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POTENTIAL-WELL DISTORTION AND MODE-MIXING INSTABILITY

IN PROTON MACHINES

King-Yuen Ng

Fermi National Accelerator Laboratory,� P.O. Box 500, Batavia, IL 60510

Abstract

In proton machines, potential-well distortion leads to small amount of bunch length-

ening with minimal head-tail asymmetry. Longitudinal mode-mixing instability occurs

at higher azimuthal modes. When the driving resonance is of broad-band, the thresh-

old corresponds to the Boussard-modi�ed Keil-Schnell criterion for microwave instabil-

ity. [1] When the driving resonance is narrower than the bunch spectrum, the threshold

corresponds to a similar criterion derived before. [2] The thresholds are higher when

the machine operates below transition.

I. INTRODUCTION

Proton bunches are very much di�erent from electron bunches. First, electron bunches

have a length roughly equal to or shorter than the radius of the beam pipe, whereas proton

bunches are usually very much longer. Second, the momentumspread of the electron bunches

is determined by the heavy synchrotron radiation. Protons do not radiate and behave quite

di�erently in the longitudinal phase space, with the bunch area conserved instead. These

di�erences lead to di�erent results in potential-well distortion and mode mixing. [3]

II. DISTORTION ASYMMETRY

As an example, the bunches in the Fermilab Main Ring have a typical full length of

� 60 cm or �L � 2 ns. The spectrum has a half width of � ��1L = 0:5 GHz. Therefore,

the static bunch pro�le is hardly a�ected by the resistive part of the broad-band impedance

which is centered at 1:5 � 4 GHz. As a result, the inductive part of the broad-band will

only lead to a symmetric broadening (shortening) of the bunch above (below) transition.

This conjecture can be tested by means of the Ha��ssinski equation [4]. Strictly speaking, the

Ha��ssinski equation does not apply to proton bunches where the bunch area is conserved and

the momentum spread is not a �xed Gaussian. Nevertheless, it should give us an idea of the

amount of asymmetric head-tail distortion. Adapting the Main Ring bunch at E = 150 GeV

to a longitudinal Gaussian pro�le, we take the bunch area as A = 6����E = 0:15 eV-

sec, where �� and �
E
are the rms bunch length in time and rms energy spread. With a

�Operated by the Universities Research Association, Inc., under contract with the U.S. Department of

Energy.
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Fig. 1. An estimate of potential-well distortion of a Main Ring bunch from the solution of

Ha��ssinski equation. Note that the head-tail asymmetry is very small.

revolution frequency of f0 = !0=2� = 47:7 kHz, a phase-slip parameter of � = 0:0028, and

an unperturbed synchrotron tune of �s0 = !s0=!0 = 0:00361, we obtain an unperturbed rms

bunch length of �� =
q

�A

6�!s0E�2
= 0:37 ns or 11 cm. This pro�le is plotted as dashes in

Fig. 1. At present, the Main Ring bunch has an intensity of N = 4:5� 1010 protons and the

Main Injector under construction has a designed intensity of N = 6:0�1010. The broad-band
impedance of the Main Ring is believed to be Z=n � 5 to 10 
 and the cut-o� frequency

is � 4 GHz, while the broad-band impedance of the Main Injector is Z=n <� 1 
. Here,

we take as illustration N(Z=n) = 60 � 1010 
 with the broad-band impedance centered at

2 GHz. The self-consistent Ha��ssinski equation is then solved and the impedance-distorted

bunch pro�le is plotted as solid in Fig. 1. We can see that the asymmetry in the distortion

is indeed extremely small.

III. POTENTIAL-WELL LENGTHENING

When the small asymmetry in the potential-well distortion is neglected, we can considered

the driving impedance to be pure inductive. The wake potential is the derivative of the �-

function. For a parabolic bunch, the wake force will be linear and can be superimposed

onto the linearized rf force easily. The potential-well distorted bunch will therefore remain

parabolic. For this reason, the distribution in longitudinal phase space should be, [5]

 (�; �) =
3�cN

2�!s0�̂ 30

s
�̂ 20 �

1

�

�
�

!s0
�

�2
� �� 2 ; (3.1)

where we have used as conjugate variables: � , the time of arrival with respect to the syn-

chronous particle, and ���=!s0 where � is the momentum spread. The independent \time"
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variable is s, the distance along the ring. The original half length of the bunch �̂0 has been

lengthened to �̂0=
p
�, whereas the momentum spread � is shortened by

p
�, so that the

bunch area remains the same. Throughout this paper, the particles are considered to be

ultra-relativistic, so that their longitudinal velocities are taken to be c, the velocity of light.

With the addition of the inductive wake potential, the Hamiltonian is modi�ed to

H =
�2

2!s0c
�2 +

!s0

2c
(1 �D�3=2)� 2 ; (3.2)

where

D =
3e2N�

4�!2s0E�̂
3
0

Z

n

����
ind

: (3.3)

The incoherent synchrotron angular frequency is therefore !s = !s0(1�D�3=2)1=2. Since the
distribution  (�; �) must be a function of the Hamiltonian, to conform with Eq. (3.1), we

have

 (�; �) =
3�cN

2�!s0�̂ 30

s
�̂ 20 �

2c

�!s0
H ; (3.4)

with the constraint

�2 = 1�D�3=2 : (3.5)

Again, consider a 150 GeVMain Ring bunch withN=4:5�1010 of bunch area 0.15 eV-sec

and an inductive impedance of Z=njind � 20� 1010 Ohms. Then D = 0:204, indicating that

the bunch has been lengthened by ��1=2 = 1:05 and the momentum spread attened by

5%. This implies that we cannot infer the momentum spread naively through the relation

�̂ = !s0�L=� by measuring the bunch length and the synchrotron frequency, because the

answer will be � 10% too large, giving a wrong idea about the amount of Landau damping.

Instead, the momentumspread should be measured from Schottky signals or inferred through

dispersion from the measurement of the transverse pro�le of the bunch using a ying wire.

IV. MODE-MIXING

The coherent bunch modes will be shifted by the impedance of the vacuum chamber.

As the current increases, two modes will collide to give an instability. It was illustrated in

Sec. II that the potential-well distortion has very little head-tail asymmetry, indicating that

radial modes will not be important and will be neglected. However, we do want to keep the

e�ect of the potential-well modi�cation; therefore, the perturbed !s will be used in below.

In fact, going from the coordinates (�; �) to the polar coordinates (r; �), where

8>><
>>:

� = r cos � ;

� �

!s
� = r sin� ;

(4.1)

the potential-well lengthening of the bunch discussed in Sec. III has been included already.
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The shifts of the synchrotron side-bands can be derived using Vlasov equation. Here,

we follow the Sacherer's approach. [6] The bunch pro�le of the i-th coherent mode can be

written as

�(i)(� ) =
X
k

�
(i)
k �k(� ) ; (4.2)

where �k(� ) denotes a set of normalized orthogonal pro�le functions with k nodes between

�1
2
�L and +1

2
�L, with �L denoting the total length of the bunch. It can be shown that (see

Appendix) �(i)m satis�es the equationsX
k

[(
(i) �m!s)�mk �Mmk]�
(i)
k ; (4.3)

for all m's. In other words, (�
(i)
1 ; �

(i)
2 ; � � �) is the i-th eigenvector corresponding to the eigen-

value 
 = 
(i). In the above, the coupling matrix is given by

Mmk = � i!s!0Ib

3B3
0hVT cos's

m

m+ 1

P
n hmk(!

0)Z(!0)=!0P
n hmm(!0)

(4.4)

where !0 = n!0 + 
, VT is the potential-well modi�ed rf voltage, which is related to the

unperturbed rf voltage V0 by VT=V0 = (!s=!s0)
2, 's is the synchronous phase, h is the rf

harmonic, Ib is the average bunch current, B0 = �Lf0 is the bunching factor, and hmk(!
0) =

~��m(!
0)~�k(!

0) are the overlap of the spectral functions ~�m(!
0), which are Fourier transforms

of the pro�le functions �m(� ) introduced in Eq. (4.2).

The pro�le functions �m(� ) should be eigenstates for each corresponding azimuthal mode

m, when the bunch intensity is small and no mixing occurs. Here, we choose them as the

sinusoidal densities introduced by Sacherer. [7]

�m(� ) =

8>>>>><
>>>>>:

�

2�L
cos

(m+ 1)��

�L
m even

�

2�L
sin

(m+ 1)��

�L
m odd

(4.5)

The spectral functions are therefore

~�m(x) =

8>>>>>><
>>>>>>:

im
m+ 1

2�

cos �x=2

x2 � (m+ 1)2
m even

im
m+ 1

2�

sin�x=2

x2 � (m+ 1)2
m odd

(4.6)

where a dimensionless frequency parameter x = !�L=� has been introduced, so that, with

the exception of m = 0, the spectrum for the mth mode peaks at x � m+ 1 and has a full

width of �x � 2, as illustrated in Fig. 2. The revolution angular frequency is therefore given

by x0 = !0�L=�. We also introduce a dimensionless current parameter

� = � IbRs=nr

3B3
0hV0 cos's

; (4.7)

4



Fig. 2. Some of the power spectra hmm(x) of the sinusoidal modes introduced by Sacherer.

which is positive above transition. Unlike the �rst factor on the right-hand side of Eq. (4.4),

� is proportional to IbRs linearly, where Rs is the shunt impedance of the driving resonant

impedance centered at nrf0 or at xr = 2nrf0�L.

For a broad-band impedance the argument !0 = n!0+
 in the coupling matrixMmk can

be replaced by ! = n!0. Then Z(!) and ~�m(!) possess de�nite symmetries. It is easy to see

that all matrix elements are real. We can also see that modes m and k are coupled through

ReZ when m � k is odd, and through ImZ when m � k is even. For each individual

mode m, the shift in coherent frequency is due to the diagonal element Mmm driven by

ImZ. Above transition (� > 0 or cos's < 0), the inductive impedance shifts the frequency

upward, while the capacitive impedance shifts the frequency downward. These shifts can

cause two modes to cross each other, but produce no instability because the shifts are real.

Instability is contributed by the non-diagonal elements. For two adjacent modes to merge

into one and produce instability, the driving force is the real part of the impedance.

Let us continue with the example of the Fermilab Main Ring which has a broad-band

impedance centered at xr = 7:5 or fr � 1:88 GHz and quality factor Q � 1. The eigen fre-

quencies obtained from solving Eq. (4.3) are plotted in Fig. 3 versus the current parameter

�. We �nd mode 6 peaks at the inductive part of the resonant impedance and is therefore

shifted upward. Mode 7 peaks at the capacitive part of the impedance and is shifted down-

ward. The real part of the resonant peak merges the two modes into one at � = 0:94, after

which the bunch becomes unstable. Note that the ordinate of Fig. 3 is normalized with

respect to the unperturbed synchrotron frequency !s0, and an adjustment for the incoherent

tune shift

!s � !s0 =
3

2�2
!s0Ib(Z=n)ind

B3
0hV0 cos's

(4.8)

has been made. This correction pushes all coherent modes downward. When the current is
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Fig. 3. Coupling of modes m = 6 and 7 in the presence of a resonance

at xr = 7:5 and Q = 1 above transition.

small, the rigid dipole mode m = 1 is not shifted at all. This is to be expected because the

center of the rigid bunch cannot see any modi�cation of the rf potential due to the bunch

itself.

We vary Q and compute the threshold �th in each case. The result is plotted in Fig. 4

versus z = �fr�L = xr=4Q, where �fr = fr=2Q is the HWHM of the resonance. Physically z

denotes the ratio of the FWHM of the resonance to roughly the full width of the spectrum of

the bunch. Also plotted are threshold curves for resonances centered at di�erent frequencies

from xr = 3:5 to 10.5. Note that all the threshold curves fall roughly on top of each other,

and approach a minimum threshold of �th � 0:92 when z reaches � 0:6. The latter has

the physical meaning of the resonance peak just wide enough to cover only two coupling

modes. A smaller z implies that the resonance peak is too narrow and interacts with only

parts of the two mode spectra, thus giving a higher instability threshold. A larger z means

that the resonance will cover more than two mode spectra. For xr = 7:5 say, modes 6 and

7 will then be pulled and pushed also by the other modes as well so that some cancellation

will occur, and one may expect the threshold for their collision to be higher also. However,

Eq. (4.4) reveals that the coupling comes in not through ReZ(!) but through ReZ(!)=!,
whose peak value becomes larger and the peak frequency smaller when the quality factor Q

is small, although the zero of ImZ(!)=! remains unchanged. Figure 5 shows such a plot

with xr = 7:5 and Q = 0:2, where the peak of ReZ(!)=! increases from � 1 to 2.6 and

the position of the peak shifts to x = 1:6. Figure 6 shows the enhancement of ReZ(!)=!
and its frequency position as the quality factor decreases from 100 to 0.001. For this reason,

when Q is small enough, the lower modes start to collide �rst. For the case of the resonant

broad-band centered at xr = 7:5 and Q = 0:2 (or z = 9:4), Fig. 7 shows that modes 1 and

6



2 start to merge �rst. Thus, the threshold for large z remains small, which is very much

di�erent from what Sacherer stated in his paper.

Fig. 4. Instability thresholds �th and �0th for various widths of the resonance impedance

located at xr = 3:5 to 11.5.

Fig. 5. Comparison of ReZ=n and ImZ=n centered at xr = 7:5 for Q = 1 (dots)

and Q = 0:2 (solid). Note that when the resonance becomes broader,

the contributions of Z=n move towards lower frequencies.
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Fig. 6. Enhancement of (ReZ=n)max (normalized to Rs) and its frequency position x

as the quality factor Q of the resonance centered at xr = 7:5 decreases.

Fig. 7. Mode coupling starts at the lowest modes when the driving resonance is much

wider than the bunch spectrum. Here xr = 7:5, Q = 0:2, �L = 2 ns, or z = 9:4.

V. MICROWAVE INSTABILITY DRIVEN BY BROAD RESONANCES

Microwave instability can occur when the resonance is much wider than the bunch spec-

trum. When this happens, many coherent modes are excited. We see that modes 6 and 7

merge �rst in Fig. 3 when Q = 1 but modes 1 and 2 merge �rst in Fig. 7 when Q = 0:2.

In between, when Q � 0:45, we �nd that modes 2 and 3, 4 and 5, 6 and 7 start to merge

at nearly the same threshold of �th � 0:75. Therefore, we can conclude that the threshold
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at the z � 1 end is the threshold of microwave instability. This threshold condition can

be easily rewritten in terms of the energy spread (�E)FWHM = 3
2
(�E)full and bunch peak

current Ip = �Ib=(2�Lf0) of the sinusoidal pro�le as

Rs

nr
=

27

16
�th
�(E=e)

Ip

�
�E

E

�2
FWHM

; (5.1)

which is the familiar Boussard-modi�ed Keil-Schnell criterion [1] of microwave instability

driven by a broad resonance. The form factor for this type of cosine bunch shape should be

close to unity, which is close to 27
16
�th = 1:3 obtained here. The equivalence of mode-coupling

and microwave instability had been pointed out by Sacherer [6] and Laclare. [8]

The threshold �th can also be estimated. When the resonant impedanceReZ is just wide

enough to cover two adjacent modes m and m0 = m + 1, and the excitation is one with

xr =
1
2
(m+3) nodes along the bunch, the coupling matrix can be truncated to include only

these two modes. The coupling matrix of Eq. (4.5) can be rewritten as

Mmm0 = �Amm0 ; (5.2)

or

Amm0 =
i
P

n hmk(n)[nrẐ(n)=n]P
n hmm(n)

; (5.3)

where Ẑ(n) = Z(n)=Rs. In above, the factor m
m+1

as well as the di�erence between !s and

!s0 have been neglected. The eigen equation (4.3) now becomes������


!s0

�m� �Amm �Amm0

�Am0m


!s0

�m0 � �Am0m0

������ = 0 ; (5.4)

from which we obtain, with Amm0Am0m = �jAm0mj2,

 = 1

2
!s0

h
(�m + �m0)�

q
(�m0 � �m)2 � 4�2jAmm0 j2

i
; (5.5)

where �k = k + �Akk, k = m or m0. The threshold of instability �th is therefore given by

j�thAmm0j = 1
2
j�th(Am0m0 �Amm) + 1j : (5.6)

The matrix elements Amm, Am0m0 , and Amm0 have been computed numerically for any two

adjacent m, m0, with the resonance peak centered at xr =
1
2
(m + 3). The result is actually

very close to �th = 0:92 and depends on m very weakly. It can also be estimated easily. We

�rst neglect Amm and Am0m0, and get j�thAmm0j � 1
2
. We can approximate the resonance

ReZ(x)=x by a rectangular box of height Rs=xr and width wide enough to contain the two

coupling adjacent spectra, as illustrated in Fig. 8. Each spectral function ~�m(x) can also

be approximated by a rectangular box of total width �x = 2. Since the two spectra are

adjacent, the overlap is �x = 1. Therefore, we obtain jPn
~��m(n)

~�m0(n)j � 1
2

P
n
~��m(n)

~�m(n)

or jAmm0j � 1
2
; thus �th � 1. We can now include Amm and Am0m0 by further approximating

ImZ(x)=x byRs=xr when x < xr and �Rs=xr when x > xr. We obtain Amm � �Am0m0 � 1
2
,

which is an overestimate, and �th =
1
2
. Therefore, 1

2
< �th < 1.
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Fig. 8. An estimate of the nondiagonal coupling matrix elements by

rectangularizing ReZ and the adjacent coupling spectral modes.

VI. MICROWAVE INSTABILITY DRIVEN BY NARROW RESONANCES

When the resonance is much narrower than the width of the bunch spectrum, we have

z � 1. Then, the summation over frequency in Eq. (3.2) can be approximated by

X
n

xrZ(n)

n
hmm0(n) � �Rsxr

Q
~��m

~�m0 jx=xr : (6.1)

Since the area under the narrow resonance is concerned here, a new dimensionless current

parameter

�0 = � 2Ib(Rs=Q)

3B2
0hV cos �s

(6.2)

is required. This new threshold �0th is now plotted versus z in Fig. 4. For small z, we

obtain �0th � 0:75 which is almost independent of xr. Again, this threshold can be computed

numerically using the truncated 2 � 2 coupling matrix, or estimated by approximating the

spectral functions by rectangular curves. When it is cast into the form

Rs

Q
=

27

16�
�0th
�(E=e)

Ib

�
�E

E

�2
FWHM

; (6.3)

it is just the criterion of microwave instability driven by an impedance resonance that is

narrower than the bunch spectrum. [2] The form factor is 0.41, which agrees very well with
27
16�
�0th � 0:40. This may be a more appropriate microwave instability threshold for electron

machines, since electron bunches are short.

We have computed the mode-mixing for our former Main Ring bunch when the driving

resonant impedance is narrow with a Q = 100. The result in Fig. 9 gives a threshold of
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Fig. 9. Coupling of modes m = 6 and 7 in the presence of a narrow resonance

at xr = 7:5 and Q = 100 above transition.

�th = 10:0 (or �0th = 0:75), which is much larger than that for the broad-band impedance.

This increase in threshold has been explained in Sec. IV, and is a result of the fact that

the narrow resonance interacts with only a small part of the overlapping spectra. We also

see that, as � increases, the coherent frequencies here do not shift so much lower than the

situations in Figs. 3 and 7. This is because the resonances there are rather broad and their

contributions move towards lower frequencies (Fig. 5).

VII. GOING BELOW TRANSITION

Figure 3 shows that the coherent frequencies tend to cluster together when the current

� increases. This is because we are above transition, cos's < 0. Looking into the diagonal

elements of Eq. (4.4), modes with m < xr � 1 (> xr � 1) sample the inductive (capacitive)

part of the impedance and are shifted upward (downward). Below transition, the shifts will

be in the opposite direction; i.e., diverging outward with increasing j�j. Mathematically,

(�m0 � �m)2 inside the square root of Eq. (5.5) becomes larger. However, this does not mean

that there will be no instability. This is because the o�-diagonal elements �Amm0 that are

responsible for mode merging contribute as squares and therefore do not change sign. In

fact, from Eq. (5.5), we obtain the threshold

j�thj = 1

2jAmm0j � jAm0m0 �Ammj
(7.1)

below transition, and

�th =
1

2jAmm0j+ jAm0m0 �Ammj (7.2)
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above transition. It is now clear why the threshold below transition is much higher than the

threshold above transition. We tried to reverse the sign of cos's in the example of Fig. 3

to obtain Fig. 10 and found j�thj actually increases from 0.94 to 1.88. This is also true for

narrow resonances; Fig. 9 becomes Fig. 11 below transition with j�0thj increases from 0.75 to

1.8. This conclusion is in sharp contradiction to the statement of Laclare [8] that \below

transition mode coupling cannot lead to instability."

The above discussion leads to the conjecture that a bunch in a machine with a negative

momentum-compaction factor [9] will be more stable. This idea had been pointed out by

Fang et al [10] in obtaining shorter electron bunches for colliders.

Fig. 10. The situation of Fig. 3 below transition. Note the increase in threshold j�thj.

Fig. 11. The situation of Fig. 9 below transition. Note the increase in threshold j�0thj.
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VIII. CONCLUSIONS

We have explored the e�ects of potential-well distortion and mode mixing for proton

bunches. Applications have been made to the Main Ring bunches and the future Main

Injector bunches. Due to the long length of a proton bunch, the spectrum of its pro�le

sees mostly only the inductive part of the broad-band coupling impedance. As a result,

potential-well distortion only amounts to the lengthening of the bunch with very little head-

tail asymmetry. A Main Ring bunch will be lengthened by � 5%. The higher-order modes,

however, can see the peak of the real part of the impedance, which will drive adjacent modes

to merge together to produce instability. When the resonant impedance is much wider than

the spectrum of the bunch, this mode-mixing threshold is equivalent to the threshold of

the Boussard-modi�ed Keil-Schnell criterion of microwave instability. When the resonant

impedance is much narrower than the spectrum of the bunch, such as in electron machines,

the mode-mixing threshold is equivalent to the threshold of microwave instability driven by

narrow resonances. For short electron bunches, usually it is modes 1 and 2 that collide �rst

as the bunch intensity increases. For proton bunches, however, higher modes start to collide

�rst unless the impedance is extremely broad. This is because the proton bunch usually has

a length equal to many cut-o� wavelengths of the vacuum chamber. We have also discussed

the situation when the machine operates below transition and found that the threshold will

be pushed to a larger value and thus becoming more stable.

The complete equivalence of mode-coupling instability and microwave instability has

not been established here. For example, we have not addressed the microwave instability

driven by a pure space-charge impedance above transition. If we carry out an analysis

similar to that in Sec. V, we �nd that coupling occurs only between modes m and m0 with

jm�m0j = 2; 4; � � � . Then, a coupling element and its conjugate gives Amm0Am0m = jAm0mj2
instead, or the discriminant in Eq. (5.5) will be positive de�nite. In other words, there will

not be any instability, contrary to the negative-mass instability observed just after transition.

This and other issues will be examined further and reported elsewhere.
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APPENDIX

In this Appendix, we derive the equation for coupled bunch modes of (4.3). The Vlasov

Equation with canonical variables

8><
>:
q = �

p = � �
!s
� ;

(A.1)

is given by
@ 

@s
+
@ 

@q
q0 +

@ 

@p
p0 = 0 ; (A.2)

where the `prime' denotes derivative with respect to s, the distance along the ring. The

distribution function  is written as unperturbed part  0 plus a perturbed part  1 having a

coherent frequency 
:

 (r; �) =  0(r) +  1(r; �)e
�i
s=c ; (A.3)

where the polar coordinates de�ned in Eq. (4.1) has been used. When the e�ect of the wake

potential is included, the Hamiltonian equations are

q0 = ��s
R
r sin � ; (A.4)

and

p0 = ��s
R
r cos �+

e2�

2�RE�s

X
n

~�1(!
0)Z(!0)ei!

0��i
s=c ; (A.5)

where !0 = n!0 + 
 and the spectrum of the perturbed linear distribution is de�ned as

~�1(!) =
1

2�

Z
d�d� e�i!� 1(�; �) : (A.6)

The perturbed distribution is now expanded into azimuthal harmonics in the longitudinal

phase space

 1(r; �) =
X
m

�mRm(r)e
im� : (A.7)

Multiplying by e�im� and integrating over �, the Vlasov equation becomes

(
 �m!s)�mRm(r) =
im�1me2�

2�RE�s

 00
r

X
n

~�1(!
0)Jm(!

0r)
Z(!0)

!0
; (A.8)

where  00 = d 0=dr. Changing the variables from (�; �) to (r; �) and substituting Eq. (A.7),

the perturbed spectrum of Eq. (A.6) can be simpli�ed to

~�1(!) =
X
m

�m~�m(!) ; (A.9)

where

~�m(!) =
i�m!s

�

Z
1

0
dr rRm(r)Jm(!r) (A.10)
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is the Fourier transform of the perturbed bunch linear density corresponding to azimuthal

harmonic m. At low bunch intensity, for each m, the various radial modes can be denoted

by Rmq(r) with q = 1; 2; � � � . Since we are going to neglect radial modes, we only include

the \most coherent" one with q = m. Then, ~�m(!) peaks at ! � (m + 1)�=�L, and the

corresponding perturbed linear density �m(� ) has m nodes. Relation (A.10) can also be

inverted to read

Rm(r) =
im�

!s

Z
1

0
d! !~�m(!)Jm(!r) : (A.11)

Using Eq. (A.10), the Vlasov equation can be transformed from Eq. (A.8) to

(
�m!s)�m

Z
1

0
dr jRm(r)j2 r

2

 00
= �ime

2�2

2��2sE

X
n

~�1(!
0)
Z(!0)

!0
~��m(!

0) : (A.12)

Substituting the harmonic expansion of ~�1, we arrive at the eigen-equation

(
 �m!s)�m =
X
k

2
66664�

ime2�2

2��2sE

X
n

~�k(!
0)
Z(!0)

!0
~��m(!

0)

Z
1

0
dr jRm(r)j2 r

2

 00

3
77775�k ; (A.13)

which is of the same form as Eq. (4.3).

Finally, we need to compute the integral in the denominator of Eq. (A.13). We can write

Z
1

0
dr jRm(r)j2 r

2

 00
= h r

 00
i
Z
1

0
dr rjRm(r)j2 ; (A.14)

where hr= 00i denotes some characteristic value of r= 00. Since  0 is normalized to �N=!s
and depends on �L only, we must have

h r
 00
i / �!s�

4
L

�N
: (A.15)

The integral on the right side of Eq. (A.14) can now be performed with the aid of Eq. (A.11)

to give Z
1

0
dr rjRm(r)j2 =

�2

!2s

Z
1

0
d! !j~�m(!)j2 : (A.16)

We next make use of the fact the ~�m(!) has de�nite symmetry and peaks at ! � (m+1)�=�L.

Then, Z
1

0
d! !j~�m(!)j2 � (m+ 1)�!0

2�L

1X
n=�1

j~�m(!0)j2 ; (A.17)

Combining Eqs. (A.14) to (A.17), eigen-equation (A.13) takes the form

(
 �m!s)�m = �F X
k

2
66664

imIb!s!0

3(m + 1)B3
0hVT cos's

X
n

~�k(!
0)
Z(!0)

!0
~��m(!

0)

X
n

j~�k(!0)j2

3
77775�k ; (A.18)
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where F is a form factor which is of O(1), depending on the form of the unperturbed

distribution  0(r). For example, if we choose

 0(r) =
32�N

�!s�
4
L

 
� 2L
4
� r2

!
; (A.19)

so that
 00
r

= � 64�N

�!s�
4
L

(A.20)

is no longer r-dependent, we obtain F = 96=�4 = 0:986.

16



References

[1] D. Boussard, CERN/LAB II/RF/75-2 (1975); E. Keil and W. Schnell,

CERN/ISR/TH/RF/69-48 (1969)

[2] K.Y. Ng, Proc. 1986 Summer Study on Phys. of SSC, ed. R. Donalson and J. Marx,

1986, p.590.

[3] K.Y. Ng, Proc. 1995 Particle Accelerator Conference, Dallas, Texas, May 1-5, 1995.

[4] J. Ha��ssinski, Nuovo Cimento B18, 72 (1973).

[5] A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators,Wiley,

p.284.

[6] F.J. Sacherer, IEEE Trans. Nucl. Sc. 24, No.3, 1393 (1977).

[7] F.J. Sacherer, CERN Internal Report CERN/SI-BR/72-5.

[8] J.L. Laclare, CERN Accel. School, Queen's College, Oxford, England, 1985, p.264.

[9] S.Y. Lee, K.Y. Ng, and D. Trbojevic, Phys. Rev. E48, 3040 (1993).

[10] S.X. Fang, K. Oide, Y. Yokoya, B. Chen, and J.Q. Wang, KEK Preprint 94-190, 1995.

17


