterion is equivalent to, after considerable amount of algebra,

��p
��e �

Q2
pQ

2
e

Q0
pQ

0
e

"
1 +

�
2d1

��p + ��e

�2
#�1

: (19.45)

Within a narrow band of instability, associated with the resonance d1 � 0, or n�Q0
p �

Q � Q2
ps=Q

0
p and jQ0

e � Qj � Q2
es=Q

0
e, the stability limit can be simpli�ed. With the

substitution of Eq. (19.38), we �nally arrive at

"
�Q2

p �
�
Q2

ps

Q0
p

�2
#1=2 "

�Q2
e �

�
Q2

es

Q0
e

�2
#1=2

� Q2
pQ

2
e

Q0
pQ

0
e

: (19.46)

Because square roots are involved, we also require

�Qp >

����Q2
ps

Q0
p

���� and �Qe >

����Q2
es

Q0
e

���� : (19.47)

It is important to point out that the space charge self-force terms of Eqs. (19.9) and

(19.10) do not drop out when averaged over the distributions. As an approximation,
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Q0
p � Q� implying that Q2

ps=Q
0
p � 2�Qsc, where �Qsc is the linear space charge tune

shift of the proton beam. Similarly, we can write Q2
es=Q

0
e � Qe�e, which is twice the

linear space charge tune shift of the electron beam. The stability condition then simpli�es

to �
�Q2

� � 4�Q2
sc

�1=2 �
�Q2

e � �2
eQ

2
e

�1=2
&

Q2
pQe

Q�

: (19.48)

Because of the square roots on the left side of Eq. (19.48), we also require for stability,

�Q� � 2Qsc and
�Qe

Qe

� �e : (19.49)

The spread in the electron bounce frequency is diÆcult to measure. However, when

instability occurs, the electron bounce frequency is very close to the coherent instability

frequency, which is the same for the proton beam and the electron. Thus measuring the

coherent transverse oscillation frequency of the proton beam, we can infer the electron

bounce frequency. According to the measurement at PSR, �Qe=Qe � 0:25. Assuming

that the neutralization factor is small, we may set the half maximum fractional spread

of the electron bounce tune to be �Qe=Qe��e � 0:1, and the half maximum fractional

spread of the betatron tune in excess of twice the space charge tune shift is (�Q� �
2�Qsc)=Q� � 0:03. The limiting Qp and neutralization factor �e can now be computed

and are also listed in Table 19.3. For the ORNL SNS and the Brookhaven booster, the

threshold neutralization factors have been increased to 16.3% and 15.1%, respectively,

which are more than 10 times. For the LANL PSR, however, the neutralization threshold

�e becomes � 3:4%, an increase of less than 4 times. Further increase in threshold

requires larger spreads in Qe and Q�. In fact, it has been demonstrated that anti-

damping can even happen unless there is a large enough overlap between �Q� and �Qe

[12]. Notice that these stability limits of the neutralization factor can be sensitive to the

distributions of the betatron tune and the electron bounce tune.

A stability condition has also been derived by Schnell and Zotter [12] assuming

parabolic distributions for the betatron tune and the electron bounce tune, but without

consideration of the space charge self-forces. They obtain

�Q�

Q�

�Qe

Qe
&

9�2

64

Q2
p

Q2
�

: (19.50)

Notice that the Schnell-Zotter criterion is essentially the same as the Laslett-Sessler-

M�ohl criterion, if we interpret �Q� of the former as the half tune spread of the betatron

tune in excess of twice the space charge tune spread of the proton beam, and �Qe as
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the half tune spread of the electron bounce tune in excess of twice the space charge

tune spread of the electron beam. The factor 9�2=64 in Eq. (19.50) is probably a form

factor of the parabolic distributions. Our discussion can be generalized when we notice

that both Q2
ps=Q

0
p and Q2

es=Q
0
e in Eq. (19.46) come from, respectively, the �ye term in

Eq. (19.9) and the �yp term in Eq. (19.10). Thus, Q2
ps and Q

2
es can be extended to include

the perturbations of oscillations coming from all types of impedances of the accelerator

ring. In that case, the Schnell-Zotter stability criterion should be valid if we interpret

�Q� as the half tune spread of the betatron tune in excess of what is necessary to cope

with the instabilities of the single proton beam, and �Qe as the half tune spread of the

electron bounce tune in excess of what is necessary to cope with the instabilities of the

single electron beam.

19.2.3 Production of Electrons

As seen in the previous section, the e-p coherent centroid-oscillation instability depends

strongly on the neutralization factor, or the amount of electrons trapped inside the

proton bunch.

One source of electron production is through collision of the protons with the resid-

ual gas in the vacuum chamber. At a vacuum pressure of 1 � 10�7 Torr (1 atm =

760 Torr) and room temperature (T = 300ÆK), there is a residual gas density of

nres =
NAp

RT
= 3:2� 1015 molecules=m3 ; (19.51)

where the ideal gas law has been used, with NA = 6:022 � 1023 being the Avogadro

number and R = 82:55 � 10�6 Atm-m3K�1 the gas constant. The expected average

ionization cross section is �i = 1:2� 10�18 cm2 (or 1.2 Mb). If the residual gas is mostly

bi-atomic molecules, each contributing two electrons, the rate of electron production

is [10]
dNe

dt
= 2�cnres�iN(t) ; (19.52)

where N(t) is the number of protons accumulated from injection at time t. If tinj is the

total injection time, N(t) = Npt=tinj, where Np is the total number of protons at the end

of the injection. The neutralization due to ionization collision at the end of injection is

therefore

�e =
Ne

Np

= �cnres�itinj : (19.53)
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The vacuum pressure for the ORNL SNS is designed to be 1�10�9 Torr and that for the

LANL PSR is 2�10�8 Torr, while the other ring is with vacuum pressure 1�10�7 Torr.

The neutralization due to ionization collision turns out to be 0.104%, 1.39%, and 2.33%,

respectively, for the ORNL SNS, LANL PSR, and BNL booster. The neutralization

factors are large for PSR and the BNL booster because of their relatively low vacuum and

long injection times of, respectively, � 2000 and 300 turns. The maximum neutralization

of the ORNL SNS is small because of the very high vacuum.

Another source of electron production is through the multi-traversing of the strip-

ping foil by the proton beam. For example, a proton in the LANL PSR can generate on

the average two electrons because of the presence of the stripping foil.

A more important source of electron production is when an electron hitting the

walls of the beam pipe releases secondary electrons. These secondary electrons can

cause multi-pactoring and generate a large amount of electrons. Here, we would like to

compute the energy of an electron hitting the beam pipe and estimate the eÆciency of

secondary emission [11].

An electron is oscillating with bounce frequency 
e=(2�) with amplitude increasing

exponentially with an e-folding growth rate !I . Assume that the electron just grazes

the wall of the beam pipe at time t = 0. Its amplitude is given by

y = be!I t cos 
et ; (19.54)

where b is the beam pipe radius. It will hit the other side of the wall at time t1 =

(� ��)=
e, where

�b = be!I t1 cos 
et1 = be(���)!I=
e cos(� ��) : (19.55)

Assuming �� 1 and �!I=
e � 1, the solution is

� =

r
2�!I

e

�
1 +O

�r
!I

e

��
: (19.56)

The velocity of the electron hitting the other side of the wall can be obtained by di�er-

entiating Eq. (19.54) and is given by

_y = �b
p
2�!I
e

�
1 +O

�r
!I

e

��
: (19.57)

The kinetic energy is therefore

Ekin = �me!I
eb
2 ; (19.58)



19.2 Trapped Electrons 19-19

where me is the electron mass.

For single-electron motion, we can identify the growth rate !I = ��c=�rf, where �

is given by Eq. (19.4). The velocities and kinetic energies of the electrons hitting the

wall on the other side of the beam pipe are listed in Table 19.4. We see that when

hitting the beam pipe wall, the electrons possess kinetic energies of 198.6, 775.4, and

139.5 eV, respectively, for the three rings. For the BNL booster, the bunched mode

intensity has been used. It is a known fact that an electron in excess of 100 eV hitting

a metallic wall will result in a secondary-emission coeÆcient greater than unity. This

implies that multi-pactoring will occur in these three rings. This consideration is for the

motion of a single electron and is independent of the amount of electrons present inside

the vacuum chamber of the ring. In the design of the ORNL SNS, the beam pipe will be

made of stainless steel with a titanium coating, which will reduce the secondary-emission

eÆciency and thus prevent multi-pactoring to occur. An experiment had been performed

at the LANL PSR by coating part of the walls of the vacuum chamber with TiN. The

electron ux was found to have been suppressed about 1000 times [15]. However, it

was reported at the SLAC PEP low energy positron ring that TiN coating did not help

much in reducing electron secondary emission. In passing, it is worth mentioning that

aluminum has a much higher second-emission coeÆcient than stainless steel. Thus, an

aluminum vacuum chamber should be avoided if one wish to limit the amount of trapped

electrons.

We can also identify !I with the growth rate �
�1 of the coherent centroid oscillation

in Eq. (19.18). The kinetic energy of an electron hitting the other side of the beam pipe

wall becomes

Ekin =
�meQpQ

3=2
e !2

0b
2

2
pjn�Qej

: (19.59)

The kinetic energy of the electron hitting the pipe wall is now proportional to Qp and

therefore
p
�e, the amount of trapped electrons. These results for the three rings are

listed in Table 19.4 at the threshold neutralization. Actually, Eq. (19.59) becomes

Ekin � �meQe!
2
0b

2=4 when the threshold values in Eq. (19.22) are substituted. Notice

that the kinetic energies of the electrons hitting the beam pipe walls at the onset of

coupled-centroid instability are less than 100 eV for the ORNL SNS and the BNL booster

in the bunched mode. Thus multi-pactoring will occur only if the neutralization factor

is much larger than � 1%. On the other hand, the electron kinetic energy is 201 eV

for the Los Alamos PSR. Thus, multi-pactoring will occur near the onset of coherent

centroid instability.
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Table 19.4: Kinetic energy of electron hitting the wall of the beam pipe.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Total number of protons Np 2:1�1014 4:2�1013 2:4�1013
Beam pipe radius b (m) 0.0500 0.0500 0.0600

Single-electron consideration

Electron escaping rate !I (MHz) 6.24 13.9 4.69


e (MHz) 713.3 1253.9 462.6

Velocity hitting wall _y=c 0.0279 0.0551 0.0234

Kinetic energy hitting wall (eV) 198.6 775.4 139.5

Coherent-centroid-oscillation consideration

Threshold neutralization �e 0.0122 0.0093 0.0132

Growth rate !I (MHz) 1.867 4.392 1.320


e (MHz) 572.7 1025.2 325.8

Velocity hitting wall _y=c 0.0137 0.0281 0.0104

Kinetic energy hitting wall (eV) 47.8 201.1 27.6

19.2.4 Electron Bounce Frequency

Electron-proton instability is di�erent from other transverse instability in that the

bounce frequency of the electrons inside the proton bunch is very broad. Recall that the

angular bounce frequency is de�ned as


e =

s
4�rec2

aV (aV + aH)
: (19.60)

where � is the linear particle density of the proton bunch. Thus, the bounce frequency

of the electrons depends on where they are inside the proton bunch. For example, if the

electrons are trapped within the proton FWHM bunch pro�le, the spread of the bounce

frequency will be 1=
p
2 its mean value, which is certainly a wide spread. Another test

of the e-p bounce oscillation is to measure the dependency of the bounce frequency on

the proton beam intensity. As is given by Eq. (19.60), the bounce frequency should be

proportional to the square root of the proton intensity. Such a measurement has been

performed at the Los Alamos PSR and is shown in Fig. 19.5. At countdown 1 (CD 1),

the longest chopped proton beam is injected from the linac. At 6:1 �C or 3:81 � 1013

proton injected, the electron bounce frequency observed is � 200 MHz, very close to
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Figure 19.5: (color) The PSR is run at CD 1 with 6:1 �C. The electron bounce

frequency is measured to be centered at � 200 MHz, close to the theoretical pre-

diction. The total spread of the bounce frequency is roughly 100 MHz, the same

order of magnitude as its center value. Operated at CD 2 with 3:0 �C, the bounce

frequency reduces to � 140 MHz, roughly by
p
2 times as expected.

the prediction of Eq. (19.60). Next the injection is at countdown 2 (CD 2), where the

chopped beam from the linac is injected into the PSR on alternate turns, thus reducing

the total injection intensity by half to 3:0�C. The bounce frequency is found to peak

at � 140 MHz, very close to a reduction of
p
2 as predicted. The total spread of the

bounce frequency at CD 1 is about 100 MHz, which is also the same order of magnitude

as predicted above.

19.2.5 Discussion and Conclusion

(1) In the above single-electron analysis, it appears that electrons will be cleared in

the bunch gap within one rf wavelength for all the 3 proton rings under consideration.

However, if more than � � 4% of the protons are spilled into the bunch gap, electrons

will be trapped inside the proton beam in the ORNL SNS and LANL PSR. For the BNL

booster, on the other hand, electrons are relatively more diÆcult to be trapped when
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there are spilled protons in the bunch gaps even if � > 20%. This is probably due to its

much larger gap-to-bunch-length ratio.

(2) For coherent centroid oscillation to become unstable, neutralization factors of

�e � 1:2%; 0.9%, and 1.1% are required, respectively, for the three machines. However,

spreads in the betatron frequencies and the electron bounce frequencies can provide

Landau damping.

(3) The LANL PSR may accumulate protons through an injection in � 2000 turns

and the BNL booster in 300 turns. The vacuum pressures of both rings are relatively

high, � 1� 10�8 Torr for the former and � 1� 10�7 Torr for the latter. As a result, the

amount of electrons per proton produced by collision with residual gases can be as high

as 1.39 and 2.33%, respectively, for the two rings. However, the electron production for

the ORNL SNS via proton-ion collision is less than 1%, which is the result of a high

vacuum of 1� 10�9 Torr in the vacuum chamber.

(4) Multi-pactoring as a result of secondary emission will be possible for all the

three rings when single electron escapes from the trapping proton beam and hits the

metallic beam pipe. For the LANL PSR, multi-pactoring will occur near the onset of

coherent centroid instability. However, for the other two rings, multi-pactoring will not

occur as soon as centroid oscillations become unstable.

(5) There is a similar proton ring called ISIS at the Rutherford Appleton Labo-

ratory. At the injection energy of 70.4 MeV, about 2:5 � 1013 protons are stored as a

continuous coasting beam, which is then captured adiabatically into 2 rf buckets. The

protons are ramped to 0.8 GeV when they are extracted. No e-p instabilities have ever

been observed at ISIS either running in the bunched mode or the coasting-beam mode.

This has always been a puzzle. However, when we compare ISIS with the LANL PSR,

we do �nd some important di�erences. First, ISIS has a repetition rate of 50 Hz. The

injection is fast, about 200 turns. On the other hand, it usually takes about 200 turns for

the e-p instability of the PSR to develop to a point when it can be monitored. Second,

ISIS has a much larger vacuum chamber, 7 cm in radius. Also the ISIS vacuum chamber

is made of ceramic to limit eddy current because of the high repetition rate of 50 Hz.

A wire cage is installed inside the ceramic beam pipe to carry the longitudinal return

current. The wire cage does not allow transverse image current to ow, thus alleviating

in some way the transverse instability. Also the cage wires have much less surface area

than the walls of an ordinary metallic beam pipe. As a result, secondary emission will be

reduced. The secondary emitted electrons will come out in all directions from the cage
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wires. The probability for them to hit another cage wire will be small, thus preventing

multi-pactoring to occur. These may be the reasons why e-p instabilities have never

been observed at ISIS.

19.3 Fast Beam-Ion Instability

In the above sections, we discuss ions trapped in an electron beam (or electrons trapped

in a proton beam) causing coherent coupled ion-electron oscillation once the intensity

of the trapped ions is high enough. The best cure appears to be a gap between the

consecutive bunches. The ions will be cleared in the gap. They will not accumulate

inside the potential of the electron beam turn after turn and their intensity will not

reach the threshold of coupled-beam instability.

However, if the linear density of the electron beam is large enough and the electron

bunch is long enough, even in one pass through a region in the vacuum chamber the

electron beam is able to generate and trap so many ions that coupled ion-electron occurs

resulting in the emittance growth of the electron beam. This instability, called fast ion

instability, was �rst investigated by Raubenheimer and Zimmermann [16]. Instead of a

long electron bunch, fast ion instability can also occur for a long train of short electron

bunches, because the gaps between consecutive bunches may not be long enough to

clear all the ions. This instability is important because of its one pass nature and is not

curable by clearing gap. For this reason, this instability can also happen inside a linac.

19.3.1 The Linear Theory

In this section, we derive the linear theory of fast ion instability. We will follow the

approach of Chao [17]. The only di�erence is that we need to keep tract of the gradual

accumulation of ions generated.

Let ye(sjz) denotes the vertical displacement of the centroid of a slice of the electron

bunch, where z is the distance of the slice from the head of the electron bunch and s

is the distance along the accelerator. If the head of the bunch passes position s = 0

at time t = 0, s = vt � z, where v is the beam velocity. We assume that the electron

beam contains Ne electrons, uniformly distribution longitudinally and transversely, has
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a length ` and horizontal and vertical radii aH and aV .

Let yI(s; tjz) denotes the vertical displacement of the centroid of a slice of the ions

at time t position s along the accelerator. These ions are generated by the electron slice

at a distance z behind the head of the electron bunch. Since the ions are assumed to

have no longitudinal velocity, s and t are not related.

19.3.1.1 The Ion Equation of motion

Because the focusing force experienced by the ion is relative to the centroid of the

electron beam, the equation of motion of the ion is just

@2

@t2
yI(s; tjz0) + !2

I
[yI(s; tjz0)� ye(sjvt�s)] = 0 : (19.61)

The second argument of the electron displacement has been substituted with z = vt� s

because it is the electron slice at z = vt � s which are interacting with the ions at

location s and time t. Here, only the linear force has been included for the linear theory

and all image and space charge forces are neglected. The ion bounce angular frequency

!I is given by

!I =

s
4Nerpc2

`aV (aV +aH)A
; (19.62)

where rp is the proton classical radius and A is the atomic mass of the ions. This is

exactly the same as the electron bounce frequency we derived in Eq. (19.1) with the

electron mass replaced by the ion mass. Although the ion is very much heavier than

the electron, the electron beam size is usually very much smaller than the proton beam

size. Therefore this ion bounce frequency can be very large also. For a nitrogen ion of

A = 14 in an electron bunch containing 1011 particles, of total length ` = 1 cm, and

radius a = 1 mm, we �nd !I=(2�) = 70 MHz. In case the beam transverse distribution is

bi-Gaussian with rms spreads �H and �V , the following substituting should be made [16]

in Eq. (19.62):

aV (aV +aH) �! 3�V (�V + �H) : (19.63)

The ions described in Eq. (19.61) were produced by proton at location s (the head

is at s+ z0) at time t = (s+ z0)=v, and should have the same distribution as the proton
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and has no transverse velocity. Therefore, Eq. (19.61) has the initial conditions

yI

�
s;
s+z0

v

���z0� = ye(s; z
0) ;

@

@t
yI (s; tjz0)

���
t= s+z0

v

= 0 : (19.64)

These initial conditions o�er a way to determine the ion distribution. A slice of ions,

when produced at time t0, have exactly same transverse distribution as the slice of elec-

trons. These ions have no initial transverse velocity, but they will start their oscillation

about the centroid of the electron slice according to r cos!I(t� t0)=v, with r being the

initial distance of a particular ion from the centroid of the electron slice. This implies

that this slice will �rst contract to zero in one quarter of a betatron oscillation and

expand again. Of course, we will not �nd the ions contract to zero at a location at any

time, because at the same location there are other slices of ions produced by other slices

of electrons. These ion slice will have di�erent betatron phases than the one that we are

talking about, because the electron slice producing them are at di�erent z from the head

of the beam. Because of the betatron oscillation (even in the absence of couple ion-beam

oscillation), the average horizontal and vertical radii of the ion slice will be smaller than

those of the electron beam. They are just aH=
p
2 and aV =

p
2 if the distribution of the

ions is assumed to be uniform.

A derivation of the ion distribution is as follow. For simplicity, in this derivation a

round electron beam with a = aH = aV is assumed. If � is the ionization cross section

and ng is the residual gas density in the vacuum chamber, the linear density of ions

�I = �ngNe (19.65)

is produced near the tail of the electron beam, after a total of Ne electrons have passed

through. Now an electron slice of width dz0 at distance z0 behind the head of the electron
beam will produce a slice of ions with linear density �ngNedz

0=`. This slice of ions will
have radius a when born. These ions do not move longitudinally. When the electron

slice at distance z behind the head reaches these ions, this ion slice shrinks to the radius

a cos!I(z�z0)=v. Summing up the ions produced by all the electron slices up to the slice

at z, the transverse ion density within a circle of radius r is

nI(rjz) = �ngNe

�a2`

Z z

0;
�
j cos !I (z�z0)

v
j< r

a

� dz0

cos2 !I(z�z0)
v

=
�ngNev

�a2`!I

tan
!Iz

v

���
0;
�
j cos !I (z�z0)

v
j< r

a

� : (19.66)
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Now ����cos !I(z
0)

v

���� < r

a
�!

����tan !I(z
0)

v

���� <
p
a2 � r2

r
: (19.67)

Thus, in each � period,
���tan !Iz

0

v

��� receives the contribution of 2
p
a2�r2
r

. When !Iz=c� 1,

from z0 = 0 to z there are !Iz=(v�) such periods. The transverse ion distribution is

therefore

nI(rjz) � 2�ngNez

�2a2`

p
a2 � r2

r
: (19.68)

This distribution has rms radius a=2. However, a uniform beam of radius a has rms

radius a=
p
2. If we approximate the ion distribution to be uniform, it corresponds to a

radius of a=
p
2.

19.3.1.2 The Electron Equation of Motion

Similar to the ion oscillation in the electron beam, the electron beam also oscillates in

the ions. Near the very end of the electron beam, the ions generated by the passage of

the whole beam has linear density �I = �ngNe, The bounce angular frequency of the

last slice of the electron beam in the ions is therefore

!e =

s
8�ngNerec2

aV (aV +aH)
: (19.69)

Comparing with the ion bounce frequency !I in Eq. (19.62), the  in the denomina-

tor indicates the longitudinal motion of the electron, and the extra factor of 2 in the

numerator reminds us that the radii of the ions are smaller than those of the electron

beam by
p
2. For bi-Gaussian distribution, the substitution aV (aV+aH)! 6�V (�V +�H)

should be made. If the residual pressure inside the vacuum chamber is low, this electron

bounce frequency is usually small. Take our previous example. If the residual pressure

is p = 10�9 Torr, the residual gas density is ng = 3:2� 1013 molecules/m3 according to

Eq. (19.51). For carbon monoxide, the ionization cross section is � = 2:0 Mb, ion linear

density at the tail of the electron bunch is �I = 640 m�1, and the electron bounce fre-

quency is !e=(2�) = 1:3 kHz. For an electron slice at distance z < ` behind the head of

the electron beam, the bounce frequency becomes !e
p
z=` because only Nez=` electrons

have participated in the ion production. The equation of motion for the centroid of a

slice of the electron beam can therefore be written as

v2
@2

@s2
ye(sjz) + !2

� ye(sjz) +
!2
ez

`

�
ye(sjz)� 1

z

Z z

0

dz0 yI
�
s;
s+z0

v

���z0�� = 0 ; (19.70)
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where !� is the angular betatron frequency due to external focusing. The last term in

the square brackets denotes the centroid of the ion slice produced by those electrons

electron beam from the head to the length ` of the electron beam, where a uniform

longitudinal distribution of the electron beam has been assumed.

19.3.1.3 Coupled-Ion-Beam Solution

The coupled ion-beam motion, Eqs. (19.61) and (19.70), is solved by separating the

fast oscillating part and slow amplitude evolution part. We would like to obtain the

asymptotic behavior of the beam-ion system. Let us make our observation at a �xed

location s when there is a resonance between the beam and ions. the electron slice z

behind the head of the electron bunch passes this location, it should have the same fast

oscillating frequency as the ions at the same location. The fast oscillating part of the

electron slice is

ye(sjz) � e�i!�s=v+ikz � e�i!�s=v+ikvt�iks ; (19.71)

where k is to be determined and z = vt � s has been substituted. The ions execute

simple harmonic motion like

yI(s; tjz0) � yI(s; t0jz0)e�i!I(t�t0) : (19.72)

At the time t0 = (s + z0)=v when the ions are born (for any z0 < `), since they should

have the same displacement as the electrons that produce them, therefore

yI(s; tjz0) � ye(sjz0)e�i!I (t�t0)
� e�i!�s=v+ikz

0

e�i!I t�i!I (s+z
0)=v : (19.73)

Comparing the time dependency of Eqs (19.71) and (19.73), for a resonance to occur we

must have

k = !Iv : (19.74)

The other solution, k = �!Iv, will lead to a decaying oscillatory solution which is of no

interest to us (see below).

After determining the fast oscillating part at a resonance, now let

ye(sjz) � ~ye(sjz)e�i!�s=v+i!Iz=v ;

yI(s; tjz0) � ~yI(s; tjz0)e�i(!�+!I)s=v+i!I t ; (19.75)
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where ~ye(sjz) and ~yI(s; tjz0) are slowly varying in s and t, respectively. Substitute

Eq. (19.75) into Eqs. (19.61) and (19.70), and neglecting second order derivatives of

~ye(sjz) and ~yI(s; tjz0), we obtain
@

@t
~yI(s; tjz0) + i!I

2
~ye(sjvt�s) = 0 ; (19.76)

@

@s
~ye(sjz) + i!2

e

2!�v`

�
z~ye(sjz)�

Z z

0

dz0~yI
�
s;
s+z

v

���z0�� = 0 ; (19.77)

with the initial condition

~yI
�
s;
s+z0

v

���z0� = ~ye(sjz0) : (19.78)

The �rst equation can be integrated to give

~yI(s; tjz0) = ~yI
�
s;
s+z0

v

���z0�� i!e
2

Z t

s+z
v

dt0ye(sjvt0�s)

= ~ye(sjz0)� i!e
2v

Z vt�s

z0
dz00ye(sjz00) : (19.79)

Substituting into the second equation, we get

@

@s
~ye(sjz) + i!2

e

2!�v`

�
z~ye(sjz)�

Z z

0

dz0 ye(sjz0)
�
+

i!2
e

2!�v`

i!I

2v

Z z

0

dz0
Z z

z0
dz00 ~ye(sjz00) = 0 :

(19.80)

Integrating by part, it is easy to show that

z~ye(sjz)�
Z z

0

dz0 ~ye(sjz0) =
Z z

0

dz0 z0
@

@z0
~ye(sjz0) ;

Z z

0

dz0
Z z

z0
dz00 ~ye(sjz00) =

Z z

0

dz0 z0~ye(sjz0) :

Then we arrive at

@

@s
~ye(sjz) + i!2

e

2!�v`

�Z z

0

dz0 z0
@

@z0
~ye(sjz0) + i!I

2v

Z z

0

dz0 z0~ye(sjz0)
�
: (19.81)

Another di�erentiating with transform the di�erential-integral equation into a di�eren-

tial equation:
@2

@s@z
~ye(sjz) + i!2

e

2!�v`
z

�
@

@z
~ye(sjz) + i!I

2v
~ye(sjz)

�
: (19.82)
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Earlier, we have estimated that the ion bounce frequency is usually very high. If the

growth rate of the electron beam envelope is small, we can neglect the �rst term in the

square brackets. Then, Eq. (19.82) will be very much simpli�ed to

@2

@s@z
~ye(sjz) + i!2

e!I

4!�v2`
z~ye(sjz) = 0 : (19.83)

The solution is that ~ye(sjz) depends on s and z through one dimensionless variable

� =
z

`

s
!2
e!I`s

2!�v2
; (19.84)

and Eq. (19.83) becomes

�
d2~ye
d�2

+
d~ye
d�
� �~ye = 0 : (19.85)

which is just the modi�ed Bessel equation. Thus, we obtain the simple solution

~ye(s; z) = y0I0(�) ; (19.86)

where I0 is the modi�ed Bessel function of order zero, while y0 = ~ye(sj0) is the amplitude

of oscillation of the head of the bunch if we make observation at a �xed location s, or

y0 = ~ye(0jz) is the initial amplitude of the centroid of a slice in the electron beam. In

the asymptotic regime with � � 1, we have

~ye(s; z) = y0
e�p
2��

: (19.87)

Thus the asymptotic growth of the oscillating amplitude is exponential in z along the

electron beam. However, for a �xed slice (�xed z), the growth of the amplitude is

exponential in
p
s. If we have chosen k = �!Iv as the resonance condition in Eq. (19.74),

the solution of Eq. (19.87) would have become

~ye(s; z) � e�ij�jp
2�j�j ; (19.88)

which is oscillatory and slowing decreasing. In fact, Eq. (19.85) becomes the Bessel

equation and the solution becomes J0(j�j).
Observing at a �xed location s, we can de�ne a growth length (in time) along the

bunch

�0 =

s
2!�`

!2
e!Is

: (19.89)
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One may expect this growth time not dependent on the total length of the bunch. In

fact, this is true, because from Eq. (19.69) !2
e=�L depends only on the linear density of

the electron beam. If we are monitoring a speci�c slice of the electron beam (at �xed

z or � = z=v in time behind the head) as a function of time t or s = vt along the

accelerator, we can de�ne a growth time for a roughly e-folding,

t0 =
2!��L
!2
e!I� 2

; (19.90)

which is also independent of the electron bunch length �L = `=v.

Knowing the asymptotic behavior of the amplitude of the electron bunch, we can

compute the same for the ions. Substituting Eq. (19.87) into the second term on the

right side of Eq. (19.79), we obtain

~yI(s; tjz0) � �iy0
s
!�!I`

2!2
es

e�p
2��

���
z=vt�s

: (19.91)

This tells us that the �rst term on the right side of Eq. (19.79) can be neglected because

it is
p
!�!I`=(2!2

es) smaller. Therefore when the ions meet the electron slide z behind

the head of the electron bunch at location s, the ratio of the ion displacement to the

beam displacement is

yI(s; tjz0)
ye(sjz)

���
z=vt�s

=
~yI(s; tjz0)
~ye(sjz)

���
z=vt�s

� �i
s
!�!I`

2!2
es

: (19.92)

Thus the ion oscillation is 90Æ out of phase relative to the electrons, and the ion amplitude

is very much larger according to the example we demonstrated earlier.

We can now check the validity of a previous approximation of neglecting the �rst

term in the square brackets of Eq. (19.82), which implies the necessity of���� @@z ~ye(sjz)
����� ���!I

2v
~ye(sjz)

��� : (19.93)

Knowing the asymptotic behavior of the electron beam, this is equivalent to requiring

�

z
=

s
!2
e!Is

2!�`
� !I

2
: (19.94)
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Using the de�nition of the growth time �0 [Eq. (19.89)] along the electron beam, this

requirement is just
!I�0
2
� 1 : (19.95)

In other words, the beam makes many oscillations within one growth length along the

beam.

19.3.2 Spectrum of Electron Beam

Observing at location s = 0, the spectrum ~�
 of the electron beam is given by

~�(
) /
Z 1

0

dt e�i
t
1X
k=0

ye(kCjvt� kC)
��
0<vt�kC<` ; (19.96)

where C = 2�R = vT0 is the ring circumference and k sums over multiple turns. We

next transform the integration to t within one turn only. Thus

~�(
) /
1X
k=0

Z `=v

0

dt e�i
(t+kT0)ye(kCjvt)

=
1X
k=0

e�i(
+!�)kT0
Z `=v

0

dt e�i(
�!I)t~ye(kCjvt)

=
1X
k=0

e�i(
+!�)kT0
Z `=v

0

dt e�i(
�!I)t
y0e

�0

p
2��0

; (19.97)

with

�0 = t

s
!2
e!IkC

2!�`
: (19.98)

The integral, denoted by I, can be performed exactly in terms of the incomplete gamma

function . We obtain

I =

Z `=v

0

dt
e(B � ia)tp

2�Bt
=

1p
2�B

(�B + iA)�1=2 

�
1

2
;
(�B + iA)`

v

�
; (19.99)

where A = 
� !I and B = �0=t0 . When jxj � 1, we have (�; x) � �x��1e�x, and

I � eB`=v
r

`

2�Bv

 
e�iA`=(2v) sin A`

2v
A`
v

!
; (19.100)
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where jAj`=v � B`=v � 1 has been used. The summation over k diverges because

the signal itself diverges. However, if we measure in a small window around some large

k = �k, we obtain the spectrum

j~�(
)j / y0e
�B`=v

r
`

2� �Bv

�����sin
(
�!I )`

2v
(
�!I )`

2v

�����
1X

p=�1
Æ(
� p!0 + !�) ; (19.101)

where !0 is the revolution angular frequency and �B is the former B when k replaced

by �k. The spectrum observed is therefore all the lower betatron sidebands modulated

by the sinc function which peaks at !I with a width equals to the inverse length of the

electron beam.

19.3.3 Possible Cures

There are several methods to overcome this fast beam-ion instability. Simulations shows

that the oscillation amplitude of the trailing beam particles saturates at about one �V due

to nonlinear character of the coupling force. Thus, if we can reduce the original vertical

emittance by a factor of two, the saturated emittance will be approximately what is

desired. Another method is to have a lattice of the accelerator ring in which the product

of the horizontal and vertical betatron functions changes substantially as a function

of position along the ring. The transverse beam size of the beam will have such large

variation accordingly. As a result, the ion bounce frequency !I will vary signi�cantly with

time and no coherent oscillation can therefore develop. A third remedy is to introduce

gaps within the beam if it is very long. In case of a bunch train, the introduction of

additional longer bunch gaps will certainly help. As an example, additional 10 bunch

gaps in PEP-II increase the instability rise time from 0:5 �s to 0.5 ms, which is inside

the bandwidth of the feedback system. For linacs, the trailing bunches of a long train

may be realigned by use of fast kickers and feedback.

19.3.4 Applications

Raubenheimer and Zimmermann applied the linear theory of fast beam-ion instability

to some existing accelerators like the SLAC Linear Collider (SLC) arc, the SLC positron

Damping Rings (DR), the LBL Advanced Light Source (ALS), the DESY HERA, the
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Table 19.5: Parameters and oscillation growth rates for some existing accelerators.

Accelerator SLC arc SLC e+ DR ALS HERA e� CESR ESRF

�Nx (m) 5�10�5 3�10�5 1:2�10�5 2�0�3 2:7�10�3 7:5�10�5

�Ny (m) 5�10�6 3�10�6 2�10�7 1:1�10�4 1:2�10�4 7:5�10�6

nb 1 1 328 210 7 330

Nb 3:5�1010 4�1010 7�109 3:7�1010 4:6�1011 5�109
�x;y 4 1, 3 2.5, 4 25 14, 13 8, 8
��y 4 3 4 25 13 8

�x (�m) 47 113 101 991 1965 226

�y (�m) 15 62 17 232 399 71

` or �z 1 mm 5.9 mm 200 m 6048 m 670 m 280 m

E (GeV) 46 1.2 1.5 26 5 6

p (Torr) 10�5 10�8 10�9 10�9 5�10�9 2�10�9

particle e+ e+ e� e� e� e�

!I=(2�) (MHz) 3:6�105 4:6� 104 31 0.87 0.92 6.8

!�=(2�) (MHz) 11.9 15.9 11.9 1.91 3.67 5.96

!e=(2�) (MHz) 0.481 0.029 0.149 0.0054 0.0098 0.027

Single or

multibunch single single multi multi multi multi

t0 (z � `) 1:09 �s 511 �s 1:30 �s 187 �s 942 �s 65 �s

Cornell Electron Storage Ring (CESR), and the European Synchrotron Radiation Facil-

ity (ESRF). The resultsy are shown in Table 19.5. Applications are also made to some

future accelerators, like the Next Linear Collider (NLC) electron and positron Damping

Rings (DR), the NLC Main Linac, the NLC Pre-Linac, the PEP-II Higher Energy Ringz

(HER), the KEK Accelerator Test Facility (ATF) Damping Ring The results are shown

in Table 19.6. In the tables, some are data for the accelerators and some are computed

numbers. For example, the beam transverse rms sizes, �x;y, are computed from the

given normalized rms emittances �Nx;y and betatron functions �x;y. In computing the ion

bounce frequency !I=(2�), the beam linear density is taken at the peak density in case

the beam considered is a single bunch, and as an average in case the beam considered

is a train of bunches. In computing the beam particle bounce frequency !e=(2�), an

ionization cross section of 2 Mb has been assumed. In computing the growth time t0,

yIn some cases, our computed numbers are di�erent from what are given in Ref. [16].
zThis ring is in operation now. But it was under construction at the time Ref. [16] was written.
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Table 19.6: Parameters and oscillation growth rates for some future accelerators.

NLC NLC NLC NLC PEP-II ATF

Accelerator e� DR e+ DR Pre-linac Main linac HER DR

�Nx (m) 3�10�6 3�10�6 3�10�6 3�10�6 5�10�4 3�10�6

�Ny (m) 3�10�8 3�10�8 3�10�8 3�10�8 2:5�10�5 3�10�8

nb 90 90 90 90 1658 60

Nb 1:5�1010 1:5�1010 1:5�1010 1:5�1010 3�1010 1�1010
�x;y 0.5, 5 0.5, 5 6 8 15 0.5, 5
��y 2 2 6 8 15 2.5

�x (�m) 62 62 68 35 1060 22

�y (�m) 3.9 3.9 6.8 3.5 169 7.1

` or �z 38 m 4 mm 38 m 38 m 2000 m 50 m

E (GeV) 2 2 2 10 9 1.54

p (Torr) 10�9 10�9 10�8 10�8 10�9 6�10�8

particle e� e+ e� e� e� e�

!I=(2�) (MHz) 151 2:23� 105 108 209 4.46 98.2

!�=(2�) (MHz) 23.9 23.9 7.95 5.96 3.18 19.1

!e=(2�) (MHz) 0.271 0.029 0.613 0.531 0.027 1.78

Single or

multibunch multi single multi multi multi multi

t0 (z � `) 856 ns 124 �s 78 ns 40 ns 7:2 �s 19 ns

the bunch length is taken as ` = 2�z in case the beam considered is a single bunch.

With the exception of HERA and PEP-II HER, we �nd

!e � !� � !I : (19.102)

But in all cases, we do have

!e � !I : (19.103)

For the existing accelerators, all the rise times are longer than the synchrotron damping

times, except for the ALS and ESRF. Transverse instabilities have been reported in the

ALS; but they are not necessary caused by ions. For the ESRF, the expected fast beam-

ion instability growth time is about a factor 150 smaller than the radiation damping

time. But so far there is no evidence for ion-related e�ects or multibunch instability at

the ESRF. One possible explanation for the observed stability pertains to the distinct

focusing optics: a Chasman-Green lattice, in which the product of the horizontal and
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vertical betatron functions varies by more than a factor of 100 around the ring. This

will lead to a variation of the ion bounce frequency by an order of magnitude. The

decoherence of the ion motion due to this large frequency variation could e�ectively

suppress the instability. On the other hand, this source of decoherence does not exist

in a FODO lattice where the product of the transverse beam sizes is nearly constant.

It is fortunate that the fast beam-ion instability was discovered when the B-factories at

SLAC and KEK were still under construction. Theoretical and experimental analyses

had been performed to make sure that this instability would be avoided.

19.3.4.1 Observation at ALS

The fast beam-ion instability had been demonstrated experimentally at the LBL ALS,

the Pohang Light Source (PLS), and the KEK TRISTAN [18, 19, 20]. The ALS has

328 rf buckets. In the experiment, only up to 240 consecutive buckets were �lled so

that there was a large gap to make sure that ions would not be trapped turn after turn.

Unlike the experiment at the PLS, the feedback damping was turned on to suppress any

coupled-bunch instabilities. Thus if any beam-ion instabilities developed, they would be

due to single-pass generated ions. The pressure in the vacuum chamber was elevated

to � 80 � 10�9 Torr by injected He. The onset of instability was carefully monitored

by increasing the length of the bunch train slowly. Starting with a single bunch at

0:5 mA, consecutive bunches were �lled slowly and the vertical beam size was measured.

Figure 19.6 plots the rms beam size as a function of number of bunches in the train.

We see that at elevated pressure with He added, the beam size increases strongly with

number of bunches and becomes saturated when number of bunches exceed 8. We also

see that at normal operating vacuum pressure, the beam size does not vary with the

number of bunches in the train. The spectrum of the bunch train was also measured

when the train contained 240 bunches, but with the total bunch intensity varied. The

results in the left plots of Fig. 19.7 show the vertical betatron sidebands (the di�erence

of the upper-sideband amplitude and the lower-sideband amplitude) clustered about

10 MHz when the total bunch current is 82 mA. As the current was raised to 142 mA

and 212 mA, we see that the cluster of sidebands move to higher frequencies. If this is the

fast beam-ion instability, these sideband frequencies are just the ion bounce frequencies.

Figure 19.7 plots the measured ion bounce frequency as a function of beam current

along with the theoretical prediction given by Eq. (19.62). We see that the theory �ts

the experimental data rather well.
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Figure 19.6: Rms vertical beam size versus the number of bunches for nominal and
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between the measured and predicted frequency of coherent beam oscillations as a

function of current per bunch for the 240/328 �ll pattern.
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Figure 19.8: Beam current along the bunch train for 160 bunches after scraping

a vertical aperture close to the beam. The decreasing bunch current shows the

increasing vertical oscillation amplitude along the bunch train (before scraping).

The relative amplitude of oscillations along the bunch train was also measured

indirectly. A collimator was used to scrape a train consisting of 160 bunches. After

scraping, the bunch intensity was found to be decreasing from the head of the train to

the tail. In fact, the scraper reduced th bunch population in the tail about 2.5 times

more than that of the leading bunches. This indicates that, before the scraping, the

bunch vertical oscillating amplitudes increase along the bunch train.

The growth rate was also estimated and it agreed with the prediction of the linear

theory. Thus, All evidence accumulated is qualitatively in consistent with the assump-

tion that the observed instability is the fast beam-ion instability

19.3.4.2 Observation at the Fermilab Linac

Fast transverse oscillations with large amplitudes were observed [21] in the H� beam in

the 750 keV transfer line of the Fermilab linac in 1988 when the vacuum pressure was

raised to 7 � 10�6 Torr to reduce the e�ect of space charge on the beam [22, 23] and

thereby reduce the e�ective emittance entering the linac. In order not to degrade the

performance of the 8 GeV booster, into which the linac injects, this transverse instability
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Figure 19.9: The 750 keV transfer line of the Fermilab linac. The length is �10 m

from the chopper C to the entry into the linac. Beam current measurements are

made by a toroid monitor between Tank 1 and Tank 2, and again further down-

stream.

has been avoided by choosing the operating vacuum pressure to be 2:65 � 10�6 Torr.

The observation resembles the fast beam-ion instability, where individual ions last only

for a single passage of the particle beam and need not be trapped. An experiment

was performed at the 750 keV transfer line in 2000 in order to further understand the

instability previously observed [24].

Figure 19.9 shows the 750 keV transfer line into the main linac. Di�erent gases

like hydrogen, helium, nitrogen, argon, and krypton, were injected through the bleeding

valve. The gas pressure was controlled by adjusting the rate of ow of gas at the

bleeding valve while vigorously pumping at the large ion pumps near the chopper C

and the entrance into Tank 1 as well as a small ion pump near the bleeding valve. The
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Figure 19.10: (color) Beam current in the transfer line (top) measured by toroids

between Tank 1 and Tank 2, and further downstream in the linac (bottom). The

drop in beam current at higher vacuum pressure is probably due to the stripping of

the electron on the H� by the gases injected.

pressure monitored near the three ion pumps showed steady readings. In this way the

vacuum pressure could be varied between 1� 10�5 and 1� 10�4 Torr, while the normal

operating vacuum pressure has been 2:65� 10�6 Torr. A toroidal monitor near the exit

of Tank 1 and entrance of Tank 2 measured the beam current. We see in Fig. 19.10

that the beam current in the transfer line (top) decreases with pressure. This is mostly

due to the stripping of the electron on H� by collision with the gas particles so that

the resulting neutral H particles could not follow the dipole bend H90 into the current

monitor. Another current monitor downstream measured the beam current in the linac

downstream (bottom). The smaller values observed represent beam loss.

A 750 keV H� beam chopped to the length of �b = 35 �s entered the transfer

line. Its center position was picked up by the beam-position monitor (BPM) after

Tank 2. The signals were recorded using a LeCroy scope and the spectral content was

obtained numerically using FFT. To lower the noise level, measurements were averaged

over approximately 20 beam pulses. To avoid any signal not related with the beam

oscillation, only the last 20 �s of the beam pulse were Fourier analyzed. There was no



19-40 19. TWO-STREAM INSTABILITY

Figure 19.11: (color) Beam intensity (1st trace) and beam horizontal displacement

(2nd trace) from the 14th �s at 2 �s per division, when the injected gas is nitrogen

at 3 � 10�5 Torr (left) and 8 � 10�5 Torr (right). The 4th trace is the FFT at 1

MHz per division of the last 20 �s of the beam horizontal displacement. The third

trace is the FFT averaged over 20 beam pulses. As pressure increases, the resonant

peak becomes broadened and moves towards higher frequencies.

noticeable di�erence between displacement signals in the horizontal and vertical planes,

so all data were taken in the horizontal plane only.

A typical set of results for nitrogen at 3 � 10�5 Torr is shown in the left plot of

Fig. 19.11, where the �rst two traces correspond to the beam intensity and the horizontal

beam position, respectively. The 4th trace is the FFT of the beam position for the last

20 �s of the beam, while the 3rd trace depicts the average of 23 FFT beam pulses. We

can clearly see a resonant frequency of � 0:5 MHz. As the gas pressure was increased

to 8 � 10�5 Torr in the right plot of Fig. 19.11, the resonant signal is broadened and

spreads out to higher frequencies. Figure 19.12 shows the BPM signals for the horizontal

oscillations of the H� beam when argon is introduced. We see rapid growth in oscillation

amplitude along the beam. The growth becomes much faster as the gas pressure is

increased from 3� 10�5 to 1� 10�4 Torr. We also notice that saturation is reached very

soon and the growth stops.

19.3.4.3 Ionization Cross section

When the velocity of the incident particle is much larger than the velocity of the electron

inside the target atom about to be ionized, the impulse approximation can be used. Our
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Figure 19.12: (color) Horizontal displacements of the 35 �s H� beam in helium

(left) and (right) argon gas environments at various pressures. An instability is

observed and the beam displacements become saturated. The growth rate increases

with gas pressure.

experiment condition satis�es this criterion. The ionization energy of the electron in the

outermost shell is given by

U = U0

�
Z

n

�2

e�

(19.104)

where Z is the atomic number of the gas element and n is the principal quantum number

of the outermost shell of the gas atom. Here, U0 = hcR1 = 13:605 eV is Rydberg energy

or the ionization energy of hydrogen, h = 6:582� 10�22 MeV-s is the Planck constant,

and c is the velocity of light. Since the electrons in the inner shells shield the electric

charges of the nucleus, the e�ective ratio (Z=n)2e� is less than the actual (Z=n)2. The

e�ective ratios for the various gases estimated from Eq. (19.104) are listed in Table 19.7.

The velocity ve of the electron in the outermost shell is

ve = v0

�
Z

n

�
e�

(19.105)

where v0 = rec= ��e= 0:0073 is the velocity of the electron in the hydrogen atom, re =

2:818�10�18 m is the electron classical radius, and ��e = ~=(mec) = 3:86159323�10�13 m

is the reduced electron Compton wavelength. We see that the velocities of the electron

in the outermost cells of the gas atoms in this experiment are roughly 0:0073c to 0:0098c,

which are indeed much less than the velocity �c = 0:040c of the 750 keV H�.
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Table 19.7: Ionization cross sections of various gases by 750 keV H�. Velocities

of electrons in the outermost shells of the gas atoms are estimated by an e�ective

value of Z=n due to screening, where Z is the atomic number of the gas element

and n the principal quantum number of the electron. Values of M2 and C are from

experiments [27].

H He N Ar Kr

Atomic number Z 1 2 7 18 36

Atomic mass number A 1 4 14 40 84

Ionization energy U (eV) 13.6 24.6 14.5 15.6 14.0

E�ective ratio (Z=n)2e� 1.00 1.8088 1.0662 1.1618 1.029

Electron velocity in outermost shell ve=c 0.0073 0.0098 0.0075 0.0079 0.0074

Target variable in Eq. (19.106) M2 0.695 0.738 3.73 4.22 6.09

Target variable in Eq. (19.106) C 8.115 7.056 34.84 37.93 52.38

Ionization cross section � (Mb) 42.71 27.03 126.2 126.2 154.5

In the impulse approximation, the bound electrons are knocked out by a sudden

transfer of energy from the incident particle. Therefore, the ionization cross section does

not depend very much on the ionization energy of the target atom. From the work of

Bethe [25, 26], the ionization cross section in the �rst Born approximation can be written

as

� = 4���2
e

�
M2

�
ln�22

�2
� 1

�
+

C

�2

�
; (19.106)

where � and  are the Lorentz factors of the incident particle with the target at rest.

The two variables M2 and C depend on the generalized oscillator strength inside the

target atom for all the transitions involved. Notice that this expression depends on the

incident particle only through its velocity, which is an important consequence of the Born

approximation and has been veri�ed by many experiments [27]. The experimental values

of M2 and C as well as the cross sections of the gases involved are listed in Table 19.7.

19.3.4.4 Ion Bounce Frequencies

At the vacuum pressure of 3 � 10�5 Torr, the beam current in the transfer line is I �
56:1 mA (see Fig. 19.10). Thus the �b = 35 �s H� beam corresponds to a linear density

of �b = I=(e�c) = 2:92 � 1010 m�1. The H� beam has a round cross section of radius
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Table 19.8: Ion-beam resonant frequencies according to Ref. [16] for gases at various

vacuum pressures or beam currents.

Gas H He N Ar Kr

Mass number A 1 4 14 39 84

Resonant frequency (MHz)

at 1�10�5Torr (61.0 mA) 1.490 0.745 0.398 0.236 0.163

at 2�10�5Torr (58.6 mA) 1.460 0.730 0.390 0.231 0.159

at 3�10�5Torr (56.1 mA) 1.429 0.715 0.382 0.226 0.156

at 4�10�5Torr (53.7 mA) 1.398 0.699 0.374 0.221 0.153

at 5�10�5Torr (51.2 mA) 1.366 0.683 0.365 0.216 0.149

at 6�10�5Torr (48.8 mA) 1.333 0.666 0.356 0.211 0.145

at 7�10�5Torr (46.3 mA) 1.299 0.649 0.347 0.205 0.142

at 8�10�5Torr (43.9 mA) 1.264 0.632 0.338 0.200 0.138

at 9�10�5Torr (41.4 mA) 1.228 0.614 0.328 0.194 0.134

at 1�10�4Torr (39.0 mA) 1.192 0.596 0.319 0.188 0.130

ah = av = 1:0 cm. This gives the resonant frequency of !i=(2�) = 1:43=
p
A MHz as

tabulated in Table 19.8.

The resonant frequencies computed in Table 19.8 are in the neighborhood of 1 MHz,

in qualitative agreement with the experimental resonant frequencies depicted in, for

example, Figs. 19.11 and 19.13. The observed resonant peaks in general have wide

spreads. This may be because of the nonuniformity of the linear distribution of the

H� beam as well as the variation of its transverse radius. On the other hand, there

are also disagreements with theory. De�nitely, we do not see the A�1=2 dependency

given by Eq. (19.62). However, in computing the resonant frequencies in Table 19.8,

we have assumed only singly charged ions. Because the velocity of the incident H� are

much greater than those of the electrons in the outermost shells of the various gases, the

ionization cross sections do not depend much on the ionization energy. There are, for

example, 6 electrons in the outermost shell of an argon atom or krypton atom, it will

be as easy for two or more electrons to be knocked o� as for one. If there were doubly

or triply charged ions produced, the resonant frequency would have been
p
2 and

p
3

times larger. It is very plausible that the deviation of the A�1=2 dependency for argon

and krypton is due to the production of multi-charged ions. The expression, Eq. (19.62),

is independent of the gas pressure. The slight decrease of the resonant frequency with
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Figure 19.13: FFT of H� beam horizontal displacement averaged over many beam

pulses. The gas environments are helium (left) and argon (right). The frequency

spread does not depend much on gas pressure for helium, but does depend on pres-

sure for argon.

rising pressure tabulated in Table 19.8 is just a reection of the H� current or linear

density as a result of possible stripping by the gas particles.

In summary, we �nd that the resonant frequency is not sensitive to pressure for

light gases like helium and nitrogen. However, for the heavier gases such as argon and

krypton, the resonant peaks are broadened and move towards higher frequencies when

the pressure is larger than � 5 � 10�5 Torr. To conclude, we plot the spreads of the

experimental resonant frequencies of the di�erent gases for all the pressures studied

in Fig. 19.14. On the same plot we also include the resonant frequencies computed

in Table 19.8 from 1 � 10�5 Torr (top trace) to 1 � 10�4 Torr (bottom trace). From

the �gure, it is evident that the theoretical predictions, as a whole, underestimate the

experimental results.
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Figure 19.14: Spreads of measured resonant frequencies of di�erent gases at all the

pressures studied. The theoretical predictions from 1 � 10�5 Torr (top trace) to

1� 10�4 Torr (bottom trace) are also shown.

19.3.4.5 Growth Times

The transverse displacement of the H� beam was measured by the BPM after Tank 2 in

the linac. The excitation of transverse oscillation had been going on in the `t � 10 m of

the 750 keV transfer line from the chopper to the big ion pump near the entrance into

the linac. Thus the time for which the beam can actually generate and interact with

the ions is t � `t=(�c) = 0:835 �s. The growth time along the beam �0 in Eq. (19.89)

should be derived and compared with theory. These growth times along the beam, �0,

at the pressure of 1� 10�5 Torr are listed in the last row of Table 19.9.

Table 19.9: Computation of growth time along the H� beam at 1�10�5 Torr. The

growth time at other pressure p scales with p�1=2 .

H He N Ar Kr

!b (MHz) 10.1 8.00 20.2 17.3 19.1

Growth time along beam �0 (�s) 0.91 1.61 0.87 1.33 1.44
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19.3.4.6 Comments

The beam-ion environment here is very di�erent from that in an electron ring. Some

relevant quantities are listed in Table 19.10. We see a huge di�erence:

Table 19.10: Comparison of some beam and ion parameters in a typical electron

ring and in the Fermilab linac, assuming that CO is the residual gas.

Electron Fermilab Linac

Ring Experiment

Number per bunch Nb 1011 1:3� 1013

Bunch length `b 0.010 419 m

Beam radius 0.001 0.010 m

Beam linear density �b 1013 3:2� 1010 m�1

Residual gas pressure 10�9 1� 10�5 Torr

Gas-in-beam linear density �gas 1� 108 1:0� 1014 m�1

Ionization cross section for CO � 2 133 Mb

Maximum ion linear density �i 640 5:7� 1010 m�1

CO+ ion bounce frequency !i=(2�) 64 0.40 MHz

Beam bounce frequencyy !b=(2�) 0.00092 2.82 MHz

y10 GeV electrons are assumed for electron ring.

!b is the sme as !e referenced ealier in Eq. (19.69).

1. The ion bounce frequency in an electron ring is very much larger because of much

higher electron linear density and the much smaller transverse electron beam size.

2. There are very much more ions produced in the Fermilab linac than in an electron

ring. The ion linear density in an electron ring is negligibly small compared with

the beam linear density, while in the Fermilab linac the ion linear density is of the

same order as the beam linear density. This is due to the much higher residual

gas pressure and larger ionization cross section in the transfer line where the H�

are traveling with a small velocity. As a result, the beam bounce frequency in the

ions becomes very much smaller in an electron ring.

3. There are 3 frequencies in the fast beam-ion instability theory, the ion bounce

frequency !I=(2�), the beam bounce frequency !b=(2�) [same as !e referenced
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Figure 19.15: Plot of 1
2!I�0 versus gas pressure for various gases. When 1

2!i�0 � 1,

the neglect of the �rst term inside the square brackets of Eq. (19.82) is justi�ed

leading to the exponential asymptotic solution of Eq. (19.87). Since the requirement

is not satis�ed for nitrogen, argon, and krypton, the concept of the growth time given

by Eq. (19.89) may not be correct.

earlier in Eq. (19.69)], and the betatron frequency !�=(2�). For the two situations,

Electron ring !I � !� � !b
Fermilab linac !b & !� & !I :

(19.107)

Now let us examine whether the above approximation can be made in our situation.

When we are talking about growth time, we are looking in the asymptotic behavior, like

Eq. (19.4), or when � � 1, which is well satis�ed when we are considering a position

along the beam which is a few growth times behind the head. The neglect of the �rst

term in the square brackets therefore requires the satisfaction of

!I�0
2
� 1 : (19.108)

In Fig. 19.15, we plot 1
2
!i�0 as a function of pressure for the di�erent gases. It is clear

that criterion in Eq. (19.95) is satis�ed for hydrogen and helium when the pressure is
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low and becomes marginal when the pressure is higher than 5�10�5 Torr. For nitrogen,

argon, and krypton, the criterion fails. This implies that the concept of a growth time

�0 given by Eq. (19.89) may not be valid for these heavier gases. Therefore, we cannot

say whether the results for nitrogen, argon, and krypton agree with the linear theory

of fast beam-ion instability or not. A more sophisticated solution of Eqs. (19.76) and

(19.77) must be obtained without the deletion of the �rst term in the square brackets

before further comparison with experiment can be made for these heavier gases. Even

the approximation of neglecting the second derivatives in obtaining Eqs. (19.76) and

(19.77) should be re-examined.

Even for hydrogen and helium, the resonant frequency is around 1 MHz and less,

and the passage time through the 10 m transfer line is 0:835 �s. This implies that the

beam and the ion made less than one oscillation about each other. It is hard to visualize

how a coherent instability can be established within such a short time. This is another

reason why we are skeptical whether the expression for growth time could be applied to

this experiment.
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19.4 Exercises

19.1. Modify the coupled proton and electron equations of motion [Eqs. (19.9) and

(19.10)] by including the inuence of an in�nitely conducting cylindrical beam

pipe of radius b. Without taking into account the distributions of the various

tunes, solve the equations for the threshold of coupled-centroid instability [similar

to Eq. (19.17)] and the initial growth rate [similar to Eqs. (19.17) and (19.18)].

19.2. Derive in detail Eq. (19.59) for the kinetic energy of an electron hitting the wall

of the beam pipe after it grazes the opposite wall.

19.3. In the experiment for measuring coupled-centroid instability at the Los Alamos

PSR, the bunch occupies 2/3 of the circumference of the storage ring. The coher-

ent frequency which is close to the electron bounce frequency at CD 1 or 6:1 �C

is shown in Fig. 19.5. Other information of the PSR are listed in Table 19.1.

(1) Assuming a parabolic linear distribution of the proton bunch, and the max-

imum coherent or bounce frequency of 240 MHz, estimate the transverse size of

the proton beam.

(2) From the peak value of the bounce frequency, estimate the location along the

proton beam where the electron density is at a maximum.

19.4. Fermilab is proposing a new high intensity booster having circumference 711.304 m

with rf harmonic 4. Protons are injected at the kinetic energy of 400 MeV to an

intensity of 8:6� 1012 per bunch. At the end of injection, each proton bunch has a

uniform linear density but is occupying 2/3 of the rf bucket. The transverse cross

section of the beam is circular with a radius of 2.35 cm.

(1) Assuming the bunch gap is totally clean, show that electrons will not be trapped

inside the proton beam.

(2) If a fraction � of protons is spilled into the bunch gaps, compute the minimum

� that will lead to electron trapping.

19.5. Starting from the equations of coupled transverse motion, Eqs (19.9) and (19.10),

assuming circular distributions for the protons and electrons, derive the Laslett-

Sessler-M�ohl stability criterion, Eq. (19.46).

19.6. In Tables 19.5 and 19.6, rows 1-6, 9-12, and 16 are inputs. Compute the output

rows 7-8 and 13-15.
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