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Abstract

Multiple injections into the 50 GeV proton synchrotron, proposed by the

Institute of Nuclear Study of Japan, from a 3 GeV booster using barrier buckets

are simulated. For four successive injections of 4 bunches each time, having a

half momentum spread of 0.5%, the �nal coasting beam in the synchrotron

has a momentum spread of roughly �1:0% in the core, with a tail extending

up to �2:5%. The choice of debunching time, barrier velocity, barrier voltage,

and barrier width is analyzed. Some beam kinematics relating to the barrier

buckets are discussed.

�Operated by the Universities Research Association, Inc., under contract with the U.S. Depart-

ment of Energy.
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I. INTRODUCTION

The Main Ring of the Japan Hadron Project (JHP) is a high-intensity fast-cycling

synchrotron. The design asks for a ring of 16 bunches with 2� 1014 protons in total.

These 16 bunches are injected from the booster in 4 batches cycling at the rate

of 25 Hz. It is possible that the space-charge e�ect may lead to instability at the

injection kinetic energy of 3 GeV. In order to minimize the high space charge, it

has been suggested the use of rf barrier waves during the injection [1]. This paper

describes a simulation of such an injection. For completeness, some simple formulas

for the barrier bucket are derived in the Appendix.

II. CHOICE OF DEBUNCHING TIME

The ring has an imaginary transition gamma of 
t = 27i. At the injection kinetic

energy of 3 GeV, the slip factor is therefore � = �0:05813. The injected bunch

has maximum fractional momentum spread � = �0:005. Therefore, for a bunch to

debunch until the � = +0:005 part meets the � = �0:005 along the phase or time

axis, the time required is

tdebunch =
T0

2j��j = 8:28 ms ; (1)

where T0 = 4:9526 �s is the revolution time with the ring circumference taken as

C0 = 1442 m. We will use tdebunch = 10 ms in the simulation.

III. CHOICE OF SQUEEZING TIME

In this simulation, 4 bunches are injected into the ring. Each bunch has 1000

macro-particles distributed randomly in its elliptical envelope in the longitudinal

phase space with maximum momentum spread � = �0:005 and width �� = 1

17�8
T0,

i.e, the full width is a quarter of the rf wavelength at revolution harmonic h = 17.

The distribution in the longitudinal phase space is shown in Fig. 1a along with the

linear distribution and momentum distributions. Here, the phase axis is measured

in time. The bunches are allowed to debunch for 10 ms and the result is shown in

Fig. 1b. Two square rf barrier waves are introduced at � = 0 on the phase axis. One
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barrier is �xed while the other one moves slowly at the rate of _T2 = �3:884 � 10�5

to the right until a space corresponding to four h = 17 rf wavelengths or 1:165 �s is

opened. The time taken will be 30 ms, so that 40 ms has just elapsed and the next

injection of 4 more bunches from the booster is just in time. The situation just after

the second injection is shown in Fig. 2a. The procedure then repeats. Debunching

in another 10 ms gives Fig. 2b. Introduction of rf barrier waves with squeezing for

30 ms and then the third injection result in Fig. 3a. Another 10 ms of debunching

gives Fig. 3b. The next squeezing and the fourth injection result in Fig. 4a. Finally

we allow for another 10 ms of debunching before recapturing by the h = 17 rf system,

and the situation is shown in Fig. 4b. In the above, T2 is the width of the rectangular

part of the bucket. Since the moving barrier pulse squeezes the bucket, _T2 < 0.

In order that the longitudinal emittance of the bunch inside the barrier bucket is

conserved, we must have [2]

j _T2j � 1

2
j��j = 1:45 � 10�4 : (2)

The detail is given in the Appendix. Therefore, the rate of barrier movement chosen

in the simulation should be slow enough.

IV. CHOICE OF BARRIER VOLTAGE AND WIDTH

The amount of momentum spread �b the pair of square barrier pulses can trap is

given by [2]

�b =

vuut 2

�2j�j

!�
eV0T1

E0T0

�
; (3)

where E0 is the total energy of the particle and � is velocity relative to the velocity of

light. See the Appendix for derivation. Note that the barrier voltage V0 and barrier

width T1 in Eq. (3) become

V0T1 !
Z
barrier

V (� )d� ; (4)

when the barrier wave is of arbitrary shape than square. To con�ne �b = 0:018 say,

we need

V0T1 = 173:26 kV-�s : (5)
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It is not good to use too small a barrier voltage, because this will make the width

of the barrier too wide. Remember that the stable bucket consists of a rectangular

part where the particles do not see the barrier pulses and two curved parts where

the particles are exposed to the barrier voltage. A large barrier width increases the

curved parts of the bucket at the expense of the rectangular part, and the whole

bucket area becomes smaller. Therefore, when the barrier pulses are switched on,

there will be more particles outside the bucket if the barrier pulse width is larger.

This is illustrated in Fig. 5. The momentum spread of the eventual phase-space

distribution will become larger.

Figure 5: The barrier pulse voltage V0 in (b) is one half of that in (a) while

the pulse width T1 is doubled so that V0T1 remains constant. This reduces

the bucket area although the bucket height remains the same. Therefore,

more beam particles will not be captured in case (b).

Too narrow a barrier width is also not desired. This will boost the barrier voltage

to too high a value, making it more di�cult to generate. Also, whenever a particle

drifts towards the barrier, it will gain or lose energy by an amount equal to V0 per

turn, independent of whether the barrier is moving or not. Take an extreme case that

the barrier width is so narrow that the particle only sees it in one turn or none at all.

If the particle sees the barrier in one turn, it will either gain or lose too much energy

that it will be thrown out of the bucket. If the particle misses the barrier, it will also

go out of the bucket also. For this reason, in order that the conservation of the area
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of the square part of the bunch holds, the barrier voltage must be limited to

eV0

�2E0

� �max ; (6)

where �max is the maximum momentum o�set of a particle, and that this particle

must see the barrier for a substantial number of consecutive turns. The constraint

(6) gives V0 � 18600 kV using �max = 0:005. We actually choose V0 = 625 kV and

T1 = 0:30 �s in our simulation. Then, a particle with � = 0:005 will lose its extra

energy in approximately E0�=(eV0) = 31:4 turns and penetrate the barrier by an

amount approximately equal to

�penetrate =
j�j�2E0T0�

2

2eV0
= 0:0314 �s (7)

These barrier waves can produce a bucket height of �b = 0:0187 when �penetrate = T1,

the barrier width.

V. MOMENTUM-OFFSET DISTRIBUTION

To get an estimate of the momentum spread of most of the particles after each

squeezing by the barrier pulse, we neglect the curved part of the barrier bucket. The

rectangular part of the bucket has a width of T2 init = T0 � 2T1 at the time when

the barrier waves are introduced, and becomes T2 �nal =
13
17
T0 � 2T1 at the end of the

squeeze. The momentum spread will be increased by the factor

F =
T0 � 2T1

13
17
T0 � 2T1

= 1:356 : (8)

Ideally, in the fourth injection after the third squeezing by the rf barrier, the momen-

tum spread should increase only by the factor F 3 = 2:547 to � = �0:0127. We see

in Fig. 4a that for most part of the beam, the momentum spread actually increases

by such a ratio after 3 barrier squeezes. However there is a small part of the beam

having momentum spread as large as � = �0:025 or even �0:030. This is because the
above consideration is correct only for a bunch that is initially at equilibrium inside

the barrier bucket. Here, the beam particles are captured into the barrier bucket

when the barrier pulses are turned on. Since we have a debunching before capturing

into the barrier bucket, particles can be anywhere along the phase axis at the time
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of capture. For those particles that are captured into the curved parts of the bucket

and are very close to the boundaries of the bucket, they can acquire large amount

of energy through the barrier pulses and leave the barrier pulse with much larger

momentum o�set than the estimate given above. It can be seen in Fig. 1a that there

are particles with momentum o�sets much larger than 1:356 � 0:005 = 0:0068 after

the �rst squeeze by the moving barrier pulse. There are also particles that have not

been captured into the barrier bucket at all. For a particle with initial momentum

o�set �i0 > 0 outside the stable barrier bucket, it will �rst drift across the moving

barrier pulse and result in a momentum o�set of �f1 given by

 
�f1 +

_T2

j�j

!2

=

 
�i0 +

_T2

j�j

!2

+ �2b ; (9)

where _T2 is negative (see Appendix). The particle then drifts across the stationary

barrier pulse to the space opened up by the moving barrier, after making synchrotron

drifting once around the ring. The momentum o�set will be reduced to �i1 with

�2
f1 = �2

i1 + �2
b : (10)

Since the initial momentum o�set is at most �i0 = 0:005, during the �rst synchrotron

rotation (not oscillation or libration) outside the barrier bucket, we have therefore

�f1 = 0:0194 and �i1 = 0:0067. This is illustrated in Fig. 6. On the average, this

particle will encounter the moving barrier pulse 4 times during the 30 ms squeeze time.

At the end of the �rst squeeze, we have �f4 = 0:0206. After that there is another

10 ms of debunching and some of these large-momentum-o�set particles can land

outside the barrier bucket again when the next barrier pulses are turned on. Thus,

for the second squeezing, there may be particles having �i0 = 0:0206 to start with.

At the end of the second squeeze after another 4 encounters with the moving barrier

pulse, we obtain �f4 = 0:0282 by solving again Eqs. (9) and (10). Continuing on in

this way to the end of the third squeeze, we will have some particles with the largest

momentum o�set of �f4 = 0:0340. When we analyze the momentum distribution in

Fig. 4a more carefully, we do �nd 18 particles out of 16,000 in the momentum-o�set

range of 0.025 to 0.030, and 1 particle in the range of 0.030 to 0.035.

The above analysis depends on the time-integrated barrier voltage only and is

independent of the barrier voltage itself. However, if we use a higher barrier voltage
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Figure 6: The Poincar�e trajectory of a particle outside the barrier bucket.

With one barrier pulse (the left one in the bucket) moving to the right, the

momentum o�set increases for every synchrotron rotation around the ring,

whose circumferential length in time is T0.

while keeping V0T1 constant, more particles will be captured into the larger stable

barrier bucket, although the bucket height will remain the same. Thus, the probability

of having particles to attain large momentum o�set outside the bucket will become

smaller. Moreover, because the larger barrier voltage increases only the rectangular

area of the bucket but not the bucket height as indicated in Fig. 5, the bunch area

that has momentum o�set within � = �0:005 (for the �rst injection) and �ts the

bucket will be relatively larger. Thus not so many beam particles will attain higher

momentum o�sets via synchrotron oscillations. When one of the barrier pulse moves,

more particles will follow the momentum-o�set increase governed by Eq. (8). To

demonstrate this, we perform a similar simulation by doubling the barrier voltage

to V0 = 1250 kV while halving the barrier width to T1 = 0:15 �s. The phase space

distribution after three squeezes is shown in Fig. 7. Comparing with Fig. 4a, we do

see less particles land at larger momentum-o�sets, which is veri�ed also numerically

by Table I. However, as was pointed out in the previous section, too high a barrier

voltage is not desired.
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Figure 7: Phase space distribution after 3 barrier squeezes and 3 injections.

Compare with Fig. 4a, the voltage of barrier pulses have doubled to V0 =

1250 kV and the width halved to T1 = 0:15 �s.

VI. DISCUSSIONS

1. Bunch width at injection

Although the simulation results depend very strongly on the momentum spread

of the bunches at injection, however, they are very insensitive to the bunch length at

injection. This is because there is always a debunching period before a squeeze by the

barrier pulse, and the information of the bunch length disappears after debunching.

In practice, however, the initial bunch length cannot be too long, because some gaps

must be provided for the kicker rise and fall times. In the above simulations, the

total bunch length is 1

4
of a h = 17 rf wavelength. Thus the space between the end of

the squeezed barrier bunch and the �rst bunch in the next injection is 3

8
of a h = 17

rf wavelength, or 109 ns. There will be a gap of similar length between the fourth
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Table I: Comparison of momentum-o�set distributions after 3 squeezes
using single barrier pulses of 625 and 1250 kV (�rst and second columns)
and double pulses of 625 kV (last column).

Range of Momen- Fraction of Particles

tum-o�set V0 = 625 kV V0 = 1250 kV double 625 kV

0.000 to 0.005 0.6673125 0.7241875 0.650875

0.005 to 0.010 0.2133750 0.2041875 0.188625

0.010 to 0.015 0.0642500 0.0396250 0.058750

0.015 to 0.020 0.0387500 0.0224375 0.044500

0.020 to 0.025 0.0151250 0.0092500 0.042500

0.025 to 0.030 0.0011250 0.0003125 0.011625

0.030 to 0.035 0.0000625 0.0000000 0.003000

0.035 to 0.040 0.0000000 0.0000000 0.000125

bunch and the front of the squeezed barrier bunch. These gaps will be long enough

for the injection, because, for example, the kicker of the Fermilab Main Ring has rise

and fall times of only � 30 ns. Even if the injection bunch length is doubled, these

gaps are still 73 ns wide and are wide enough for the injection.

2. Double barrier pulses

Instead of using one negative pulse and one positive pulse to set up the barrier

bucket and perform the bunch squeezing, we may utilize instead a pair of identical

double pulses. Each double pulse consists of a positive voltage V0 of duration T1

followed by a negative voltage �V0 of duration T1. Instead of square waves, each

pulse can be one sinusoidal period of an rf wave. At switch-on, the two pulses overlap

each other. Then, one pulse moves to the right while the other one remains stationary.

Under this situation, the space opened up by the moving pulse also forms a stable

barrier bucket via the negative half of the moving pulse and the positive half of the

stationary pulse. Thus some particles will be trapped there and they will have their

momentum o�sets decreased gradually, because this bucket is becoming wider and

wider now as one of the barrier pulses moves to the right. These particles will not be

able to drift to the squeezed beam region to acquire larger momentum o�sets.
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However, there are disadvantages also. The particles that are trapped in the

space opened by the moving barrier can be lost when the kicker is �red for the next

injection. Also, stable barrier bucket only starts to form after the moving barrier

moves a distance of T1. Before that, the two barrier pulses overlap at least partially.

At switch-on, the two barrier pulses overlap completely; i.e., an equivalent pulse

height of 2V0 width T1 followed by pulse height of �2V0 width T1. The barrier bucket

forms at this moment will have a bucket height
p
2�b = 0:0257 instead, where �b is the

bucket height when single barrier pulses are used. Thus particles will bound o� from

the barriers having much larger momentum o�sets. A simulation has been performed

with the double barrier pulses using V0 = 625 kV and T1 = 0:30 �s. The phase space

distribution after the third squeeze and fourth injection is shown in Fig. 8. We can

actually see the two stable barrier buckets, each having a bucket height of � 0:025.

Comparing with Fig. 4a, we see that the momentum distribution spreads out wider.

The fractional populations for some momentum-o�set ranges are also listed in the

last column of Table I for comparison.

3. Pros and cons of the method

There are pros and cons for using the barrier pulses in multiple injections. The

advantage is obviously the much shorter exposure duration of bunches of very high

linear intensity to the vacuum chamber, and we hope that no collective instabilities

would develop during this shorter duration. For the simulation illustrated in Figs. 1

to 4, the linear line density has been reduced by a factor of � 6. This reduction will

be more signi�cant if the bunch width at injection becomes narrower. The disad-

vantage is that microwave instability can develop during debunching when the local

momentum spreads of the debunched bunches become small enough. Also, because

of the introduction of the barrier pulses and the movement of one of them sends quite

a number of beam particles to large momentum o�sets, the momentum spread of the

�nal beam will become much larger. Finally, there must be another recapturing of

the beam particles into the h = 17 rf buckets for acceleration. Beam loss will become

inevitable during the recapturing. Thus, there will be beam loss as well as emittance

blowup during the whole procedure, which may or may not be tolerable.

Another method is to lengthen the bunches in the booster and perform simple
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Figure 8: Phase space distribution after 3 barrier squeezes and 3 injections.

Compare with Fig. 4a, two double barrier pulses are used at each stage. The

pulse height remains V0 = 625 kV and each half of each double pulse has the

same width T1 = 0:3 �s.

bucket-to-bucket injection into the main ring. For example, if each bunch is length-

ened to occupy 80% of the h = 17 bucket with the momentum spread unchanged,

the gap between two consecutive bunches becomes 58 ns and is still long enough to

accommodate the kicker rise or fall time. This bunch lengthening will introduce a

reduction of the local linear density by a factor of 3.2 already compared with the fac-

tor of 6 in the simulation. Of course, such a bunch lengthening can be accomplished

by a bunch rotation in the booster with negligible emittance increase. In this way,

the momentum o�set will be smaller and the eventual bunch-to-bunch injection will

become easier. Since no recapturing will be necessary, the beam loss during injection

can be kept to a minimum.
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APPENDIX

A Bucket Height

Choosing time � and momentum o�set � as the canonical variables, the Hamilto-

nian of a particle in the stationary barrier-wave system can be written as

H =
1

2
��2 +

1

�2E0T0

Z �

0
eV (� 0)d� 0 ; (A1)

where the �rst term is the `kinetic energy' of the particle and the second term is

`potential energy' due to the barrier pulse, which has been chosen to be zero inside

the bucket away from the barrier. For square barrier pulse at the right side, the

integral just gives �V0� . The bucket height �b is therefore given by equating the

maximum kinetic energy to the maximum potential energy,

1

2
j�j�2

b =
eV0T1

�2E0T0

; (A2)

which gives Eq. (3).

B Synchrotron Period

A particle drifts along most of the time giving the rectangular part of the barrier

bucket and sees the barrier pulses very brie
y giving the curved parts of the bucket. If

we neglect the short excursion time of the particle into the curved part of the bucket,

the synchrotron period is just the drifting time along a length 2T2 of the phase axis;

i.e.,

2T2 � Tsyn j�j�̂ : (A3)

Here T2 is roughly between 13

17
T0 and T0. Thus, for a particle with maximum mo-

mentum o�set �̂ = 0:005, the synchrotron period is Tsyn � 26 to 34 ms. Or the

particle makes only one synchrotron oscillation during the barrier squeezing time of

30 ms, and there are at the most two encounters with the moving barrier pulse. For

a particle with maximum momentum o�set of �̂ = 0:020, the synchrotron libration

period or rotation period is Tsyn � 6:5 to 8.5 ms, and the particle will encounter the

moving barrier about 4 times.
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C Moving Barrier Pulse

When a particle with momentum o�set �i hits a stationary barrier pulse, it will

reverse its direction and come back with momentum o�set �f = ��i as shown in

Fig. 9a. Here we assume that the barrier voltage �V0 is small enough so that the

Figure 9: (a) A particle with momentum o�set �i < 0 encounters a stationary

barrier pulse resulting in momentum o�set �f = ��i. The stationary barrier

pulse considers those on-momentum particles as at stable �xed points. (b)

The barrier pulse moves at the drifting speed of particles with momentum

o�set �d and considers these particles as at stable �xed points. A particle

with momentum o�set �i < 0 encountering the moving barrier pulse will

have its momentum o�set changed to �f so that �f � �d = �d � �i.

particle sees the square pulse for a substantial number of successive turns and the

momentum change for the particle per turn is small, or

j��j � eV0

�2E0

: (A4)

For those particles with � = 0 inside the barrier bucket, this barrier considers them to

be stationary. In other words, these particles are at the stable �xed points (in fact, a
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whole line inside the rectangular part of the bucket). Now consider this barrier pulse

moving to the right at a rate of _T2 < 0. Particles with momentum o�set

�d =
j _T2j
j�j (A5)

are drifting at the same rate as the barrier. In the point of view of the moving barrier,

these particles are at the stable �xed points, because they appear to be stationary

to the moving barrier. Therefore, a particle with momentum o�set �i > �d drifts

faster than the moving barrier and will not encounter it at all. On the other hand,

a particle with momentum o�set �i < �d will be turned back by the moving barrier

with momentum o�set �f given by

�f � �d = �d � �i (A6)

as is indicated in Fig. 9b. This can be veri�ed easily if we go to the rest frame of the

moving barrier.

If the bunch has a maximum momentum spread �̂ < �d initially, there will not be

any particle supply to the region �̂ < � < �d in the longitudinal phase space, which

will become empty after the squeezing motion of the moving barrier, as shown in

Fig. 10. Although Liouville theorem guarantees the preservation of particle density,

the longitudinal bunch emittance will be increased eventually due to �lamentation.

Moreover, not all the particles in the bunch will complete exactly a half integral

number of synchrotron oscillations in a certain time interval, even if �̂ > �d to start

with, the edge of the bunch will be left uneven as indicated in Fig. 11. Eventually,

the longitudinal bunch emittance will be increased also. Thus, to preserve bunch

emittance, we require the change of momentum spread at each encounter with the

moving barrier to be small. More precisely, using Eq. (A6), we require

2�d � �̂ ; (A7)

which leads to Eq. (4).

For a particle with momentum o�set �f1 > �b outside the barrier bucket set up by

stationary barrier pulses, it will acquire a potential energy of �eV0T1=(�2E0T0) after

crossing the barrier at the right side, and the momentum o�set �i1 will become

1

2
��2f1 =

1

2
��2i1 �

eV0T1

�2E0T0

; (A8)
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Figure 10 : Particles inside a narrowing barrier bucket. The left-side barrier

pulse moves at the drifting speed of particles represented by dashed lines.

(a) Initially, the bunch has momentum spread larger than these particles. As

the bucket is squeezed to (b) and (c), empty spaces develop. Some particle

loss is seen in (c).

where the Hamiltonian of Eq. (A1) has been employed. Using the de�nition of the

bucket height �b in Eq. (A2), we obtain immediately the relation,

�2f1 = �2i1 + �2b : (A9)

For a barrier pulse moving at the rate of _T2, Eq. (A9) applies in the rest frame of the

moving barrier. Equivalently, j _T2j=j�j has to be subtracted from �f1 and �i1, which

results in Eq. (9).

One may notice that there is always a dip in the central region of the momentum

distribution curves. This is because after each debunching period, for example in

Fig. 1b, the only particles with small momentum o�sets reside on the very left side

of the phase axis. For momentum o�sets that are slightly positive, these particles

will continue to spread out to the right and �ll up the whole phase axis, after moving

barrier is turned on later. For momentum o�sets that are slightly negative, however,

the particles drift to the left and will be intercepted by the moving barrier very

soon. From the above discussion, it is easy to see that there will not be any new

supply of particles to this momentum region by re
ection via the barrier pulses. For

this reason, there is always a dip in this momentum region in all the momentum

distribution curves at the place where the momentum o�set is slightly negative..
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Figure 11: Particles inside a barrier bucket that is being squeezed. The

left-side barrier pulse moves at the drifting speed of particles represented

by dashed lines. (a) Initially, the bunch has momentum spread larger than

these particles. However, because not all particles complete a half integral

number of synchrotron oscillations, the edge of the bunch in (b) becomes

uneven.
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