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"Now I a fourfold vision see, 

and a fourfold vision is given to me 

'tis fourfold in my supreme delight 

and threefold in soft Beulah's night 

and twofold aways, may God us keep 

from single vision and Newton's sleep". 

William Blake, 1802 
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Abstract 

The purpose of this set of lectures is to provide an introduction to general relativity which 

· relies only upon simple physical arguments. The ·study of the metric is begun with free partiele 

special relativity. A red shift metric is then derived by Equivalence Principle arguments. 

Linearized gravity is presented as a relativistic generalization of Newton's laws. Finally, the 

Schwartzchild solution is made plausible using physical arguments. 

All the solar system tests are derived by using the formalism of the Lagrangian. Since this 

method is familiar from classical mechanics, no new mathematics is required. This technique 

evades geodesic equations and Christoffel symbols. 

The Kerr metric is motivated using a turntable example. Gyroscopic tests of this metric are 

then derived. Correspondences with the familiar quantum mechanical spin-orbit and spin-spin 

forces are made. 

Radiation formulae are made plausible in electromagnetism by making dimensionless 

-~ replacements to static solutions. Given that success, the corresponding gravitational formulae 

follow simply. Detection of gravity waves is discussed. 

The neutron star mass limit is derived. Further discussion of densities, B fields, and 

neutrino diffusion in supernova events is made. 

All the derivations are slanted towards an audience of High Energy physicists. 



1 INTRODUCTION 

·· It has often been said that the two major triumphs in 20th century Physics were the.,,, 

· · development of quantum mechanics in the 1920's and the revelations of relativity theory; beginning 

in 1905, with the Special Theory and culminating in 1915 with the General Theory. Throughout the 

20th century, quantum mechanics has made enormous strides. Presently we have arrived at the 

Standard Model with quantum electrodynamics, quantum chromodynamics, and the unification of 

quantum electrodynamics with the weak interactions. By contrast, in relativity, the lack of 
; 

familiarity with differential geometry, Christoffel symbols, and the Riemann tensor has often left 

.... ~this•fteld impenetrable to~tudents in particle physics ... .Jt is also to be noted that, despite spectacular 

successes in experimental tests of the classical ·theory of general relativity, until recently,o;·. 

theoretical development foundered on the inability to write a renormalizable quantum field theory of 

gravity. Recently, of course, with the advent of string theory, there is new hope raised that this 

theoretical impasse will be overcome. 

The goal of the'se lecture notes is to provide an introduction to the point solutions of general 

' relativity which is accessible to the typical graduate student. There will be essentially no attempt to-

'"' discuss the cosmological implications of general relativity,. given the fact that there are so many 

excellent texts available. In particular, the discussion will be slanted towards experimentally 

verified tests and astrophysical tests which are of interest to Fermilab physicists; both theorists, and 

experimentalists. A collection of references has been given at the end of this note. They are 

completely· idiosyncratic and. merely. reflect the author's limited reading. in. this field, These.. 

references are extremely useful and are meant to be referred to for .. a deeper, more mathematical-

understanding of the topics covered in this paper. 

In general, the mathematical details, where they have not been totally evaded, will be 

provided in a series of Appendices. Basically, there will be no tensor analysis. We will limit 

ourselves to the usage of well known mathematical techniques, appealing to a presumed shared 
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knowledge of special relativity, classical dynamics, and electromagnetic theory. Constant 

analogies· will be made between electromagnetic theory and the gravitational theory which we will 

<.. 
· be "boot-strapping." As mentioned, we will be concentrating on .point solutions and local £Olar 

system tests of the classical theory of general relativity. Provided in Appendix A is a set of useful 

astronomical constants having some utility in calculating the quantities which go into these ,solar 

system tests. 

In order to begin, it seems natural to start with a brief review of Newtonian gravity. 

Although this is not relativistically correct, because it implies action at a distance, it is a starting 

point for attempting to derive, or at least motivate, the general relativistic theory. If we use the 

•• ,, -· Lagrangian formalism, we· write the Lagrangian as the total kinetic energy minus the potential 

energy;•: The potential energy for a gravitational system is always proportional· to the gravitational 

mass. We will factor this out and define a reduced potential ct>. The kinetic energy depends on the 

inertial mass, because it defines the response of the system to forces as represented by the potential 

energy. In this case, the Euler-Lagrange equations lead to the equations of motion. The 

relationship of the reduced potential to the mass density, cr, is that the Laplacian of the reduced 

·potential is driven by the mass density. It is the mass density which defines the potential. There is a 

·•proportionality constant G., whioh .• is the. Newtonian coupling .constant. The acceleration is 

proportional to the gradient of the reduced potential. 

~ 

a=-Vct> (m1 =m0 ) (1.1) 

V2ct> = 4nG a(x). 

This is true only if the inertial and gravitational masses.are.strictly equal. In this case, motion is 

independent of the mass (inertia) of the particle. All particles in a gravity field therefore respond 

with the same motion, independent of mass. 
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In Newtonian physics, this equality of inertial and gravitational mass seems to be entirely 

acCidental. As seen in Table 1.1, however, the equality holds good to a part in 1012. This fact must·· 

·give rise to the suspicion that Nature•is telling us something. It cannot be an accident that the~ 

inertial and gravitational masses are the same to this finely tuned level of accuracy. . As an 

amusing aside, Table 1.1 shows that Newton measured the equality of inertial and gravitational.~ 

mass to a part in 1 o3. 

EQUAJJTY OF m1 AND me 

Experiment.er Year Method 1m1- mG1tm1 

Galileo -1610 pendulum <2 x 10-3 

Newton -1680 pendulum < 10-3 

Bessel 1827 pendulum <2 x 10-5 

Eotvos 1890 torsion-balance <5 x 10-8 

Eotvos et al. 1905 torsion-balance <3 x 10-9 

Southerns 1910 pendulum <5 x 10-6 

Zeeman 1917 torsion-balance <3 x 10-8 

Potter 1923 pendulum <3 x 10-6 

Renner 1935 torsion-balance <2 x 10-10 

Dicke et al. 1964 torsion-balance; sun <3 x 10-ll 

Braginsky et al. 1971 torsion-balance; sun <59 x 10-13 

Table 1.1: Tests of m1 =mG. 

This equality implies that all particles, independent of mass, have the same acceleration under the 

action of gravity. Thus, if one goes into a free fall coordinate system, particles will act as··if they" 

·'were weightless. One can "wipe out" gravity by going into a free fall. coordinate system. This is 

very familiar to those who watch space shuttle astronauts cavort in Earth orbit. If one looks at the 

relative trajectory of two free fall particles, defining 1] to be the difference between their coordinates, 

using Eq. 1.1 the relative acceleration between them is proportional to the second derivative of the 

potential and to the separation. 
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' 
11' =x'-(x') 

d 21/ i - ii<1> ii<1> 
--=--+--
dt2 ax' acx')' (1.2) 

Thus, the free fall deviation depends on the second derivative of the potential; one is left with 

tidal forces. This is obvious because the first derivative (gradient) of the potential is a common 

acceleration which can be locally wiped out by going into free fall coordinates. This fact leads us to 

believe that it is only the second derivative of the potential which is a physically meaningful 

quantity because the first derivative (acceleration) can be removed by going to an appropriate 

coordinate system. We will expect, therefore, that the tidal field is intrinsic to gravity. A pictorial 

representation of the tidal fields is shown in Fig. 1.1. 

Fig. 1.1: Field line representation of the tidal field of a point mass. 
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Tidal fields are a local measure of gravity in a free fall coordinate system. Figure 1.1 depicts tidal 

fields (represented by lines of force) near a point particle source of gravity. 

As mentioned, there is a universal coupling between the reduced potential and the source of -

that potential - the mass density. As wallet card carrying particle physicists, one of the first 

questions to ask is: "What is the nature of the coupling constant in the problem of gravity?" __ 

Reviewing electromagnetism, there is an inverse square force law, which is proportional to the 

product of the charges. This force leads to the famous dimensionless coupling constant o:. 

(1.3) 

Consider the case of weak interactions. There is an effective four fermion coupling constant. __ 

Gp, which at first looks rather different due to its dimensions of inverse square mass. As learned in 

particle physics, this is only an apparent difference due to the large masses of the gauge bosons 

responsible for the weak interactions. If we recall that the Fourier transform of the Yukawa 

potential is just the propagator in momentum space for a massive particle, and if we are at low 

momentum transfers, then the propagator is just a constant. The effective four point interaction is 

thus due to the exchange of a rather heavy gauge boson, as shown in Fig. 1.2. 
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Fig. 1.2: a) Electroweak diagrams for four fermion coupling and W exchange. 
b) Coupling constants for photon and graviton exchange. 

The Yukawa length is proportional to the inverse of the gauge boson mass. Heavy objects are 

thus confined to very small spatial regions allowing one to define an effective four point 

interaction. The triumph of electroweak physics is that the real coupling constant, once one can 

probe inside these small distances, is just the electromagnetic coupling constant. This means 

although we thought we had a weak coupling constant with dimensions, we really had a 

dimensionless coupling constant and a heavy propagator. 

GF-aw!M&. aw=a/sin2 8w 

= 1.16x10-5 I GeV2 

l/(q2 +M&)He-'1~w fr 

~=(h/Mc). 
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What is the situation for gravity?,,ln·this case there is a force which is proportional to the. 

product of the -masses and has inverse square spatial behavior.. The coupling constant has·. 

dimensions of inverse mass squared, somewhat comparable to the situation for the.~ weak 

interactions. 

fa= Gm,mz I r2 

G = 6.6x 10-11 m3 I (kgsec2 ). 
(1.5) 

•'"" '"''" · ,. ·H-everrin c.ontra&t to the weak. interaction case, .there is .a 11,2. force. This means that the quantum 

· in the,problem - the gravitino - has zero mass, because any. long range force implies a zero mass 

quantum. The problem of a coupling constant which has dimensions is now unavoidable. We can 

still, however;· define a gravitational coupling constant which "will become large, meaning o.c is of 

order one, at an energy scale, which is the Planck mass. This mass sets an enormously high 

energy scale of order 1019 GeV, and the scale is achieved at distances comparable to the Planck 

distance, which is 10-35 meters. 

(1.6) 

The situation which contrasts electromagnetism and gravity is sketched in Fig. 1.2b .. -In.,. 

both cases, one has a zero mass quantum. However, the coupling constant of electromagnetism is . 

dimensionless, whereas the effective gravitational coupling grows with mass. At first blush the 

theory should diverge when gravity becomes strong, i.e., at center of mass energies on the scale of 

the Planck mass. This divergence of gravity is certainly. a serious issue and one which is by no 

means resolved. These divergences cannot be avoided in constructing a quantum field theory of 
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gravity. In fact, the non renorma!izable features of such a point particles theory is a well known 

and long standing problem. We wilJ only be considering classical, weak fields. 

Another possibility is that we can imagine gravity as being·merely a fictitious force caused 

by our being in an accelerated reference system. These forces are well known. Examples include 

the coriolis and centrifugal force - both being fictitious in the sense that they are caused by our being 

in an accelerated reference frame and not in an inertial frame. 

The name given to this hypothesis is Mach's principle which says that the inertial properties 

of matter must be determined by its acceleration with respect to alJ matter in the Universe. For 

example, let us consider a particle accelerated with respect to a local inertial frame and transform to 

an accelerated frame, S', where that force is "wiped out". The extra force must come from 

·acceleration with respect to the Universe as a whole. --If we consider the contribution due to a mass M, 

then the static contribution will go 11r2. This is obviously much too weak; what is needed is a 

transformation from static fields to radiation fields. We will appeal to a substitution proportional to 

(due to) acceleration in which the fields fall off as 1 ir (the flux through unit area will be constant) 

which is a characteristic of a radiation field. , The radiation fields are found by substitution of a 

dimensionless quantity which is proportional to acceleration and radius. 

df'; GMm0 I r2 

[:;J (1.7) 

We will use this same substitution later in appealing to .an analogy with electromagnetism 

by which we derive the power radiated by a gravitational system in comparison to that of 

electromagnetic radiation. ·If we now smear out the galaxies into a uniform mass distribution, cr, we 

can integrate over all the galaxies out to a maximum radius. 
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df'= GMrrza(a! rc2
) 

df' = Gm0 a [ adi'] 
c2 r 

! ' _ Gm0 aa [2 2 ] 
- IUMAX • 

c 

(1.8) 

There is a maximum radius; the cut off comes from the horizon, when the apparent recession 

velocity of the galaxies is equal to that of light. One can remember what that effective horizon is by 

referring to the Hubble constant. Remembering that the Universe is about 20 billion years old, 

means that the Hubble constant is 50km per megaparsec.sec. Then 'MAX is c divided by the Hubble 

constant, which is 20 billion light years, or 2 x 1026 meters. For a mass density, one can take the 

visible mass density (obtained from counting stars), of 3 x 10-28 kg!m3, or roughly 0.2 protons per 

cubic meter. This fact is easy to remember because there is basically one baryon per cubic meter, · 

and 1010 photons per cubic meter in the observed Universe. The inertial force can be wiped out by 

inducing an equal but opposite force while going to the accelerated reference frame. If there is a 

relationship between the Newtonian coupling constant, the Hubble constant, and the mass density, 

as shown below, then Mach's principle is upheld. This also requires that the inertial mass be equal 

to the gravitational mass. 

'MAX - c I Ho 

f'= m1a lff 
G =Hi;/ 211:a. 

(1.9) 

Inserting the numbers, we find experimentally, that the equality is certainly obeyed within 

an order of magnitude. In fact, if we allowed for a critical closure density 10 times larger (due to the 

existence of, say, dark matter) then the equality shown in Eq. 1.9 would be much closer to being 

satisfied (within factors of 2). Mach's principle is thus a tantalizing assertion. It is unproven, but 

certainly plausible that the numbers appear to be within the right order of magnitude. This means 
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that the gravitational constant, thought of as a fundamental constant, is perhaps defined by the 

structure of the Universe as embodied by the Hubble constant and the mass density. In general, it 

might be a function of time as the Universe evolves. However, for a zero curvature matter 

dominated cosmology, it is in fact, not a function of time (as can be found in any cosmology text 

book). It is certainly thought provoking, that the gravitational constant might be related to the 

structure of the Universe, if Mach's principle were to be obeyed. 

For the remainder of this note, we will prosaically consider the gravitational constant to be 

just that - a fundamental constant of nature in the same way that the fine structure constant a is. 

Aside from the Newtonian theory of gravity, the other necessary ingredient in constructing a 

relativistic theory of gravity is, obviously, special relativity. We will assume a familiarity with 

special relativity, since it is a common tool of the practicing particle physicist. Hence, the relevi;mt 

formulae will be relegated to Appendix B. Appendix B depicts the Minkowski flat space metric and 

the invariant length, which is the same in all inertial frames. We also quote. the four dimensional 

position, velocity, acceleration, momentum, and force. For completeness, we quote the four 

dimensional version of the derivative, divergence, gradient, and Laplacian. In addition, the 

covariant form of Maxwell's equations is shown. In particular, since the source of Newtonian 

gravity is known to be mass, we need its relativistic generalization in the form of the mass tensor, 

stress energy, and pressure tensor. For example, one can note that pressure has dimensions of an 

energy density so that it is natural that the mass tensor has a relationship with the pressure stress 

tensor. 

The basic premise of the specialtheory of relativity-is that the laws of physics are the same in 

all inertial frames. In particular, free particles are straight lines in space-time having no 

acceleration and travel along geodesic paths. The free particle Lagrangian and the relativistic 

Euler-Lagrange equations are shown below. 
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(1.10) 

The physical meaning of the Euler-Lagrange equations is merely that the proper time rate of 

change of the 4 momentum is the 4 force, which for a free particle is proportional to the 4 dimensional 

acceleration, which is zero. The invariant element in special relativity is the 4 dimensional 

liw· · • " OOO!'din'lltAk*Jl.gtb.·-intervakbetween two events and it is the. same in all inertial frames. 

Mathematically, this means it is a distance because distance is invariant under 4 dimensional 

pseudo rotations (Lorentz transformations). 

(ds2
)SR =(cdt)2 -(dX)

2
• (1.11) 

This interval between events has a causally relevant sign. If it is positive, it represents 

transmission between two points by Jess than the speed of light, therefore, it is a possible interval 

between events which particles can connect. If the length is zero, Eq. 1.11 shows that it represents 

light moving along the null interval of the light cone. Negative values of the length represent space-

time separations which cannot be causality connected, and which are hence outside the causal light 

cone. 

Appendix B shows that the mass density is proportional to a component of the matter tensor, . 

therefore, there is a tensor source for gravity and it is graceful to assume that there is a tensor field .... 

A rank (spin) two field is always attractive, as distinct from a spin one field such as 

electromagnetism. This means there can be no shielding of the gravitational fields and there is no 

such thing as a Faraday cage for gravity. One implication is that you cannot get free particles, so the 

next alternative is to use free fall particles, which was attempted in Eq. 1.2. 
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As previously mentioned, the fields display l /r2 behavior to a very good approximation. A 

glance at Eq. 1.4 indicates that a measurement of the magnetic field power law behavior ar<>und 

' Jupiter would allow one to put a limit on photon mass. The present limit is 10-15 eV due to precisely 

such a measurement. Similar measurements of gravitational fields power law behavior. lead one to 

put a limit on the gravitino mass of less than 10-26 eV. In what follows, we will rigorously .assume 

that the gravitino mass is zero, the gravitational coupling constant is a fundamental constant, and 

that the source of gravity is proportional to the energy-momentum mass tensor. This implies that 

gravity is described by a second rank tensor field. 

Before explaining the Equivalence Principle, this first introductory Section will end with a 

comment on a proposed possible Fermilab experiment to study the tensorial rank of gravity. The 

kinematic definitions for studying the energy transfer in a collision are shown in Fig. 1.3. In the 

non-relativistic case, the short range power law nature of the force leads you to a transverse 

' momentum impulse which is the force times the time over which the force acts. The force is the 

potential at the point of closest approach, divided by the impact parameter b. The time of interaction 

is just b divided by the velocity of the incoming particle. In the case of the electromagnetic 

interaction, this means that the momentum impulse just goes as l lb. 

V(b) 
6f>J.-f(b)l1t--, 111-b/v 

v 
(1.12) 

· In the ultra-relativistic case for electromagnetism, special relativity reveals that the .fields 

becoine stronger by a factor r. but the time dilation effect means that the.time over which those fields 

act decreases as J / r. Vector fields (fields caused by the spin one photon) have a transverse 

momentum impulse which is independent of r. This is a very well known phenomenon in 

experimental particle physics because it leads (in a Coulomb collision) to a constant dE!dx for 

relativistic particles, or to the concept of a minimum ionizing particle, which is familiar to us all. 
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Fig. 1.3: Kinematic definitions for energy transfer in a collision. 

In the case of a gravity field, the force is proportional to the square of the masses. Since mass 

is proportional to energy, and energy transforms with one power of y, it is easy to see that the second 

rank field has a force which rises as -? in the ultra-relativistic case. The time, due to time dilation, 

falls as J/yas in the electromagnetic case, meaning that there is a transverse momentum impulse, 

which increases as y. This is another evidence of divergent processes. For mnemonic purposes, 

instead of the transverse momentum impulse, we quote a change in velocity which increases as y 

and is proportional to the dimensionless quantity <litc2. Note that for an inverse square law ar=<P, 

which relates our 2 dimensionless quantities ar I c2 and <Ptc2. The gravitational impulse increases 

as y, due to the spin two nature of the graviton field, in contrast to the constant value of transverse 

momentum impulse with which we are familiar from electromagnetism, a vector field. 

Unfortunately, even utilizing the y factor inherent in the Tevatron accelerated beam, and all 

current technologically feasible noise reduction techniques, this experiment appears, at present, to 

be impossible. 
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(6p1_)0 = Mc6{3 

l\{3 _ Gmy _ )<l>(b) 
bc2 - c2 • 

(1.13) 

This first introductory Section has been a catch-all·of topics· preparing the stage.by re:viewing 

Newtonian physics ·and· special relativity with sidelines into the unexplained equivalenc"c of 

gravitational and inertial mass, the dimensional nature of the gravitational coupling constant, and 

its associated high energy divergences. In later Sections, we will gather this material together and 

start to derive the metrical interval between events appropriate to other gravitational situations. 

15 



2 THE EQUIVALENCE PRINCIPLE; RED SHIFT 

We now'assume the equivalence of inertial and gravitational mass in light of the·c 

experimental data shown in Table 1.1. - A consequence 'Of this fact is that a uniform gravity field-is"· 

equivalent to an inertial frame under constant acceleration for mechanical measurements. .The •· 

Equivalence Principle states that it is equivalent for all possible physical measurements. An 

inertial frame, where one can apply special relativity, is equivalent to a free fall system in a 

uniform gravity field. This means we can "wipe out" gravity by going to a free fall coordinate 

system. The situation is schematically shown in Fig. 2.la. It is important to realize that any free 

fall frame is by definition only local in space and time. In special relativity, an inertial frame has 

infinite spatial and temporal extent. A free fall laboratory, however, needs to be local be.cause any_ 

real gravity field is not uniform. 

A nonuniform field causes tidal forces as seen in Section l. This means particles initially 

at rest will either draw together or apart in time, as shown in Fig. 2.lb. Figure 2.lb is a very good 

representation of the effect of tidal forces. Tidal forces imply that gravity is equivalent to 

acceleration only at a single space-time point. We can only use a local inertial frame due to the 

nonuniform nature of the field which is embodied in the tidal fields. 

The Equivalence Principle seems like an extremely innocuous assertion, but it will imply 

that gravity affects time. In a completely analogous manner, velocity affects time in special 

relativity. In order to derive the relationship between the gravity field and clock time, consider the 

situation shown in Fig. 2.lc. ·On the lea hand side, there is a rocket in free space. An observer.inc 

· that rocket does not see a Doppler shift because he is in free space .. By comparison, an observer.on thti .. 

right, observer A, in an equivalent free fall lab, also does· not see a ,Doppler shift. Observer B is 

instantaneously at rest with respect to A when the light is emitted. Observer B, therefore, has a 

relative velocity ~. when the light is received, and being at rest in the:gravity field, moves into the 

light, relative to observer A. Observer B, therefore, sees a blue shift as shown below. 
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Fig. 2.1: Equivalence Principle figures. a) Equivalent situations b) Local inertial frames 
c) Red shift d) Light deflection. 
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w' = w(I + P) 

- w(I+ g/ I c2
) 

flw I w - -iS.J / c2
• 

(2.1) 

The classical Doppler shift and the Newtonian expression for the relative velocity under 

constant acceleration is used here. This can be generalized to the case of nonuniform fields. 

Keeping in mind that this generalization has not been properly motivated. The fractional frequency 

shift is proportional to the dimensionless ratio i1.J/c2 as seen in Eq. 2.1.. This is a ratio that will be 

continuously seen. It is the ratio of the gravitational potential energy to the rest energy which, in 

Newtonian physics, is obviously a small quantity. 

Now, what of the frequency? Atomic clocks can be thought of as a standard used to define 

clock ticks. Frequency is the inverse spacing of clock ticks which means time (or clocks) runs . 

slowly in a gravity well. Extending the situation to nonuniform fields, this can be written as a 

modified interval between two space-time events. 

(2.2) 

Obviously, ifthe potential goes to zero, then the red shift interval in Eq. 2.2 reduces to the free particle 

relativistic interval given in Eq. 1.11. In the expression for the red shift interval, t refers to proper 

time on a clock at rest in a field free region, i.e., far away from all masses. The term ds refers to 

the proper time on a clock at rest in a field i1.J (for small values of the dimensionless quantity i1.J/c2),. 

therefore, using Eq. 2.2, the result given in Eq. 2.1 is recovered. This prediction is so astounding 

that caution must be taken to experimentally verify it. In Table 2.1, a collection of some of the data is 

given. The early data comes from observing the red shift due to photons fighting their way out of the 

gravity well of white dwarfs. The expected frequency shift is given below. 
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',·· 

(2.3) 

· The fractional frequency shift for· white dwarfs such as Sirius is roughly. 3xlo·4. ,,By 

comparison, less compact sources, such as the sun, have frequency shifts of 10·6. In addition, there 

are complications, such as convection currents and Doppler shifts caused by proper motion incthe 

sun's atmosphere which set a limit on observational accuracy of a few percent of the shift. Finally, 

there are measurements made on the Earth which were done in the 1960's. In this case, one is 

looking at the frequency shift of the 14.4 KeV y from Fe57 falling (at Princeton) 23 meters. 

Calculations show that the fractional frequency shift is 2x10·15. This is a very precise experiment 

using Mtissbauer technology. These are all very small effects, because they are characterized by the 

·dimensionless ratio of the gravitational potential energy to the rest energy. Nevertheless, these 

frequency shifts experimentally test the fact that time depends on. where you are to a few percent in a 

gravity field. 

Finally, there has been a direct test · one simply picks up a Cesium beam clock, goes to some 

altitude, waits, and then returns to compare to a Cesium clock at rest on the Earth's surface. This is 

an absolute direct measurement ·of the gravitational time dilation or, if you wish, the gravitational 

· ··' •'· ' twin paradox. Details of this measurement are shown in Table 2. lb. Since the Earth is rotating and 

because the clocks were on an airplane moving with some velocity, there are also special relativistic 

time dilation effects. One thing to note now (the reason will be explained later), is that all the special 

relativistic corrections are of the same order of magnitude as the gravitational effects. Therefore, 

· they'must be taken care of carefully .. To get an idea of the order of magnitude.of the numbers, the 

acceleration due to gravity on the Earth's surface is 10 m/sec2. If. one.flies at 30,000 feet, or roughly 

10,000 meters, t'>.<1>1<2 is roughly 10-12, and the fractional time lost is just that; If one flies at 500 mph 

around the Earth for 25,000 miles, (a 50 hour flight), the time shift is predicted to be roughly 200 nsec. 

Table 2.lb shows that this is indeed the correct order of magnitude. 
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TIME DILATION EXPERIMENTS 

Experimenter(s) Year Method 

Adams, Moore 1925,1928 redshift of H lines on 
Sirius B 

Popper 1954 redshift of H lines on 
40 Eridani B 

Pound and Rebka 1960 redshift ofY-rays on 
Earth 

Brault 1962 redshift of Na lines 
on sun 

Pound and Snider 1964 redshift ofY-rays 
on Earth 

Greenstein et al. 1971 redshift of H lines 
on Sirius B 

Snider 1971 redshift of K lines 
on sun 

Hafele and Keating 1972 time gain of cesium-
beam clocks 

Table 2.la: Redshift Tests. 

~ll·.;-klO. 8 

~ 

R~ Westward 

Direction of 

circumnavigation 

Westward 
Eastward 

North pole 

1:8 -1:A (nanoseconds) 
Experiment 

273±7 
-59± 10 

Theory 

275±21 
-40±23 

Table 2. lb: Details of Direct Clock Tests. 
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0.2 to 0.5 

1.2 ± 0.3 

1.05 ± 0.10 

1.0 ± 0.05 

1.00 ± 0.01 

1.07 ± 0.2 

1.01 ± 0.06 

0.9 ± 0.2 



In addition to the time dilation effect, the Equivalence Principle, properly interpreted, leads 

to Newton's laws. They come for free, given the interval shown in Eq. 2.2. To investigate, first look 

· at the free particle Lagrangian and the interval for special rela.tiyity which are given in Eqs. ;1..,,10 

and 1.11. As recalled from Appendix A, this Lagrangian,implies that the 4 dimensional momentum 

is constant, the 4 dimensional acceleration is zero, and a free particle moves in a straight line in 

space-time (the path of maximal proper time). 

~SR =((ci)
2 -(iJ2), "= ! 

a~~• =Z(ci)=const=-fi 
a{ct) 

~~:) =-2X=const. 

(2.4) 

Throughout this note, except where stated otherwise, the dot over a quantity means a derivative with 

respect to proper time. We find that, given the interval appropriate to special relativity, the 

acceleration (the 2nd proper time derivative of the position) is zero for a free particle. 

In the case of a gravity field, the same Euler-Lagrange formulation is used. The effect of 

gravity on clock rates for clocks immersed in such a field must be monitored. The resulting Euler-

Lagrange equations are given below in Eq. 2.5. The time coordinate equation implies a constant 

energy for static fields, while the position coordinate equations give an acceleration related to the 

gradient of the reduced potential. 

~RED; (ci)
2(1+7 )-(i)2 

i)~R~D -2(ciJ(t +~) = const =-re 
a{ ct) c 

(2.5) 

,E,_( a~~ED) = -2f = (cif (z v;, c2 ). 
ds iJ(x) 
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By direct substitution, the interval has a kinematic piece which is the special relativistic 

time dilation factor, r; 1 / ~1- {32 , and a dynamic piece which is the clock rate shift in a gravity 

field. As we discussed, the dimensionless dynamic quantity should~be .very small (weak fields). ~-"' 

is also very small, which means that ds is roughlycdt, or·ci;I.•Therefore, we get back-Newton's-· 

laws as the weak field approximation to the Equivalence Principle Lagrangian ... 

i ; (i)2 (-w:) 
ds~m -(cd1)

2(1+7-,B2
) 

- (cdt) 2 

d2- --> ii=---:-: - V<I>. 
dt 

(2.6) 

This means· that we have the right weak field limit. Newtonian mechanics is the weak field limit 0f 

the Lagrangian. Our task is, henceforth merely to find the appropriate form of the metric. The 

dynamics will then follow from the standard machinery (Euler-Lagrange equations) of classical 

mechanics. No geodesic equations are needed. The geodesic equations are simply the Euler-

Lagrange equations in the case when the Hamiltonian is the interval. The extremal action of 

special relativity is then the geodesic. 

As an aside, there are some interesting implications of the Equivalence Principle 

derivation. As recalled in classical mechanics, energy conservation was found to arise from the 

fact that one had time translation invariance in the Hamiltonian. In special relativity, there is an 

inertial frame of infinite extent, which implies that energy and momentum conservation are due tQ. .. 

space-time translational invariance. It has already been argued that in general relativity only 

local inertial frames can be used, which means there are no flat space frames. Thus, there is no 

translational invariance in general and, therefore, globally, there is no energy conservation. This 

is a generally true statement. Point solutions whose field falls off yielding a space-time which is 

asymptotically flat will be specifically dealt with. In this case, a globally conserved energy can be 
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.. defined. It is, however, important to remember that this is not true in general, and cannot be true by 

the very nature of general relativity: It is equally important to remember that, locally, there will be 

• energy conservation. The experiments done at Fermilab measuring the kinematics. of particle 

production and invokin·g momentum and energy conservation are still valid because they. ar!' done 

over cosmologically local distances. 

It is also reasonably clear that light will be deflected in a gravity field. This will not be 

discussed in detail now because the prediction is not correct at this level of our exploration into the 

theory. It is easy to recognize that it must happen because of the postulated equivalence between 

inertia and gravity. Because light has energy, it has inertial mass (gravitational mass) meaning 

that it must be attracted or bent in a gravity field. A simple Equivalence Principle geometric 

construction showing this effect is given in Fig. 2. ld. To an observer in an inertial frame the light 

must be straight, however, in an accelerated laboratory, the lab moves in the time, t, that.it takes the 

light beam to transit the laboratory. Thus, an observer in that lab will see light go in a curved path as 

indicated by the small circles in the figure. By the Equivalence Principle, an observer at rest in a 

gravity well will see light deflect and as discussed in Section 1, the null interval light cone surfaces 

define the causal boundaries of space-time. Because gravity influences the trajectory of light, it 

must also, therefore; define the causal structure of space-time. In a gravity well, it will be expected 

that the simple notion of a light cone of infinite extent will suffer some modification. 

As a final topic, it is amusing to look at the Equivalence Principle in non-relativistic 

quantum mechanics. One can start with the SchrOdinger equation for a free particle, which is the 

analogue of working in an inertial frame.· The Schrodinger equation is a statement that the .kinetic 

energy (with no potential) is equal to the total energy •. One.then makes the quantum _mech11nical 

replacements of energy-momentum with differential operators - spatial and temporal. This 

replacement leads to the Schrodinger equation. 
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(p2 /2m)l/f= El/f 

Pµ =-i11aµ 

112 
-v2

"' = ;11a"' 1 at. 2m 

(2.7) 

This equation is valid in a local inertial frame. Let us transform to an accelerated frame 

and determine if the result is equivalent to the Schrodinger equation in a gravity well. The 

Galilean transformation to an accelerated frame, which is appropriate in the non-relativistic case, 

leads to the following equation. 

Z' = Z + at2 
/ 2, t' = t 

:: (V')
2 

l/f = i11[ al/I I at'+ at' ~ J. (2.8) 

This is fairly ugly and not very transparent. ·We use the freedom to redefine the· overall 

wave function phase in quantum mechanics. It is known that it is permissible at a single space-

time point, because we are dealing with a local inertial frame. We also know that the overall phase 

is not an observable in quantum mechanics. We then make the transformation; 

l/f = l/f'e'~, I{! = mat'Z' I fl - ma2
{ t')3 

/ 611 

:: (V')2 'I''+ (maZ')l/f' = iflalJI' I iJt'. (2.9) 

Having done that, we find that the Equivalence Principle indeed works in non-relativistic quantum 

mechanics. What remains is the Schrodinger equation for a particle in a gravity field defined hr 

the acceleration a. 

It is true that the Equivalence Principle works in quantum mechanics, but, quantum effects 

of gravity have been measured by looking at neutron interferometry using.¥ery. cold neutrons. The 

neutron beam is split and subsequently, the beams suffer a phase change by passing through 
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different potentials, one part of the beam going up, one part going down. This phase change, upon 

recombination, leads to interference effects, The scale of those interference effects is shown below. 

;AZ '!f-e , k=2n/ A, 

tt2 
2 -(k+Sk) +m(<l>+li<l>)=l!ro 

2m 

Sk-1/ kG:r 8(<1>! c2
), 'J:. = 111 me. 

(2.10) 

The effect depends on our old friend, a<I>lc2. In Eq. 2.10, the Schrodinger equation given in 

Eq. 2.9 has been solved. In the static case w is constant, and the change in gravitational potential 

merely leads to a change in the wave number k, and not the frequency. 

The Equivalence Principle has thus given the first test of general relativity which is the 

gravitational red shift. Time depends on where you are in a gravity field. The Equivalence 

Principle implies quantum mechanical tests. The weak field limit of the implied dynamics is 

Newton's laws. 
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3 LINEARIZED GRAVITATION; LIGHT DEFLECTION 

In this Section, a discussion follows of what would happen if special relativity is applied to .-

Newtonian gravity and if one. simply wrote.: a .wave· equation .. in. complete analogy. to the.-

electromagnetic case. This is precisely what anyone except Einstein would have done and, thus,. 

leads to a linearized approximation. The equivalence of inertial and gravitational mass means 

that, since the field itself contains energy, it also has mass, therefore, gravity gravitates. Gravity is 

thus another non-Abelean field. Gluons are colored, gauge bosons have weak charge, and gravity 

gravitates. This leads to non-linear field equations which means we cannot superimpose solutions 

·as we can for• electromagnetism. The fact that photons have no charge means that the 

electromagnetic theory is linear leading to the superposition principle. 

In this Section, nonlinearity will be ignored and we will begin by trying to write a linear 

generalization of the Laplace equation relating the gravitational potential to the mass density. As 

recalled from Appendix A, mass density is related to the 4-4 component of the energy momentum 

tensor. Therefore, the source is related to a second rank tensor and the Laplacian is the space 

component of the d'Alembartian. If we are dealing with low velocities, ct is much greater than x, and 

••· ·•the d'Alembartian approaches the Laplacian in the non-relativistic limit .. Thus, the left hand side of 

the equation can be written as a wave equation. 

\72<11=4nG<1 

a,,_a"-<11,,, -4~ T44 

c 
(3.1) 

·Given the non-relativistic- limit; we will now simp!y.;assume ,a,iensor field with- a coupling. 

constant K.and a gauge condition as shown below. 

(a,,_ a'- )4>µv = -l(['µv 

aµq;µv =0. 
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The nature of the wave equation form assures that there are zero mass gravitons ... ,An 

assumption that the 4-4 piece of the field tensor is proportional to the Newtonian reduced potential cl> is 

made. In constructing the Lagrangian, which determines the interaction- of this field with matter, 

the free particle Lagrangian is used and we construct an interaction piece; Fundamentally, the 

only tensors available for the interaction term are the field tensor itself and the tensor made up as 

the direct product of the 4 velocity. The symbol ¢ is the trace of </Jµv. 

~ = [ gzv +t(¢µv- g~v ¢ )]u"u' 
(3.3) 

=~FREE+~JNf• 

This construction is made in direct analogy to the electromagnetic case, which is given in 

Appendix C. The coupling constant by appeal to the non-relativistic weak field limit of this 

Lagrangian can be evaluated. First, we assume that only the 4-4 component of the field tensor is 

important. The Euler-Lagrange equations then become Newton's laws as we know, giving a 

relationship between the 4-4 component of the field tensor and the reduced Newtonian potential. 

~-[(ciJ2(t+~44 )-(i)'(t-~44 )] 

a~ - zx a~ - (ci)2 t. (v: ) ax ·ax 2 " 44 

- 2- 2 -f\c2
---+ ---+ 

a=d x/dt =--'V<!J 44 --'V<l>. 
4 

(3.4) 

The field equations given in Eq. 3.2 give us the other piece of the non-relativistic 

relationship (see Eq. 1.1). 

27 



""';' 

v2q,44 = -K&2a 

V2<1> = 4nGa. 
(3.5) 

These two relations give enough information to determine the coupling constant On terms of 

Newtonian constant G and- the relationship between the Newtonian potential <1> and the 4-4-

component of the field tensor <1>44. 

<I>= ( K;;2 
/ 4 )4> .. 

K..2=16nG I c4
• 

(3.6) 

·~h1gglng th-·.,..,sultsibackintll'the Lagrangian given in Eq. 3.3, (~}/2 is found to be proportional 

to the dimensionless ratio 2<1>/c2, and the interval in linearized general relativity is as given below. 

(3. 7) 

' ·we find ·that we have both· spatial and temporal curvature. In particular, the temporal 

curvature is exactly what has been derived via the Equivalence Principle by looking at a red shift 

metric. In the low velocity weak field limit, the interval given in Eq. 3. 7 has a spatial part being 

proportional to the velocity squared. As such, this interval may be thought of as providing a higher 

order correction to the red shift interval, which has been derived in Eq. 2.5. It is clear why t!:>e _ 

discussion of light deflection has been deferred until this point· because, by definition, the local 

velocity of light is always c. Thus, the low velocity limit was not expected to be appropriate. 

One can see from Eq. 3. 7, why Einstein thought in terms of spatial curvature. Starting with a 

flat space Minkowski metric, as seen in Eq. 3.7, the presence of a gravity field makes that metric 

basically unobservable. When the interactions are turned on, the effective metric is not a 
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Minkowski metric. Therefore, there are two ways of looking at the situation. First, either imagine 

there is an interacting field on a flat space-time which comes most easily to particle physicists,,or, 

second, imagine that the mass distribution defines the space-time structure and that particles are 

free to move on local straight ·lines in this space-time, which is more pleasing to geometrically 

oriented physicists. 

As seen in Appendix C, the formal equations for gravity and electromagnetism are very 

similar. However, the coupling for electromagnetism is proportional to the charge, whereas the 

Galilean principle (that all particles fall with the same acceleration) requires a coupling which is 

proportional to the mass. This means, in the presence of interactions, that one has a Hamiltonian 

which can· be ·construed to mean a curved space-time having started with a flat space-time. The 

Galilean coupling is what allows one to make a geometric interpretation of gravity. 

Using the expression just constructed, we may now look at light deflection. From the 

Equivalence Principle in Section 2, we realize we must have light deflection. Now having a valid 

expression at high velocities, consistent with relativity, we can begin our discussion, first looking at 

the null-trajectories of light. 

(ds2)r =O 

tfi. di= c(t+2<P/ c
2
)" c In 

Pr = ( 1+2.P I c2 
). 

(3.8) 

In special relativity, the vanishing of the.interval given in Eq. 1.11 insures that light has the 

velocity c in all inertial frames. Using the expression in Eq. 3.7, a null light trajectory.,in 

linearized general relativity (LGR) has a coordinate velocity which is less .than c. One can think of 

this situation as defining a medium with an index of diffraction n which is not homogeneous and 

which follows the Newtonian potential cl>. Recall that the coordinate time tis the time on a clock at 

rest outside the gravity field. We can easily see that the velocity, given in Eq. 3.8, is not a local 
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velocity using local clocks and rulers. We know that in special relativity and in our local inertial 

free fall frame, by construction, we will always find that light goes at velocity c for a local 

measurement. What we want to stress here is that this is a non-local measurement using clocks 

and rulers far from the gravitational field. 

111 ~ :~za) 
lb 

• 
b) 

• 

Fig. 3.1: Light Deflection. a) Kinematic definitions 
b) Refraction due to inhomogeneous index of refraction. 

The construction for light deflection is shown in Fig. 3.1. Light goes by the sun with impact 

parameter b and suffers a deflection 0. Given the index of refraction in Eq. 3.8, it is easy to see that 

the medium defined by that index is inhomogeneous. Thus, a wave near the sun will slow down. 

The solution is static, so the frequency is constant. Huygen's principle explains that the wave front 

refracts. The construction for this refraction is shown in Fig. 3. lb. The angle of refraction has to do 

with the change in index as a function of radius integrated over the travel trajectory. 
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n -1+2GM I cz / ~zZ + bz 

dfJ - on dZ = -:.l!j!.. bdZ I (zz + bz)
31

z 
ob c 

o = Jdo = 4G':f = -4<1>(b) 1 cz. 
be 

(3.9) 

The result of the integration is that the deflection angle is just 4 times our familiar 

dimensionless ratio <l>/c2. Evaluating this expression for the sun, a deflection angle of 8.2 

microradians is observed. 

fJ = 8.2µrad =I. 75" 

= 2r8 I b, r, = 2GM I cz 

(r, )0 - 3. 5km 

(r, I R)
0 

- SxlO_.. 

(3.10) 

It will be extremely useful to define a characteristic length for the gravitational potential in 

what follows. This length is such that at that length the gravitational potential is comparable to the 

rest energy. The length for the sun has the value of 3.5 km, therefore, the ratio of that characteristic 

length to the radius of the sun is 5 parts per million. 

Data for light deflection is tabulated in Table 3.1 and the results agree with the prediction to 

about 1 %. Table 3.1 also shows that with time the baseline has increased, resulting in an improved 

resolution with time. A picture of the radio telescopes that were used is shown in Fig. 3.2. Figure 

3.2a depicts the light deflection as a function of impact parameter relative to the sun's radius, while 

Fig. 3.2b shows the Owen's Valley interferometer. Thinking back to undergraduate physics, you 

will recall that the resolving power in the diffraction limit is given by the wavelength divided b~rthe 

baseline. For a 3 cm radio wave with a 3 km baseline, such as in Owen's Valley, a diffraction limit 

of about 0.2 sec results. Table 3.1 shows that the error is indeed this order of magnitude. 

dfJ - ). / d 

). = 3cm, d = 3.lkm, dfJ- 0.2". 
(3.11) 
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EXPERIMENTAL RESULTS ON THE DEFLECTION OF RADIO WAVES 

Radio Wavelength Baseline 9 
Telescope (cm) (km) (sec) 

Owen's Valley 3.1 1.07 1.77 + 0.20 

Goldstone 12.5 21.56 1.s2t8J~ 
National RAO 11.l and 3.7 -2 1.64 ±0.10 
Mullard RAO 11.6 and 6.0 -1 1.87 ±0.30 
Cambridge 6.0 4.57 1.82 ±0.14 
Westerbork 6.0 1.44 1.68 ± 0.09 
Haystack and 3.7 845 1.73 ± 0.05 

National RAO 
National RAO 11.1and3.7 35.6 1.78 ±0.02 
Westerbork 21.2 and 6.0 -1 1.82 ± 0.06 

Table 3.1: Light deflection measurements. 

A few other experimental comments are in order. If one tried to do this experiment on the 

Earth's surface, for a 1 km path, the light would fall, (deflect) only about 1 Angstrom - which is 

certainly unobservable. This small hand calculation explains the importance of using 

observations of the solar deflection of light. This is not as simple as it appears because the sun does 

not have a hard edge, it is surrounded by plasma and solar corona. Reading basic books on 

electromagnetism, one remembers that the index of refraction for a plasma is frequency dependent, 

and is characterized by a plasma frequency, rop. Because we are measuring an effective index of 

refraction, this is something that can get in the way. The plasma frequency depends on the number 

density of the plasma, the characteristic size of the electrons, and the coupling constant, as one might 

expect. 
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Fig. 3.2: a) Light deflection as a function ofb b) Interferometer at Owens Valley. 
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n=ftJ 
OJP -..jp,'i..,a. 
c 

(3.12) 

If one takes a number density of 1014 electrons per cubic meter, one finds a plasma frequency 

shift per frequency of 3 times 10-7 for 6000 Angstrom light. This is a very small effect, and it is ro 

dependent, therefore, one is able to make a correction. For 10 cm radio waves, however, the ratio of 

the plasma frequency to the radio frequency is 10%. This is a major effect since we are looking for a 

""""'"" ·- ·~ll'tiomll·~ w!.idl4ec~·per million,. as stated earlier,-· The corona density which we took 

should be compared to 1 atom per cubic Angstrom which, as will be discussed later, is a reasonable. 

density for a solid. This solid density leads to a number density of 1030 electrons (atoms) per cubic 

meter - or Avogadro's number. Therefore, we have assumed a corona which is in fact a very good 

vacuum - i.e., a density 10-16 that of normal matter. This small digression should serve merely to 

point out that there are systematic effects and systematic uncertainties in these astronomical 

observations which one must realize. 

Finally, instead of dealing with small effects, like parts per million, one can go to 

astronomical observations and look for the gravitational lense effects of matter in bulk. The 

resulting split image of a quasi stellar object is shown in Fig. 3.3. The splitting of the images is due 

to an intervening galaxy which is somewhat fainter. It is easy to show from a generalization of our 

previous work that the deflection angle in traversing an extended body is a sort of Gauss' law, 

proportional to the expression given in Eq. 3.9 - where the mass is interpreted as the mass inside o( 

the trajectory. 

e = 4GM(b) I bc2 

M(b)=M 1- R i:ib . [ ( 2 2 )3/2] (3.13) 
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The observation of these gravitational lensing effects, giving rise to an even larger number of 

images - multiple images - is irrefutable macroscopic evidence of the gravitational deflection of 

light. 

Fig. 3.3: Gravitational Lensing by intervening galaxy splits images of a QSO. 
Bottom, one image removed showing intervening galaxy. 
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4 SCHWARZCHILD SOLUTION; PERIHELION ADVANCE, RADAR RANGING, 

SINGULARITIES 

In order to proceed beyond the point of Green's function solution for linearized general 

relativity, we need to motivate the derivation of the Schwartzchild metric. To do this, we consider the 

situation shown in Fig. 4.1. There is an inertial observer with clock tin frame S, and there is a 

rotating turntable frame S'. The Equivalence Principle tells us that a particle at rest in a gravity 

field is equivalent to a particle in an accelerated frame. The inertial observer in frame S is able to 

use special relativity. 

s 

s' r 

cdt 

Fig. 4.1: Turntable. Inertial observer in S with accelerated frame S' of a turntable. 

There is an effective velocity of a clock at rest in a gravity field wHh respect to an observer at 

rest in a flat space - or far from the sources of a gravity field. If we choose to equate the kinetic 

energy in an inertial frame to the potential energy in a gravity field as a statement of the 

Equivalence Principle, then we find that the effective velocity squared in the gravity field is 2<I> I c1
. 

This is a familiar factor already seen several times. It underscores the statement that special 

relativistic effects are the same order of magnitude as general relativistic effects. 
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TEP =IVI 
f3~p =-if> I c2 • 

2 
(4.1) 

By time dilation we· have the following relationship between clocks t ands. ds = (cdt) /YEP· 

So far, all we have succeeded in doing is re-deriving the red shift metric. The reason for using a 

turntable, is because the acceleration field is inhomogeneous. Since the inertial observer can use 

special relativity, he can say that there is a length contraction. The observer in frame Swill see 

rulers contracted along the direction of velocity. An observer in frame S' can lay down rulers of 

length r. He will find a circumference less than 2itr since the rulers are azimuthally contracted by 

' 'the 1dnemattt: y·factor: So;--an observer in S' has two inequivalent definitions of the radius. To pick 

one, define r to be such that a circle of radius r has circumference 2w. Radial distance is equal to 

( {i;)dr. By the length contraction hypothesis, Brr is equal to rh. 

(ds)2 • {cd1f (l-/3b) = {cdt)2 I rhldr = o 
( dlf = g"dr2 + r2 d0.2 

g"= rb>-

(4.2) 

r• "" ·· ~- · · ··•· ···· •These a.rguments.allow us to motivate the Schwartzchild metric as being a modified flat 

space metric whose modifications have to do with time dilation and length contraction. We use an 

Equivalence Principle argument to state that an object at rest in a gravity field is equivalent to an 

object in an accelerated frame. 

(ds)~ -(cdt)2(t-f3b>)-( dr22) r2do.2 
1-f3EP 

/3b = -2/f> I c2 = 2GM I rc2 =rs Ir 

rs= 2GM I c2
• 
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In Eq. 4.3, we have again defined the Schwartzchild radius. For example, on the Earth, the 

Schwartzchild radius is 0.9 cm, so the Schwartzchild radius divided by the Earth's radius .is about 

10-9. 

·There are various limiting forms for the Schwartzchild metric,df the potential goes·to·zerQ, 

we recover the flat space, special relativistic metric. The meaning of the coordinates are that clocks 

t refer to clocks at rest as r goes to infinity, while clocks at rest in the gravity field are labeled by the 

proper time ds. We know that ds is slow, because <I> is less than zero, which means ds is less than dt. 

The percentage difference is <I>/c2, as seen in the red shift Section. The new ingredient is that there 

is spatial curvature, as there was in the linearized theory, and that it is anisotropic due to the fact that 

the acceleration field is anisotropic. 

· We have "derived" the Schwartzchild metric by appealing to special relativity (in the guise of·· 

time dilation and length contraction) and the Equivalence Principle. We will now assume that this 

is the correct solution for space-time around a spherically symmetric mass. Looking at the 

dynamics, the interval is just proportional to the Lagrangian. The same situation obtains as in 

classical mechanics, the proper time rate of change of 0 is zero. Thus, we have a motion in a plane 

which, for simplicity, we choose to be the plane defined by the angle 0=1t/2 . 

.,. -(l 's )( .)2 (;)
2 

2d,..2 
..., 5 _ --; ct -(l-':)-r u 

0= 0, 0= tr:/2 

2( . )2 r t/J • 

(4.4) 

The Lagrangian in Eq. 4.4 is not a function of time nor of the angle i/J. Classical mechanics 

explains that there are then two constants of the motion. One of those constants we define to be J' 

which we will see is proportional to angular momentum. The other constant is the total system 

energy. 
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....... 

iJ:C = -2r2~ =CONST, J'" r2~ 
i)~ 

i)i)~ = 2( 1-; )c2i =CONST, ve" ( 1-;) ci). 

(4.5) 

Plugging these two constants of motion back into the Lagrangian, a simple expression for the 

total energy is found. 

d%=0 

( . )2 (J')2 
:C - % - 1 - e "'7'-'-'~.,.. - - (1-;) (]-;) ---;> (4.6) 

(f)
2 +[1+ (~J' ](1- ': )= e. 

This result is a reminder that in an asymptotically flat space, a globally conserved energy can be 

defined - this is a specific realization. Looking at Eq. 4.6 on the right hand side, we have the total 

energy, and on the left, we have a term which is obviously the kinetic energy. The remaining terms 

will be assigned to be the potential in a Schwartzchild space. This effective potential has a term 

· 'l'ilhich is the known Newtonian potential, a term which is the centrifugal potential (due to the fact that 

we have a finite angular momentum) and finally, a third term. These potentials go as l!r, Jf,.2, and 

11,.3 respectively. 

2<l>E,-F -rs (J')2 rs(J')2 

-----+ 
c2 -r r 2 r3 

-GM GMJ2 

<l>eFF = -,- m2c2r3 

J = mr2d~ I dt - mr2# I d(s I c). 
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We define J to be the Newtonian angular momentum, or mr2d¢ I dt. We know that at least in 

the low velocity weak field limit, we can make that mr2c~. Therefore, we have th,!) relationship 

between]' and the Newtonian angular momentum fused in Eq. 4.7. 

This problem can now be solved using the machinery of Euler-Lagrange equations, finding. 

the constants of the motion and solving for the orbital parameters just as one does in Newtonian 

mechanics. A shorter way to arrive at the solution is to realize that, looking at Eq. 4. 7, it is a 

Newtonian problem, but with an extra force which goes like l!r4. Therefore, since the acceleration is 

the derivative of the potential, the effective force in the Schwartzchild space can be immediately 

written down. 

a - -il4>EFF I ar, J - me/Jr 

GM [ 31
2 ] GM [ 21 --:r I+ 2 2 2 =-2-1+3/3 · 

r m c r r 

(4.8) 

In nearly circular orbits, there is a simple relationship between the angular momentum and 

the velocity. This allows us to express the extra acceleration term as a function of~- It is well known 

from classical mechanics, that for an inverse square force law the orbits are re-entrant ellipses. 

Therefore, this extra perturbation causes an orbit that is modified, and the perihelion of the ellipse is 

not re-entrant. There is a perihelion advance which is proportional to this perturbing term. It is not 

surprising that the fractional perihelion advance per orbit is just the perturbation term 3/3 2
• 

A¢ = 3/32 = 3r3 I Zr 
211" 

= 3<1> I c2 = 3GM I bc2 

= 43" I CENTVRY FOR MERCURY 

(f3 2
)MERCURY - ( 3x!O-s). 

(4.9) 

The prediction for the perihelion advance is given in Eq. 4.9. It is a triumph of this theory 

that indeed the perihelion advance was an observation made before the theory. General relativity 
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therefore provides an explanation for the troublesome advance of the perihelion, which had been 

observed for some time. It is easy to see that the perihelion advance builds up per orbit. Using the 

numerical data given in Appendix A, the perihelion advance for Mercury can be calculated to be 43" 

of arc per century. Obviously, since the velodty of the planets decreases with radial distance, the 

most accurate measurement does indeed come from Mercury. A tabulated set of results for the inner 

three planets is given in Table 4.1 The data is good to about 1%, although one should realize that the 

observed perihelion advance is at least 10 times larger due to the perturbing effects of the other 

planets on Mercury. Classical mechanic results must be under control to very high accuracy before 

one quotes a 1 % agreement between the prediction and the observed perihelion advance. 

Mercury 
Venus 
Earth 

Perihelion shift 
(per revolution) 

PERIHELION PRECESSION OF PLANETS 

Observed Perihelion 
Advance 

(43.11 
8.4 
5.0 

± 0.45)" per century 
±4.8 
± 1.2 

Predicted Perihelion 
Advance 

(43.03)" per century 
8.6 
3.8 

Table 4.1: Perihelion advance measurements. 

Just a final word about other possible systematic errors. We have assumed that we have a 

spherically symmetric source, so we can treat it as a point particle located at the origin. This is not 
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necessarily the case when the source is the sun. In general, one relates the potential to the sources, as 

in Eq. 1.1. The integral form of Eq. 1.1 is given in Eq. 4.10. 

_ a(x')di' 
<I>(x) = -G f Ix- x'I 

<!>(r)- - ~ [M +Q(3cos2 0-1)! r 2
] 

Q"' = f[3(x't(x')1 -(r')2 of ]11(x')di' 

-MR2
• 

(4.10) 

Expanding the integral solution, we first have the monopole term which is just the mass. The dipole 

~-- term 'is zero if we pick the origin of coordinates to be the center of mass, therefore, it cannot have a 

physical meaning.· Finally, the quadrupole moment term leads to a potential which goes as l/r3,_ 

Clearly, if the sun possessed a quadrupole moment, the potential would be functionally exactly the 

same as the effective potential given in Eq. 4. 7. The observational limits on the smallness of the 

sun's quadrupole moment lead to a possible 4" per century correction to the observation. At present, 

this is the systematic error which one needs to attach to the measurements of the observed perihelion 

advance. 

An independent test of.the Schwartzchild metric comes from radar ranging of either planets 

or artificial satellites and space probes. The purpose is to send a radar pulse on a round trip. As the 

pulse nears the sun, one monitors the slowing down effect that has already been seen in the 

discussions of the linearized theory. The kinematic definitions that we will be using are shown in 

Fig. 4.2a. Since one is traveling on nearly a radial geodesic and since the Schwartzchild and 

linearized intervals are radially the same, we will use the effective velocity of light which has been · 

derived in Eq. 3.8. It is then easy to integrate over a travel time ignoring any small deflections. A 

straight line trip is assumed. 
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Fig. 4.2: Radar ranging tests. a) Kinematic definition of quantities b) EarthNenus 
superior conjunction c) Mariner VI spacecraft as reflector. 
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(4.11) 

The excess time or the time beyond what one expects from a flat space is shown below. In 

particular, the approximation is that the location Z of the transmitting and reflecting objects are 

much larger than the impact parameter b. One sees that the effect, which is typically of size equal to 

· the Schwartzchild radius, is enhanced by a logarithmic factor. If one calculates the impact 

parameter equal to the radius of the sun, the time delay corresponding to the Schwartzchild radius is 

12 microseconds. The logarithmic factor, however, is of order 10 so the round .trip excess delay time •. 

is about 200 microseconds, which is equivalent to 70 km. 

cot - 2, 1n(4l2 ill22 IJ s b2 

{r.)
0 

- 3.5km-12µsec 

c8t - 220µ sec - ?Okm. 

(4.12) 

Figure 4.2b shows data for an Earth-Venus superior conjunction; the maximum excess time 

delay is indeed 200 microseconds. Table 4.2 shows data that has been taken with both planets and 

artificial satellites. The level of accuracy is good to about 4 or 5%. As mentioned earlier, some of the 

limitations arise in using radio waves, in that the plasma frequency relative to the source frequency .. 

- is not particularly small: Therefore, there is another index of refraction· which needs to be unde~··· 

systematic control. 
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(Observed 
Experimenters Delay) Formal One-

Dates of Radar and Wave (Einstein standard sigma 
observation telescopes Reflector reference length prediction) error error 

November 1966 Haystack (MIT) Venus and Shapiro (1968) 3.Scm 0.9 ±0.2 
to Mercury 
August 1967 

1967 Haystack (MIT) Venus and Shapiro, Ash, 3.8 cm, 1.015 ±0.02 ±0.05 
through and Mercury et aL (1971) and 
1970 Arecibo (Cornell) 70cm 

October 1969 Deep Space Mariner Anderson, 14cm 1.00 ±0.014 ±0.04 
to Network VI and VII et aL (1971) 
January 1971 (NASA) spacecraft 

Table 4.2: Radar Ranging Measurements. 

As a final topic in this Section, we can observe the apparent singularities seen in Eq. 4.4, 

when the radius is equal to the Schwartzchild radius. At that radius, the time-dilation becomes 

infinite and the length contracted rulers go to zero length. The question is, Is this a real physical 

singularity or does it just appear to be so, because we are in a non-simple frame of reference? To 

begin looking at the situation, one can try drop testing particles into the "singularity." The simplest 

way to do this is to solve the radial Euler-Lagrange equations. Using the energy conservation of Eq. 

4.6, we can look at the special case of purely radial motion in which case, ¢ = 0,1' = 0. 

¢ = 0, ]' = 0 

(r)2 =e-(1-r8 /r) 

e=(l-r8 /r0 ) 

(7)2 =r8(1/r-l/r0 ). 

(4.13) 

There is a simple relationship for the velocity as a function of radius if one drops a test 

particle starting at rest. One can then integrate that equation from the starting radius to the origin. 

One finds that the proper time is finite and well behaved. As you recall, the proper time is time on a 

clock in a freely falling laboratory. Thus, observers falling into this region will see nothing out of 
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the ordinary. We can, however, use the relationship between clocks and energy as given in Eq.4.5 to 

look at the situation as seen by observers at infinity using clocks at rest .. As seen in Eq. 4.14, 

clearly, the relative clock rate between observers in free fall Jabs and observers at infinity suffers a•. 

divergence at the Schwartzchild radius. 

(4.14) 

This situation is also shown in Fig. 4.3b. Therefore, as far as observers at infinity are 

concerned, it takes an infinite amount of time on their clocks in order to approach the Schwartzchild 

radius. As we have seen for observers themselves, the time is finite and perhaps all too short on a 

radial geodesic. There is an infinite red shift surface at the Schwartzchild radius which is labeled 

as r_. This surface occurs where g44 vanishes, such that the red shift for observers at infinity 

becomes infinite. 

Using Eq. 3.8, we can also examine the region where the velocity of light goes to zero. This 

happens at a radius rr, which is also equal to the Schwartzchild radius. The region r < r, is the event 

horizon. One cannot send signals to the region r > r, because light signals cannot escape to infinity 

since their coordinate velocity is zero at rr. The causal structure near the Schwartzchild radius is 

shown in Fig. 4.4. As mentioned earlier, since gravity effects light, we expect modifications to the 

causal properties of space-time near strong gravitational fields .. The .light cone at the Schwartzchild 

radius is tipped over so that the velocity using t clocks is effectively zero .. Any object that has a radius... 

less than the- Schwartzchild radius must be in a forward light cone and then must intercept r=O. As 

an amusing note, if one works out the Newtonian problem of escape velocity, one finds that it is equal 
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Fig. 4.3: a) Dropping into a black hole. b) Coordinate time (solid line) and proper time 
(dot-dashed line) near r=rs. 
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to the velocity of light at the Schwartzchild radius. It is also interesting to note that, in special 

relativity (flat space) an observer will eventually see all of space-time in the sense that the forward 

light cone encloses all of space. In the presence of a gravitational field, however, there are horizons·· .. 

or regions of space-time which will never become accessible to an observer. 

Light and 
cvc:ry1h1ng else 
falls in 

's 

's 

Future 

Past 

Rca:pt1on 

event t <> 

Fig. 4.4: a) Light cones near r=rs b) World lines near r=rs. 
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One can use the formula derived for the deviation between geodesics, Eq. 1.2, and the 

effective potential that was written down in a Schwartzchild space, Eq.4.7, to get an idea· of the order 

of magnitude of the forces that might act on observers falling into such a region. This potenti.al is 

finite and well behaved at the Schwartzchild radius. In fact, the Newtonian piece - which goes as l/r, 

will be used. As discussed in thinking about the Equivalence Principle, an observer falling into 

this space-time region will suffer a longitudinal elongation and a lateral compression. If a 

characteristic longitudinal size 1 is taken, given the acceleration of a mass element, one can easily 

derive the stress or pressure which is the force per unit area integrated over the entire area of the 

object. For r near rs; 

(4.15) 

As an example, a person might have a mass of 75 kg, a length of 1.8 meters, a density of 1 

gm/cm3, i.e., water. For the Schwartzchild radius we pick a value of order the sun's Schwartzchild 

radius, 3.5 km. There would then be a pressure at the Schwartzchild radius of 10 million 

· "at:lriospheres. ·· This is the tidal pressure which is trying to rip the person apart. To set the scale, 1 

atmosphere is 10 meters of water. The deepest type of deep sea dive takes place under pressures of 

1000 atmospheres. Thus, the tidal pressure is about 10,000 times the pressure that one normally might 

encounter on Earth. 

I= l.8m, a= lgm/ cm3 

f.-1012 Nt I m2
, for{rs )0 = r 

-10,000,000 ATM. 

(4.16) 

What this means of course, is that if black holes existed, when objects accrete to them, they 

would suffer enormous forces far beyond the situations existing in a normal environment. This is 
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illustrated in Fig. 4.5 which shows a sketch of a normal star and a black hole in a binary system. 

As material falls into that hole, you can imagine that accelerations are such that one might have x-

ray point sources. In particular, at Fermilab, there is a small experiment looking for muons from 

point sources which exists as a side line of a test of the muon system for DO. 

Fig. 4.5: Binary system of black hole and normal star. 
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5 OTHER SOLUTIONS; CHARGED MASS, COSMOLOGICAL TERM, INTERIOR 

SOLUTION 

There are several distinct solutions which.are generalizations of the Schwartzchild solution 

which will be discussed in this Section. Fundamentally, a black hole's singularity is characterized 

by charge, mass and spin. So far we have only discussed mass. In this Section we will discuss 

charge, and in the next Section, we will discuss solutions for singularities with spin angular 

momentum. First, consider the Schwartzchild solution for a charged mass. The existence of charge 

means, classically, that we have electric fields and thus, electric self energy. We know by the 

Equivalence Principle that all energy gravitates. Because the mass is the total energy of the system, 

we need a effective mass which takes into account the electromagnetic self energy. The solution is 

called the Nordstrom Reissner metric. However, it is intimately related to the Schwartzchild 

solution, being identical with the substitution of MEFF for M. 

MEFF "'M -q2 /2rc2 

r, s q2 /Mc2 

q;Ne, Af;Nm 

r,; Na~. 

(5.1) 

The second term in M EFF is the electromagnetic self energy within a sphere of radius r 

containing charge q. Since the electromagnetic self energy is repulsive, it comes in with a negative 

sign such that the effective mass is reduced from the Schwartzchild mass. 

As with the Schwartzchild radius, one can define another characteristic radius, re, which is 

the size where the electromagnetic se.lf energy is equal to the rest energy. This definition is 

obviously related to the classical electron radius. It is in complete analogy to the Schwartzchild 

radius which is the radius where the potential energy is equal to the rest energy. The Coulomb 

radius for a totally charged object is equal to the Yukawa wavelength of the individual objects 
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making up that system, times the coupling constant, times the number of particles in the system. 

Clearly, since the self energy depends on the square of the charge,. whereas the gravitational mass.. 

depends only on the first power of the number density, the electrical interaction will dominate at..,, 

some point. 

Calculating the expression for the effective mass back into the Schwartzchild metric, one can 

find g44 • We have an additional term to what we had in the Schwartzchild case which goes like 11,.2. 

It is second order in the characteristic radii, rs re. 

g44 =I - rs/ r + rsr, I 2r2 

g44 =0 

r_ = ~ (l±~l-2r, /rs) 

a?. (ml MPL)2. 

(5.2) 

We can look at the infinite red shift surface where the g44 piece of the metric disappears. By 

doing this, we have to solve a quadratic equation. Clearly, looking at Eq. 5.2, if the charge were to go 

to zero, then the Coulomb radius would go to zero and we would get back that the infinite red shift 

surface is just the Schwartzchild radius. It is also true that a solution for the infinite red shift 

'*' · ,. · 'llttrlil.oe-<loes 'llot>.mst.bey.nnd-a· certain"lllagnitu<le for. re. This is merely a statement that the 

Coulomb repulsion will overcome the gravitational attraction for a charged black hole and will not 

allow the formation of such a singularity. Obviously by looking at Eq. 5.2, this situation occurs 

when rs=2rc. In the case where aU objects comprising this system have the fundamental electron 

charge, the ratio of the mass of the constituents to the Planck mass squared needs to be,;; a. 

We should also consider the possibility of non-classical sources for the field equations. In. 

discussing linearized general relativity, for example in Appendix C, we always used the energy 

tensor and used as sources the classical mass. Suppose, however, the vacuum itself has an energy 

density. Quantum mechanics is replete with examples of zero point energy. The Standard Model of 

particle physics has an electroweak vacuum expectation value. This energy will also gravitate and 
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therefore, should be included in the field equations. The vacuum contribution to the energy tensor 

then·leads'to a term in the Laplace equation having a solution which increases as the square ofthe 

'radius.· There is a characteristic vacuum size, the vacuum radius, as defined in Eq. 5.3, which 

leads to a vacuum contribution to g44 and g,,.. 

(rµv)v = gµvavc2 

V2«l> = 41!Ga-Ac2 

«l>v =-Ac2r 2 /6, rv = ..j3/ A 

-2«l>v I c2 = (r I 'v J2. 

(5.3) 

The parameter A corresponds, as seen in Eq. 5.3, to a uniform effective mass density which 

leads to a characteristic length scale. This vacuum energy density is something like the classical 

ether and was initially introduced by Einstein in order to have a stable Universe. This was of 

course before Hubble's discovery that all galaxies appear to recede from us. Einstein then 

characterized the introduction of this parameter as his biggest mistake. 

av = -Ac2 
/ 41!G 

2 
g,. = l+2(<l>+<l>v) 

c 

= l+rs f r-(r Irv )2
• 

(5.4) 

As an aside, one should note that the energy tensor in Eq, 5.3 has the metric subsumed in it, 

defining the vacuum energy density, whereas the sources given in Appendix B, for example, do not. 

Therefore, as the metric evolves, for example, as the Universe expands, the matter density decreases 

from a denser, earlier era, while the vacuum energy density remains a constant.. The vacuum 

energy density has a potentially strong effect on the evolution of the Universe because it does not 

dilute with expansion. In fact, this perception is the basis for the recent inflationary scenarios where 

·exponential growth is driven by the vacuum expectation value of hypothesized scalar fields. 
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It is necessary to point out that there is a problem with the observed smallness of the vacuum 

energy density. Given that energy controls the evolution of the Universe,- then the vacuum energy-. 

density cannot have extensively modified the evolution, therefore, oy must be comparable or less_ 

than the visible density, which we know is about 1 proton per.cubic meter. 

O'v,,; Ip/ m 3 

A,,; 10-58 m2 

O'vEV - (100GeV)
4 

- 1055 GeV I m3 

- 10'5 O'v 

(nc = 2xl0-16 GeV ·m). 

(5.5) 

In contrast, the situation in quantum field theory is that the zero point energy should always 

contribute to the vacuum energy. The most familiar example for particle physicists is the Standard 

Model vacuum expectation value, which we know is about 100 GeV. Converting to energy density, 

using Planck's constant, we find that the Standard Model vacuum expectation value energy density 

or mass density is about 1055 times larger than the limit given by cosmologists. This appears at first 

blush to be something of a problem to the simple minded experimentalist. 

- One should also note that; if there is a vacuum energy density, then "empty" space does not 

give us a flat metric, but instead gives a deSitter metric which is not asymptotically flat. We also 

note that, at least conceptually, the parameter A could be positive or negative. Thus, the contribution 

of the vacuum energy density to the metric could be of either sign. Given that there are a variety of 

questions and problems, even so, they will be finessed in the future, ignoring any possible' non zero 

value for the vacuum energy density, and assuming rv is regorously zero. 
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Fig. 5.1: a) Definitions for interior solution b) Newtonian interior solution matching to 
exterior solution at r=R. 

As a final topic for this Section, we will consider the interior solution. So far we have 

discussed the fact that we are either dealing with a point source or that we are outside the mass 

distribution and therefore, by Gauss's law, consider it to be a point source. The geometric 

definitions for the interior solution are shown in Fig. 5.1. In Newtonian mechanics, the mass is 

simply the mass per unit volume times the volume - what could be simpler? If we work out the 

Newtonian radius at which the object has a radius equal to its Schwartzchild radius, it is simply 

given in terms of the Newtonian coupling constant and the density. 
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M=Go"'V =Go(~trR3 ) 

(~
3

) = J?5 = 3c2 
/ 8nGa0 • 

S R::r5 

(5.6) 

Clearly for densities greater than the density a0 , there .will not be a solution because the system will . 

exist inside its own Schwartzchild radius which is unstable. The system, as we will see, then 

collapses into a black hole singularity, thus, the radius of the system has to be larger than the 

Schwartzchild radius. 

The Newtonian expression for the interior solution is quite familiar. One can easily write 

•• ··' ·< '· down.·th'fl'iltteri<or 'Solution ~··2<l>.l\f fc 2
• In the case of Newtonian mechanics, this solution is 

continuous with the exterior solution as shown in Fig. 5. lb. 

<t>m = -GMm Ir 

(5.7) 

What results, unfortunately without proof but hopefully with some motivation, is the interior 

metric appropriate to this problem. The spatial part is very simple; it corresponds to the 

Schwartzchild solution simply modified by· replacing the- exterior Newtonian potential by the 

interior Newtonian potential which is exactly what we might expect .. For the temporal part of the 

interval, the resulting expression is similar to the spatial part - except for the fact that there is a 

constant term which is needed to match the exterior Schwartzchild solution at radius R. We note that 

the interior solution, as given in Eq. 5.7, matches smoothly onto the exterior solution. This implies 
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that the parameter M is the total energy since, exterior to a system of point particles that may be 

interacting, what is important is the total mass-energy, which is the source term for the energy 

tensor. 

Looking closer at the situation, the physioal volume is .related to the coordinate volume by.the 

elements of the metric. The total volume, therefore, integrated from zero to R, is shown below. 

d w = ( ..ffu dx1 
)( vTu. dx 2 )(.Ji; dx') 

= r2drdD. / ~1-(r I R0 )
2 

W = 2irRJ[x0 -sinx0 cosx0 ] 

sinx0 =RI R0 

4irR
3 [ 2] R W --- 1+3/10(R/R0 ) , -<<L 

3 Ro 

(5.8) 

For srttaJI values of sinx, the physical volume is 4!31tR3 ·times a correction factor. It is positive, 

which means that the physical volume is larger than the Newtonian coordinate volume. Therefore, 

there is a mass defect in that the density times the physical volume is greater than the total mass 

(energy) M. The fractional change in mass is proportional to the dimensionless quantity rs!R. 

AM= Uo'V -M 

AM 3 -=-(rs/R). 
M IO 

(5.9) 

This is similar to the situation in nuclei where there is a mass defect. The mass of a nucleus 

is less than the sum of the .masses of its constituents, because of binding ene.rgy effects .. It takes 

energy (or mass) to break a nucleus apart, since it is a bound system. The mass defect is caused by 

energy lost while packing matter under its own gravitational self energy. Take the interior 

solution for the potential and bring in a spherical sheJI of matter from infinity to that potential. The 

energy is lost proportional to the interior potential. The total energy lost in constructing this dust 
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ball is the energy lost for all radii from zero to R. The mass lost in doing this is the energy .Joss 

divided by c2. 

( ) 
-41'G 2 

<'P1N r =--O"or 
3 

dM = 4 m-2 dr<70 

( ) 
-16ir

2 ~ 4 de - -dMIP IN r = -
3
-G 0r dr 

L
R -16 2 2 5 

E= de=--ir G<70R 
0 15 

t.M =-EI c2
• 

(5.10) 

·This purely Newtonian ·calculation, shown in Eq. 5.10, agrees perfectly with the weak 

binding limit given by the expansion shown in Eq. 5.9. Due to this satisfying situation, one can 

begin to understand the physical mechanisms that may differentiate between coordinate and 

physical volume. 

As a final comment for this Section, we will look at observers inside the dust ball. This 

solution does have some cosmological implications. And as mentioned, we will concentrate on non-

cosmological tests, therefore, limiting ourselves to very brief comments. Suppose you live in the dust 

ball. You would then use clocks t' which are at rest with respect to the dust and not coordinate clocks t 

which, as we know, refer to observers outside the mass distnbution - because you cannot get outside. 

For your clocks and rulers, therefore, you have a solution which, for simplicity, we transform as 

defined by Eq. 5.11 (see Eq. 5.8). 

( ds2
) JN = (cdt')2 -R.5[ dx2 + sin2 .utn2

] 

r=R0 sinx 

R€ = 3c2 /81'G0"0 • 

(5.11) 

These are exactly the transformations expected from examining Eq. 5.8. Note that the length 

parameter R0 in Eq. 5.11 is exactly what one has in the interior solution in Eq. 5.6. Note also that 
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this interior interval is constant in terms of coordinate clocks t and rulers x, except for an overall 

scale factor Ro· This scale factor is inversely proportional to the gravitational coupling constant 

and to the density, therefore, a low density Universe is large. As the density goes to zero, the 

characteristic curvature radius becomes infinite .. As· seen· in Eq, 5.8,.if R0 -..+ ~ the metric becomes 

Euclidian. 

Note that in everything in this Section, and in most of what will be done in this entire note, 

pressure has been neglected as a source of energy. The metric shown in Eq. 5.11 is called a 

Friedmann metric, it has been "derived" from semi-Newtonian considerations of the interior of a 

pressureless dust ball. This metric is useful in cosmology. It arises in a space of constant curvature 

due to a uniform matter density. 

If the characteristic radius R0 is equal to the Schwartzchild radius, one has the critical 

closure density which is roughly 10 times the observed visible matter density. For a Universe which 

is characterized by a Hubble distance of roughly 10 billion light years, one can look back at Eq.1.9, to 

see the relationship between the prior discussion and what is implied in Eq.- 5.11. Hawking observed 

that a collapsing star is mathematically equivalent to an expanding Universe with the sense of time 

reversed. In that context, we have looked at the interior dust ball solutions in some detail because of 

the implications for cosmology. 
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6 KERR SOLUTION; DRAG AND PRECESSION, ERGOSHERE 

In t"\iis Section the properties of point solutions with both mass and spin will be investigated,-· 

In the Newtonian problemfrom the Schwartzchild.solution in SectionA, we know. that the potentiaLii>-. 

the static Newtonian potential plus a centrifugal term which we have already seen in the discussion 

of the conserved energy. As in the case of mass and charge, we will define a characteristic length, 

the Kerr radius which is defined to be the radius where the rotational kinetic energy is comparable to 

the rest energy. 

<f> ROT - <f> + J2 f 2m2r2 

rK =J /me- r2 ro/cOE.c/ ro (6.1) 

2<1> ROT I c2 = -;s + ( '; r. 
The metric associated with a Newtonian turntable will be studied in order to start to build up 

an intuition about the physical effects. The geometry for this is shown in Fig. 6.1. The idea is 

similar to the Equivalence Principle arguments were used in motivating the Schwartzchild metric. 

' The time rate of change of the angle is ro. Outside the turntable, one has a local inertial frame and 

can use special relativity. The transformation to the rotating coordinate system simply comes from 

adding the angle swept out by the rotating turntable which leads to the metric shown below. 

ro = d</J I dt, {31, = (ror I c)2 ~ r8 Ir 

(ds)t, = (cdt)2 -(dr2 + (rd</J )2 + dZ2 
). </J ~ </J +rot 

(ds)~URN = (cdt)
2

( 1-( 7 r )-(dr2 + r 2d</J2 + dZ2
) + 

2:(J) (rd</J )(cdt) 

=(cd1)
2(1-; )-(dr2 +r2d</J2 +dZ2 )+ 

2;? (rd</J)(cdt) 

= (ds2
) + 

2
' 8? (rd</J)(cdt). 

RED r 
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Fig. 6.1: Geometry of the turntable appropriate to the EP metric discussion. 

In this expression for the interval the coupling between space and time is of primary 

importance. This will carry over into general relativity. The coupling implies that there is a 

dragging of the space-time by the rotations themselves. This is very similar to the situation for 

magnetic fields in electromagnetism. What we have done so far is effectively an Equivalence 

Principle argument. Therefore, we expect that when looking at the dynamics, we will recover 

Newtonian mechanics, as we arbued in general. In fact this is true; the Euler-Lagrange equations 

for the turntable metric given in Eq. 6.2 are shown in Eq. 6.3. 

d 2r I dt 2 + w 2r = 0 

r2d 2 rp I dt2 + 2wr dr I dt = 0. 
(6.3) 

One recovers the centrifugal force, and tile Coriolis force. Clearly they are fictitious forces due to the 

fact that we are writing equations of motion in an accelerated or non-preferred reference system. 

The exact Kerr solution in general relativity is something we will not derive, but we will 

appeal to the Newtonian and Equivalence Principle turntable metrics. This solution was discovered 
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in 1963, and the derivation is extremely tedious. An approximate solution, valid for slow rotations, 

( ds2
) K - (cdt) 2

( 1-.;-)- dr2 f ( 1-.;-)-,Jtfil2 + 2(rsrK I r 2)(rsin2 8d</) )(cdt) 

- (ds2 )s + 2(rsrK I r 2 )(rsin 2 Od</) )(cdt). 
(6.4) 

Basically, the solution is the Schwartzchild solution for the diagonal parts with a coupling 

between the </) coordinate and the clock coordinate t. This coupling is something expected from the 

discussion of the turntable metric, see Eq. 6.2. Note here that the parameter rK has a sign because 

there is a sense of the rotation, which is the sense of the angular momentum about the z axis, J,. 

Looking··at Eq. 6.4, it is fairly easy to convince oneself that in most situations, the rotations are a· 

second order effect, because the spin terms in the metric go like I 1,.2 in contrast to the l/r terms due to . 

the mass sources. 

Given the metrical interval for the Kerr solution, one can proceed and calculate the Euler-

Lagrange equations. This is a central force problem, so the motion is in a plane - exactly as was the 

case for the Schwartzchild solution. There are again two constants of the motion since the 

.. ., " ·'"•Lagrangian does not depeRd Oft .the coordinate •</)•or the coordinate t, however, in this case, the 

angular momentum is a somewhat more complicated object. 

9 = 0, 0=11:12 

i13: = _2,2¢ + 2rsrK (ci) 
aq, r (6.5) 

f/c =r'¢-('s;K }ci)=r2 [¢-('~K }i]. 

As might be expected from the turntable example, the metric is pulled along and given off-

diagonal parts by the angular velocity. There is a shear effect which causes a drag of the inertial 
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frame, whose value is implicit in Eq. 6.5. The ratio of the inertial drag to the angular velocity of the 

rotating source is proportional to the ratio of the radius of observation to the Schwartzchild radius. 

crsrK 
(J)DRAG = 2;r 

I 
(roDRAG I ro)-2(rs Ir). 

(6.6) 

The rotational pieces are clearly the gravitational analogue of the magnetic field in 

electromagnetism. This should be obvious, in a sense, since the electrical part of the potential goes 

like l!r, whereas the magnetic part goes like 11,.2. The drag caused by this rotation is called Lense-

Thirring or Kerr precession. Numerically, for the Earth, the Schwartzchild radius is about lcm 

whereas the Kerr radius is about 3 meters. This means that the first order effect of gravity is roughly 

one part in 109, whereas the second order rotational part is about 1 part in 1015. This means that the 

inertial drag is only about 0.1"/year. 

(rs) 0 -0.9cm, (rx).-3.3m 

's IR.= 1.4 x!0-9, r8rx IR; - 7.0 x!0-16 

( (J)DRAG ). - 0.1" I yr. 

(6.7) 

The existence of the drag frequency leads us to predict certain precessions. Recalling from 

special relativity, when looking at the g factor in spin-orbit coupling in quantum mechanics, the 

Thomas precession of the spin due to being in an accelerated reference system, is proportional to that 

acceleration. 
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dS!dt=wxs 

- _ (iixii) Wr-- --
2c 

~1
2 

= GM I rc 2 
= rs I 2r 

ii= ( ~~}' = (rsc 2 
/2r

2
)7 (6.8) 

Wr = (;', )"2(;,) 
(wr)R0 -2.3"/yr. 

The time rate of change of the spin is zero in a local inertial frame, whereas the Thomas 

.frequency implies that a gyroscope (which is in this accelerated frame) will change its direction 

with respect to the fixed stars. Clearly, this particular precession is due to the fact that one is in an 

accelerated reference system. In a circular orbit, f3 2 is just proportional to the dimensionless 

quantity rslr. We can easily work out the acceleration, and therefore find the Thomas precession 

frequency. Calculating, we find a much larger effect than the Kerr precession which is about 

2.3"/year for the Thomas precession. Note that this precession has nothing to due with the Kerr 

solution and, in fact, is not a general relativistic effect in the sense that one third of it is just the 

Thomas precession due to special relativity. 

Because the direction of velocity is proportional to the momentum, and the acceleration is 

radial, then the vector time rate change and the spin is proportional to the vector cross product of the 

angular momentum of the spin just as it is in quantum mechanics. This fact allows one to define a 

spin-orbit potential just as is done in non-relativistic quantum mechanics. This points out the L · S 

nature of the coupling. It is the ratio of the spin-orbit interaction energy to the rest energy times the. .. 

Schwartzchild radius ratio to the observational radius which is important. 

2<l>so =(3's)[(L·S)/mr
2

] 

c2 2r mc2 
(6.9) 
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We will state without proof that the full machinery of the Euler-Lagrange equations using the 

Kerr metric gives you the Thomas precession times a factor of 3, or 6.9"/year in Earth orbit. We note 

fa passing that there is presently no experimental proof of the existence of any spin effect in.general 

relativity (either spin-orbit or spin-spin coupling), nor of any charge effect, 

Similarly, one can write down a spin-spin interaction potential for the Lense-Thirring 

precession frequency. 

2<t>ss -('s )[(i. s)/ mr
2 

]· 
c2 r mc2 

(6.10) 

This is quite similar in functional· form to the spin-orbit coupling .as one might expect. The 

geometric layout for a possible gyroscopic Earth orbit test of general relativity is shown in Fig. 6.2. 

If the spin is oriented along the acceleration, then we expect a precession of 6.9"/year due to the spin-

orbit coupling. By comparison, if the gyroscopic spin is aligned parallel to the Thomas angular 

frequency, then the spin-orbit precession is wiped out and the much smaller spin-spin precession 

frequency is tuned in. In the first case, iJJ x S has a maximum value, whereas in the second case it is 

zero. Neither of these experiments has been performed, however, it is conceptually possible to make 

these measurements, and they are planned for future shuttle launches. 
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Fig. 6.2: Layout of the dynamical vectors in the gyroscopic tests. The spin-orbit and spin-spin 
vectors are shown for clarity in the two orientations. 

Finally, it is of interest to examine the singularity structure, if any, of the Kerr solution. 

The exact Kerr metric approaches the limit of the metric given in Eq. 6.4, which is the weak rotation 

limit. The value of the parameters defining the radial and temporal parts of the exact metric are 

given below (without proof). 

(ds)!.-(cdt)
2(1-7 )-~ dr2 

••• 

p- r+(rxcos6)2 /2r 

t.: ,2(1+2'1>Ror I c2). 
(6.11) 

It is interesting to note that the parameter t. is indeed just the parameter one expects when 

modifying the Schwartzchild potential using the Newtonian approximation for rotations that were 

derived in Eq. 6.1. As a limiting case, if rx is small, one recovers the weak field limit given in Eq. 

6.4. If rx were to vanish, i.e. a non-rotating black hole, one would recover the Schwartzchild 
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solution. As in our discussion of Schwartzchild singularities, the infinite red shift surface 

corresponds to the situation where the temporal part, g44 , of the metric vanishes. By comparison, the 

infall sphere, or horizon, occurs when light (which goes on null geodesics) cannot escape. In that 

case the coordinate velocity of light is zero: These two surfaces are given.below. 

(6.12) 

In a situation exactly analogous to that for a charged black hole, the rotating black hole may 

not have a solution for the horizon. The physical reason for this is that the centrifugal effects are 

repulsive and they may overcome the gravitational attraction such that no black hole may form. 

This is exactly the analogue of the charged self-repulsion. 

Unlike the Schwartzchild case, the horizon is not congruent with the infinite red shift 

surface, therefore, signals can escape for radii less than r_, if they are boosted in the direction of 

rotation. One can use the vacuum rotation to rud escape. The simplest way to help is to boost yourself 

equatorially in the direction of the rotation. The horizon and infinite red shift surfaces meet at the 

poles; the shape of these surfaces is shown in Fig. 6.3. There are some interior singularities which 

we have not discussed. What is most important is that the infinite red shift surface and the horizon 

are not congruent. The region between them is called the ergosphere. 
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Fig. 6.3: Kerr metric singularity surfaces. The horizon, infinite red shift, and ergosphere are 
indicated. 

Rotational kinetic energy can be extracted from a rotating black hole. Clearly, that reduces 

the angular momentum until the Kerr radius goes to zero and all the rotational energy is removed. 

As first noted by Penrose, at the end of this extraction one is left with a non-rotating Schwartzchild 

solution with reduced mass. Vacuum fluctuations in the ergosphere can be used which decay into a 

pair of particles: one is in a negative energy orbit, the other escapes with positive energy. Energy 

can thus leak out near the equator and the rotating hole will spontaneously slow down. A similar 

concept will be discussed in the last Section of this note. 

A seen from Fig. 6.3, an intuitive way to think of this is that there is an equatorial bulge of the 

infinite red shift surfaces due to the rotation. Rotation can prevent the collapse of a star to a black 

hole. In particular, if the Kerr radius is greater than half the Schwartzchild radius, no singularity 
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will form - see Eq. 6.12. We can estimate this situation by observing the angular momentum of a 

·uniform sphere and noting that angular momentum is conserved in collapse. The. moment of 

· •inertia can be trivially calculated. The resulting expression for rK depends on the radius and,_J;he 

rotation frequency. We can evaluate the Kerr radius• by taking the rotation period of th1>.sun.(as 

observed, for example, by watching the·sunspots rotate on the surface of the sun), It turns out to.be 

roughly 2.4 km. 

rK >rs /2 

J =Im= ( 3~R2 )m 
3 

'K =5 roR 2 1c 

T0 - 30days 

(rK )0 - 2.4km. 

(6.13) 

·Since the Schwartzchild radius is 3.5 km, the rotation of the sun is roughly that which is needed to 

avoid a collapse. Since the sun is a fairly typical star, it must often be the case that a collapse is 

evaded by the existence of rotational kinetic energy. 
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7 RADIATION; GENERATION, DETECTION 

So far we have been discussing the static solutions of general relativity._. It is clear that, just,. 

as in electromagnetism, there·are both static and radiative solutions. -This -is evident from our·

derivation of the linearized theory with its wave equation. Gravitinos are obviously massless. •. 

quanta which propagate the gravitational force. Since they are massless spin 2 objects they have 2 

helicity states, like photons. We will try to avoid any of these complications with polarization and 

consider the trace of the gravitational field as a measure of the radiation strength. Like rotations, 

there has as yet been no direct detection of gravitational radiation, although sightings were reported 

in the late 1960's. Formally, the fact that linearized general relativity satisfies a wave equation 

yields the equivalent integral equation between the sources and the field exactly as in 

electromagnetism. These mathematical formalities are addressed in Appendix D. 

The long wavelength approximation allows us to simplify the integral equations and expand 

the fields in the moments of the source distribution. Given the fields, the time average radiated 

power can be found which is propagated away by those fields. One thus gets estimates for the radiated 

power for any particular system. In "deriving" gravitational formulas, because of the strong 

formal analogy with 'electromagnetism and because of our familiarity with electromagnetism, we 

will first look at the electromagnetic case. The approach taken will be to quote the static solution and 

look at the flux, or Poynting vector, for that solution. Then one makes the familiar dimensionless 

substitutions such as to get radiation fields. This is very similar to the spirit of the discussion of 

Mach's principle in Section 1. 

In electromagnetism, the static electric dipole field, for 2 charges q separated by a distance. b, 

goes like l!r3. The static flux, which is the energy per unit time, then goes like 11,A. Obviously, in 

order to have a true radiative solution, we need the flux crossing unit area to be independent of r. The 

radiation should also be due to acceleration. We therefore make the replacement of the static 
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distance b by the dynamic harmonic displacement d and replace r by the only other object which has 

the dimensions of length, the wavelength. The electric dipole moment is D. 

E-qb/r3 

(P)F.M - cr2 IEl2 
- cq2b2 

/ r
4 

b->d, r->A=c/ro 

q2d2 2 
(P)F.M ->-3-ro4 = ro4 (.5D) I c3 

c 

=(b)2 
/c3

• 

(7.1) 

This substitution implies that the radiated power is just proportional to the (acceleration)2 of 

the dipole moment, which is proportional to the fourth power of the frequency. The kinetic definition 

of these terms is given .in a Figure enclosed in Appendix D for reference purposes. What is 

extremely pleasant in this simple minded· dimensional analysis is that, knowing the static 

solutions, one can "derive" the radiative solutions by simple dimensionless replacements. 

For systems with zero dipole moment the next term in the expansion would be a quadrupole. 

In the case of electromagnetism, the substitutions that give fields which goes like l !r result in 

(fieldsl2 or an energy flux which goes like ro 6 • 

E-ro3 /r 

ro6 
2 

(P) F.M - 360c5 ( .5QEM) . 
(7.2) 

As discussed, gravitational radiation is very similar to electromagnetic radiation. The 

only difference is that the gravitational dipole moment is zero if th&·center of coordinates is chosen to 

be the center of mass of the system. It must therefore be concluded that the dipole moment of the 

matter distribution has no physical consequences. This is due to the fact that the spin 1 photon results 

in forces that are attractive or repulsive, but the spin 2 graviton is only attractive. This fact appears 

in the dipole or quadrupole nature of the electromagnetic and gravitational radiation respectively. 
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The substitution in the quadrupole moment formula for electromagnetic radiation, Eq. 7.2,. 

in order to convert to gravity, is the replacement of a with a0 as discussed in Section 1. The 

· dynamical quadrupole moment in electromagnetism is approximately the charge times the mean_ 

separation times the dynamical separation, as shown .in .Appendix D. The replacement then. is tQ ... 

replace the charged coupling with the gravitational coupling, leading to a gravitational radiatioI) .. 

which goes like w6 
/ c5 times the gravitational coupling constant times terms proportional to the 

dynamical quadrupole moment, 0Q, squared. 

a-->aa 

q2 -->GM2 

oQEM - qbd--> ../GMbd 
6 

(P}-~GM2b2d2 
c 

6 

-~G(oQ)2. 
c 

The exact formulae are given without proof in Appendix D and are reproduced below. 

(P}=~(/2)2 
45c 

= Gw6 ( oQ)2. 
45c5 

(7.3) 

(7.4) 

There have been no direct observations of gravitational radiation, but there has been an 

inferred observation based on the slowing down of pulsars. For this reason, we will look at the 

radiative lifetime of a system that is decaying by the emission of gravitational radiation. For a 

system of size R, the period is related to the velocity in a circular orbit. The velocity is a quantity we 

have already derived several times. Therefore, with an expression for the angular frequency ro, the 

radiated power can be expressed as shown below in Eq. 7.5. 
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~=R/v, f3=~r8 /R 
{P)- Gm6M2R4 I c5 

-(cr8 !R}' /G 

(PMAX }- c5 IG=3.7x1052 Joule I sec 

= 1026 Lo. 

(7.5) 

This equation gives the average radiated power for a system whose dynamical size d is equal 

roughly to its static size b, both of which are equal to R. It is easy to see that the maximum radiated 

power comes from a situation near final collapse when the size of the system is comparable to its 

Schwartzchild radius. In that case, the maximum radiated power depends only on the gravitational 

coupling constant Ge When calculating the numbers, it is found that this maximum power is 

roughly 1026 times the current luminosity of the sun. 

A tabulated series of potential sources of gravitational radiation is given in Table 7.1. The 

frequency which is quoted for the binary stars is the rotation frequency. The received energy is the 

energy at a distance of 100 light years. The surface area at a distance of a hundred light years is 

roughly 1041 cm2. The pathological system which gives the maximum radiated power, as shown in 

Eq. 7.5, has a characteristic frequency of order kilocycles if the binaries have typical solar masses. 

This means that the maximum radiated energy is of order 1056 ergs. At a distance of 100 light years, 

the received energy density would be roughly 1015 ergs/cm2. This is the absolute maximum that 

would occur if we observe the gravitational collapse of a star of a few stellar masses to form a black 

hole. In that case, the frequency of one kilocycle is roughly the time it takes light to go one 

Schwartzchild radius. This leads to an enormous received energy on the Earth's surface. Realistic 

sources (see Table 7.1) lead to somewhat reduced energies. 

73 



ASTROPHYSICAL SOURCES OF GRAVITATIONAL RADIATION 

Source Spectrum Energy received 

Binary star system discrete, v = 2 x 10-3 /six 10--9 erg I cm2 sec 
(of the AM CVn type) 

Collapse of neutron ·glissando, v-200/rec 1011 erg I cm2 

binary system increasing to v - 2x103 /sec 

Pulsating neutron star discrete, v = 103 -104 I sec 109 erg I cm2 

Rotating neutron star discrete, v = 3x102 I sec io-1 erg/ cm2 sec 
star (with rigid deformation) 

Rapidly rotating neutron discrete, v=t5x103 /sec 109 erg I cm2 

star (with rotation-induced (slight drift to higher 
deformation) frequency) 

Neutron star falling into continuous, peaked near 1010 erg I cm2 

black hole (10 M 0 ) v-104 /sec 

Gravitational collapse of continuous, peaked near 1013 erg I cm2 

a star (10M0 ) to form a black v-103 /six 
hole 

Table 7.1: Astrophysical sources of gravitational radiation. 
Energies are quoted at a distance of 100 ly. 

As previously mentioned, the loss of energy due to gravitational radiation means that the 

''·'' system radius' decreases, When the radius decreases, you are more tightly bound and the 

gravitational radiation rate increases. Similarly, as in the case of classical mechanics with 

electromagnetic radiation, the system is unstable and spirals inward. This was a problem before 

quantum mechanics. The hydrogen atom was unstable and, when the decay rate was calculated, it 

was such that·hydrogen atoms must decay at enormous macroscopic rates. This particular problem .. 

was solved by quantum mechanics, Since we do not have a quantum mechanical theory of gravity,-

the possibilities should at least be examined, 

The Virial Theorem tells us that the total energy (for power law binding) is of the same order 

as the kinetic energy. This can be written down in a straightforward way, The gravitational 

lifetime -rG is then of order the energy divided by the radiated power. This lifetime is the 
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characteristic time for light to go a distance equal to the size of the system times the ratio of the 

system size to the Schwartzchild radius cubed. 

e -T- Mc2f3 2 = Mc 2 (rs IR) 

"a= e I (P} 

=R(Rlr8 )
3

• 
c 

(7.6) 

The Virial Theorem tells us that the potential and kinetic energies for power law force laws 

are comparable. Therefore, the energy of the system to its radius can be related. Clearly, smaller 

· · T!l'l'IH t"e«'ttH11&·la~ abs~lute--values of the energy for tighter binding. This fact can be used to 

convert the lifetime into the change of size of the system as a function of time. If we put this into 

dimensionless units, we find that it is also in the ratio of the Schwartzchild radius to the system size 

to the third power. 

e-V-GM2 /R 

-GM2 
de---dR Rz 

dR I d(ct) - (rs I R)
3

, de I dt - (P). 

(7.7) 

The system is obviously going at the speed of light if it is collapsing to a size near the 

Schwartzchild radius, where the system radius approaches the Schwartzchild radius because the dR 

is roughly cdt. In less pathological situations, such as an object in Earth orbit, we recall that the ratio 

of the Schwartzchild radius to the Earth's radius is roughly 10-9, which means that the rate of change 

of, say, a satellite orbit is roughly 10-4 fm/sec due to gravitational radiation. This motion is 

certainly undetectable by means of radar ranging, for example. by making precision measurements 

of the Moon's orbit with respect to the Earth. 

(7.8) 
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It is clear that gravitational radiation is crucial to collapse and that the collapse is rapid for a 

·"binary star system with a system size near the Schwartzchild radius. This can be quantified.., 

somewhat by looking· at the·change of the period as-a-function of time. That change is just related to 

the change of radius as a function of the time as given in Eq. 7.7, using the relationship between the 

period and the radius, Eq. 7.5. 

T- R312 / c..{r; 

( )
5/2 d-r I dt = rs IR . 

(7.9) 

We find that the time rate change of the period is a dimensionless quantity given as some 

power of the ratio of the Schwartzchild radius to the system radius. The amount of energy radiated in . 

the collapse process can be estimated by taking Eq. 7.7 and integrating once. One uses energy 

conservation to assert that the radiated energy is equal to the change in gravitational potential 

energy as the system becomes more bound. If one starts from a large distance, the total radiated 

energy is just equal to the final value of the binding energy. The ratio of the radiated energy to the 

rest energy is proportional to the ratio of the Schwartzchild radius to the system radius. One can 

conclude, therefore, that in a process where a tightly bound system emits gravitational radiation at a 

characteristic size near the Schwartzchild radius, a large fraction of the rest energy will be radiated 

as gravity waves. 

R4 -R;j - r8
3c(t- t0 ) 

(L\e)RAD - GM
2( ;

0 
- ~) (7.10) 

(L\e)RAD I Mc2 - (rs IR). 

We now look at the rather sparse experimental data on gravitational radiation. There is a 

binary pulsar, whose period has been observed since 1974. The system consists of two objects of 
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roughly 1.4 solar masses, which means that the velocity~ is about 0.001, Eq. 7.5. Since the size of this 

system is about 109 meters, the ratio of the Schwartzchild to the system radius is a few parts per 

' · - ''million·. This is not a particularly spectacular system, however being a binary puls!!r, it ha_ij.,an 

extremely well defined period. This 'being the case, one can make- a very accurate ·measurement· of 

the time rate change of the period of the system. It has been measured to be increasing at a few parts 

per 1012. 

-r = 2790.6sec 

di- I dt - -2. 3 x 10-11 

M1 - M2 - l.4M0 

f3 - 10-3 , R - 109 m. 

(7.11) 

The observed slow down rate is consistent with the estimate given in Eq. 7.9 once all the 

·numerical factors, explicitly shown in Appendix D,.are put in. The curve given in Fig. 7.1 fits well 

to the data for the binary. Since it is a binary system, one can evaluate all the kinematic quantities 

which are needed. The curve shown in Fig. 7.lb is the exact curve expected if the system were 

radiating gravitational radiation at the expected rate. This is one of the few pieces of evidence, 

although indirect, for the emission of gravity waves and is perhaps not as compelling evidence as 

one might hope for. 

Looking in Appendix D at dipole radiation for an electromagnetic system, relative to the 

quadrupole gravitational radiation that we have been discussing, the ratio is just a ratio of the 

relative coupling constants times some OJ factors to make up for the dipole to quadrupole difference. 

Certainly, one would expect the ratio of the coupling constants if one writes the simplest first order 

Feynman diagram. Assuming that the binary system is moving at a substantial fraction of the 

velocity of light, the quantity of bro/c is a number of order one. 

As an example, if the system consists entirely of protons, then the ratio of the couplings is of 

·order·10-36. Therefore, if the system is charged.by even-the smallest amount, the electromagnetic 
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Total mass 
Pulsar mass 
Companion mass 
Inclinmioa 
Relative senrimajor axis 
Pulsar senrim•jor axis 
Companion scmjmajor axis 
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Fig. 7 .1: a) Orbital data for the binary pulsar. b) Measured slowing down of the pulsar. 
The curve ascribes the deceleration to the emission of gravitational radiation. 

radiation will dominate. If this is true, the slowing down of the binary system quoted above is 

fortuitous. For example, there are roughly 1057 protons in an object of roughly one stellar mass. 

Therefore, if gravitational radiation were to dominate, the system must be neutral to roughly 1 part 

in 1018, because the gravitational coupling constant is relatively so weak. 

.J.!1_ _ a0 (bro I c)2 

(P}EM a (7.12) 

a0 I a-10-36
• 

78 



To set the scale for possible detection of radiation, a selected set of binary star systems is 

given in Table 7 .2. Some of the shortest period binaries, which are within a hundred parsecs of the 

Earth, deliver of order 10-16 Joules/(m2 sec}. These are known systems, and therefore give a 

benchmark,· or bottom line, for'the detection .of gravitational radiation ... The ·nice thing about 

detection is that you know such systems exist and you know in principle how much they should 

radiate. The received power sets the scale for the sensitivity of your detector. One is guaranteed a 

signal without invoking strange and bizarre new astrophysical sources of gravitational radiation. 

The bad news is, of course, that the power scale is very low. 

How can the radiated power be related to the sensitivity of a possible detector? To begin, 

review the electromagnetic situation. Here the energy density goes as the square of the electric field 

and so the Poynting vector, the flux or the energy crossing unit area in unit time, is proportional to c 

times the energy density. This field causes an acceleration which is proportional to the coupling 

constant and the field itself. Appendix D shows us that the dynamical quadrupole moment is related 

to the tensor gravitational field. Therefore, it is simple to write down the gravitational Poynting 

vector. 

(7.13) 

The difference between the gravitational and electromagnetic Poynting vectors arises from 

the fact that the lowest order radiation is dipole for electromagnetism and quadrupole for gravity. 

Recalling from the linearized theory·Section, one recalls that a plane wave of the tensor field .<Pµv 

will lead to a wave of tidal acceleration, Tidal acceleration is expected because we know that it is 

what is intrinsic to gravity fields. Since the tidal acceleration effects the metric which defines 

79 



Binary Period Mass Distance ~ (-dE/dtlgrav Gravitational 

from Earth (orbital decay (J s-1) radiation at Earth 
(pc) time) (J m-2s-1) 

Tl Cas 480yr 0.94 5.9 3.8x 1o25 yr 5.6x1o3 1.4 x 10-32 
0.58 

~Boo 149.95yr 0.85 6.7 1.5x 1o24yr . 3.6x1o5 . 6.7 x 10-31, 
0.75 

Sirius 49.94 yr 2.28 2.6 2.9 x 1o22 yr 1.1x108 1.3 x 10-27 
0.98 

Fu46 13.12 yr 0.31 6.5 1.3 x 1o22 yr 3.6x107 7.1x10-29 
0.25 

~ Lyr 12.925 day 19.48 330 2.8 x 1012 yr 5.7 x 1o2l 3.8 x 10-18 
9.74 

UWCMa 4.393 day 40.0 1470 3.3 x 1010 yr 4.9x1o24 1.9 x 10-16 
31.0 

~Per 2.867 day 4.70 a> 1.3 x 1012 yr 1.4x 1o2l 1.3 x 10-16 
0.94 

WU Ma 0.33 day 0.76 110 2.5 x 1010yr 4.7 x 1o22 3.2 x 10-16 
0.57 

WZSge 81 min 0.6 100 4.9 x 106 yr 3.5 x 1o22 2.9 x 10-16 
0.03 

10,000km 12.2 s 1.0 1000 13.0 yr 3.25x 1034 2.7 x 10-6 
binary 1.0 

lOOOkm 0.39 s 1.0 1000 11.4h 3.24x 1039 2.7 x 10-l 
bina 1.0 
Mass of each component star is shown in units of one solar mass. The final two entries are hypothetical, 
very close binaries involving two one-solar-mass objects separated by 10000 km and 1000 km 
respectively. Data taken from M.J. Rees, R. Ruffini and J.A Wheeler, Black Holes, Gravitational 
Waves and Cosmology (Gordon and Breach, London, 1974). 

Table 7.2: Binary system sources of gravitational radiation. 

physical distance, a fractional elongation is expected which is proportional to the dimensionless 

quantity Kg!, which is also equal to 24>!c2. 

g - 80 +Kg> 

(dx/ x)- Kg>-2¢>/ c2 

_ K._ ( 2c )[J!)_]· WZ 4nr2 

80 

(7.14) 



The magnitude of this dimensionless "wiggle" in the .metric caused by the wave of tidal 

acceleration can be estimated. We use the maximum collapse case of 1015 ergs/cm2 quoted 

previously. 

K.. = ,/t6trG I c2 = 6.5x10-22 sec/ ..,/kg· m 

(eMAX} / 4m-2 at IOOly - 1012 Joule I m2 

w-103 /sec 

(PMAX} / 4m-2 
- 1015 Joule I m2 sec 

~ - 5x10-13 

x - IOkm = 1014 A 
ttx-x~-soA. 

(7.15) 

The coupling constant K.. is related to Newton's constant-G, as discussed in Section 3 on 

linearized general relativity. As previously mentioned, the absolute maximum collapse value of 

received power at 100 light years distance is 1015 J oules/(m2 sec). This maximum leads to a 

dimensionless "wiggle" of a few parts in 1013. If one imagines this being studied in a 10 km lever 

arm interferometer, then one would expect a displacement of 50 Angstroms, which is enormous. In 

fact, the most useful near binary, which is given in Table 7.2, is not particularly pathological and 

· · ' · · le'ads to a dimensionless "wiggle" of order 10-28. This is a factor -1015 weaker than the maximum. 

Observed Binary: 

3x10-1
• Joule I m2 sec 

~ - 3xl0-28 

(7.16) 

· There are a variety of laser interferometer gravity wave.detectors which have been, or .will 

· soon be, taking data and which are designed to have a .sensitivity in this dimensionless quantity of a 

few parts in 1022. This is certainly getting within hailing distance of detecting known objects. 

Work on these systems has been going on in the U.S. and elsewhere since the early 1970's. At 

present, a typical lever arm is physically about 10 meters, and optically, about 80 meters with plans 
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Fig. 7.2: a) Layout of interferometer for detection of gravity waves. 
b) Specifications for existing and proposed interferometers. 
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for extending the lever arm to several kilometers. Some data on present and future interferometers 

are shown in Fig. 7 .2. 

Finally, one needs to know how to extrapolate the interferometers looking for a few kilocycle 

radiation sources and the room temperature bars looking for stresses and strains from gravity 

waves. These latter are now operating in dimensionless elongation ratios of order a few 10-17. 

Removing thermal noise by going to cryogenic bars seems to allow one to operate at 10-18. It would 

appear that, momentarily, the interferometers will cross this limit and drive down to their avowed 

sensitivity of 10-22. This will indeed be an exciting time because we know that gravitational waves 

should be observed. It is "merely" a question of getting to the proper sensitivity. Once one can see 

galactic and extragalactic gravitational sources, a whole new spectrum is opened up, which is 

complementary to the electromagnetic spectrum. Exciting times are clearly ahead in this field. 
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Fig. 7.3 Sensitivity of bar and interferometric gravity wave detectors as a function of time. 
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8 NEUTRON STARS; COLLAPSE LIMIT, NEUTRINO DIFFUSION, B FIELDS 

In this Section, we will consider some of the technical questions about possible collapse .of,, 

objects into a black hole. The reason for studying this is·very simple; we have seen several times 

that the interesting Physics comes in the pathological situation when the size of the system is-near its 

Schwartzchild radius. We also know that there is no stability for a gravitational system. Because 

gravity is always attractive, it does not have any stable configuration, a fact which was noted by 

Newton. 

We are going to be looking at densities, so the first question we might ask ourselves is: What 

is normal density? What we mean by "normal" is what we are used to and what we are used to is the 

density of atomic systems. Atoms have radii which are set by a competitive balance between 

Coulomb attraction and the quantum zero point energy associated with localizing a system within a . 

certain region in space. To observe this, write down the Schrodinger equation for a single particle. 

This is just an operator statement that kinetic energy plus potential energy is total energy as 

recalled from the Equivalence Principle discussion. Using the uncertainty relation, momentum 

times position is of order 11. The minimum value for E occurs at ao. 

2 
L-e2 /r=e 
2m 

112 =-e2 /r=e 
2mr 

r=a0 =112 /me2 =1i.,/a 

-IA. 

(8.1) 

The expression for the total energy has a minimum which is the ground state. This state 

occurs at a characteristic radius, which is the Yukawa wavelength for the electron divided by the 

coupling constant. This makes some sense because, if the coupling were very weak, then the system 

would get very large as it is loosely bound. The Yukawa wavelength is also the only characteristic 
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length scale in the problem, so the Bohr radius must be proportional to it. Calculating the Bohr 

radius, a characteristic size of about one Angstrom results. The characteristic density is then 

roughly 1 proton per cubic Angstrom, or 1. 7 grams/cm3. 

(8.2) 

It is amusing that one can calculate, in a few lines, why most systems have a density about 1 

gram/cm3. Figure 8. la pictorially shows the situation where the size of the atom is the Bohr radius, 

or about 1 A. This size is set by the zero point energy of the electrons, whereas the mass of the system 

is localized in the nucleons, which are about 2000 times heavier. 

@@@ I 
ao~ !me 

a) 

@~@ M~mN 
ao 

@@@ I 
ro ~ /mN 

b) 

@@@ M~mN 

ro 

Fig. 8.1: a) Schematic for density of normal matter. b) Schematic for density of nuclear matter. 
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What about nuclear densities? By using the same arguments, the size is the Yukawa length 

of the nucleon divided by the strong coupling constant as. Because as is roughly 011e, the size is 

roughly lfm. Since this volume contains 1 nucleon, there is a nuclear density of 1018 kilogramfm3~·· 

Figure 8. lb shows the situation in this case where. both the zero point energy and the ·maas oLthe . 

nucleus are given by the same size scale. 

'o - "-NI as - lfm 

aN - 1018 kg I m3 

aNR3 = M 0 -4 R -12km. 

(8.3) 

An interesting question to ask is: What is the characteristic size of an object of nuclear 

density which has the mass of one solar mass? The answer is a radius of about 10 kilometers. This, . 

as will be discussed later, is the characteristic size of a neutron star. 

Stars are normally thought of as being stable because they burn for a long time. A star burns 

by fusion processes until it turns into iron, which has the lowest binding energy per nucleon. A 

crude lifetime estimate of a typical star can be made by taking the solar luminosity given in 

Appendix A, along with the solar mass. Nuclear physics explains that the binding energy per 

· · nueleon. f.-.,m .fusion is only .. aboutS.MeV ... Assuming.all is.constant. the lifetime is of order tens of 

billions of years. Therefore, a star is stable for a long time, but being a finite process, it burns out. 

The pressure of the fusion reactions can no longer be in equilibrium with gravity. There is nothing 

to prevent the collapse of the star into a much more compact object. 

B - 8MeV I nucleon 

B 2 
'!"0 --M0 c /L0 

mp 
(8.4) 

- 40 billion years. 

To test the stability condition for a burned out star, one needs to see if it is possible to balance 

gravity against the zero point energy of the electrons, which is the case for a white dwarf, or the 
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neutrons, which is the case for a neutron star. We proceed in analogy to the discussion in Eq. 8.1, 

where the balance between the zero point energy and the electromagnetic attraction was derived. 

First' we want to define another characteristic wavelength which is the deBroglie wavelength. I~ is 

·similar to the Yukawa wavelength except that the mass of the particle is replaced by its momentum 

divided by c. 

Quantum mechanics explains that each phase space cell in position-momentum space is of 

size h. This can be thought of as the closest possible packing, consistent with the uncertainty 

principle and the exclusion principle. Given the cell size, N states can be filled in a volume W up to 

the Fermi momentum PF. The Fermi momentum then defines the deBroglie wavelength for this 

situation. 

;.dB =11/ p 

di dji = tt3 

WpF3 =Ntt3 

(i..dB)3=W /N. 

(8.5) 

The Fermi momentum is related to the Fermi energy in general by the special relativistic 

formula. In particular, in the non-relativistic case, it is proportional to the square root of the Fermi 

energy. In the ultra-relativistic case, it is proportional to the first power of the Fermi energy. 

eF = p"f, /2m, NR 

=CPF· UR. 
(8.6) 

For non-relativistic particles, the lowest mass then dominates the zero point energy, while 

for ultra-relativistic particles,. there is no mass dependence. If the ultra-relativistic situation 

occurs, Eq. 8.1 shows us that the zero point energy goes as 1 Ir. Since the gravitational self energy 

also goes as 1 Ir, we are in an unstable situation. In the non-relativistic case, the zero point energy 

goes as 11,2. We therefore recover the stable situation, which is analogous to the discussion of the 
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hydrogen atom. The unstable regime is obviously reached when the Fermi level becomes 

relativistic. Nate that 13-a for the hydrogen atom, so that we remain in the non-relativistic regime. 

·· Since ~grows as M2, this will not be the case for gravity. 

The Fermi level can be related·to the number of states per unjt..volume ... Using.Eq. .8.5, the. 

Fermi momentum can be set equal to the mass at the stability boundary when the Fermi momentum .. 

is becoming relativistic. We define this to happen at a mass equal to the Chandrasekhar mass. At 

this mass, the gravitational self energy is equal to the total kinetic energy, which is the number of 

states times the particle kinetic energy. 

•(Niu)"' 1IN113 PF =" "' - - - me R 
atM=McH (8.7) 

GM~H IR= N(p'f, /2m)- N( m;2

} 

Solving for this limiting mass, it is found to be proportional to the Planck Mass. 

M'f:y-NRmc 2 JG 

_ Nmc
2 

[llN
113

] 
G me 

(8.8) 

-N•t3M2 
PL· 

The limiting number of particles is the total mass of the system divided by the mass of its 

constituents. This allows us to express the Chandrasekhar limit as a limit on the total number of 

particles in the system. The limit is the ratio of the Planck mass to the mass of the constituents 

raised to the 3rd power. 
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N=M/m 

M~H - M~{iM;L I m413 

(8.9) 

If the constituents are nucleons, then the Chandrasekhar limit on the mass is about 1.4 solar 

masses. Masses of pulsars (rotating neutron stars) are shown in Fig. 8.2. 

VELA X-1 ,____. 
4 u 0 900 ,__ ___ _. 

LMC X-4 
...____. A0535 

,___ _____ ___.. HER X-1 

CEN X-3 
SMC X-i 

1913+16 .... ... 
0 15 2 25 

M !Mel 

Fig. 8.2: Masses of known pulsars in units of solar masses. Note that no rotating neutron star 

appears to be much above Mell· 

Note that no entry greatly exceeds this mass limit. Since the Planck mass is roughly 1019 nucleon 

masses, the ratio cubed is about 1057. This is roughly the number of nucleons in the sun since the 

mass of the sun, as seen in Appendix A, is about 1030 kilograms. As recalled from the interior 

Schwartzchild solution discussion, there is a critical density when the radius of the system is equal 

to the Schwartzchild radius. It is of interest to note that, when the mass of the system is roughly one 
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stellar mass, the critical density is about 1019 kg!m3, which is roughly what we estimated for 

nuclear densities. One solar mass at ·nuclear densities, therefore, has a radius equal to. its. 

Schwartzchild radius. 

McH -L4Mo. 

Ge - 3c2 
/ (8nGrJ} 

-1019 kg I m3 
- GN. 

(8.10) 

As an aside, the density at which the system radius is equal to the Schwartzchild radius can 

be evaluated. That density, the critical density, decreases as the reciprocal of the system mass 

squared. This reconciles the fact that a very tenuous Universe may be closed (we may be living 

in'side a black hole), whereas an object of near nuclear densities may not close upon itself. Such are 

the scaling properties of the gravitational self energy. 

2GM 
-z=rs 

c 

cr>(3c6 /32nG3M2
) • 

(8.11) 

"' '· · •Thi!' relevant densities·can·now be evaluated .. We start with a star which, when it burns out, 

will start to collapse under the mutual gravitational attraction of all its elements. If it is a small 

enough star to be halted by the non-relativistic zero point energy of the electrons, it is called a white 

dwarf. If it is a higher mass object, it will continue to collapse down to linear dimensions roughly 

100,000 times less and finally be made stable by the zero point energy of the nucleons. This behavior 

obtains because, looking at Eq. 8.1, we see that the linear dimensions of the system go as the inverse 

of the mass of the constituent which is supplying the stabilizing zero point energy. If the system is yet·· 

heavier, (for example, we estimated a few stellar masses), there is no stability condition (as was 

shown) and the system must collapse into some sort of singularity. 
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As a side light, you might ask why a neutron star does not decay. When looking in the 

Particle Data Book, free neutrons are found to decay. In the case of a neutron star you are in a 

situation with nuclear densities. You know from the existence of various nuclei that neutrons are 

stable in a nuclear environment characterized by high nuclear densities. This is true because .all 

the low-lying states are filled, due to the high density, which makes the neutron stable. In fact, 

during the collapse, the reaction e- + p-> n + v is expected to occur as the immense pressure basically 

forces the electrons into the protons to make stable neutrons and a pulse of neutrinos. 
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0
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Fig. 8.3: Density and structure for a neutron star. 
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The structure of the neutron star, which is the most compact, non-collapsed structure 

imaginable, is shown in Fig. 8.3. The central density, as expected from Eq. 8.3, is. characterized by 

thEi nuclear density of 1015 gm/cm3. At much reduced densities, and much larger .sizes,. a shell of,,. 

material can be held in stable equilibrium by the zero point energy -0f the electrons. The ratio of those . 

densities is, as discussed, related to the mass ratio of the elementary particles providing the zero 

point stabilizing energy. 

For the remainder of this Section not much about black holes will be discussed. There is 

effectively no observational evidence for the existence of a real singularity and there is some 

question about the very existence of singularities in one's theory. It is, after all, a classical theory 

containing no quantum· effects. Conversely, quantum effects are expected to become extremely 

important when we are crashing down to a point singularity with infinite density. Therefore, the 

fact that the classical theory of gravity predicts point singularities is perhaps irrelevant, and in the 

absence of any data it is fruitless to speculate. 

In the remainder of this Section, we will consider what happens when the burned out nickle-

iron core, of order 1 stellar mass, collapses down to a neutron star. We imagine that a substantial 

fraction of the lost potential energy is available as gravitational radiation; see Section 7. We also 

imagine that the conversion of electrons + protons to neutrons will give rise to a distinctive neutrino 

pulse. Let us begin by considering the pressure in a strictly classical Newtonian formulation. The 

differential equation for the pressure can be found by considering the packing of a shell of matter 

under gravitational attraction. The attraction leads to a force per unit area, or a pressure element, 

which is proportional to the thickness of the shell, dr. 

df. Ga(r)M(r) 
dr= r 2 

cr(r) = C10 , M(r) = M0 (r I R)3 (8.12) 
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For a constant matter density, the mass scales as the radius to the 3rd power. This allows us 

to solve the differential equation for pressure as a function of radius. The boundary condition is that 

the pressuTe, by definition, vanishes at the surface. The pressure is.therefore.maximum at the .center 

of the star. This maximum pressure goes like the ratio· of the Schwartzchild radius to ·tli.e .. ~ys.tem 

radius and is proportional to the rest energy density. Thus, for a fixed mass it scales like the 

inverse 4th power of the radius. 

(f)MAX - GM0<T0 /2R 

- ( ~ )( r;~
2 

)- GM
2 

/ R4. 
(8.13) 

· As a numerical example, if the mass density is a nuclear density and if the radius is equal to 

the Schwartzchild radius, which is 10 km, there is a pressure of 1029 atmospheres. This pressure is 

1019 times larger than the pressure at the center of the sun, clearly because the problem scales as the 

4th power of the radius. 

<T0 =<TN, R = IOkm- rs 

(f) MAX - 1029 
ATM 

(f)MAX,o -1010 ATM. 

(8.14) 

Recalling the Schwartzchild solution discussion, the tidal stress on a person at the 

Schwartzchild radius was a mere 107 atmospheres. The general relativistic generalization of the 

differential equation given in Eq. 8.12 is a rather involved non-linear. equation due to Tollman, 

Oppenheimer, and Volkhoff. For example; pressure, as .seen in Appendix D, has the dimensions of 

·an energy density. Pressure obviously has mass and thus gravitates, therefore resulting in a 

complicated non-linear equation which must be solved numerically. Since this level of detail is 

outside the spirit of this note, it will not discussed further. 
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If a drastic simplifying assumption is made that there is no pressure gradient, then the mass 

interior to radius r just goes like r3• This assumption allows us to write a partial differential 

equation relating the mass and the radius. Assuming the system is in free fall, there is a partial 

differential equation for the acceleration of a mass element. Time can be solved for as a function of 

the radius using separation of variables. 

iJr I iJM -1I4trr2a 
2 2 -GM aiJ r/iJt =-2-a 

r 

r{t)-1213. 

(8.15) 

As asserted previously, this crude approximation implies a quick power law collapse. The collapse 

increases rapidly in its later stages, leading to a pulse of neutrinos and gravitational radiation. 

V -----------V 

z 

n n 

Fig. 8.4: Lowest order neutral current Feynman diagram for neutrino elastic scattering. 

Given the power law behavior of the collapse, a rather rapid neutrino pulse is expected. For 

example, in Supernova '87, there was a neutrino pulse discovered in underground experiments 

which was coincidental in time with the optical observation of the Supernova. As seen in Fig. 8.4a, 
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however, there was a considerable spread in the arrival time of the neutrino pulse. How can this be 

understood? In principle, the neutrinos are rapidly emitted. However, this is an extraordinarily 

dense substance (nuclear matter);·the neutrinos are expected to scatter and diffuse on their way.out. 

This would normally not be expected because low ·energy· neutrinos are very weakly interacting 

particles. However, the densities involved more than offset the weakness of the interaction. 

Figure 8.4 shows the relevant first order diagram for neutral current elastic scattering of 

neutrinos off neutrons by the exchange of a Z boson. It is clearly observed by coupling constant and 

dimensional arguments, that the 2 body neutrino scattering cross section is proportional to the weak 

fine structure constant squared. At high energies :!:, is expected to go like I is, however as stated 

earlier, there is a weak propagator that makes the weak interactions appear weak at low energies. 

At these energies we expect :!:, to be proportional to s. 

:!:,-g;[st(s+M~J'J 
__. aw2 f ns (8.16) 

--> aw2s/ irM~. 

This expression for the neutrino cross section leads to an easily estimated neutrino mean 

free path. 

L~1 ""Noa:Nk,, 

-N0o-Na~(s! M~) 
(L"' )e.=lOMev - 2X10-40 cm2 

L, - !Ocm. 
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Fig. 8.5: Data from IMB and Kamioka on the Supernova 1987 neutrino burst. 
a) Arrival time distribution. b) Energy distribution of neutrinos. 
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To make a numerical estimate, recall that the weak fine structure constant aw is comparable to the 

electromagnetic fine structure constant ex. This is what"is meant by electroweak unification. Given 

the"numerical value of ex and the Weinberg angle, aw is found to be about 1/30. Using Eq. 8.1§,for 

neutrino scattering off nucleons, a 10 MeV, e,; - B, neutrino (see Fig. 8.4b) has an incredibly small 

cross section of order 10-40 cm2. The mean free path at nuclear densities is only about 10 cm. The 

ratio of the densities is roughly the ratio of the linear dimension of the size of an atom ( lA) to the size 

of the nucleon (1 fermi), a factor of 105, raised to the 3rd power, or 1015. Since normal densities are 1 

gm/cm3, nuclear densities are 1015 gm/cm3. Because the source size is of order 10 km and the mean 

free path is 10 cm, it can be imagined that the neutrinos diffuse out from the core over some 

substantial period of time. A straight line neutrino time scale is Ric or 10 µsec for 10 km. For 

comparison, the scale in Fig. 8.4 is seconds. This spread was observed in Supernova 1987 and gave 

some important clues as to the dynamics of the collapse. Some supernovae properties are given for 

reference purposes in Table 8.1. 

Energetics 

Maximum Luminosity J(j44 erg s-1 

Energy in visual light 1o48 - 1()50 erg 
Total energy output 1()51 - lo52erg 
Expansion velocity 1o4 km s-1 
Temperature near maximum light 15000 K 

Light curyes and spectra 
Type I 

Near Maximum 
light for 
Plateau 
Duration 
H-lines 
Abundances 

30 days 
no 
2 years 
no 
Co, Fe? 

Table 8.1: Properties of Supernovae" 

Type II 

10 days 
yes, 100 days 
1 year 
strong 
solar 

What about the situation after the core has collapsed down to a neutron star? In this case there 

would be a rather dense object, and the question arises - What happens with the core? During 

collapse the magnetic flux is conserved. Thus, for example, if there is a one Gauss field at a stellar 

radius, collapse by a factor of 105 in linear dimensions (down to 10 km) results in a field of 1010 

Gauss. This field is far above any imaginable laboratory field that could be produced. For example, 
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a Fermilab magnet might run at 3 Tesla which is 3x104 Gauss, or a million times weaker. A plot of 

inferred surface magnetic field as a function of pulsar period is given in Fig. 8.6. The scale 

roughly agrees with our simple estimates. 

The angular momentum is anoth~r conserved quantity in a collapse;· which tells•us that ·ror2" 

is a constant. As an example, there is· a pulsar with a 0.33 millisecond period in the Crab Nebula. If 

we scaled up by (105)2, we would get 0.1 years which is certainly comparable to the 30 day rotation 

period of our sun. 

BR2 =CONST 

OJR2 =CONST. 
(8. 18) 

What is the implication for energy loss mechanisms? The dipole radiation formula made 

plausible in the gravitational radiation ,Section and which was quoted in Appendix D will be used. 

First we remind ourselves that electric dipole and magnetic dipole radiation are formally exactly 

the same. The rotational energy is the moment of inertia times ro 2 which is the analog of mv2 for 

translational energy. The slowing down rate of the frequency of the system can be found by 

equating the change in energy per unit time to the radiated power. 

{} 
2324 

p EM -3c Doro 

e = /ro2 

de/ dt- -Irodro I dt = (P)EM 

l-MCHR2. 
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Fig. 8.6: Inferred surface magnetic fields of rotating neutron stars as 
a function of rotational period. 

If a neutron star is taken with parameters roughly equal to those quoted above, the period of 

slow down due to the emission of magnetic dipole radiation can be found. 

( 
dOJ)-l 

Ts= dt OJ 

= ( c3 McHR2
) I ( D'iw2

) 

Mm - M 0 , R- !Okm 

B - 1010 Gauss- D8 I R
3 

w-l/(3x!O....,sec) 

Ts - IOOOyrs. 
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A lifetime of roughly a thousand years can be found for the typical case of a stellar mass of 

size 10 km with a field 1010 Gauss, and with a Crab Nebula pulsar scale frequency of some kilohertz;_ 

It is on this scale that the heaviest possible neutron star would radiate away its rotational energy ancL 

slow down. As said in the gravitational radiation discussion, if the object has any charge,or_any .. 

magnetic field, it would appear from coupling constant arguments that the slowing down effect 

would be dominated by electromagnetism and not gravity. It would appear from observation that 

this time scale is compatible with the slow down of some of the pulsars which have been observed in 

our galaxy. 

Finally, what about the effect of these magnetic fields on particles in the neighborhood of the 

pulsar? The magnetic field at the surface of the star rotates with a velocity which is proportional to w. 

The existence of this velocity implies that there is an electric field via relativistic transformation. 

E-fJB-mRB/c 

e - eER-eroBR2 
/ c. 

(8.21) 

This electric field would then accelerate particles over a characteristic distance of some kilometers. 

Therefore, the possibility exists that these point pulsars are sources of enormously high energy 

cosmic rays. For example, if we take a millisecond pulsar with 10 km radius, f3 is found to be 0.03. 

If we take 1010 Gauss, then the electric field is 1013 Volts per meter, which is quite a Linac. This 

Linac could be very handy in the Fermilab Upgrade program, because, if it extends over 10 km, it 

would lead to acceleration energies of 1017 eV which is a total lab energy of 100,000 TeV or a center-

of-mass energy in nucleon collisions of 10 TeV. 

f3 - 0.03, E- I013 Volt Im 

e-105 TeV 

.JS - lOTeV. 
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It is a fascinating speculation that all cosmic rays might be due to these point sources. All the 

ingredients exist to make immensely high energy accelerating mechanisms. However,. this may 

not· be · the case and· experiments on this topic in Astrophysics are plagued with small sample 

statistics. 'It would be interesting to think of this subject. as a possible Astrophysics experiment 

involving Fermilab physicists. 
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9 HAWKING "EVAPORATION" 

The topic i:n this Section is due to an observation by Hawking. Thus far, any discussion of., 

quantum gravity effects has been studiouslyavoided:•Afirst attempt would-be to try to.do-quantum-. 

field theory for some other interaction on a classical curved space-time (due to gravitation). Few 

gravitational quantum effects should be expected since the classical curvature radius is large with 

respect to the Planck length. The Planck length is the characteristic length over which we expect 

quantum fluctuations in the metric. As mentioned earlier, this should only set in at enormously 

high energies which are presently inaccessible to direct experiment. Hawking realized, however, 

that a black hole creates particles as a black body at a temperature which we label as the Hawking 

temperature. We omit the proof of this assertion. 

(kT)H = l!a/2irc 

a= GM /r,Z 

=c4 /4GM 

= c2 !2r8 • 

(9.1) 

This thermal radiation leads to a loss of mass or, ultimately to the "evaporation" of black 

holes. The reason is simply because the surface acceleration at the Schwartzchild radius of a black 

hole increases as the mass decreases. As the radiation occurs and mass is lost, the surface 

acceleration rises, and the surface acceleration is proportional to the temperature. At higher 

temperatures one emits more energy, as is familiar from the Stefan-Boltzmann Law. This is, 

therefore, a runaway process and the black hole spontaneously evaporates. It was Hawking's 

insight that lead to the realization that black holes are not stable under quaIJtum fluctuations. 

The particles are created near the horizon, or the Schwartzchild radius, by the strong 

gravitational fields. It is a vacuum fluctuation during which, for example, one particle falls into the 

hole and the other escapes. This is similar to the Penrose mechanism for extracting energy from a 
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rotating black hole. Instead of sending a particle in on some trajectory, however, one allows the 

vacuum to make the quantum fluctuation resulting in the pair of particles. By calculating, one 

'""-firids that•the characteristic thermal Hawking energy for the sun is-roughly 1Q:18 GeV whi@ is 

completely unobservable as it is much less than the 5,000 K0.at the sun's surface. 

TH - 6.2 x10-• K 0(M0 IM} 

(kT)~ - 1.4x10-1
• GeV. 

(9.2) 

The Stefan-Boltzmann law can be used to derive the lifetime, rH, for this evaporation 

process. In Eq. 9.3, cr is the Stefan-Boltzmann constant. In all previous Sections, cr was the matter 

density, p was the charge density, and l: was a cross section. The energy per unit area per unit time 

is U and is proportional to the fourth power of the temperature. If U is set equal to the rest energy of the 

singularity divided by the evaporation time (or the Hawking time) times the radius squared, then by 

simple dimensional arguments the evaporation time is found to be proportional to the Schwartzchild 

radius. If one picks the most extreme environment for which we have evidence, a neutron star with 

radius equal to the Schwartzchild radius (10 km), the evaporation time is enormously longer than 

the lifetime of the Universe. Clearly, this quantum evaporation is only important for miniscule 

black holes with an extremely small Schwartzchild radius, otherwise it is irrelevant to the large 

scale structure of the Universe. 

u =err• 
= (Mc2)! rHR2 

crH-[(M~rs )(~Y}s (9.3) 
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The real significance of evaporation, however, may be that it is telling us that quantum 

mechanics modifies the classical theory in. predicting singularities. Since, in this first look one 

·finds'that singularities disappear, perhaps they do not exist in the full quant.w:n,theory of gravity .... -. 

Finally, in· a real· quantum theory-of gravity;the· coupling constant diverges. and will .violate •. 

unitarity at sufficiently high energies, of order the Planck mass. The classical theory of gravity, 

although it has enjoyed enormous success and has been tested (as has been seen) in many different 

ways to a few percent, must break down at energies of order 1019 GeV. Historically there have been a 

variety of attempts to avoid this problem which are beyond the scope of this simple minded note. At 

some future point, one can look forward to understanding quantum gravity and thus how the 

unitarity violation is evaded - this is something "devoutly to be wished for."' 

The implicit assumption here is that Nature is simple, unified, and ultimately explicable .. 

The goal is to combine gravity and quantum mechanics, and perhaps unify all the forces of Nature. 

"What we call the beginning is often the end and to make 

an end is to make a beginning. 

We shall not cease from exploration, and the end of all 

our exploring will be to arrive where we started and know 

the place for the first time. 

A condition of complete simplicity 

And all shall be well". 

T.S. Eliot, Little Gidding 
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APPENDIX A 

USEFUL CONSTANI'S FOR SOLAR SYS'IEM GR TESTS 

ASTRONOMICAL CONSTANTS 

Sun: mass M0 = l.99xl033 g 

radius R0 =6.96x1010 cm 

surface gravity Ko= 2.74x104 cm I sec2 

luminosity ~o =3.9xl033 erg/sec 

Earth: mass M0 =5.98x1027 g 

equatorial radius R0 =6.38x108 cm 

polar radius R; =R0 -2.15xl06 cm 

surface gravity g = 9.81x102 cm/ sec2 

moment of inertia: 

about polar axis /
33 = 0.331 M0 R0

2 

about equatorial axis 122 =111 = 0.329 M0R0
2 

period of rotation I sidereal day= 8. 62 x 104 sec 

mean distance to sun I A. U.= I.50 xl013 cm 

orbital period I sidereal year= 3.16x10 7 sec 

orbital velocity 29.8km/sec 

Moon: mass Mc = 7.35x1025 g 

radius Re =I. 74 xl08 cm 

mean distance from Earth 3.84x1010 cm 

orbital period I sidereal month= 27.3 days 

Planetary orbits: 

Period Perihelion Distance Eccentricity 
Mercury 0.241 years 45.9 x 106 km 0.206 
Venus 0.615 107 0.00682 
Earth 1.00 147 0.0167 
Mars 1.88 'lfJ7 0.0933 
Jupiter 11.9 741 0.0483 
Saturn 29.5 1350 0.0559 
Uranus 84.0 2730 0.0471 
Neptune 165 4460 0.0085 
Pluto 248 4420 0.249 
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INTERVAL: 

4 VECTORS!I'ENSORS: 

Position 

Velocity 

Acceleration 

Momentum 

Force 

APPENPIXB 

SPECIAL RELATMTY 

8Zv =[~
1 

~1 ~1 ~]~ 
0 0 0 I ct 

Flat Space 

ds2 = 8Zv dxµdx • = dxvdx • = (cdt) 2 
- (di')2 

=invariant length, same in all I. F. 

(x,ct) xP 

r(v,c) uµ =tfxP /d(sfc) 

r[~ + Aµ= dUµ I d(s I c) 

p2 (~·a)] 
r, (.B •a) 

(p,e I c) pµ =mUµ 
mr(v,c) 

(F,F 4
) 

Fµ =mAµ 

r(j,J . .B) = dpµ I d(s I c) 

v=di'fdt .B=vfc 

ii=dV/dt 

J=ap/dt 
r=If~I-.82 
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APPENDIX B Ccon't> 

SPECIAL RELATIVITY 

4 VECTORS!I'ENSORS: 

Derivative ( v, a(:r)) aµ 

(-v. a(:1J (gotv a,= aµ 

Divergence V•A a Aµ µ 
+aA4 I a(ct) 

Gradient ( ---. a¢ ) -Vq,, a(ct) 
aµq, 

Laplacian -v2q,+ft 
a2(ct) 

aµaµq, 

Maxwell's Equations (A, qi) Aµ ,Jµ = p'Uµ 

( avav)Aµ = 4n Jµ 
c 

a,Av -0 

Mass Tensor T44 = O"C2 Tµv = G•uµuv 

T4i = (cV)1 c a,Tµv = 0 

V·(<JV) 
=-ao-1 a1 

Pressure s .. = f.o( rf3)2 sµv = 

(Stress Tensor) c2d[o-W] ~{ uµu• -c2(gotv] 

=-f.odW' 
a(rµv + sµv) = 0 
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QUANTITY NEWTONIAN 

Source aM 

Continuity de= -f.0d'¥ 

Field <!> 

Field '12<1> = 4nGaM 

Equation 

;c mc
2 [P·P] L=- 2<1> 

2 --::z c 

% 2[i3·i3] H = !!!£_ 2<1> 
2 +-:r c 

Metric -

APPENPIXC 

COMPARISONS 
EQUATIONS OF MOTION 

SR-FREE SR-EM 

- Pc= 'YoPc(I- f3of3u) 

Jµ = (J,cpc) 

=p'Uµ 

- dµfµ = 0 

- Aµ 

- ( a,_a'-)Aµ = 
4" 1µ 
c 

!!!. u uµ 
2 µ 

!!!.u uµ 
2 µ 

+iu Aµ c µ 

!!!.u uµ 
2 µ !!!.u uµ 

2 µ 

[I 

0 0 

ll 
gEM = g° 

-I 0 

0 -I 

0 0 

"'8SR = g° 

~ 

LGR 

(fM = y5aM(l-/Jof3u)2 

Tµv = a•uµuv 

JµTµv = 0 

q,µv 

( a,_a'-)q,µv = -KJµv 

mu uµ 
2 µ 

+; t( i/>µv - g;v I/> )uµu v 

;[gzv+k.(i/>µv_ g~v q, )]uµu• 

o Kµv 
[ 0 J gwR=g +k. i/>µv-2'1> 

Construct LGR equations to have coupling ((, ii= - V<l> in NR limit, and satisfy gauge conditions. 
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QUANTITY 

Wave Equation 

Integral Wave Equation 

Moments of Source 

Distribution 

Time Averaged 

Radiated Power 

Order of 

Magnitude Estimates 

ArPENl)IXD 

RADIATION 
EMvs.LGR 

EM 

(a, a'- )Aµ = 4 ir 1µ 
c 

aµAµ =0 

AµC )=.!. f [1µ(i',t')).U' 
x,t 1- -·1 c x-x 

t'=t-lx-x'l!c 

-:,f 1µ(x',1-~}u'. 
A(x,t)- c~[(n)RET] 

ro4 2 
(P)=-, !Bl 

3c 

1 I ~l2 --D - 3c3 

+q•- ld r. f 

-q•± 

(P)-~ro4 
3c 

(8D)2 4 
---ro 

3c3 

D=2q[b+dsinrot] 

111 

LGR 
( a,_a'- )q,µv = -f(f'µv 

aq,µv_o µ -

q,µv(i t) = -K_ f [rµv(i',t')]di' 
• 4n 1.x- x'I 
-;; f Tµv( x',t- ~ ).u·. 

</!'' i,t)-- -( -t [ ( Qij) ] 
8irr 3 RET 

(P) = Gro
6 

IQ'ij2 
45c5 

G i-·· 12 =--Q'' 
45c5 

M • 
M • 
(P)- ZGs (Mbdf ro6 

45c 

G(8Qj2 6 - ro 
45c5 

Q=M[b+dsinrot]2 


