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Tracking studies of transition crossing in the Main Injector have shown that the Johnsen effect is 
the dominant cause of beam loss end emittance blow up. To suppress this effect one has to have control 
over CXJ (dispersion of the momentum compaction factor ex). Various Yt jump configurations are examined 
and the resulting changes in CXJ are assessed. These results are further validated by comparison between the 
simulation and simple analytic cx1-formulas derived for a model FODO lattice. The lattice assumes full 
chromaticity compensation and presence of eddy current sextupole component The last scheme seems to be 
very promising as one can regard the strength of eddy current sextupole family as an external "knob" to 
control values of CXJ. 
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INTRODUCTION 

Tracking studies of transition crossing in the Main Injector and other Fennilab accelerators, using the 

code ESME, have shown that the Johnsen effect is the dominant cause of beam loss and emittance blow up 

[1,2]. This effect is rooted in the variation of "Yt the transition gamma, with Ii= &p, the off-momentum 
Po 

parameter. Although transition crossing may be well tuned for the nominal particle, perhaps with an 

"instantaneous" snap of the radio frequency phase and a "Ytiump scheme, it is not trivial to satisfy the needs 

of a momentum spectrum of particles. In general, individual off-momentum particles cross transition either 

too early, or too late. This leads to particle loss and longitudinal emittance growth which is independent of 

the intensity of the bunch under consideration. A useful parameter characterizing the strength of this effect 

is the Johnsen time, T J• which represents the root mean square spread of the transition crossing time [3-6]. 

This time is proportional to ~. the root mean square momentum spread. 
p 

The Johnsen time is directly related to the lattice parameter tq, which is defined by the equation 

~~ = ao Ii+ a 1 1)2 + .... (!) 

where Co is the nominal closed orbit path length, and &C is the increase in path length for an off 

momentum particle. Unfortunately, more than one definition of a1 is common in the literature, as 

discussed in the Appendix. Let the reader beware! As defined here, the coefficients ao and a1 are 

geometrical properties of the lattice, given by 

(2) 

where angle brackets < ... > denote averaging weighted by bend angle. The quantities being averaged are 

component dispersions in a momentum expansion of the total dispersion. That is, 
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T](s) = T]o(s) + 11 1(s) 6 + .... (3) 

explicitly showing the dependence of the dispersion on s, the accelerator azimuth. 

Transition comes for a particle with a macroscopic momentum displacement ~p when a neighboring 

trajectory, infinitesimally displaced by dp, has the same revolution frequency. If it is assumed that equation 

1 is exact (a2. et cetera, are zero), then it can be shown that the exact condition for transition crossing 

becomes 

1 a o + 2 a 1 6 (l • -- +u) 
'Yt2 -t + ao 6 + a1 6 2 (4) 

Keeping only first order terms in 6, this equation can be rearranged to give the 'Y of the off-momentum 

particle as it passes through transition, 

1 ~ ao 
'Yt = 'YtO [ I - ( 2 + ao - 2) 6 I (5) 

Here 'Yt0 is the y of the nominal particle as it passes through its transition. However, a more useful 

quantity is the y of the nominal particle at the time that the off momentum particle passes through 

transition. This is given by 

'Yo(6) = 'Yt0 [ 1 - 6 I (6) 

so that the Johnsen time becomes 

T1= 'Yo(~= Yt0 [ l+ ~- ao] ~ 
• • 2 a0 2 p 

(7) 

y 'Y 
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where y is the ramp rate through transition. The Main Injector, for example, has (approximately) 'YtO = 20, 

y = 240 sec-I, a 1 = 0, and~= 5.10-3, so that T1 is about 0.6 milliseconds, or about 60 accelerator turns. 
p 

Clearly, if it is not possible to control the Johnsen time, it is futile to arrange for a "ft jump on a 

time scale much faster than this. Also, analysis of how a 1 changes should be included as an additional 

topic in the evaluation of 'Yt jump schemes, to ensure that T1 does not rise significantly. On the positive 

side, if it is possible to measure and control ai. then it should be possible to make T1 = 0, and ameliorate 

the damage done by the Johnsen effect, by setting 

(8) 

The second term on the right is essentially negligible. The improvement in transition performance might 

then be dramatic enough that a rdump would no longer be necessary. This may be true especially if a1 

control is combined with rf gymnastic tricks, such as the use of a synchronous phase of 900 and a second 

harmonic cavity, as now being discussed elsewhere [7]. 
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THE DIFFERENTIAL EQUATION FOR THE SUM DISPERSION, Tl+ 

The horizontal closed orbit h(s) is found by solving the differential equation 

h" + _Jg&_ h + _M&_ h2 = G(l - - 1 - ) 
1+15 1+15 1+15 (9) 

with periodic boundary conditions. A prime indicates differentiation with respect to s, K is the quadrupole 

strength, S is the sextupole strength, and G is the dipole bending strength. If h is expanded in a dispersion 

function series 

h = xco + TIO + Tl 1 15 + ... (IO) 

which is substituted into 9, three differential equations are obtained by grouping tenns according to their 

order in 15, up to second order. The solution of the lowest order equation is trivial when there are no closed 

orbit perturbations, xco = 0, so that the remaining two equations become 

Tio" + K TIO = G (lla) 

(lib) 

The differential equation for the convenient "sum dispersion", defined by 

(12) 

is obtained by adding equations l la and 11 b, to give 

Tl+"+ K Tl+= K TIO - S Tlo2 (13) 
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The source terms on the right hand side of equation 13 depend only on the solution of Ila for the "normal" 

dispersion. Solving this differential equation is slightly easier than solving 11 b for 11 1• and a subsequent 

calculation of <IJ+> allows for a direct knowledge of a1. since 

21t 
a1 = a+ - cxo = - < 11+ > - CXO 

Co 

In order to set lhe Johnsen time to zero, lherefore, it is necessary to set 

1 a+=--cxo 
2 

(14) 

(15) 

The next section solves equation 13 in a naive FODO representation of lhe Main Injector, and quantitatively 

identifies lhe major factors which affect 11+ and hence a+ and a1 . 
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SOLUTION IN A FODO LATTICE WITH EDDY CURRENT SEXTUPOLES 

Suppose that an accelerator like the Main Injector is represented as made up purely ofFODO cells, as 

illustrated in Figure 1. The quadrupoles are thin, and there is no drift space. All of the half cell length L is 

filled with two identical dipoles of bend radius R, which are separated by a thin sextupole representing the 

field due to vacuum chamber eddy currents, induced during the ramp. There are also two thin chromatic 

correction sextupoles per half cell, immediately adjacent to the focussing and defocusing quadrupoles. The 

strength of the (half) quadrupoles is ±q, and of the sextupoles is gp. g0 , and gE• where 

(Splil) TlOp 

q 

q = ~ = sin(<1> 112) 
L L (16a) 

(16b) 

In these expressions <1> 112 is the half cell phase advance (about 44 degrees in the Main Injector), while Sp 

and T)Op (for example) are the sextupole gradient and the lowest order dispersion, at the F chromatic 

sextupole of thin length Lil. From here on s, as defined in equation 16a, is the sine of the half cell phase 

advance, and not the azimuthal coordinate. 
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,.....1------------ L = 20 meters 

two half F quads 

dipole dipole 

two half D quads 
NOT TO SCALE ! 

quads and sextupoles are 1 micron long 

Figure 1 Half of a FODO cell, in a model representing the Main Injector with three sextupole families. 
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Using these convenient definitions, it can be shown by solving equation 13 that the matched values 

of the sum dispersion at F, E, and D are 

1 n@ 
n+F = s [ noF (I + s)(l - gp) - nooO + go) - 2 (2 + s)gE J (l 7a) 

1 noE 
n+o = s [ noF (1 - gp) - nooO - s)(l + go) - 2 (2 - s)gE l (17c) 

Note that n+E = ~n+F + n+o) when gE = 0, as required by equation 13, which says that the sum dispersion 

propagates linearly in a quadrupole and sextupole free region. These solutions can be combined to evaluate 

(18) 

I ~ 2 = 
2

sR [ noF (2 + s)(l - gp) - n 00(2 - s)(l + g0 ) - 4 (8 - s )gE J 

This expression becomes more direct when the no terms are replaced by their explicit matched solutions 

L2 2 + s 
nop=R~ 
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(19a) 

(19b) 

(19c) 



Thus, an alternative form for equation 18, parameterized primarily by the sextupoles strengths, is 

(20) 

In order to take stock of the meaning of equation 20, consider the case when only the F and D sextupoles 

are turned on, at a strength to correct for f times the natural chromaticity. 

Independent of the strength of any sextupoles, it can easily be shown that 

L2 1 s2 
ao=--[1--J 

R2 s2 12 
(21) 

It can also easily be shown that, in order to correct f times the natural FODO chromaticity, gp = f and g0 = 

-f, demonstrating the utility of the natural scaling that was introduced, apparently arbitrarily, in equation 

16b. Substituting these values (and gE = 0) into equation 20 gives 

which immediately leads to 

L2 1 
0:+=--[2-f] 

R2 s2 

L2 1 s2 
0:1=--[l-f+-J 

R2 82 12 

showing that 0:1 << ao in a simple FODO lattice with the net chromaticity set to zero (f = 1). 
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CONTROLLING a1 WITH SEXTUPOLES 

The middle sextupole, of strength gE, can be thought of in (at least) two ways. In the first point of 

view, it represents the sextupole field caused by eddy currents induced in the vacuum chamber of the dipoles. 

(Note in passing that this representation is not perfect, since the changes in horizontal and vertical 

chromaticities are modeled as equal and opposite, whereas in reality they are unequal.) In the second point of 

view, &E represents a free knob with which Tl+• and hence also CJ+ and a1. can be controlled. The reader 

may choose either perspective in what follows - or a combination, in which gE represents the net strength 

after an independent correction sextupole is powered to over or under compensate the local eddy current 

sextupole fields. From any perspective, the task of setting the net chromaticities to their desired values is 

left to the F and D sextupoles. For the sake of a semi-quantitative interpretation, suppose that the F and D 

sextupoles have their strengths set to compensate for the sum of the chromaticity induced by an eddy current 

scxtupole of strength gE, plus f times the natural chromaticity. 

In this case it is readily shown that the F and D sextupole strengths are given by 

(24a) 

(24b) 

Substituting these expressions into equation 20 gives 

(25) 

or, equivalently, 
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(26) 

These equations reduce to equations 22 and 23 when gE = 0, as they should. If it is also assumed that the 

phase advance per cell is (approximately) 900, thens= 1/../2, and the three compaction factors become 

simply 

(27a) 

~ 
a+= R2 [ 4 - 2f - 0.0994 x gE] (27b) 

~ 
al = R2 [ 2.083 - 2f - 0.0994 x gE] (27c) 

Typical values for gE due to eddy current sextupoles in the Main Injector are 2 or 3, showing through 

equation 24 that they more or less dominate the strength of the F and D families [8]. 

To test the results of equation 27, and to gain some insight into the prospect of controlling a1 in 

the Main Injector, consider a lattice made up of 80 simple FODO cells. In the parameterization introduced 

above the half cell has a length L = 20 meters, and is filled with dipoles of bending radius R = 3200/211: = 

509.30 meters. Figure 2 summarizes results of simulations of such a lattice, using the program MAD 

(version 8.17)[9] to study the variation in closed orbit path-length as a function of ~pip, over a range from 

-0.003 to +0.003. The momentum compaction factor exp defined by equation A-3 in the Appendix is 

plotted. Equations A-3 and A-6 are then used to yield values of Cl() and a1, ready for comparison with the 

analytic predictions of equations 27a and 27c. Eddy current multipoles higher than sextupole are neglected. 
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Three cases are considered; no eddy currents with and without complete compensation of the natural 

chromaticities, (f,gE) = (0,0) and (1,0), and then complete chromaticity compensation with large but 

realistic eddy current sextupole strengths, (f,gE) = (l,S). Each of the plots is linear to a very good 

approximation, showing that cxo and a1 are the dominant coefficients in the ap expansion. Table 1 shows 

excellent agreement between the simulated and the predicted values of CX() and a1, except for what appears to 

be a systematic error in a1 of 0.120 ± 0.005 x 10-3. The source of this small difference is not known, but 

is not considered to be important. Further comparisons using other design programs are anticipated, to see if 

the error persists. 

If the sextupole family strength parameter gE is regarded as an external "knob" to control values of 

a1. the inevitable conclusion is that the sensitivity to the family is too weak to reduce the Johnsen time to 

zero, shon of using a very large strength or relinquishing control of the net chromaticities. Recall from 

equation 8 and from Table 1 that the desired value of a 1 is approximately -4.S, but notice that the a 1 

sensitivity coefficient in equation 27c is only 0.0994, disappointingly small. This is reflected in the minor 

changes of a1 between the second and third rows of Table I. 
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Figure 2 

p dC 
aP = C dp 

0.0029'J 

0.00298 

0.00297 

0.00296 

0.00295 

0.00294 

0.00293 

0.00292 

• t .. o,g .. o 

... f.1,g-0 

• f=1,g:5 

Model FODO Cell Lattice 

--0.004 -0.003 -0.002 -0.001 0 0.001 

Momentum oftsat, 3= Apfp
0 

0.002 0.000 0.004 

Numerical simulation of momentum compaction factor vanat10n with 15 for three 
configurations of eddy current and chromaticity compensation sextupole strengths. 

ao 

simulated simulated 

(0,0) 2.956 2.956 3.213 3.332 

(1,0) 2.956 2.956 .129 .244 

(1,5) 2.956 2.956 -.638 -.512 

Table 1 Comparison of predicted and simulated ao and a1 values. 
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Investigations are currently under way to find an optical configuration that will significantly increase 

the orthogonality of the three families beyond the unfortunate results of the FODO lattice. An apparently 

promising candidate involves the introduction of a dispersion wave in the arcs of the Main Injector, around 

transition time. This begins to resemble an unmatched Yt jump scheme • except that the lattice perturbation 

can be introduced slowly, and that the needed size of the dispersion wave is expected to be relatively modest. 
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BEHAVIOR OF MATCHED AND UNMATCHED Yt JUMP SCHEMES 

The satisfactory agreement between MAD817 simulations and analytic predictions reported in the 

previous section, for the simple case of a FODO lattice, encourages the use of the program to study the 

behavior of momentum compaction factors for more realistic Main Injector lattices, where analytic results 

are no longer tractable. Here we consider two families of Main Injector lattices representing matched and 

unmatched Ytjump schemes. These schemes are described in detail elsewhere [10]. It is important to check 

that the resulting change of a1 does not greatly affect the Johnsen time T1, extending the variation of 

transition crossing time for different parts of a bunch. 

The simulation places one thin eddy current sextupoles of strength gE at the middle of each dipole, 

with a multipole strength of!J:! = 0.561 m-2. Two families of chromatic sextupoles are used to compensate 

for both natural and eddy current chromalicities. It is assumed, for the sake of definiteness, that the F and D 

sextupole strengths are not changed while jumping through transition. Figure 3a summarizes the behavior 

of the matched scheme with bipolar (ll"Yt = ± 0.65) and unipolar (ll"Yt = -1.3) excitations. Figure 3b 

examines an unmatched unipolar excitation - a bipolar jump is not possible in this scheme. The linear 

character of ap(o) in the realistic range o = -0.01 to +0.01 is apparent in all cases. Note that the vertical 

scales are significantly different in the two figures - compare the same t.yt = 0 case shown in both figures. 

Table 2 summarizes the simulation results. Since the arcs in a matched scheme are essentially just a 

sequence of FODO cells slightly retuned by a quadrupole perturbation, it is expected to produce qualitatively 

the same results as the FODO lattice in the previous section. Indeed, the values of a1 recorded in Table 2 

are an order of magnitude smaller than O{), and do not pose any danger to the Johnsen time. By contrast, the 

unmatched scheme produces large value of a1 ~ 1.68 ao, which, according to equation 8, more than 

doubles the Johnsen time. Also included in Table 2 are the uncorrected chromaticities, ~Hand ~y. with the 

F and D sextupoles turned off, but with the eddy current sextupoles turned on. 

16 



Figure 3 

a -a 
p 0 

4.ooo 10-' 

3.000 lff5 

2.000 10-5 

0 

-1.000 Hr' 

-2.000 10-' 

-3.000 Hr' 

-4.000 10-' 

--0.015 

a -a 
p 0 

0.0001.5 

0.0001 

5.000 10-' 

0 

-5.000 10-5 

-0.0001 

... ll.y=0.65 

• l!i.y=O 

• ll.y= --0.65 

• /l.y=-1:3 

--0.01 

• fly::: 0 

... ti:y=-1.3 

Matched r,-Jump Schemes 

a =a +(a +20: -a 2}6+0(~i2) 
p 0 0 l 0 

--0.005 0 0.005 0.01 0.015 

Unmatched r,- jump Scheme 

• 

--0.00015 ~~~~~~~~~~~~~~~~~~~~~~~~ 

--0.015 --0.01 --0.005 0 0.005 0.01 0.015 

Numerical simulation of momentum compaction factor variation versus Ii carried out for 
various 'Yi-jump configurations. The simulation includes eddy current sextupoles and full 
chromaticity compensation. 
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Scheme ao ~H 

uncorrected 

Malehed .65 2.23 .14 -10.6 -46.4 

.0 2.37 -.01 -7.6 -47.3 

-.65 2.53 -.19 -6.4 -48.3 

-1.3 2.70 -.45 -8.5 -49.7 

Unmalehed .o 2.37 -.01 -7.6 -47.3 

-1.3 2.70 -4.82 -3.9 -50.l 

Table 2 The behavior of momentum compaction coefficients, and of the uncorrected 
chromaticities, in matched and unmatched Main Injector transition jump schemes. 
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CONCLUSIONS 

General analytical expressions are reported above for the variation of the dispersion function to first 

order in the off-momentum parameter B, and for the variation of the closed orbit circumference to second 

order. This makes it possible to evaluate how the critical Johnsen time (for example) depends on effects like 

eddy current sextupoles in the Main Injector dipoles, or on transition jump configurations. In the simple 

but relevant case of a FODO lattice representation of the Main Injector, analytic results are in good 

quantitative agreement with a lattice design code. 

If there is no Yt jump in the Main Injector, the Johnsen time is typically expected to be about 0.6 

milliseconds, or about 60 machine turns. There is no benefit from turning on a Yt jump much faster than 

this. Examination of nominal Main Injector transition jump schemes reveals that a matched scheme 

produces little change in the Johnsen time, but that T 1 is more than doubled in the unmatched scheme. 

A third family of sextupoles might be used to deliberately and practically control the Johnsen time, 

without modifying the nominal transition momentum. (Two other sextupole families are used to achieve 

the desired net chromaticities.) Such control, especially when used in conjunction with rf gymnastics, may 

make transition crossing so innocuous that it becomes unnecessary to include a transition jump in Main 

Injector designs. 

However, the Johnsen time in a FODO lattice is quite insensitive to a third family of sextupoles 

located at the middle of the half cells. The good news is, then, that eddy current sextupoles are not expected 

to significantly affect transition crossing performance. The bad news is that using mid-cell sextupoles to 

control the Johnsen time is not practical. Continuing investigations suggest that a modest dispersion wave 

significantly improves the orthogonality of three families of sextupoles. 
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APPENDIX - RELATIONS BE1WEEN CX1 AND OTHER PARAMETERS 

For reference purposes, this appendix describes how the three definitions of a1 and the one definition 

of ap, all of which are common in the literature, are related. It has already been released as Fermilab Main 

Injector note MI-0038, by MacLachlan, Ng, and Peggs, with only minor differences. 

The "circumference" definition of a J, as defined in equation I and used throughout above, comes 

from expanding the difference in the circumference of the closed orbit, l!C = C - Co, as a polynomial in 

the off momentum parameter, Ii= (p - PO) I Po. 

l!C - 2 
Co - ao Ii+ CXC I Ii + .... (A-1) 

The definition introduced by Johnsen is very similar 

l!C - 2 Co -ao l>+ao a11 Ii + .... (A-2) 

The variation of the transition energy "Yt with Ii is directly described by ap, defined through 

ap(I>) =-f-= ~'!:= ao + aE1 Ii+ .... 
Yt (Ii) "' 

(A-3) 

This introduces the ESME definition of a1. 

Note that equation A-3 represents the klgj! derivative at some momentum p. WARNING - when used 

with a constant momentum offset, some lattice design codes return ap(.S), but some return 

£Q_dC _ 
Co qi - ao + ac1 Ii+ .... (A-4) 

Comparing equations A-I and A-2 gives 
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(A-5) 

Performing the differentiation in equation A-3 and expanding gives 

(A-0) 

Although this paper has conveniently taken equation 1 to define a1 = ac1, the selection is (somewhat) 

arbiirary. The reader is NOT implored to adopt one or another of the definitions introduced here, but rather is 

asked to be careful to specify which definition he or she is using. He or she IS implored not to invent any 

more definitions for a1 . 
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