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Abstract

Beam-ion instabilities were observed in the 750 keV
transfer line of the Fermilab linac when various gases were
injected and the pressure was raised to between 1 × 10−5

and 1 × 10−4 Torr. The collective resonant frequencies
recorded, of the order of 1 MHz, are in qualitative agree-
ment with the linear theory of fast beam-ion instabilitypro-
posed by Raubenheimer and Zimmermann [1], but fail to
follow the A−1/2 dependency, where A is the ion mass
number, and have the tendency to increase with pressure.
The observed growth times along the beam are in rough
agreement with those provided by the theory, although the
latter tend to be somewhat larger.

1 INTRODUCTION

Fast transverse oscillations with large amplitudes were
observed [2] in the H− beam in the 750 keV transfer line of
the Fermilab linac in 1988 when the vacuum pressure was
raised to 7× 10−6 Torr to reduce the effect of space charge
on the beam [3, 4] and thereby reduce the effective emit-
tance entering the linac. In order not to degrade the perfor-
mance of the 8 GeV booster, into which the linac injects,
this transverse instability has been avoided by choosing the
operating vacuum pressure to be 2.65 × 10−6 Torr. The
instability observed resembles the fast beam-ion instability
proposed by Raubenheimer and Zimmermann [1], where
individual ions last only for a single passage of the parti-
cle beam and need not be trapped. The ions generated by
the beam accumulate as the beam passes by and oscillate in
the transverse direction causing a growth of the initial per-
turbation of the beam. The result is a coherent oscillation
with growing amplitudes for the coupled beam-ion system.

An experiment was performed at the 750 keV transfer
line in 2000 in order to further understand the instabil-
ity previously observed [5]. Many different residual gases
were used and the vacuum pressure was varied. In this pa-
per, we are going to analyze the experimental data and see
whether the resonant frequencies of the coupled beam-ion
transverse oscillationand growth times along the beam con-
form with the predictions of the linear theory of the fast
beam-ion instability.

2 THE EXPERIMENT

Figure 1 shows the 750 keV transfer line into the main
linac. Different gases like hydrogen, helium, nitrogen, ar-
gon, and krypton, were injected through the bleeding valve.
The gas pressure was controlled by adjusting the rate of
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Figure 1: The 750 keV transfer line of the Fermilab linac. The
length is ∼ 10 m from the chopper C to the entry into the linac.
Beam current measurements are made by a toroid monitor be-
tween Tank 1 and Tank 2, and again further downstream.

flow of gas at the bleeding valve while vigorously pumping
at the large ion pumps near the chopper C and the entrance
into Tank 1 as well as a small ion pump near the bleeding
valve. The pressure monitored near the three ion pumps
showed steady readings. In this way the vacuum pressure
could be varied between 1×10−5 and 1×10−4 Torr, while
the normal operating vacuum pressure has been 2.65 ×
10−6 Torr. A toroidal monitor near the exit of Tank 1 and
entrance of Tank 2 measured the beam current. We see in
Fig. 2 that the beam current in the transfer line (top) de-
creases with pressure. This is mostly due to the stripping
of the electron on H− by collision with the gas particles so
that the resulting neutral H particles could not follow the
dipole bend H90 into the current monitor. Another current
monitor downstream measured the beam current in the linac
downstream (bottom). The smaller values observed repre-
sent beam loss.

A 750 keV H− beam chopped to the length of τb = 35 µs
entered the transfer line. Its center position was picked up
by the beam-position monitor (BPM) after Tank 2. The
signals were recorded using a LeCroy scope and the spec-
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Figure 2: (color) Beam current in the transfer line (top) measured
by toroids between Tank 1 and Tank 2, and further downstream in
the linac (bottom). The drop in beam current at higher vacuum
pressure is probably due to the stripping of the electron on the H−

by the gases injected.

tral content was obtained numerically using FFT. To lower
the noise level, measurements were averaged over approxi-
mately 20 beam pulses. To avoid any signal not related with
the beam oscillation, only the last 20 µs of the beam pulse
were Fourier analyzed. There was no noticeable difference
between displacement signals in the horizontal and vertical
planes, so all data were taken in the horizontal plane only.

A typical set of results for nitrogen at 3 × 10−5 Torr is
shown in the top plot of Fig. 3, where the first two traces
correspond to the beam intensity and the horizontal beam
position, respectively. The 4th trace is the FFT of the beam
position for the last 20 µs of the beam, while the 3rd trace
depicts the average of 23 FFT beam pulses. We can clearly
see a resonant frequency of∼ 0.5 MHz. As the gas pressure
was increased to 8× 10−5 Torr in the lower plot of Fig. 3,
the resonant signal is broadened and spreads out to higher
frequencies.

Figure 4 shows the BPM signals for the horizontal oscil-
lations of the H− beam when argon is introduced. We see
rapid growth in oscillation amplitude along the beam. The
growth becomes much faster as the gas pressure is increased
from 3× 10−5 to 1× 10−4 Torr. We also notice that satu-
ration is reached very soon and the growth stops.

3 ANALYSIS

3.1 Ionization Cross Section

When the velocity of the incident particle is much larger
than the velocity of the electron inside the target atom about
to be ionized, the impulse approximation can be used. Our
experiment condition satisfies this criterion. The ionization
energy of the electron in the outermost shell is given by

U = U0

(
Z

n

)2

eff

(3.1)

Figure 3: (color) Beam intensity (1st trace) and beam horizon-
tal displacement (2nd trace) from the 14th µs at 2 µs per divi-
sion, when the injected gas is nitrogen at 3× 10−5 Torr (top) and
8×10−5 Torr (bottom). The 4th trace is the FFT at 1 MHz per di-
vision of the last 20 µs of the beam horizontal displacement. The
third trace is the FFT averaged over 20 beam pulses. As pressure
increases, the resonant peak becomes broadened and moves to-
wards higher frequencies.

Figure 4: (color) Horizontal displacements of the 35µs H− beam
in an argon gas environment at various pressures. An instability
is observed and the beam displacements become saturated. The
growth rate increases with gas pressure.
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Table 1: Ionization cross sections of various gases by 750 keV H−. Velocities of electrons in the outermost shells of the gas atoms are
estimated by an effective value of Z/n due to screening, where Z is the atomic number of the gas element and n the principal quantum
number of the electron. Values of M2 and C are from experiments [8].

H He N Ar Kr

Atomic number Z 1 2 7 18 36
Atomic mass number A 1 4 14 40 84
Ionization energy U (eV) 13.6 24.6 14.5 15.6 14.0
Effective ratio (Z/n)2

eff 1.00 1.8088 1.0662 1.1618 1.029
Electron velocity in outermost shell ve/c 0.0073 0.0098 0.0075 0.0079 0.0074
Target variable in Eq. (3.3) M2 0.695 0.738 3.73 4.22 6.09
Target variable in Eq. (3.3) C 8.115 7.056 34.84 37.93 52.38
Ionization cross section Σ (Mb) 42.71 27.03 126.2 126.2 154.5

where Z is the atomic number of the gas element and n is
the principal quantum number of the outermost shell of the
gas atom. Here, U0 = hcR∞ = 13.605 eV is Rydberg
energy or the ionization energy of hydrogen, h = 6.582×
10−22 MeV-s is the Planck constant, and c is the velocity
of light. Since the electrons in the inner shells shield the
electric charges of the nucleus, the effective ratio (Z/n)2

eff

is less than the actual (Z/n)2. The effective ratios for the
various gases estimated from Eq. (3.1) are listed in Table 1.
The velocity ve of the electron in the outermost shell is

ve = v0

(
Z

n

)
eff

(3.2)

where v0 = rec/ λ−e= 0.0073 is the velocity of the electron
in the hydrogen atom, re = 2.818× 10−18 m is the elec-
tron classical radius, and λ−e = ~/(mec) = 3.86159323×
10−13 m is the reduced electron Compton wavelength. We
see that the velocities of the electron in the outermost cells
of the gas atoms in this experiment are roughly 0.0073c
to 0.0098c, which are indeed much less than the velocity
βc = 0.040c of the 750 keV H−.

In the impulse approximation, the bound electrons are
knocked out by a sudden transfer of energy from the inci-
dent particle. Therefore, the ionization cross section does
not depend very much on the ionization energy of the target
atom. From the work of Bethe [6, 7], the ionization cross
section in the first Born approximation can be written as

Σ = 4πλ−2
e

[
M2

(
lnβ2γ2

β2
− 1
)

+
C

β2

]
, (3.3)

where β and γ are the Lorentz factors of the incident particle
with the target at rest. The two variablesM2 and C depend
on the generalized oscillator strength inside the target atom
for all the transitions involved. Notice that this expression
depends on the incident particle only through its velocity,
which is an important consequence of the Born approxima-
tion and has been verified by many experiments [8]. The
experimental values of M2 and C as well as the cross sec-
tions of the gases involved are listed in Table 1.

3.2 Resonant Frequencies

The ionized gases are trapped by the H− beam and oscil-
late about the H− beam. The resonant angular frequency is
given by

ωi =

√
4λbrpc2

ah(av + ah)A
, (3.4)

where λb is the linear beam density, rp = 1.53470 ×
10−18 m is the classical radius of proton, A is the mass
number of the ion, ah and av are the horizontal and vertical
radii of the beam. This expression is valid for a beam with
uniform transverse distribution. For bi-Gaussian distribu-
tion [1], the right side of Eq. (3.4) should be multiplied by√

2 when the substitutionsah,v =
√

6σh,v are made, where
σh,v are the rms horizontal/vertical beam size.

At the vacuum pressure of 3× 10−5 Torr, the beam cur-
rent in the transfer line is I ∼ 56.1 mA (see Fig. 2). Thus
the τb = 35 µs H− beam corresponds to a linear density
of λb = I/(eβc) = 2.92× 1010 m−1. The H− beam has
a round cross section of radius ah = av = 1.0 cm. This
gives the resonant frequency of ωi/(2π) = 1.43/

√
A MHz

as tabulated in Table 2. In the table, the beam currents in
the transfer line at various gas pressures are obtained by lin-
earizing the experimental current plot in Fig. 2 with I = 61
and 39 mA at 1× 10−5 and 1× 10−4 Torr, respectively.

To compare with the experimental data, we show in
Figs. 5, 6, 7, and 8 the spectra of the beam oscillations for
hydrogen, helium, nitrogen, and argon. Unlike Fig. 3, these
plots are in linear scale so that the resonant peaks can be
read off more easily.

The resonant frequencies computed in Table 2 are in the
neighborhood of 1 MHz, in qualitative agreement with the
experimental resonant frequencies depicted in Figs. 5 to 8.
The observed resonant peaks in general have wide spreads.
This may be because of the nonuniformity of the linear dis-
tributionof the H− beam as well as the variation of its trans-
verse radius.

On the other hand, there are also disagreements with the-
ory. Definitely, we do not see theA−1/2 dependency given
by Eq. (3.4). However, in computing the resonant frequen-
cies in Table 2, we have assumed only singly charged ions.
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Table 2: Ion-beam resonant frequencies according to Ref. [1] for gases at various vacuum pressures or beam currents.

Gas H He N Ar Kr

Mass number A 1 4 14 39 84
Resonant frequency (MHz)

at 1×10−5 Torr (61.0 mA) 1.490 0.745 0.398 0.236 0.163
at 2×10−5 Torr (58.6 mA) 1.460 0.730 0.390 0.231 0.159
at 3×10−5 Torr (56.1 mA) 1.429 0.715 0.382 0.226 0.156
at 4×10−5 Torr (53.7 mA) 1.398 0.699 0.374 0.221 0.153
at 5×10−5 Torr (51.2 mA) 1.366 0.683 0.365 0.216 0.149
at 6×10−5 Torr (48.8 mA) 1.333 0.666 0.356 0.211 0.145
at 7×10−5 Torr (46.3 mA) 1.299 0.649 0.347 0.205 0.142
at 8×10−5 Torr (43.9 mA) 1.264 0.632 0.338 0.200 0.138
at 9×10−5 Torr (41.4 mA) 1.228 0.614 0.328 0.194 0.134
at 1×10−4 Torr (39.0 mA) 1.192 0.596 0.319 0.188 0.130

Figure 5: FFT of H− beam horizontal displacement averaged
over many beam pulses when hydrogen is introduced. Note that
there is no coherent instability when the vacuum pressure is 6.2×
10−6 Torr.

Because the velocity of the incident H− are much greater
than those of the electrons in the outermost shells of the
various gases, the ionization cross sections do not depend
much on the ionization energy. There are, for example, 6
electrons in the outermost shell of an argon atom or kryp-
ton atom, it will be as easy for two or more electrons to
be knocked off as for one. If there were doubly or triply
charged ions produced, the resonant frequency would have
been

√
2 and

√
3 times larger. It is very plausible that the

deviation of the A−1/2 dependency for argon and krypton
is due to the production of multi-charged ions.

The expression, Eq. (3.4), is independent of the gas pres-
sure. The slight decrease of the resonant frequency with ris-
ing pressure tabulated in Table 2 is just a reflection of the
H− current or linear density as a result of possible strip-
ping by the gas particles. For the experiment data, we see
in Figs. 5 and 7 that the resonant frequencies for helium and
nitrogen do not depend much on pressure. For argon, Fig. 8
indicates that the frequency distributions are more or less
the same for gas pressure from 3× 10−6 to 5× 10−6 Torr.
However, we do clearly see the resonant peak become wider

Figure 6: FFT of H− beam horizontal displacement averaged
over many beam pulses. Helium is the gas introduced. The fre-
quency spread does not depend much on gas pressure.

and move towards higher frequencies as the gas pressure in-
creases to pass 5× 10−5 Torr.

Unfortunately experimental data for krypton have not
been digitized and we need to look into scope displays in
Fig. 9. We see that for gas pressure below 4 × 10−5 Torr,
there is a resonant peak near 0.5 MHz. As the gas pressure
increases to 1×10−4 Torr, the resonant peak shifts towards
higher frequencies, close to 1 MHz.

For hydrogen, Fig. 5 shows that there is no transverse in-
stabilityat the normal operating pressure of 6.2×10−6 Torr.
When the pressure is increased to 4.8×10−5 Torr, two reso-
nant peaks appear at 1.2 and 2.1 MHz, with the former very
close to the theoretical prediction. Results with higher gas

4



Figure 7: FFT of H− beam horizontal displacement averaged
over many beam pulses. Nitrogen is the gas introduced. The fre-
quency spread does not depend much on gas pressure.

pressures were not available because it had not been able
to maintain a stable gas pressure with hydrogen; the large
ion pumps are efficient only for pumping gases of higher
masses.

In summary, we find that the resonant frequency is not
sensitive to pressure for light gases like helium and nitro-
gen. However, for the heavier gases such as argon and
krypton, the resonant peaks are broadened and move to-
wards higher frequencies when the pressure is larger than
∼ 5 × 10−5 Torr. To conclude, we plot the spreads of the
experimental resonant frequencies of the different gases for
all the pressures studied in Fig. 10. On the same plot we also
include the resonant frequencies computed in Table 2 from
1 × 10−5 Torr (top trace) to 1× 10−4 Torr (bottom trace).
From the figure, it is evident that the theoretical predictions,
as a whole, underestimate the experimental results.

3.3 Growth Times

With some assumptions1, the linear theory of Rauben-
heimer and Zimmermann leads to a simple solution. After
entering the residual gas environment for time t, the hori-
zontal oscillation amplitude x̃b of the beam at a distance τ
(measured in time) behind the head is given by [1]

x̃b(t, τ) = x0I0(η) , (3.5)

where x0 = x̃b(0, 0) is the initial horizontal displacement
of the head of the beam, I0 is the modified Bessel function

1see Sec. 4.2 below

Figure 8: FFT of H− beam horizontal displacement averaged
over many beam pulses. Argon is the gas introduced. The reso-
nant peak becomes broadened as the gas pressure increases and
moves towards higher frequencies.
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Krypton 2× 10−5 Torr

Krypton 3× 10−5 Torr

Krypton 4× 10−5 Torr

Krypton 5× 10−5 Torr

Krypton 9× 10−5 Torr

Krypton 10× 10−5 Torr

Figure 9: (color) Scope displays of the H− beam when krypton
is injected at various pressures. The second trace at 2 µs per divi-
sion is the horizontal displacement of the H− beam starting from
the 14 th µs to the end of the beam pulse. Its FFT at 1 MHz per
division is the third trace and has been averaged over 20 beam
pulses. The resonant peak becomes broadened at higher pressures
and tends to move towards higher frequencies.

Figure 10: Spreads of measured resonant frequencies of different
gases at all the pressures studied. The theoretical predictions from
1× 10−5 Torr (top trace) to 1× 10−4 Torr (bottom trace) are also
shown.

of order zero, and

η =
τ

τb

√
t

t0
(3.6)

is a dimensionless function of t and τ . In the asymptotic
regime where η � 1, we have

x̃b(t, τ) ≈ x0
eη√
2πη

. (3.7)

Thus, t0 plays the role of a growth time although the evo-
lution is actually not exponential in t. This growth time is
related to the ion bounce frequency by

t0 =
2ωβ
ω2
bωiτb

. (3.8)

In above, ωβ/(2π) is the betatron frequency of the particle
beam along the transfer line and ωb/(2π) is the bounce fre-
quency of the beam particles about the ions near the tail of
the beam pulse where ions, produced cumulatively from the
head of the beam to its tail, have the largest linear density
λi. In other words,

ω2
b =

8λirpc2

γah(ah + av)
, (3.9)

where λi is computed according to

λi = ΣngNb , (3.10)

withNb being the total number of particles in the beam and
Σ the ionization cross section tabulated in Table 1. The gas
particle density ng, on the other hand, can be derived from
the ideal gas law

ng =
pNA
RT

, (3.11)

where NA = 6.022× 1023 is the Avogadro’s number, p is
the gas pressure in atm (1 atm = 760 Torr), T = 300◦K is
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the room temperature, andR = 82.55×10−6 atm-m3-K−1

is the gas constant.
Comparing the beam particle bounce frequency ωb in

Eq. (3.9) with the ion bounce frequency ωi in Eq. (3.4),
there is first an extra γ in the denominator because the
beam particles are moving longitudinally, and second the
factor 8 in the numerator while it was only 4 for the ion
bounce frequency. The latter is due to the fact that the ions,
when produced, are assumed without any transverse ve-
locity and start to oscillate about the particle beam. Since
the largest transverse amplitude of oscillation is the parti-
cle beam radii, the radii of the “ion beam” will be relatively
smaller than those of the particle beam. Simple derivation
leads to the result that the rms radii of the ions are ah,v/2.
On the other hand, the rms radii of the uniformly distributed
H− beam are ah,v/

√
2. Thus the radii of the “ion beam”

are just a factor
√

2 smaller than the radii of the H− beam.
Although Eq. (3.9) is for a beam with uniform distribution,
however, it gives exactly the same value for a bi-Gaussian
distribution if we assume ah,v =

√
6σh,v , with σh,v being

the rms radii of the beam.
Assuming periodicity, the phase advance of the ` ∼ 10 m

transfer line from the first large ion pump to the 90◦ bend
into the linac is 443◦ in the horizontal plane and 110◦ in the
vertical plane. Thus, an estimate of the horizontal betatron
frequency is ωβ/(2π) = (βc/`)(443/360) = 1.47 MHz.
The growth time t0 is then computed at a chosen reference
pressure of 1×10−5 Torr, and the results for different gases
are listed in Table 3. First, at this pressure, the beam cur-
rent in the transfer line is ∼ 61 mA, giving a linear density
of λb = 3.18× 1010 m−1 and total number of beam parti-
cle Nb = 1.33× 1013. Second, the residual gas density is
ng = 3.22× 1017 m−3 and the ions produced have a linear
density of λb = 1.83× 1010 m−1. The beam bounce angu-
lar frequencies ωb are then computed and listed in Table 3.
Finally the growth times t0 are derived.

The transverse displacement of the H− beam was mea-
sured by the BPM after Tank 2 in the linac. The excitation
of transverse oscillation had been going on in the `t ∼ 10 m
of the 750 keV transfer line from the chopper to the big ion
pump near the entrance into the linac. Thus the time for
which the beam can actually generate and interact with the
ions is t ∼ `t/(βc) = 0.835 µs. We can define another
growth time along the beam at the BPM as

τ0 = τb

√
t0
t

(3.12)

so that the asymptotic horizontal oscillation amplitude of
the beam at the BPM, where t is fixed, becomes

x̃b(τ) ∼ exp
(
τ

τ0

)
. (3.13)

It is important to point out that τ0 is independent of the
length of the beam pulse τb or the location along the beam.
This is becauseω2

b in Eq. (3.9) is proportional to the ion den-
sity λi at the end of the beam and therefore proportional to

Figure 11: (color) Plot showing the H− beam relatively stable
inside a hydrogen environment at 6.2 × 10−6 Torr. However, at
4.8 × 10−5 Torr, the horizontal beam oscillation amplitude in-
creases rapidly along the beam.

τb. On the other hand, the growth time t0 depends on the
location along the beam, because it describes the growth of
that location of the beam as time evolves. Actually, the end
of the beam, τ = τb, has been chosen as a reference in the
definition of t0 in Eq. (3.8), which gives t0 ∝ τ−2

b .

These growth times along the beam, τ0, at the pressure
of 1 × 10−5 Torr are listed in the last row of Table 3. For
other pressure p, τ0 scales as p−1/2. The beam current
should also be adjusted correspondingly. Figure 11 shows
the beam transverse displacements in hydrogen for the first
18 µs. The beam appears to be stable at the pressure of
6.2× 10−6 Torr. However, it grows to saturation in∼ 5 µs
at 4.8×10−5 Torr. The theoretical prediction of the growth
time along the beam is τ0 = 0.46 µs. Figure 12 shows
the beam transverse displacements in helium. The theo-
retical predictions of the growth times along the beam are
τ0 = 0.99, 0.82, and 0.71 µs at, respectively, 3, 5, and
10× 10−5 Torr. The experimental growth times appear to
be comparable. Figure 13 shows the beam transverse dis-
placements in nitrogen. The theoretical predictions of the
growth times along the beam are τ0 = 0.71, 0.44, 0.39,
and 0.39 µs at, respectively, 1.5, 5, 8, and 10× 10−5 Torr.
The experimental growth times appear to be longer, espe-
cially at lower pressures. Figure 4 shows the beam trans-
verse displacements in argon. The theoretical predictions
of the growth times along the beam are τ0 = 0.82, 0.73,
0.68, 0.60, and 0.59 µs at, respectively, 3, 4, 5, 8, and 10×
10−5 Torr. Again, the experimental growth times appear to
be longer especially at lower pressures. For krypton, the
theoretical predictions of the growth times along the beam
are τ0 = 0.89, 0.79, 0.74, 0.65, and 0.64µs at, respectively,
3, 4, 5, 8, and 10 × 10−5 Torr. However, there have not
been any recorded beam displacement data for krypton at
the early part of the beam. What Fig. 9 shows are only the
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Table 3: Computation of growth time along the H− beam at 1× 10−5 Torr. The growth time at other pressure p scales with p−1/2 .

H He N Ar Kr

ωb (MHz) 10.1 8.00 20.2 17.3 19.1
Growth time at end of beam pulse t0 (µs) 0.00056 0.00177 0.00052 0.00120 0.00142
Growth time along beam τ0 (µs) 0.91 1.61 0.87 1.33 1.44

Figure 12: (color) Plot showing rapid growth of beam horizontal
oscillation amplitude at various helium pressures.

Figure 13: (color) Plot showing rapid growth of beam horizontal
oscillation amplitude at various nitrogen pressures.

beam displacements starting from the 14th µs. As a result,
no comparison of experiment with theory can be made for
the growth time in krypton.

4 COMMENTS

4.1 The Different Environments

The beam-ion environment here is very different from
that in an electron ring. Some relevant quantities are listed

in Table 4. We see a huge difference:

1. The ion bounce frequency in an electron ring is very
much larger because of much higher electron linear
density and the much smaller transverse electron beam
size.

2. There are very much more ions produced in the Fer-
milab linac than in an electron ring. The ion linear
density in an electron ring is negligibly small com-
pared with the beam linear density, while in the Fer-
milab linac the ion linear density is of the same order
as the beam linear density. This is due to the much
higher residual gas pressure and larger ionization cross
section in the transfer line where the H− are traveling
with a small velocity. As a result, the beam bounce fre-
quency in the ions becomes very much smaller in an
electron ring.

3. There are 3 frequencies in the fast beam-ion insta-
bility theory, the ion bounce frequency ωi/(2π), the
beam bounce frequency ωb/(2π), and the betatron fre-
quency ωβ/(2π). For the two situations,

Electron ring ωi � ωβ � ωb
Fermilab linac ωb & ωβ & ωi .

(4.14)

4.2 Validity of the Linear Theory

Because of the difference, close examination of the
fast beam-ion instability is necessary in order to find out
whether the linear theory applies to the transfer line of the
Fermilab linac. In order to arrive at the simple solution of
Eq. (3.5), an approximation has been made. The equation
governing the beam oscillation amplitude x̃b(t, τ) at some
stage of the derivation is given by

∂

∂t
x̃b(t, τ) +

+
iω2
b

2ωβτb

∫ τ

0

dτ ′ τ ′
[
∂

∂τ ′
x̃b(t, τ ′) +

iωi
2
x̃b(t, τ ′)

]
= 0 ,

(4.15)
which is a modification of Alex Chao’s Eq. (4.32) in
Ref. [10]. The first term in the square brackets is neglected,
leading to

∂

∂t

∂

∂τ
x̃b(t, τ)− ω2

bωiτ

4ωβτb
x̃b(t, τ) = 0 . (4.16)
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Table 4: Comparison of some beam and ion parameters in a typical electron ring and in the Fermilab linac, assuming that CO is the
residual gas.

Electron Fermilab Linac
Ring Experiment

Number per bunch Nb 1011 1.3× 1013

Bunch length `b 0.010 419 m
Beam radius 0.001 0.010 m
Beam linear density λb 1013 3.2× 1010 m−1

Residual gas pressure 10−9 1× 10−5 Torr
Gas-in-beam linear density λgas 1× 108 1.0× 1014 m−1

Ionization cross section for CO Σ 2 133 Mb
Maximum ion linear density λi 640 5.7× 1010 m−1

CO+ ion bounce frequency ωi/(2π) 64 0.40 MHz
Beam bounce frequency† ωb/(2π) 0.00092 2.82 MHz

†10 GeV electrons are assumed for electron ring.

Introducing the new dimensionless variable η of Eq. (3.6),
the differential equation then simplifies to the Bessel equa-
tion

η
d2x̃b
d2η

+
dx̃b
dη
− ηx̃b = 0 , (4.17)

and therefore the Bessel function solution of Eq. (3.5) is ob-
tained.

Now let us examine whether the above approximation
can be made in our situation. When we are talking about
growth time, we are looking in the asymptotic behavior, like
Eq. (3.7), or when η � 1, which is well satisfied when we
are considering a position along the beam which is a few
growth times behind the head. The neglect of the first term
in the square brackets therefore requires the satisfaction of

ωiτ0
2
� 1 . (4.18)

In Fig. 14, we plot 1
2
ωiτ0 as a function of pressure for the

different gases. It is clear that criterion in Eq. (4.18) is sat-
isfied for hydrogen and helium when the pressure is low
and becomes marginal when the pressure is higher than
5 × 10−5 Torr. For nitrogen, argon, and krypton, the cri-
terion fails. This implies that the concept of a growth time
τ0 given by Eq. (3.12) may not be valid for these heavier
gases. Therefore, we cannot say whether the results for ni-
trogen, argon, and krypton agree with the linear theory of
fast beam-ion instability or not. A more sophisticated solu-
tion of Eq. (4.15) must be obtained without the deletion of
the first term in the square brackets before further compar-
ison with experiment can be made for these heavier gases.

Even for hydrogen and helium, the resonant frequency
is around 1 MHz and less, and the passage time through
the 10 m transfer line is 0.835 µs. This implies that the
beam and the ion made less than one oscillation about each
other. It is hard to visualize how a coherent instability can
be established within such a short time. This is another rea-

Figure 14: Plot of 1
2
ωiτ0 versus gas pressure for various gases.

When 1
2ωiτ0 � 1, the neglect of the first term inside the square

brackets of Eq. (4.15) is justified leading to the exponential asymp-
totic solution of Eq. (3.7). Since the requirement is not satisfied for
nitrogen, argon, and krypton, the conceptof the growth time given
by Eq. (3.12) may not be correct.

son why we are skeptical whether the expression for growth
time could be applied to our experiment.

5 CONCLUSION

We reported a beam-ion instability experiment in the
750 keV transfer line of the Fermilab linac, and compared
the results with the linear theory of fast beam-ion instability
conjectured by Raubenheimer and Zimmermann. What we
found are:

1. The coherent resonant frequencies observed are
around 1 MHz, which agree qualitatively with, al-
though relatively larger than the prediction of the
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linear theory of the fast beam-ion instability.

2. We did not see a drop of the resonant frequency ac-
cording to the inverse square root of the mass number
A of the gas inserted. The rather slower drop may im-
ply the generation of multiply charged ions by the H−

beam.

3. We observed that the resonant peak is relatively inde-
pendent of gas pressure for light gases such as helium
and nitrogen. However, the resonant peak is broad-
ened and moves towards higher frequencies at higher
gas pressure for the heavier gases such as argon and
krypton. This dependence is not predicted by the lin-
ear theory of fast beam-ion instability. We suspect that
as the gas pressure increases, more variety of beam-
gas interactions become available producing other res-
onant peaks at slightly higher frequencies.

4. The growth of the oscillation amplitude along the
beam appears to be initially exponential-like along the
beam as predicted by theory, but rapidly saturates due
possibly to nonlinearity. The growth times observed
tend to be somewhat larger than what the theory pre-
dicts. This is completely possible, however, if damp-
ing mechanisms are involved, for example, decoher-
ence due to a spread in the resonant frequency. It
would be nice if these damping meachanics could be
established experimentally and theoretically, so that
the effective growth times could derived.

5. Experiments demonstrating fast beam-ion instability
have been performed at various electron rings [9].
However, the experimental observations and result
analysis are usually complicated by the presence of
electron clouds formed from secondary emission and
multi-pactoring. Because of the absence of electron
clouds in the Fermilab linac transfer line, our exper-
iment is very much cleaner.

6. One questionable parameter used in the analysis is the
betatron frequency ωβ/(2π). First, the transfer line
is not a ring and the lattice does not possess periodic-
ity. The phase advance actually depends on the initial
displacement and divergence of the particle. Whether
a betatron frequency can be defined in this context is
very questionable. Second, the average phase advance
turns out to be only 443◦ in the horizontal plane, or
the beam particles make just more than one oscillation
in their passage through the transfer line. We are also
skeptical that coherent oscillations can be established
in about one betatron oscillation.

7. The linear theory of fast beam-ion instability may not
be applicable to the transfer line H− beam in the en-
vironment of heavier gases like nitrogen, argon, and
krypton. Because the criterion 1

2
ωiτ0 � 1 is not

satisfied, the approximation of ignoring a term in the

derivation of the growth time will therefore not be jus-
tified. A more general solutionof the differential equa-
tion governing the evolution of the beam oscillation
amplitude is necessary for more precise comparison
with experiment.

At this moment, it is not possible to conclude that the ob-
served beam-ion instability observed in the 750 keV trans-
fer line of the Fermilab linac is the fast beam-ion instabil-
ity conjectured by Raubenheimer and Zimmermann. This
is because what have been measured are only the coher-
ent resonant frequencies and the growth times along the
beam, and the agreement of these measurements with the
linear theory is far from complete satisfactory. It has also
been suggested that the large amount of ions generated by
the H− beam together with the stripped electrons create a
plasma [11]. The H− beam, which may be less intense
than the plasma, produces a perturbation in the plasma,
drives the electrons away and is neutralized by the posi-
tively charged ions nearby. Such interaction can also gener-
ate a coherent transverse oscillation between the H− beam
and the plasma. In any case, further experimental study is
necessary to better understand this observed instability.
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