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ABSTRACT 

The resonances in the toroidal beam pipes of the asymmetric storage rings are 
computed. The change in tunes due to pipe's curvature is studied. These effects 
are found to be negligibly small. The issue of free-space radiation is discussed. 

I. INTRODUCTION 

The curvature of the beam pipe can lead to residual longitudinal and transverse 
forces on the particle beam even if the velocity of the particles approaches the 
velocit"· of light. In Section II, we compute the resonances that exist in the toroidal 
beam pipes of the asymmetric storage rings. In Section IIL the modifications to 
the betatron tunes are studied. \\'e find that the effects of these residual forces 
are negligibly small. Finally in Section IV, free-space radiation is reviewed and 
its relation to the radiation inside a closed vacuum chamber is discussed. 

II. RESONANT IMPEDANCE 

111 a circular accelerator or storage ring, the beam pipe has the topology of a 
toroid. If the beam travels with velocity (Jc at a radius R, the electromagnetic 
wave traveling with tlw beam will have a phase velocity r,Bc/ Rat a radius r. When 
this phase velocity exceeds c, the electromagnetic wave will be able to propagate 
(in ana1ogy to a straight waveguide). Because the toroidal beam pipe is closed, 
these are eigenwaves with discrete frequencies. These waves will act back on the 
beam and the beam sees a resonant impedance. As described above. the condition 
for this to happen is 1 

R(3 
~ > 1, (2.J) 

*Operated by the Cniversities Research Association, Inc., under contract. "':ith the U.S. De­
partment of Energy. 
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where R" is the radius of the outer edge of the beam pipe. In other words. 
R_ = R 7 b. where b is the radial distance from the beam to the outer wall of 
the pipe. The asymmetric B factory consists of storage rings for electrons and 
positrons of a few Ge\'. As a result. Criterion (2.1) is always satisfied. 

These toroidal resonances have been studied extensively in the literature. 1
•
2 

Here.3 the energies of the two rings are 3.1 Ge\' and 9.0 Ge\' \\'itl1 corresponding 
ring circumferences 733.3 m and 2200.0 m. The cross sections of the beam pipes 
are taken t.o be rectangular with full height h = 3 cm and half-width b = 6 cm. 
The walls of the pipes are assumed to be stainless steel with a conductivity of 
er = 1.37 x 106 (ohm-m)- 1. The frequencies and impedances zT_E.TM of the first 

'•J 
few resonances are listed in Table I and Table II. Here, (i,j) specifies the ordering 
of the modes. respectively in the radial and vertical directions. r nlike the usual 
definitions of TE and TM, they are defined here with respect to the vertical axis 
of the toroid. 

' zTE,TM /n Mode i Frequency Harmonics 
I 

Q ,, 
' I 

i I GHz ohms 

TE10 182 4.46E+5 6.24E-3 i 3.20E+4 

TM10 228 5.58E+5 8.61E-3 1.67£-4 

TE20 ' 287 6.57E-,-5 9.71E-2 9.57E-c4 

I:\1 20 314 7.67E+5 2.00E-2 1. 95E-+ 4 

TE30 359 8.78£-5 1.90E-1 1.35E-t 5 

T:\ho 408 9.97E+5 2.17E-2 2.23E-'-4 

Table I: The first six lowest frequency modes of the 3.1 Ge\' ring. 

In our model. the cutoff frequencies (harmonics) of the two rings are, respec­
tively, f, = 2.50 Ge\' (n, = 6120) and fc = 2.50 GeV (n, ~ 18300). We see thai 
the resonances occur a.t very high frequencies but the impedances per harmonic 
can be appreciable. The impedance per harmonic appears to increase for higher 
modes as depicted in Tables I and 11. In fact, it will fall off very fast after some 
modes. For example, Z;,/n reaches a maximum of 0.213 ohms ITE40 ) for the low­
energy ring and 0.0311 ohms (TE 40 ) for the high-energy ring. These resonances 
appear to be different from those impedances arising from discontinuities of the 
vacuum chamber, because beam particles ai different radii R see different sets 
of toroidal resonances. Therefore. the impedance of the ij-th mode Z,,(R) is a 

2 



----~-----

l\fode ' Frequency Harmonics zTE,TM I 
13 In Q 

GHz ohms 

TE10 316 2.31E-6 9.13E-4 4.22E-4 

TM 10 395 2.90E+6 l.26E-3 l .19E-4 

TE20 465 3.41E+6 l.42E-2 l.26E+5 

TM20 543 3.99E-6 2.93E-3 2.57E-4 

TE,o 622 4.56E+6 2.79E-2 l.78E+5 

TJ\I,o 706 ! 5.lSE-6 3.17E-3 2.93E-4 
----

Table II: The first six lowest frequency modes of the 9.0 GeV ring. 

function of R, the radius of curvature of the particle orbit. However, it has been 
shown 4 that if Z,;(R) varies slowly across the beam. (Zi; /n' is exactly the longi­
tudinal Z/n that drives the self-bunching (or microwave) instability of the beam. 
Therefore. random currents (Schottky noise) which exist at arbitrary frequencies 
on a bunched beam can in principle generate internal bunch instabilities. Here, 
fort he TE10 mode of the low-energy ring, Zf0E varies by 9. 7o/t across a beam width 
of l mm. 

Because of the intense synchrotron radiation from the electrons or positrons, 
intensive pumping often requires a rather wide width of the beam pipe. For 
example. the beam orbit of the 9.0 GeV ring can be b = 41 cm from the outer 
wall of the beam pipe. The lowest resonance (TE10 ) then occurs at 108 Ge\' 
only, much lower than the corresponding 316 Ge\' for b = 6 cm. However, the 
impedance per ha.rmonic becomes much smaller, Zin= 1.16 x io- 22 ohms. As 
a result, theses resonances play no role in the beam dynamics at all and can he 
safe]!- neglected. Table III shows the frequency and Z/n of the lowest resonance 
(TE10) as a function of the radial distance b from the beam orbit to the outer wall 
of the vacuum chamber. 

III. CENTRIFUGAL SPACE-CHARGE FORCE 

In a straight beam pipe, a particle beam also induces transverse space-charge 
force on a beam particle. This force is of the order ,-2 due to the near cancellation 
of the electric and magnetic fields. However, in cun·ed geometry, this cancellation 
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b Frequency Harmoni< zTE;n 
10 .I Q 

cm GeV i ohms 
I 

--' 

6 316 2.32E-6 9.14E-04 4.22E-" 4 

12 210 l.54E-6 l.30E-06 4.50E+4 

18 168 l.23E-6 9.llE-10 4.66E+4 

24 143 l.05E-c6 4.75E-13 4.77E+4 

30 127 9.33E+5 2.lOE-16 4.84E+4 

36 115 8.47E+5 8.37E-20 4.89E+4 

42 106 7.80E+5 3.lOE-23 4.92E+4 

Table Ill: :Vlode TE10 for the 9 GeV ring as a function of b, distanrt> from beam 
orbit to outer wall of beam pipe. 

is incomplete, leaving behind5•6 

' - -1 >. IE - V x B ,...., --· , 
: ac 41rEoR 

( 3 .1) 

even when the particle ,·eJocity ,~equal c. In the above, R is the radius of the 
beam orbit and >. is the line charge density of the beam. This residual force 
has been termed "centrifugal space-charge force" (CSCF). Lee 7 pointed out that 
there is another transverse force of equal magnitude in the curved beam pipe. This 
second force is a result of oscillations of the particle's kinetic energy in the present 
of the beam's electric potential. as the particle undergoes betatron oscillations. 
Although these two transverse forces will cancel each other considerably so that 
excitation high-order resonances may no longer be a concern, nevertheless, they 
can still affect the betatron tunes and chromaticities. 

If we denote by fir the radial deviation of a particle from the ideal beam orbit, 
the equation gO\·erning the radial motion can be linearized to 

fir"= [-~ - _f_' (E, + ~ 8E, - ~Bz)] fr' 
r 1mc er c 8r 8r ,~R 

(3.2) 

where rn is the mass of the particle, 'prime' is the derivative taken along the beam 
orbit, and we have let v --> c. The radius of the orbit R is given by 

(3.3) 
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In Eq. (3.2). the radial electric field £, arises from space charge while the vertical 
magnetic flux density B, contains a space-charge part and an external part. The 
term E, /er is the space-charge force due to kinetic-energy oscillation while the 
resi is CSCF. Following Lee, we separate out the space-charge ( sc) parts of the 
fields and define at r = R 

F = - (E, + B,) I . 

C sc r:::R 
( 3.4) 

8G = _ (E, + ~ 8£,-'- 8B3 ) 

8R cR c 8r 8r " ,~R 
(3.5) 

Then, Eq. (3.2) can be rewritten as 

br"= [-~-BR(l~F/B) (-:~-:~)]hr, (3.6) 

where B is the vertical guide field of the dipoles and quadrupoles. Lee showed 
that 

F = 0 ( Zo>.) ' 
4rrR 

(3.7) 

and is positive, while 

(3.8) 

with Z0 = 376.7 ohms and is also positive. The asymmdric rings carry average 
beam currents of 3 amp with bunches containing N = 1.589 x 1011 particles 
each. In the higher- (lower-) energy ring, there are 864 (288) bunches of rms 
length a, = J.O cm {1.4 cm). Expressing in terms of the electron classical radius 
r, = 2.818 x 10-15 m, we obtain 

F ., { 6.36 x ro- 1 

TelV 

B ~ 4at) = 1.32 x 10-s 

higher-energy ring 
(3.9) 

lower-energy ring . 

shm,·ing that the effects of curvature should be very small. In computing the mod­
ification to the betatron tunes ~v, 8G/8R can be neglected at the quadrupoles 
where 8B/8R is large, but must be retained elsewhere. We get 

t.v ~ a[-~(~)J+a[- 41rrfohR~~)(:~)d5] 
0 [-~ (~)] + 0 [-~ (:~)] 
a[-~(~)]+a[-;(~)]. (3.10) 

where 8(5) is the horizontal beta-function. We see that the modifications to the 
tunes are extremely small. The same applies to the vertical tunes. 
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IV. FREE-SPACE RADIATION 

In free space without any beam pipe, the power spectrum radiated by a particle 
carrying charge f a.nd traveling along a curve with radius of curvature p. as deri,·ed 
by Schwinger ,8 is (in mks units) 

( 4 .1) 

for w « w 1,, and drops exponentially as 

(Zo£ 2
q

4 )(2)l(wo)(w)l -•w/ 3w { 55w1, } P(w·)= ---- -. - -.- e f• l-c---··· 
4irp T.. Wf• Wj, 96 W 

(4.2) 

when .... ~ Wf,. In the above, the angular frequency is defined as wo = Be; p and 
the critical angular frequency is WJ, = 21 3 w0 . '.'iote that "-'!• is only an order of 
magnitude; it has also been defined as ~1 3w0 by some authors.The power radiated 
into each harmonic n = Rw/!3c is Pn = w0 P(w). where fl. is the average radius of 
the particle orbit. The impedance at then-th harmonic seen by beam particle is 
giYen by Z,. = 2Pn/I~. where!,,= e,Bc;r.R is then-th harmonic Fourier current 
amplitude of the E-function charge under consideration. Including the reactive 
part 9 but neglecting the higher-order terms, we obtain for n « n 1., 

Zn= Zon-} (fl.) [3tf(})] (.J3 -i~) . 
n (3p .J3 2 2 

(4.3) 

The squared-bracketed term gives 0.93889. Since fl. 1s usually larger than p, 

therefore very closely 

'·I Zn I' Z -2(3 - ~ on 
In 

( 4.4) 

with Z0 = 376. 7 ohms. 

There is a fundamental difference in the quality of the free-space radiation 
and the radiation inside a beam pipe. In free space, the radiation spectrum 
is continuous, whereas inside a beam pipe it consists of discrete resonances in 
order to satisfy the boundary condition at the pipe's walls, as was demonstrated 
in Section II. In a storage ring, the beam is shielded by a beam pipe so that 
radiation into the infinite free space is not possible below cutoff frequency of the 
beam pipe. Above cutoff. howeYer, electromagnetic waves can propagate inside 
the vacuum chamber. When the wavelength of the radiation is a few times less 
than the radius of the beam pipe, it appears that the presence of the pipe's walls 
is irrelevant. This implies that the coupling impedance should be given roughly 
by the free-space radiation value. 
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The resonances inside a toroidal beam pipe start with the TE10 mode at a 
harmonic n, giYen approximately for large h by9 

R+.8 - ~ R = 1 + o.sos62n, ( 4.s) 

where R = p is the radius of the beam orbit and b = R, - R its distance to the 
outer wall of the rncuum chamber. :\ote that criterion (2.1) has been included in 
Eq. ( 4.5 ). We obtain 

n, ~ 
1 

Y2 
( 4.6) 

where we have approximated 0.7271 by 1/,12. It was also shO\rn in Eq. (4.28) of 
Ref. 1 that the shunt impedance over Q of the resonances falls off exponentially 

(
Z)TE,TM 
- . ,..,_, e-4n/3nJ• 

Q ,, 
(4.7) 

according to the free-space cutoff harmonic n1, = 2; 3 in the same way as the free­
space radiation in Eq. ( 4.2). From Eq. ( 4.6), we see that the toroidal resonances 

can begin at a large range of values. \'Vhen * ~ 2~,, 

( 4.8) 

Thus the toroidal resonances exist from n, ~ }, ( ~) 312 
to n1, where they roll 

off exponentiallv. When .1'. - - 1- = - 1- or __!__ (B) 312 
= 2- 3! 2n the start of the 

J R 2-v2 2-y2 y2 b fs' . 

resonances moves to n, = nf•· Thus Z/Q of the resonances drop off rapidly. 

\\'hen ~ -
2
!, <i". 2 ~, or }, ( ~)'1 ' ~ n 1., the start of the resonances is very much 

above nf, and mows to infinity eventually, implying that these resonances are 

of negligibly small values. Finally when * < ,!, or }, ( ~) 312 
> n1,, there is no 

solution ton, in Eq. ( 4.5) implying that the resonances do not exist at all. 

Coming back to the situation where toroidal resonances are possible. From 
Table Ill, we know that the frequency will be at least 106 GHz or the wavelength 
at most ~ 3 mm. Thus the pumping ports may ha,·e openings bigger than the 
wavelengths of these resonances. The beam will therefore see a rather diffused 
rncuum-chamber. The result is that the resonances will be heavily de-Qued and 
overlap each other. The spectrum will become more and more continuous. If the 
port openings are made still larger, the radiation will pass through those openings 
as if there were no beam pipe at all. The radiation therefore resembles free-space 
radiation. \Ve may therefore conjecture that if the Z/n of these resonances were 
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avernged over the range of harmonics in Eq. ( 4.8). the awrage would be given by 
the free-space Zn/n of Eq. (4.3). 

A very wide beam pipe of full height h with pump-port openings at the outer 
wall is very similar to two infinite parallel plates separated b)- h. The peak rnlue 
of the resistive component of the coupling impedance is found to be11 

( Zn) ( h/2) 'Re -.;; ~ 300 7f ohms, ( 4.9) 

at roughly the harmonics 
' 

n=(h~2)' ( 4.10) 

when the synchrotron radiatio11 is full)· unshielded. l\ote that Eqs. ( 4.9) and 
(4.10) are compatible to Eq. (4.4). For the low- (high-) energy ring, this amounts 
to 0.039 ohm (0.013 ohm) and is the peak impedance loss per harmonic due to 
radiation. 
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