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1 INTRODUCTION

To do simulation in the longitudinal phase space, one usually starts with the

random population of macro-particles inside a longitudinal bucket, according to some

phase-space distribution, for example, bi-Gaussian, elliptical, etc. Such population

is easy for a small bunch inside a large bucket, because the invariant tori near the

center of the bucket are closely in the form of ellipses. The story is quite different for

a large bunch inside a tight bucket. This is because the tori deviate very much from

ellipses, especially those in the vicinity of the separatrices.

Consider the normalized Hamiltonian (see Appendix A)

H(φ, p) =
p2

2
+ (1− cosφ) , (1.1)

where† Φ is the rf phase coordinate ranging from −π to π and P is the normalized

energy offset or the momentum canonical to Φ. It is easy to see that the stable

fixed point (SFP) is at (φ, p) = (0, 0), while the unstable fixed points (UFP) are at

(φ, p) = (±π, 0). The separatrix has Hamiltonian value or energy value H = 2 and

forms a bucket with half height P = 2. For small φ,

H(φ, p) =
p2

2
+
φ2

2
, (1.2)

which describes just simple harmonic motion. In this normalized representation, the

tori near the SFP or the center of the bucket are essentially circles. In other words,

when the bunch is small enough, the rms rf phase σφ and the rms momentum σp are

equal. This is definitely not true when the bunch is large enough to nearly fill up

the whole bucket, because the bucket has a half width π but a half height of only

2. As an example, we populate a large bunch with σφ = 0.75 rad randomly with

20000 macro-particles using bi-Gaussian distribution according to the Hamiltonian in

Eq. (1.2). First, we find, as shown in Fig. 1, many particles fall outside the momentum

aperture of the bucket, although nearly no particles fall outside the (−π, π) rf phase

limits. One method is to neglect all those particles outside the bucket and consider

only those inside. This, however, alters the linear density of the bunch and the rms

†In this article, we use the convention in probability and statistic that a random variable is
represented by a capitalized symbol, while the value it assumes is in the lower case. For example,
the energy offset variable is denoted by P and the value it assumes by p.
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Figure 1: Population of 20000 macro-particles in a bi-Gaussian distribution with
rms spread equal 0.75 rad for both the phase and energy, according to Eq. (1.2). No-
tice that quite a number of particles fall outside the bucket, and also the population
does not fit the bucket.

phase spread is not the same as the one originally demanded. Another method is

to truncate the bi-Gaussian distribution during the population at the bucket height.

This will certainly ensure all particles to be inside the bucket and the rms phase

spread will be what we desire. The bunch distribution, however, does not match the

bucket. After several synchrotron oscillations, it will filament and lengthen the rms

phase spread.

The above undesirable outcomes occur because we have populated the bunch ac-

cording to ellipses which are not trajectories of the particle motion in the longitudinal

phase space. In order that the populated bunch distribution matches the bucket, we

must populate according to the invariant tori inside the bucket instead. We will

present the correct way of particle population in Sec. 4 after we review some basic

theory of random population.
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2 RANDOM POPULATION IN ONE

DIMENSION

Consider a random variable X. When X assumes the value x, it has the probability

density function f(x). In other words,

Pr
(
x < X ≤ x+ dx

)
= f(x) dx (2.1)

and ∫ ∞
−∞

f(x) dx = 1 , (2.2)

where Pr denotes probability. The above still applies when X has a finite range,

because we can always define f(x) to vanish outside that range. The probability of

having X ≤ x is denoted by

F (x) =
∫ x

−∞
f(x′)dx′ , (2.3)

and is called the cumulative probability distribution function. Obviously F (X) is also

a random variable, which we can denote by Y . As an illustration, the probability

density function and its cumulative probability distribution function for the standard

normal are plotted in Figs. 2(a) and 2(b). Here, we are going to revisit the very

important theorem of probability integral transform [1].

Theorem: The random variable Y = F (X), where F is a cumulative probability

distribution function, is a uniform random variable on [0,1].

Proof: Because F (X) is a cumulative probability distribution function, it has the

range [0,1]. From Fig. 2, the outcome of Y ≤ t is the same as the outcome of X ≤ x,

where F (x) = t. Hence,

Pr(X ≤ x) = Pr(Y ≤ t) = F (x) = t . (2.4)

This theorem provides a very helpful way to populate a random variable X ac-

cording to its probability density function f(x). The procedures are as follows:

(1) Compute the corresponding cumulative probability distribution function F (x),

(2) Generate a uniform random number t on [0,1],

(3) From Fig. 2, read off the value of X via F (x) = t.
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Figure 2: (a) Probability density function f(x) for the standard normal. (b) Cu-
mulative probability distribution function Y = F (x) for the standard normal. For
a uniform random number t = 0.8639, the random variable X assumes the value
X = 1.098.
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The last step is equivalent to finding the inverse function of F (x), because, for each

uniform random number t on [0,1], the value X assumed is

x = F−1(t) . (2.5)

Consider, for example, the Lorentz density function

f(x) =
a

π

1

x2 + a2
. (2.6)

The cumulative probability distribution function is

F (x) =
1

2
+

1

π
tan−1 x

a
, (2.7)

and the inverse is

F−1(t) = −a cot(πt) . (2.8)

Thus, the random variable X can be obtained from

x = −a cot(πt) , (2.9)

by generating uniform random numbers t on [0,1]. As another example, the parabolic

probability density function

f(x) =


3

4a

(
1− x2

a2

)
|x| ≤ a

0 |x| > a

(2.10)

has the cumulative distribution function

F (x) =
1

2
+

3x

4a
− x3

4a3
, (2.11)

which is a cubic. For a given uniform random number t on [0,1], compute

θ = sin−1
√
t (2.12)

in the first quadrant. The inverse of the Eq. (2.11) is given by

x1 = 2a cos
2θ

3
,

x2 = 2a cos

(
2θ

3
+

2π

3

)
,

x3 = 2a cos

(
2θ

3
− 2π

3

)
,

(2.13)
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whichever is in the range [−a, a]. In general, only one of the three solutions will be

within this range, except for the rare situation that two of the solutions are equal and

are equal to +a or −a.

Unfortunately, not every cumulative probability distribution function has an in-

verse in a simple analytic closed form. For the Gaussian density function, the cumu-

lative distribution function can be written in terms of the error function, although the

integration cannot be performed analytically. Its inverse, however, cannot be written

as an analytic expression.

However, with high-speed computers, this is not a problem at all. There are stan-

dard routines to compute Eq. (2.5) numerically. Essentially, these routines compute

the percentiles of the density function f(x) using a combination of trapezoidal and

Gaussian quadratures to a very high accuracy. A uniform random number t on [0,1]

(for example, 0.8643, see Fig. 2) generated will be assigned to one of the percentiles

(here, the 86th percentile) and the corresponding value of the random variable X in

between two adjacent percentiles (here, the 86th and 87th) is computed using 4-point

interpretation (here X = 1.0980 for a normal distribution).

3 EXTENSION TO TWO DIMENSIONS

The above procedure of population can be extended to two dimensions. The key

is the polar coordinates. In the first example, X and Y are two independent random

variables having bi-Gaussian probability density function

f(x, y) =
1

2πaxbx
exp

[
− x2

2a2
x

− y2

2a2
y

]
. (3.1)

Now go to the polar coordinates (r, θ) with

x = axr cos θ ,

y = ayr sin θ .
(3.2)

The density function is transformed into

f(x, y) dx dy =
g(r)

2π
dθ dr , (3.3)

with the radial density function

g(r) = re−r
2/2 . (3.4)
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The polar density is uniform and θ can therefore be integrated out. Now we are in

one dimension again. The cumulative radial probability distribution function is

G(r) =
∫ r

0
r′e−r

′2/2 dr′ = 1− e−r2/2 , (3.5)

from which the inverse can be derived easily,

r(t) = G−1(t) =
√
−2 ln(1− t) . (3.6)

Thus, for every set of two uniform random numbers t1 and t2 on [0,1], the random

variables X and Y assume the values

x = axr cos(2πt2) ,

y = ayr sin(2πt2) ,
(3.7)

where

r =
√
−2 ln t1 . (3.8)

In fact, the bi-Gaussian density function is only semi-two-dimensional in the sense

that the two random variables X and Y are statistically independent. In other words,

the density function is separable, or it is the product of the density functions of X

and Y :

f(x, y) =

[
1√

2πax
e−x

2/(2a2
x)

] [
1√

2πay
e−y

2/(2a2
y)

]
. (3.9)

In that case, polar coordinates do not present any significant advantage, because we

can populate X and Y independently. The situation is different for the elliptical

distribution

f(x, y) =
3

2πaxay

√√√√1− x2

a2
x

− y2

a2
y

, (3.10)

which gives parabolic density function when projected onto the x-axis or y-axis. Cer-

tainly, this density function cannot be written as the product of the density functions

of X and Y . So we proceed as before by going to the polar coordinates (r, θ) given

by Eq. (3.2). The density function of Eq. (3.10) is transformed into Eq. (3.3) with

g(r) = 3r
√

1− r2 , (3.11)

which is now one-dimensional. The corresponding cumulative probability distribution

function is

G(r) =
∫ r

0
3r′
√

1− r′2 dr′ = 1−
(
1− r2

)3/2
, (3.12)
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with the inverse

r(t) = G−1(t) =
√

1− (1− t)2/3 . (3.13)

Thus, for every set of two uniform random numbers t1 and t2 on [0,1], the random

variables X and Y assume
x = axr cos(2πt2) ,

y = ayr sin(2πt2) ,
(3.14)

where

r =
√

1− t2/31 . (3.15)

4 POPULATION INSIDE A BUCKET

We return to the Hamiltonian of Eq. (1.1) with the random variables Φ and P .

To ensure that the populated bunch fits the bucket, the probability density function

must be a function of the Hamiltonian, or

f(φ, p) = f [H(φ, p)] , (4.1)

where‡ the form of the function f(H) is arbitrary. Perform the transformation

q = 2 sin
φ

2
, (4.2)

so that

f(H) dφ dp = h(q, p) dq dp , (4.3)

where

h(q, p) =
f(H)√
1− q2

4

. (4.4)

The denominator on the right side arises from the transformation Jacobian. We next

adopt the polar coordinates defined by

p = r cos θ ,

q = r sin θ .
(4.5)

‡Mathematically, the functions on left and right sides of Eq. (4.1) are different and should be
represented by different symbols. However, as physicists, we use the same symbol to represent the
two functions which assume the same value.
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Now the range of r and the range of θ are independent of each other, although the two

random variables are not statistically independent. We can therefore project onto r

by integrating over θ and obtain the radial density function g(r),

g(r) dr = f [H(r)] rdr
∫ π

−π

dθ√
1− r2

4
sin2 θ

= 4r f [H(r)]K( r
2
) dr , (4.6)

where K( r
2
) is the complete elliptical function of the first kind. We now arrive at a

density function in one dimension. The cumulative probability distribution function

is

G(r) =
∫ r

0
4r′ f [H(r′)]K( r

′

2
) dr′ . (4.7)

Given a uniform random number on [0,1], the value of r can be found as indicated

in Sec. 2 and 3. Knowing r, we need to determine θ which does not have a uniform

density. In fact, from Eq. (4.6), the polar density function is

v(θ) =
1

4K( r
2
)

1√
1− r2

4
sin2 θ

, (4.8)

the physical meaning of which will be studied in Appendix B. The corresponding

cumulative distribution function

V (θ) =
1

4K( r
2
)

∫ θ

0

dθ′√
1− r2

4
sin2 θ′

(4.9)

is just the elliptical integral and the inverse can be expressed in terms of one of the

Jacobian elliptic functions. Here, we choose the sine-like sn and arrive at

θ(t) = V −1(t) = sin−1 sn
[
4tK( r

2
), r

2

]
, (4.10)

where the arcsine function is considered to be a multi-valued function assigning values

to all the 4 quadrants (or 0 ≤ θ < 2π). Alternatively, we can also consider

θ̃(t) = V −1(t) =
∣∣∣sin−1 sn

[
tK( r

2
), r

2

]∣∣∣ , (4.11)

so that 0 ≤ θ̃ < 1
2
π. The angle θ is then determined by assigning θ̃ to one of the 4

quadrants according to which quarter t belongs to.
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For illustration, we take a bi-Gaussian density function

f(p, φ) = f
[
−H
a2

]
= A exp

[
− 1

2a2

(
p2 + 4 sin2 φ

2

)]
, (4.12)

where A is the normalization constant and a is a parameter, which designates the

rms spreads of both the random variables Φ and P when a� 1. Transforming to the

polar coordinates, the density function for r is

g(r) = 4ArK( r
2
) e−r

2/(2a2) , (4.13)

where 
p = r cos θ ,

φ = 2 sin−1 r sin θ

2
.

(4.14)

In other words, given two uniform random numbers t1 and t2 on [0,1], the random

variables Φ and P assume the values according to Eq. (4.14), where r is a complicated

function of t1 and is obtained numerically as indicated in Sec. 2 via Eq. (4.13), while

θ is obtained from t2 and r via Eq. (4.11).

A number of comments are in order:

(1) The random variables Φ and P are not statistically independent of each other

because of the restriction of the bucket boundary. In the normalized Hamiltonian,

the restriction is

p2 + 4 sin2 φ

2
= p2 + q2 = r2 ≤ 4 . (4.15)

Thus r has the range of [0,2] in the probability density function g(r) and the cumu-

lative probability distribution function G(r). The finite range of r sets a correlation

between Q and P , so that the density function cannot be fractorized into the product

of the density functions of Q and P . Thus, one cannot address the distributions of

Q and P separately. In fact, this is the reason why the problem complicates. Let

us examine the difficulties of performing the population using the variables Φ and P

directly. We need to integrate over P from −2 cos φ
2

to +2 cos φ
2

to obtain the density

function of Φ,

fφ(φ) =
√

2πaA erf

(√
2 cos φ

2

a

)
exp

(
−

2 sin2 φ
2

a2

)
, (4.16)

where erf is the error function. After populating numerically the value of Φ = φ

between ±π according to the density function of Eq. (4.16) with a uniform random
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number on [0,1], we can populate the value of P according to the density function

fp(p) =


[√

2πa erf

(√
2 cos φ

2

a

)]−1

exp

(
− p2

2a2

)
, |p| ≤ 2 cos φ

2
,

0 otherwise .

(4.17)

However, there are two disadvantages. First, notice that for both variables, the

inverse of the cumulative distribution functions can not be expressed in the closed

form. Worst of all, the distribution for P is different for different values of Φ. This

implies that the inverse of a new function has to be searched for every single macro-

particle and a lot of computer time will be required. Second, the fact that the

integration over p can be expressed in terms of the error function is not typical.

In general, a functional expression like Eq. (4.16) is not possible, meaning that the

density function for Φ becomes completely numerical and the population of macro-

particles will become more tedious and complicated. It is clear that with R and

Θ as variables, these two difficulties can be avoided. First, an analytic expression

for the density function of R can always be written as Eq. (4.6) independent of the

distribution f(H). This is because the integration over θ can always be performed

and is, in fact, the same for all distributions f(H). Certainly, an important reason is

the fact that the range of θ is r-independent. Second, the distribution of Θ, Eq. (4.9),

is also the same for all distributions f(H). Best of all, the inverse of the cumulative

distribution of Θ, Eq. (4.10), can be expressed in the closed form, thus eliminating

the search of inverse numerically and can speed up the population process.

(2) Usually the linear rms spread σφ of the bunch is given but not the parameter

a, which approaches the rms spread only when the bunch is small. Therefore, a

conversion between σφ and a is necessary. Although we know that

σ2
φ =

∫
φ2f(φ, p) dφ dp =

∫
φ2A exp

[
− 1

2a2

(
p2 + 4 sin2 φ

2

)]
dφ dp , (4.18)

unfortunately, the above integral cannot be carried out in the closed form. However,

this double integral can be reduced to a single integral by integrating over p giving

something similar to Eq. (4.16). This integral can now be computed numerically and

the σφ-a relation is depicted in Fig. 3. Another more general method is to perform

the double integral numerically or to populate the bunch for a given a and compute

σφ numerically from the phase locations of the macro-particles. Notice that there is
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Figure 3: Plot showing the relation between rms phase spread σφ and the param-
eter a of a bunch having a probability density function given by Eq. (4.12). The
parameter a approaches the rms phase spread of the distribution only when the
bunch is small compared with the bucket. The dashed line is at 45◦ showing the
situation if σφ = a.

an upper bound for σφ. This is because as a→∞, the population inside the bucket

becomes uniform. It is easy to show that this upper bound is 2
√

1
4
π2 − 2 = 1.3673.

Now, given a σφ, we can read off the corresponding a either from interpolation or

a fitted relationship. Then, the population can be performed accordingly. Figure 4

shows such a population with σφ = 0.75 rad (or a = 0.653) in the normalized coor-

dinates. This is to be compared with the population in Fig. 1. It is clear that no

particles ever fall outside the bucket now and the bunch does fit the bucket nicely.
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Figure 4: Population of 20000 macro-particles in a bi-Gaussian-like distribution
with rms phase spread equal 0.75 rad (or a = 0.653), according to probability
density of Eq. (4.12). Compared with Fig. 1, the bunch fits the bucket and no
particles fall outside the bucket.

APPENDIX

A NORMALIZED HAMILTONIAN

When a particle traverses the rf cavity gap, it sees the rf phase φ and has a

fractional momentum spread δ. Usually, it takes many revolutions to complete one

synchrotron oscillation. It is therefore reasonable to introduce a continuous indepen-

dent time variable ϑ′, which advances by 2π per revolution. The equations of motion

are
dφ

dϑ′
= hηδ , (A.1)

dδ

dϑ′
= −eVrf sgn(η)

2πβ2E
sinφ , (A.2)

where Vrf is the peak rf voltage, h the rf harmonic, e the particle charge, η the slip

parameter, E the energy of the synchronous particle, and β its velocity with respect to
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the velocity of light. We have restricted the discussion to the situation of a stationary

bucket only.

Introduce a normalized momentum offset p, such that

p =
hη

νs
δ , (A.3)

where

νs =

√
h|η|eVrf

2πβ2E
(A.4)

is the small-amplitude synchrotron tune. The equations of motion are transformed

into
dφ

dϑ′
= νsp , (A.5)

dp

dϑ′
= −νs sinφ . (A.6)

When p is considered the momentum conjugate to φ, the equations of motion are

derivable from the Hamiltonian

H = 1
2
νsp

2 + νs(1− cosφ) . (A.7)

Finally, we obtain the Hamiltonian of Eq. (1.1) by changing the independent variable

from ϑ′ to ϑ = νsϑ′, where ϑ advances by 2π per small-amplitude synchrotron period.

B DENSITY ALONG TORUS

We wish to have an understanding of the particle density along a torus, which is

illustrated as solid in Fig. 5. The location of a particle on that torus is determined

by the distance s along the torus from the P -axis to the arrow head. It can also be

described by the angle θ defined in Eq. (4.5), which is measured from the P -axis.

Here, we will concentrate on the particle density along this particular torus only. An

element ds of length along the torus at distance s is related to the element dθ by

ds =
√
dp2 + dφ2 =

√√√√√√√√
1− r2

4
sin4 θ

1− r2

4
sin2 θ

rdθ , (B.1)

where 1
2
r2 is the Hamiltonian value of the torus.
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Figure 5: Plot showing the distance s along a torus from P -axis to the arrow head
as a function of the angle θ defined in Eq. (4.5) measured from the P -axis. The
auxiliary dashed circle of radius r is drawn for the definition of θ.

The number of particles in a length ds along the torus is ρ̃(s)ds. To ensure that

the particle density ρ̃(s) is stationary or does not change with time, we demand

div
[
ρ̃(s)~v(s)

]
= 0 , (B.2)

where ~v is the velocity of particle. This is the velocity at which the particle per-

forms synchrotron rotation and is in the direction along the torus. To be stationary,

ρ̃(s) ds/dϑ must be s- or θ-independent. In other words, we must have

ρ̃(s) ∝ dϑ

ds
. (B.3)

Here ϑ is the independent time variable of the Hamiltonian of Eq. (1.1) as defined

and derived in Appendix A. Recall that ϑ advances by 2π per synchrotron period for

particles on a torus with r → 0. The time for a particle to move a distance ds along

the torus, or for a corresponding change dθ or dφ, can be obtained through the phase

equation of the Hamiltonian like Eq. (A.5):

dϑ = ± dφ

r

√
1− 4

r2
sin2 φ

2

, (B.4)
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where the positive sign applies when the rotation is in the first and fourth quadrants

of the longitudinal phase space and the negative sign for the other two quadrants.

Transforming from φ to θ using Eqs. (4.2) and (4.5), we arrive at

dϑ =
dθ√

1− r2

4
sin2 θ

. (B.5)

Thus, the velocity along the torus is

v =
ds

dϑ
= r

√
1− r2

4
sin4 θ . (B.6)

Since the velocity along the torus is position dependent, this explains why the particle

density cannot be uniform along the torus. Expressing in terms of θ, the density

becomes [using ρ(θ) dθ = ρ̃(s) ds]

ρ(θ) = ρ̃(s)
ds

dθ
∝ dϑ

dθ
, (B.7)

which is the same expression in Eq. (4.8).
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