
A
V Fermi National Accelerator Laboratory

FN-535

'1 I ;,;m~h.:1
'-

MXYZPTLK: A Practical, User-Friendly C++
Implementation of Differential Algebra: User's Guide

Leo Michelotti
Fermi National Accelerator Laboratory

P.O. Box 500
Batavia, Illinois 60510

January 31, 1990

0 Operated by Universities Research Association Inc. under contract with the United Stales Department of Energy

t

Iv1X)'ZPTLK: A Practical, User-Friendly C++ Implementation
of Differential Algebra:

Lser's Guide

Leo Michelotti

1 Introduction

Except for Section 3: which is intended to motivate as well as to inform, this note is written for people who
already (a) have heard about differential algebra and want to use it and (b) write programs in C++ . Those
who have not yet been exposed to these topics are invited to read the references in the bibliography. Here
we shall only describe how to use Version 1.0 of MXYZPTLK, a differential algebra toolkit1 programmed
using GJ\U C-:--_._ on a Sli'.N workstation. The toolkit implements two classes: DA and DAVector) which
model the numbers of differential algebra, just as "double' variables model real numbers. As its name
suggests 1 a DAVector con1ains1 as part of its structure, an array of DA variables; it is introduced primarily
for concatenation.

In a previous paper(7] I described a C_;_-i- class 1 nstd, which directly and very straightforward!~· modelled
"prolonged') numbers, an object which we shall review briefly below 1 as a way of doing differential arithmetic.
This concept, which merely extended RalPs ~11] pedagogical methods to higher dimensions, provided an easily
grasped construct for understanding how the most basic operations of differential algebra work. I had hoped
also that it would motivate people to learn more about object-oriented programming, especially as it is done
in C++ However, the nstd class was thrown together in a few weeks 1 and although it could do simple
calculations on low dimensional spaces1 it was not (and was never intended to be) a practical implementation
for more sophisticated problems: (a) it used too much memory, much of which accomplished nothing more
than storing zeroes; (b) the arithmetic rules spent much of their time operating on these useless zeroes; (c)
worst of all, the maximum "weight"' of an nstd variable - the highest order of derivatives stored - was
specified in the class definition rather than by the application program; (d) most of the more powerfult and
corresponding]~· more useful, differential algebra operations, such as concatenation and differentiation 1 were
awkward to implement.

MXYZPTLK corrects these deficiencies. The classes DA and DAVector model prolonged numbers as
dynamically allocated (and deallocated) doubly linked lists - which we shall call simply "chains" - whose
attributes are defined at runtime. Lninformative zeroes are neither stored nor operated upon, the maximum
weight stored is specified by the user. and all differential algebra operations are implemented easily. Each
link in a chain contains the "index array" (to be defined below) for a particular non-zero derivative and
its value. \Vhen it is first declared: the variable is unull,': a chain with no links. Its links are created

1 Or tool; I have difficulty distinguishing between the two.

1

dynamically as calculations proceed in the application program. Runtime attributes are specified using a
DA Setup function 1 after which arithmetic and analytic operations proceed in a transparent manner.

This transparency is important; !\1XYZPTLK has been designed for ,:user-friendliness'1
; this Lser's Guide

should proYide enough information to start using the DA and DAVector classes immediately. The syntax
and notation is as close to "expectedn as I could make it, and each variable keeps track of such attributes as
its accuracy or its "reference poinf: (see below), freeing the application program from routine bookkeeping
tasks. DA and DA Vector variables are declared in the usual way. Once declared. the components of a DA\'­
ector may be accessed just as though it were an array, as demonstrated in the following program fragment.

DA X' y' z;
DAVector u;

x=u[O];
y = u[l);

z = u [2] ;

However, a statement like "u[l] = y" is not allowed; this type of assignment is handled by a .set Vari­
able method, to be described below. :!Sotice in the fragment that u is not declared with the statement,
1'DA u [3] ." Such a declaration would provide for an array of DA variables but would not specify one of class
DA Vector.

The rest of this note describes how to use these classes in C++ programs. Before beginning 1 however 1

we shall review a few pieces of jargon 1 some of which we have used already. \\,'ith any smooth function 1

f : U ~ RN -+ R 1 we associate its "prolongation/1 which explicitly stores information on derivatives of the
function. 2

j = (!, v f, vv /, vvv /, ...)
The first member of this structure 1 its "standard part," is the function f itself1 the second is its gradient,
the third is its hessian 1 and so forth. Everything except the standard part is the "nilpotent" 3 part; it is
also called the ''differential" or "infinitesimal" or "nonstandard" part. Evaluating a prolonged function at a
"reference point" - say, a=/(~) - produces a "prolonged number."

ii= f (;,;_) = (/(11!_), v /(11!_), vv /(11!_), vvv /(11!_), ...) = (a, i,. g, ...)

The nstd class described in [7} modelled this (truncated) structure exactly; the chains of the DA class
provide great.er efficiency. The underlying subset, U ~ RN, which is the domain of our prolonged functions
is the 1'problern space." As determined by the application: it splits into two "sect.ors" which comprise the
"dynamical" and "control'' coordinates 1 and accordingly 1 11/ =Nd....;.. Ne. (For example, suppose that we are
studying the restricted three-body problem: say, the motion of a small satellite under the influence of a
planet and its moon. The dynamical sector would represent the six-dimensional phase space, corresponding
to the initial momentum and position of the satellite. However, if we wanted to examine such questions

2 My using this term is an abuse of terminology introduced on page 3 of reference [(,. The word .already
has several meanings 1 depending on context; this just adds one more.

3 So.called because under the rules of differential arithmetic: a truncated prolongation whose standard part
is zero eventually ,·anishes under repeated multiplication.

2

as the sensitivity of the final state to the masses of the planet and moon, then we would add these as
"control': coordinates of the problem space.) The "index array" associated with a derivative is the ordered
array of integers which specify the derivative. (For example, if the problem space is 3 dimensional 1 say
~ = (z0, , 1, ,,), then the index array associated with 86 f(~)/8zo8zf8,) would be (1, 3, 2).) The sum of
the indices (the components of an index array) will be varyingly referred to as the derivative's "weight," its
"order," or its "degree.':

2 Functions and methods

In this section we describe the functions and methods4 currently available in MXYZPTLK, arranged in the
order in which they probably would be used in most programs.

2.1 Setup functions

(a) void DASetup{ int n, int w)
(b) DASetup(int n, int w, double* r)
(c) DASetup(int n, int w, int s)
(d) DASetup(int n, int w, int s, double* r

Before DA variables can be used, the application program must provide information on the dimensions
of the problem space and on an initial reference point. This is donr by four Setup functions 1 one of ,rhich
must br invoked before using DA variables in arithmetic or analytic operations. The formal arguments 1 all
input, are interpreted as follows.

int n: Dimension of the problem space, the total number of dynamical and control coordinates.

int w: The maximum derivative weight to be carried by DA variables. If we interpret a DA variable as a
multinomial 1 then its degree will be ~ w.

int s: The number of dynamical coordinates 1 i.e., the dimension of the dynamical sector1 or "phase space."

double r[n]: An array containing the reference point.

If form (a) or (b) is used 1 so that sis not declared explicitly1 the default option sets s = 0. In practice
this means that all variables are considered to be control variables, and neither concatenation nor Poisson
brackets will be allowed (see Sections 2.7 and 2.8). If form (a) or (c) is used, so that the reference point is
not declared 1 it is set to the '(origin," an array of zeroes. When form (c) or (d) is used

1
so thats is speci:fied

1

DASetup will stop the application program if its arguments s and n do not satisfy I ~ s :S: n.
In principle. DA Setup should be invoked before the formal declaration of DA variables, but this is not

always possible. For example, an application program may contain a fragment like this:

4 A "method" is a public member function of either the DA or DA Vector class.

3

DA x;
DA y;

main() {
DASotup();

Here 1 x and y are meant to be global variables 1 so they are initialized when the program begins to run
and before the DASetup function can be invoked. \\~hat happens in such a case is this: the C++ DA
constructors only partially initialize these variables and load their addresses into a queue. ·when DASetup
is finally invoked: this queue is traversed, and the initialization of any variable which had been declared
previously is completed.

2.2 Setting the reference point

(a) void DAFixReference(double* r)
(b) DAFixReference(DA& x)
(c) DAFixReferenceAtStart(DAVector& x)
(d) DAFixReferenceAtEnd(DAVector& x)
(e) void DA::fixReference()
(f) ::fixReference(double* r)
(g) ::fixReference(DA& x)
(h) ::fixReferenceAtStart(DAVector& x
(i) ::fixReferenceAtEnd(DAVector& x)
(j) void DAVector::fixReference()
(k) ::fixReference(double* r)
(1) ::fixReference(DA& x)
(m) ::fixReferenceAtStart(DAVector& x
(n) ::fixReferenceAtEnd(DAVector& x)

A default reference point is established initially by a DASetup fuction; variables dedared either before
or after its invocation are assigned this reference point as their own. However, the default reference point may
be changed by one of the first four functions. The first sets it value to that of an array provided by the user.
Changing this array later in the application program will not I by itself: change the default referencei another
invocation of DAFixReference would be required. Form (b) of this function sets (or resets) the default
reference point to that of an already defined DA variable. The third function, DAFixReferenceAtStart,
sets the default reference to the reference point of its argument; the fourth, DAFixReferenceAtEnd,
sets it to the standard part of its argument. For example! suppose the first component of a DAVector
u prolongs the function cos(zy + ,r/2), while the second component prolongs sin(zy + ir/2), both about
the point (z,y) = (fi, -fi). Then "DlFixRoforonceAtStart(u)" would set the default reference to
(ft, -ft), while "DAFixRoforncoltEnd(u)" would set it to (0, -1). The latter function is essential for
doing concatenation correctly (see Sections 2. 7 and 3.3).

4

The ten methods (e)-(n) are public members of the DA and DAVector classes. They perform analagously
to the first four, but rather than acting on the default reference point, these members adjust the reference
point of the individual variables. For example1 in the fragment

D.A. x, y, z;

x.fixReference(y);
z.fixReference()i

the .fixReference member sets the reference point of x to that of y, while the reference point of z 1s

set to the current default reference.

2.3 Initializing a calculation: coordinates

void DA::setVariable(int j)
::set Variable(double x, int j)

void DAVector::setVariable(DA& x, int j
::set Variable(double x, int j)

DA variables model prolonged numbers. Arithmetic must begin by identifying a set of variables as pro~
longed coordinates. The best way of doing this is first to set the default reference point with DASetup
or D AFixReference. Then one simply assigns an "index" to each coordinate variable, as in the fragment
below.

double r[3];

r [OJ

r [1] =
r [2] =

0 .O;

1.0;
-1.0;

DASetup(3, 12, r);

DA x, y, z, f;

x.setVariable(O);
y.setVariable(1);
z.setVariable(2);

f = exp(x•y + z);

This identifies the phase space coordinate array 1 1f = (:r. 1 y, z). The variable .f will contain data on the pro­
longed function, /('Ji,_);:;:: f2'Y+ 2

1 with derivatives evaluated at the point.!!= (0, 1
1
-1). These data can be

accessed through a selection method (explained in Section 2.6) by using the indices that were assigned by

5

.set Variable.
A second way of initializing a DA calculation employs the second form of .set Variable to declare a DA

variable as a coordinate while simultaneously setting its value. This method is not recommended: it resets
the default reference point one component at a time 1 so that a invoking .fixReference would be required
after the fact.

DASotup(3, 12);
D.A. X, y, Z, f i

x.setVariable(0.0, 0);
y.setVariable(1.0, 1);
z.setVariable(-1.0, 2);

x.fixReference();
y.fixReference();

f = exp(x•y + z);

The two DAVector methods enable one to declare a component ofa DAVector variable to be a coordinate
which is useful in the control sector ~ or to load DA variables into specific components ~ prior to

concatenation 1 for example. Their use will be illustrated in Section 3.

2.4 Operators

Logical and arithmetic binary operators act the way one naturally expects. The replacement operat'or, = 1

enables the replacement of one DA, or DAVector1 variable by another, while the logical operators== and ! =
test whether two variables are equivalent. Arithmetic operators+, - , * and /, when sandwiched between
two DA variables, activate the corresponding arithmetic operations of addition, subtraction, multiplication,
and division. In addition 1 the subtraction symbol,-, also acts as a unary operator on DA variables 1 indicating
that they are to be negated. The C+-r- operators += 1 -=, *=. and /= are available as well.

'-''hen placed between two DA.Vector variables: the "multiplication': operator, *, initiates concatenation
rather than multiplication. This will be discussed in detail in Section 2.7.

Components of a DAVector can be accessed by the postfix unary operator, []. For example,

DA x, y, z i
DAVector u;

X u [OJ ;
y = u [1) ;

z = u [2) ;

will load the zeroth component of u into x, the first into y: and so forth.
In addition to these 1 the binary operator caret, • , placed between two DAVectors performs a Poisson

6

bracket. \\"e delay its description to Section 2.8.
All binary operators except concatenation 1 which has its own subtleties, check to be sure that their two

operands have the same reference point. If they do not 1 then an error message is written on the standard
output, and the application program is stopped. Of course, the replacement operator,=, automatically sets
the reference point of its left-hand operand to that of the right-hand one.

2.5 Transcendental functions

Jdeally, all C-;-+ transcendental functions available for "double" variables should be available for DA vari­
ables as well. However, the only ones written for Version 1.0 are the exponential and circular functions, cos,
cosh~ exp, sin, sinh, tan, tanh. Each takes a single DA variable as its argument and returns a single DA
variable as its result. The C+-;- functions most conspicuously missing are pow and log. These will be made
available in Version 1.1: and more will be added to subsequent versions oft.his toolkit.

2.6 Selection methods

double DA::standardPart()
::derivative(int• m)
::weightedDerivative(int• m)

DA DA::filter(int wgtLo, int wgtHi)
void DAVector::standardPart(double* x)

::derivative(int• m, double* x
::weightedDerivative(int• m, double* x

A number of methods access parts of DA variables without changing the variable. As a DA method,
.standardPart 1 returns as its value the standard part of the variable; as a DAVector method: it accepts an
array pointer (that is 1 the name of an array) argument and loads the standard parts of all its components
into this array. For example:

double z I x [8] ;
DJ.Vector y;

y.standartPart(x);
z = y[3] .standartPart();
if(z == x[3]) cout « "!ll is OK\n"

The .derivative and .weightedDerivative routines return the value of a specified derivative. The
argument is a pointer to (name of) an integer array containing the indices of the desired derivative. For
example: iff represents the DA evaluation of a prolonged function of three variables, J, at the point.!!:'.: then
the derivative 86 J(.~)/8z0 8zf8z~I~::::!£ can be obtained as follows.

7

DA f;
doubled, v[3];
int m[3];

DASetup(3, 10, ~);

m[O] = 1;
m[1] = 3;
m [2] = 2;
d = !.derivative(m);

The .weightedDerivative returns the derivative weighted by factorials of the indices. These are the actual
coefficients which would appear in a multinomial representation of Ii and they, not the derivatives, are the
actual numbers stored in the DA variable. 5 Thus, if we replace . derivative with . weightedDeri vati ve
in the example above, then the value returned would be (1 1 31 2!J- 1 86 f(;z_)/8zo8zf8z/i,=,e_·

As with .standardPart: the DAVector methods load the values of the derivative at each component into
the array pointed to by the additional argument, double* x.

The .filter method, which currently belongs only to the DA class1 returns a DA variable whose links store
those derivatives with weights bounded by the arguments, wgtLo and wgtHi. It was written primarily for
use by other DA methods, and I do not expect it to be used much in application programs.

2. 7 Evaluation and concatenation

double DA::multiEval(double* x)
DAVector operator*(DAVector& x, DAVector& y)

DA variables can act like power series. The data stored in the links of a DA variable are the coefficients
of a power series, or multinomial, expansion of a function, f: about the reference point. This expansion can
be evaluated by using the .multiEval method.

Closely related to evaluation is the operation of concatenation, which is activated by sandwiching the
'
1multiplicationn binar:y operator 1 *, between twoDAVectors. Let f 1 g: RN<J+N, -RN<J+Nc be two mappings
of the problem space into itself which act like the identity on the ;onirol sector. That is 1 only the dynamical
coordinates change under the action off and g; the control variables are not touched. The composite map,
/! = [c /l._: 11c - [(g(11c)), is a mapping of the same type and, therefore, also representable by a DAVector.
However 1 notice that although the reference points of h._ and g are identical 1 say 1!_1 the reference point off is
!J._(~). -

\Vhen the control sector is not empty1 all DA Vector operationj and methodtJ a.uume that the first Nd
components refer to the dynamical sector and the final l\'c to the control sector.

i1n fact, the .derivative method first invokes .weightedDerivative and then multiplies by the factorials.

8

Further description of these methods would be awkward without recourse to examples; we shall continue
this discussion in Section 3.

2.8 Differentiation and Poisson brackets

DA DA::D(int• m)
DA operator· (DA& x, DA& y)

Derivatives of functions are themselves functions 1 and DA variables contain a method, .D) which imple­
ments this operation. For example: ifu and v are functions over R 2

1 and we want a functional correspondence,
i· =: 83 u/8zfj8:r. 1 , this would be accomplished as follows.

DA. u, Vj

int m[2];

m[O] = 2;

m[l] = 1;
v=u.D(m);

The DA variable u itself is unchanged by this method.
Taking derivatiYes lowers the mazimum accurate weight ofa DA variable. Thus, ifu stores derivatives of

u(.~) through weight w, and we define v to be an m th _order derivative of u
1

then v can store the derivatives of
1' accurately only through weight w ~ m 1 all derivatives of higher weight being unknown. One of the private
members of each DA variable keeps track of the maximum weight of derivatives computed accurately, which
may be less than the maximum weight declared by the DASetup function. These numbers are propagated
through arithmetic operations, so errors will not arise when using less accurate variables. In principle, an
applications program can request a differentiation or invoke a selection method which cannot be carried out
accurately. If this happens 1 then the DA class will stop the program and write an error message to the
standard output.

If the dynamical sector has even dimension, say]'lld = 2n, it can be (and usually is) interpreted as a phase
space whose first n. components are "positions" and whose second are "momenta." The Poisson bracket of
two such observables is an observable 1 and DA implements this operation via the binary operator

D.A. :f, g. h;

h = !"g;

Because this operation rf;'quires taking derivatives: the accurate weight of the resultant is smaller than
that of its operands, and just as with .D 1 if the operation cannot be carried out the program will stop.

2.9 Miscellaneous utilities

void DAAbout()

9

void DA'.\fews()
void DA::peekAt()

::clear()
void DAVector::peekAt()

The first function 1 DAAbout 1 prints information about the DA implementation, especially the version
number, on the standard output; the second1 DANews prints notices of differences between one implemen­
tation and another: as well as information on known bugs.

The .peekAt method will traverse a DA variable and write information on each link to the standard
output, including the index array of the associated derivative: its value, and the address of the link. It
provides a way of looking at the entire variable without repeated use of the .derivative met-hods described
in Section 2.6. The method .clear returns a DA variable to its null state, a chain with no links. It should
be used rarely and cautiously.

3 Examples

'\Ve display below a few sample programs which illustrate various features of the DA toolkit. They are
simple enough to be understandable without detailed knowledge of C++ , and I hope that 1 to some extent:
their ease and transparency will help motivate those who continue to hesitate investing the four or five days
needed to learn this language or who have been discouraged by essays [13] suggesting that FORTRAI\" still
possesses a few ad vantages.

3 .1 Poisson brackets

This little test program evaluates the Poisson bracket of two functions and tests DA against the Jacobi
identity in a four dimensional phase space. The first Poisson bracket is carried out on the functions

a(.,,_, l'l

b("'., l'l

ziz~P1Pi ,

sin(z1p;z~)

The bracket is to be evaluated at the arbitrarily selected point, (o1:_,p) = (0.32, 0.5, -3.1, 1.5). For testing the
Jacobi identity, we introduce a third function, c ::::: exp(p1 z 1 + p2z2).

#include <std.h>
#include <stdio.h>
#include <stream.h>
#include "da.hxx11

main() {

II•• SEE COMMENT 1

10

double u1, u2, v1, v2;
double r [4];

r [OJ u1 = 0.32;
r [1] = u2 = 0.6;
r [2] = v1 = -3.1;
r [3] = v2 = 1.6;

DASotup(4, 3, 4, r);

double~, y, z, ans~er;
DA a, b, c;
DA xl, x2 1 p1, p2;
DA pb;

xl.setVariable(O);
x2.setVariable(1);
p1.setVariable(2);
p2.sotVariablo(3);

II•• SEE COMMENT 2

II•• SEE COMMENT 3

II•• SEE COMMENT 4
a= (x1•x1) • (x2•x2•x2) •pl• (p2•p2•p2•p2);
b = sin(x1 • (p2•p2) • (x2•x2•x2));
pb = a"b;
cout << "Computed by DA: "<< pb.standard.Part() << "\n";

'ii'; (u1*u1) • (u2•u2•u2) • vl • (v2•v2*v2•v2);
y = u1 • (v2•v2) • (u2•u2•u2)
z=cos(y);
ans~or = ~•y•z•(6.0l(u2•v2) - 1.0l(u1•v1) - 12.0l(u2•v2));
cout « '' Exact answer '' << ans~er << 11\n";

cout « "ind also " II •• SEE COMMENT 5
« (((x1•x1) • (x2•x2•x2) *pl• (p2•p2•p2•p2)

(sin(x1 • (p2•p2) • (x2•x2•x2)
).standardPart()

« 11 \n\n";

II -- Test of the Jacobi identity
c = exp(p1•x1 + p2•x2);
pb = (a"(b"c)) + (b"(c·a))

))

+ (c"(a"b)); II•• SEE COMMENT 6
cout << "Jacobi identity\n";
pb.pooklt();
}

II•• SEE COMMENT 7

11

) .

Output: Computed by DA: .125897
Exact ans..:'er
md also

Jacobi identity

.126897

.126897

Count = 36, Weight= 3, Max accurate ~eight= 1
Reference point:
3.2000000-01 6.000000o-01 -3.1000000+00 1.6000000+00
Weight: 0 Value: 2 .4980020-16 11 Addresses: 313360 184296 184660
Index: O O O 0

t-.1eight: 1 Value: 7.7716610-16 11 .Addresses: 184296 184660 193136
Index: 0 0 0 1

Weight: 1 Value: 1.1102230-16 11 Addresses: 184660 193136 191628
Index: 0 0 1 0

lioight: 1 Value: -1.3322680-16 11 .Addresses: 193136 191528 191648
Index: 0 1 0 0

Weight: 1 Value: -3.774768•-16 I I Addresses: 191628 191648 190692
Index: 1 0 0 0

184248

184612

184684

193160

191652

Comment 1: The DA header file: da.hxx, must be included at the top of any application program. This
form of the statement assumes 1 of course 1 that it is located in the same directory as the program.

Comment 2: \Ve assume a four dimensional phase space with no control sector. Only terms up through
weight 3 are to be kept. The default reference is set at a rather unusual location just. for illustrative purposes.
'-'·e choose to invoke DASetup before declaring DA "Variables 1 but as explained in Section 2.1, this is not a
restriction.

Comment 3: These four statements initialize the calculation by establishing coordinates.

Comment 4: The Poisson bracket is computed two ways: (1) here, using the binary operator on DA
variables a and band (2) below, for comparison 1 using its algebraic expansion on variables of type double.

Comment 5: This third calculation emphasizes that DA methods and operators work not only on formally
declared DA variables but also on ezpressions whfrh evaluate lo DA variables. It is carried out without
introducing auxiliary variables 1 such as a: b, or pb.

Comment 6: The extra parentheses make certain that everything gets evaluated in the proper order.
1\ot only is the Poisson bracket operation non-associative (and non-commutative): its precedence relative to
addition is ambiguous.

Comment 7: The output from this invocation of .peekAt shows that pb contains 35 link,s. Only those
whose weights are not above the maximum accurate weight are displayed here. The fact that the rest

12

continue to be stored is a flaw (but not a bug) in the toolkit which will be removed from Version 1.1. By the
Jacobi identity1 all links ofpb should store a zero, which means that they should not be present 1 since zeroes
are not stored beyond the standard part. However, because of numerical roundoff errors, the actual values
stored are on the order of 10- 15 . A second improvement in the toolkit will be to drop all results of addition
or subtraction which are on the order of machine accuracy and to deallocate the corresponding links.

3.2 Evaluation

Now we calculate e using two different power series.

#include <std.h>

#include <stdio.h>
#include <stream.h>

#include 11 da .hxx"

main() {

cout << "The correct result is: "<< exp(1.0) << 11 \n\n"

double r [3] ;

r[OJ = 0.6;
r[1] = 0.4;
r[2] = 0.0;
D!Setup(3, 7, r);

D.A. x, y, Zj

D! u, v;

x.setVariable(O);
y.setVariable(1);
z.setVariable(2)i

u =- exp(x) ;
v exp(x + y + z);

double s[3];
r[O] = 1.0;

r[1] = o.o;
r [2] = o. O;
s[O] = 0.33;
s[1] = 0.33;
s [2] 1. 0 - s [OJ - s [1] ;

I I •• SEE COMl'.ENT 1

II•• SEE COMMENT 2

13

•

•

for(int•= 1; • <= 7; ,++) II•• SEE COMMENT 3
cout << t.r << "· " << (u.:filter(0 1 t.r)) .multiEval(r)

«" "« (v.filtor(O, •)).multiEval(•)
« "\n";

}

Output: Tho correct result is: 2.71828

1: 2.47308 2.70666
2: 2.67817 2. 71786
3: 2.71362 2.71827
4: 2.71781 2. 71828
6: 2.71824 2.71828

e' 2.71828 2.71828
7: 2.71828 2. 71828

Comment 1: We shall expand two functions, u(z,y,z)=exp(z) and v(z,y,z)=exp(z+y+z), both
about the point (z, y, z) = (0.5, 0.4, 0.0). The problem space is therefore three dimensional. We shall retain
terms only up to degree seven.

Comment 2~ In setting the points of evaluation, the application program need not remember or ezplicitly
refer to the reference point: the DA variables know themselves where they were evaluated. (In fact, we even
could have expanded u and v about two different reference points.)

Comment 3: In this loop we filter DA variables of various weights up to the maximum of seven. In this
way we can follow the accuracy of the series as the number of terms increases. The reader should be able to
explain easily the greater accuracy of one series over the other, as shown in the output.

3.3 Concatenation

The object of this exercise is to compute a derivative of two functions which have been concatenated together.
The problem space is two dimensional 1 ~ = (z 1 y). Consider the two mappings;

and their concatenation,

·we shall calculate both components of 85r;./8z3 8y2 i,£.:=-(O,O)·

#include <std.h>

]4

#include <stdio.h>
#include "da.hx:x"

main() {
D! x, y, u 1 v 1 c1 1 c2;
DAVector a, b, c;
int indox[2);
double answer[2] i

D!Sotup(2, 7, 2);

x.setVariable(O);
y.setVariable(1);

u = X*Y*Y + exp(x + y);
v = cos(y•x•x) I (x + 2.0);

II•• SEE COMMENT 1

printf ("Standard part of u is %lf\n", u. standard.Part ()) ;
printf (11 Standard part of v is '/,lf\n", v. standardPart()) ;

a.setVariable(u, 0);
a.setVariable(v, 1);

D1FixReferenceAtEnd(a);
b.fixReference();

x.setVariable(O);
y. setVariable(1);

u = sin(x) * cos(y);
v exp(x•x•x) I (x•y);

b.setVariable(u, 0);
b.setVariable(v, 1);

II•• SEE COMMENT 2

II•• SEE COMMENT 3
II•• SEE COMMENT 4

II•• SEE COMMENT 6

II•• SEE COMMENT 6

c = b•a; II•• SEE COMMENT 7

index [OJ = 3;
index [1) = 2;
c.derivative(index, ans~er);

print:!('1Zero: %lf\n" 1 answ,'ler [OJ) ;
printf("One : %lf\n°, answer [1]) ;
}

15

Output: Standard part of u is 1.000000

Standard part of vis 0.600000
Zero: -25.216473
Ono : 60880.799266

Comment 1: For variety, I have here declared the DA variables be.fore invoking DASetup. As long as it
is invoked before using the variables, there is no problem (see Section 2.1).

Comment 2: This is the way that DAVectors get initialized. First their DA components are calculated and
then inserted into the DAVector using the .set Variable method. The integer argument fixes the component
associated with each prolonged number. After u and v are loaded into a, the connection between them is
broken, and the program is free to use them again.

In fact, we do not need to use u and vat all; like a, b, and pb in Example 3.1 these intermediate variables
only serve to separate logical steps in the program, making it easier to read. The statements,

a.setVa:riable(x•y•y + exp(x + y) 1 0);
a.setVa:riable(cos(y•x•x) / (x + 2.0), 1);

would have worked just as well.

Comment 3: Anticipating concatenation, we change the default reference to that of the endpoint of a.
That is, the default reference here gets set to (1, 0.5), as indicated by the output of the . standard.Part.

Comment 4: The reference point of b is set to the default reference, that is, to the endpoint of a. This is
precisely what is needed to concatenate b with a.

Comment 5: The .set Variable method needs to be invoked by x and y again, because we have changed
the reference point.

Comment 6: !\" otice that we simply write these functions as they have been defined. All information about
reference points has been absorbed by the variables themselves; we do not need io use it explicitly in writing
the rest of the program. The reference points of x and y were reset by the .set Variable method, and those
of u and v are automatically adjusted by the = operator.

Comment 7: And here is the concatenation itself. All that remains is to access and print the derivat.i,·e
we need. You are invited to confirm at your leisure that the computed values are correct.

4 Status

A pre-compiled object library for MXYZPTLK, its source code, the necessary header file, da.hxx, and
the :U.TEXfile producing this document are all contained in a subdirectory of /home/dipole/michelotti on
DIPOLE, part of the BOFFO-MYRTLE-FLIBBER-DIPOLE-QlJAD domain of networked SlJNs used by
the Accelerator Division / Accelerator Physics group. These files are also readable from the VAX duster
ALMOND. but the current object library is for the SlJN, not the VAX; by the time this document is released,
a VAX object library should be available. Since Macintosh C++ existsi the source code should be portable
without much difficulty (I hope) to the Mac II as well.

I have tested MXYZPTLK using a program that mimics the behavior of a (Hewlett-Packard) RPN
calculator 1 but with registers containing DA variables rat.her than reals. These tests have been 1 of necessity,

16

limited, and I would appreciate hearing from anyone interested in helping to extend them or who want to use
the DA and DAVector classes in their own applications. Source code is also available to those who would like
to help expand MXYZPTLK's capabilities; credit will be given in the DAAbout and DANews functions
and in subsequent versions of this document for upgrades written by others.

Those who want to use \iXYZPTLK can request the files through MICHELOTTl@Fl\"ALAD, AL­
MO\'D::MICHELOTTL or (708) 840 4956. Please let me know of your experiences, especially if you have
problems, discover bugs, upgrade the source code, or only have suggestions for improvements.

\Ve shall end this note with a list of upgrades already under development.

• As already mentioned, the functions pow and log will be available in Version 1.1 of MXYZPTLK,
which should be finished by the time this note is distributed.

• Links whose computed values are small enough to be considered zerO to machine accuracy wi11 be
deallocated, as will those whose weights are higher than the maximum accurate weight after a differ­
entiation.

• The requirement that all DA variables possess the same problem space will be relaxed. Using multiple
calls to a new DA Setup function, we should be able to use variables corresponding to different problem
spaces, with different dimensions, in the same program. Of course, DA operations will automatically
protect against unallowed mixtures.

• There is no need for DA variables to model prolongations of real-valued functions only, The concept
can be extended naturally to functions of complex variables.

• A .TeX method will write a UTEXexpression which is the multinomial representation of a DA variable
in terms of user-specified symbols.

• \Vhen the DA variable is supposed to represent a symplectic mapping on the phase space of a Hamilto­
nian system 1 the symplectic condition can be enforced either at every stage ofa computation or under
the direct control of the application program using a .symplectify method.

• One important goal is to compile a library of user-friendly C+--:- functions, beginning with those that
find periodic orbits of a Hamiltonian system and reduce it to normal form in their vicinities 1 as described
in Reference [6::. It would be worthwhile to do this in the neighborhoods of resonant orbits as well,
but finding those orbits is a more difficult task, requiring an interplay between mapping 1 analysis 1 and
perhaps even graphics. 18:

ACKNOWLEDGEMENT

I am indebted to Herbert Wilf for a stimulating discussion of his ranking algorithm [14, 15, 97 which is
at the core of evaluation and concatenation.

17

References

[1] Robert L. Anderson and ~ail H. Ibragimov. Lie-Bticklund Transformations in Applications. Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1979. SIAM Studies in Applied
Mathematics.

[2] M. Berz. Differential algebra - a new tool. In Floyd Bennett and Joyce Kopta, editors1 Proa.edings
of the 1989 IEEE Particle Accelerator Conference. IEEE, March 20-23, 1989. IEEE Catalog !\umber
89CH2669-0.

[3] Martin Berz. Nuclear Instruments and Afethods, A258:431, 1987.

[4] Martin Berz. Differential algebraic description of beam dynamics to very high orders. Particle Acceler­
ators, 24(2), March 1989. to be published.

[5j Bruce Eckel. Using C++ . Osborne McGraw-Hill, Berkeley, 1989.

[6J Etienne Forest, Martin Berz, and John Irwin. Normal form methods for complicated periodic systems:
A complete solution using differential algebra and lie operators. Particle AcceleratorB, 24(2) 1 March
1989. To be published.

r7; Leo Michelotti. Differential a1gebras without differentials: an easy C---'--+ implementation. In Floyd
Bennett and Joyce Kopta, editors, Proceedings of the 1989 IEEE Particle Accelerator Conference. IEEE1

March 20-23, 1989. IEEE Catalog Number 89CH2669-0.

[8] Leo Michelotti. Exploratory orbit analysis. In Floyd Bennett and Joyce Kopta, editors, Proceedings
of the 1989 IEEE Particle Accefrrator Conference. IEEE, March 20-23, 1989. IEEE Catalog :',umber
89CH2669-0.

[9] Albert l\ijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, l\ew York, 1978.

[10] l. B. Rall. Automatic differentiation: Techniques and applications. In Lecture Notes in Computer
Science No. 120. Springer-Verlag, 1981.

[lf L. B. Rall. The arithmetic of differentiation. Mathematics Afagazine, 59:275-282, 1986.

[12; Bjarne Stroustrup. The C++ Programming Language. Addison-\Vesley 1 Reading, Massachusetts, 1986.

[13] Roy Thatcher. Programming in C - a word of caution. Fermilab Computing Division Newsletter,
Vol. XVIII, No. 1, pp. 3-4, Jan-Feb 1990.

!14] Herbert S. Wilf. A unified setting for sequencing, ranking, and selection algorithms for combinatorial
objects. Advances m Mathematics, 24:281-291, 1977.

'15'. Herbert S. Wilf. A unified setting for selection algorithms (II). Annals of Discrete Mathematics, 2:135-
148, 1978.

18

F Fermi National Accelerator Laboratory

FERMILAB-FN-535

Revised

MXYZPTLK Version 3.1 User’s Guide
A C++ Library for Differential Algebra

L. Michelotti

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1995

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

MXYZPTLK Version 3.1 User's Guide:

A C++ Library for Automatic Di�erentiation

and Di�erential Algebra

Leo Michelotti

September, 1995

1 Introduction

If you need to calculate derivatives of complicated functions and �nd yourself either taking �nite di�erences

or writing the derivatives algebraically and then translating the expressions into source code, you may want

to consider using automatic di�erentiation (AD). AD exploits the classic theorems of di�erential calculus to

propagate information about derivatives through arithmetic operations. In this way, derivatives of a function

can be calculated using the same program that calculates the function itself. Because no approximations are

made, derivatives are calculated with machine accuracy, avoiding the errors inherent in �nite di�erences, an

especially important consideration when higher order derivatives are required.

MXYZPTLK is a library of C++ classes { or \objects" { for performing automatic di�erentiation.

Originally written at Fermilab in 1989, with a \User's Guide" provided in 1990, it has undergone re�nements

and improvements over the last six years. It was originally announced outside Fermilab in Automatic

Di�erentiation of Algorithms: Theory, Implementation, and Application (SIAM Press, 1991) and has been

used in a variety of contexts. MXYZPTLK was the �rst implementation of AD which exploited object-

oriented techniques (in C++) from the beginning.

Those who have not yet been exposed to AD/DA are invited to read the references in the bibliography.

Here we will describe how to use Version 3.1 of MXYZPTLK, a C++ AD/DA library. In the next section we

will explain quickly the mathematical models upon which the software is based. Section 3 contains a number

of small programs demonstrating the use of AD/DA objects in MXYZPTLK. This document is motivated

by the idea that people learn about objects more quickly by scanning a few examples of their use than by

reading syntax rules governing their behavior: the reference section. Thus, Section 3 is its major piece,

intended to jump start the reader. The shorter Section 4 will be the (still incomplete) \reference," devoted

to describing the syntax for using objects, methods, and functions contained in the MXYZPTLK library.

1

2 Concepts

Let f : RN ! R and g : RN ! R; be two \su�ciently" di�erentiable functions de�ned in an open neighbor-

hood, U � RN ; of uo 2 U: We will say that f and g are \nth order equivalent," and write f �n g; at uo
i�

1

f(u) = g(u) +O(jju� uo jjn+1) :

This property is easily seen to be an equivalence relation among functions, which then enables us to de�ne

the equivalence class

h f; n; uo i = f g j f �n g at uo g : (1)

which is called a \jet." It is identi�ed by a triple containing a representative function, an integer, and a

reference point.

The simplest element of any jet is a polynomial in the components of (u� uo): Let us de�ne

the operator Dm
=

N�1Y
k=0

1

mk!

�
@

@uk

�mk

; and the shorthand am =

N�1Y
k=0

amk

k ;

where m is an array of N non-negative integers (the \index" array).
2
Let P be the polynomial satisfying,

P (u) =

nX
m=0

cm(u� uo)
m; where cm = (Dmf)(u

o
) ; (2)

where the formal sum is taken over arrays of non-negative integers, m satisfying (a) 0 � mk � nk; for all k,

and (b)

P
k nk = n:With the usual assumptions about di�erentiability, it follows that f �n P; and P can be

used as the representative of the jet containing f . If this connection needs to be emphasized, we will write

Pf for the polynomial.

We will interchangably refer to

P
kmk as the degree of the polynomial term, its \weight," or the order

of the associated derivative.

The important point is this: the equivalence property survives arithmetic operations. If f1 �n f2 and

g1 �n g2 at uo, then (f1 op f2) �n (g1 op g2) at uo, where the operation symbol op stands for addition,

subtraction, multipliciation, or division. Thus, to �nd the polynomial representative of the jet containing

f op g it su�ces to perform the corresponding arithmetic operation on the polynomials equivalent to f and

g and truncate the answer at degree N . This is called \truncated polynomial algebra," or \truncated power

series algebra," and it is exactly what is needed to implement jet mathematics on a computer. We will refer

to N as the \degree of truncation."

1This is an informal de�nition. It could easily be made more precise and incomprehensible. For example, something like:
9C 2 R9U 2 RN 8u 2 U : jf(u)� g(u)j < Cjju� u

o
jjn+1: However, there is no excuse here for this level of formality.

2It is a nuisance to start the product at \k = 0." This is done to maintain consistence with the C and C++ array convention.

2

Addition and subtraction are the operations easiest to implement. We merely add the corresponding

coe�cients of the truncated polynomials.

Dm
(f � g) = Dmf �Dmg : (3)

Multiplication is accomplished easily using Leibniz's rule,

Dn
(f � g) =

nX
m=0

(Dmf) (Dn�mg) ; (4)

Truncation means that

P
k nk <= N: Division is accomplished by a form of repeated multiplication. Notice

that by combining f � g = w with Eq.(4) we can write a recursive procedure for de�ning the higher orders of

v̂ in terms of its lower orders,

Dng =
1

f

2
4Dnw �

nX
m=0

(Dmf) (Dn�mg)

3
5 (5)

starting with g = w=f: Eqs.(3), (4), and (5) form the basis for MXYZPTLK's arithmetic algorithms.

Building on jets, MXYZPTLK includes an object for modeling the action of Lie operators. For this, the

\problem space" of coordinates is partitioned into two subspaces, as determined by the application: a \phase

space," or \dynamical sector," of dimension Nd, whose coordinates we will write as u; and a \control sector,"

of dimension Nc = N � Nd; with coordinates written as a. For example, suppose that we are studying the

restricted three-body problem: say, the motion of a small satellite under the in
uence of a planet and its

moon. The dynamical sector would represent the six-dimensional phase space, corresponding to the initial

momentum and position of the satellite. However, if we wanted to examine such questions as the sensitivity

of the �nal state to the masses of the planet and moon, then we would add these as \control" coordinates

of the problem space. The \index array" associated with a derivative is the ordered array of integers which

specify the derivative. For example, if the problem space is 3 dimensional, say x = (u0; u1; u2); then the

index array associated with @6f(u)=@u0@u
3
1@u

2
2 would be (1; 3; 2): The sum of the indices (the components

of an index array) will be varyingly referred to as the derivative's \weight," its \order," or its \degree."

By design, Lie operators act only on the dynamical coordinates. In the context of this discussion, a

mathematical Lie operator can be de�ned as a di�erential operator of the form,

V = v(u; a) �
@

@u
: (6)

Of particular importance is the exponential map, which maps functions onto functions, formally obtained

by the expression,

g = eVf =

1X
k=1

1

n!
Vnf : (7)

3

Notice that if f �n g; then in general, Vf �n�1 Vg: Intepreted as acting on a jet, a Lie operator will lower

its order. This can be mitigated restricting consideration to Lie operators whose v, de�ned in Eq.(6), satis�es

v(u; a) = O(jju� uojj) :

This is essential in order to implement an exponential map, with its repeated application of V. In addition,

for an exact implementation, we should require that

v(u; a) = O(jju� uojj2) :

This condition means that the nonvanishing term of lowest degree in Pf has smaller degree than the corre-

sponding term in PVf . Upon repeated application of V, the lowest nonvanishing degree eventually becomes

larger than the order of the jet, and all but a �nite number of terms in Eq.(7) can be ignored. This condition

provides Lie operators that convert AD into an exact di�erential algebra (DA). We will illustrate in the next

section how these operators are implemented in MXYZPTLK.

A mapping can be thought of as an array of Nd functions,

f : RNd �RNc ! RNd :

Alternatively, we can write this as an array of functions,

f : RN �RN ;

which acts as the identity on the control sector. This approach is formally more convenient when one wants

to consider concatenating mappings: h = g � f : Written with arguments, h(u; a) = g(f (u; a); a) in the �rst

picture becomes the more natural h(z) = g(f (z)) in the second, where z = (u; a)T :

Because we are going to model an algebra of functions, of special importance are the coordinate functions

themselves, which are projections onto the components of u. For example, if u = (u0; u1; u2)
T ;we could de�ne

the coordinate functions x, y, and z according to x(u) = u0; y(u) = u1; and z(u) = u2:We could then write

a new function, say

f = e�x
2

sin y ;

and this is interpreted as an equation relating functions to functions. Notice that it would be incorrect to

write,

f(x; y) = e�x
2

sin y ?? ;

as this would have a completely di�erent meaning, in fact, no meaning at all in the current context. Instead,

we can write something like,

f(u) =
�
e�x

2

sin y
�
(u)

; for all u :

Functions are evaluated numerically, not symbolically, as jets. The triplet shown in Eq.(1) is stored, with

f given by the truncated polynomial representation of Eq.(2). For the example given above, we would begin

4

the calculation with the coe�cients,

x(u) ! c(0;0;0) = 0; c(1;0;0) = 1

y(u) ! c(0;0;0) = 0; c(0;1;0) = 1

z(u) ! c(0;0;0) = 0; c(0;0;1) = 1 :

Numerical jets are built from such starting points using the rules of Eqs.(3), (4), and (5). Of course, this all

happens internally and is transparent to the user, who simply writes an application as though using ordinary

double precision variables. Programs implementing this example and others are provided in the next section

for illustration.

One �nal note: there is no reason to restrict consideration to real coordinates. What we have written

for real functions can be extended to complex functions as well. Such an extension was indeed included in

MXYZPTLK for the purpose of doing normal form calculations conveniently.

5

3 Examples

MXYZPTLK contains the classes Jet, coord, LieOperator, Map, and their complex counterparts JetC,

coordC, CLieOperator, and CMap. We display below a few sample programs which illustrate various features

of the MXYZPTLK library. It is hoped that they are su�ciently instructive to act as prototypes for your

own calculations.

No examples were included involving arithmetic on Map and LieOperator objects, but it can be done

notwithstanding. They possess the properties of a vector space. It is possible to add and subtract Maps and

LieOperators together, and to multiply them by double, complex, or Jet objects.

3.1 Evaluating a derivative

This �rst demo simply prints the value of the derivative,

@(e�x
2

siny)=@xm@ynjxo;yo ;

where the parameters xo;m; yo; n are entered on the command line. The source code is shown below, followed

by a few sample uses and commentary.

Source: dfr.cc

1 #include "mxyzptlk.rsc"

2 main(int argc, char** argv) {

3 if(argc != 5) {

4 cout << "\nUsage: " << argv[0]

5 << " x n_x y n_y\n"

6 << endl;

7 exit(0);

8 }

9 int deg [2];

10 deg[0] = atoi(argv[2]);

11 deg[1] = atoi(argv[4]);

12 Jet::Setup(2, deg[0] + deg[1]);

13 coord x(atof(argv[1])), y(atof(argv[3]));

14 cout << "Answer: "

15 << (exp(-x*x) * sin(y)).derivative(deg)

6

16 << endl;

17 }

Output

hazel 1: dfr

Usage: dfr x n_x y n_y

hazel 2: dfr 0 4 0 5

Answer: 12

hazel 3: dfr 1 3 -1 7

Answer: -0.795064

Comments

Line 1: The header �le mxyzptlk.rsc must be included near the top of any MXYZPTLK user program.

Lines 3-8: Prints a little \usage" message if the program name is written without arguments. (See the

\hazel 1" prompt above.)

Lines 9-11: The integer array degwill carry the indices of the desired derivative; that is, it carries m and n.

The ordering is determined by the order in which the coord variables have been declared. In this case, x came

�rst, so x is internally associated with index 0, and y, with index 1. Thus, to �nd @(e�x
2

sin y)=@xm@ynjxo;yo;
we set deg[0] to m and deg[1] to n before using it as the argument to the .derivative member function,

in Line 15.

Line 12: The routine Jet::Setupmust be called before performing AD/DA manipulations. In this call, the

�rst argument tells the library the number of independent variables, and the second indicates the maximum

order of derivative desired. Since the indices, m and n, have been given on the command line and entered

into the array, deg, the second argument is set to their sum.

Line 13: Variables x and y are declared as coord objects, or \coordinates." coords are the most

basic building blocks for AD calculations, the \independent variables" of the function to be di�erentiated.

They implement the projection functions described at the end of Section 3. The two arguments from the

command line set their values, which in turn determine the point at which the function to be constructed

will be di�erentiated.

Lines 14-16: Finally, the function e�x
2

siny is constructed, and, in the same line, the requested derivative

is sent to the output stream. Notice that arithmetic operations on bf coord objects do not return bf coord

objects; they return Jet objects. (A coord is, of course, just a special kind of Jet.)

7

3.2 Jets

The previous example was simple enough that there was no need to store the calculation in a variable. If it

is necessary or desireable to do so, the appropriate variable type is called a Jet. This example shows Jets

being used both to store the results of calculations and to return them from functions.

Source: g5.cc

1 #include "mxyzptlk.rsc"

2 Jet g(const Jet& x, int n) {

3 Jet z = 0.0;

4 Jet term;

5 term = x;

6 for(int k = 1; k <= n; k++) {

7 z += term / ((double) k);

8 term *= x;

9 }

10 z.stacked = 1;

11 return z;

12 }

13 main() {

14 Jet::Setup(3, 6);

15

16 coord x(0.0), y(0.0), z(0.0);

17 Jet a;

18 a = x*y + y*z + z*x;

19 a.printCoeffs();

20 (g(a, 3)*g(sin(a), 5)).printCoeffs();

21 }

Output:

hazel 1: g5

Count = 4, Weight = 2, Max accurate weight = 6

Reference point:

0.000000e+00 0.000000e+00 0.000000e+00

Index: 0 0 0 Value: 0.000000e+00

Index: 0 1 1 Value: 1.000000e+00

Index: 1 0 1 Value: 1.000000e+00

8

Index: 1 1 0 Value: 1.000000e+00

Count = 17, Weight = 6, Max accurate weight = 6

Reference point:

0.000000e+00 0.000000e+00 0.000000e+00

Index: 0 0 0 Value: 0.000000e+00

Index: 0 2 2 Value: 1.000000e+00

Index: 1 1 2 Value: 2.000000e+00

Index: 1 2 1 Value: 2.000000e+00

Index: 2 0 2 Value: 1.000000e+00

Index: 2 1 1 Value: 2.000000e+00

Index: 2 2 0 Value: 1.000000e+00

Index: 0 3 3 Value: 1.000000e+00

Index: 1 2 3 Value: 3.000000e+00

Index: 1 3 2 Value: 3.000000e+00

Index: 2 1 3 Value: 3.000000e+00

Index: 2 2 2 Value: 6.000000e+00

Index: 2 3 1 Value: 3.000000e+00

Index: 3 0 3 Value: 1.000000e+00

Index: 3 1 2 Value: 3.000000e+00

Index: 3 2 1 Value: 3.000000e+00

Index: 3 3 0 Value: 1.000000e+00

Comments:

Lines 17-18: Here we declare the variable a to be of type Jet and set its value to be the symmetric

polynomial xy + yz + zx:

Line 19: The member function Jet::printCoe�s() prints the coe�cients of the truncated polynomial.

This command, \a.printCoe�s()," results in the �rst seven (non-void) lines of output. \Count = 4" means

that there are four terms retained in the polynomial. \Weight = 2" tells us that the degree of the polynomial

is 2, while \Max accurate weight = 6" indicates that Jet::Setup requested terms of highest degree 6 were

to be carried. The Jet's reference point, (0; 0; 0); shown in the next two lines of output, was set in Line 16 of

the source, when the coord variables, x, y, and z were declared. Finally, the list of indices and values record

the terms of the polynomial: indices represent the exponents and values, the coe�cients. Thus, because of

the ordering, the line \Index: 0 1 1 Value: 1.000000e+00" tells us that the x0y1z1 term of a has coe�cient

1. The next two lines provide the same information for the x1y0z1 and x1y1z0 terms. In other words, a

models the polynomial, xy + xz + yz; as it should.

Lines 2-12: These lines de�ne a Jet function that computes the polynomials,

gn(x) =

nX
k=1

xk=k

9

We put o� a discussion of the cryptic Line 10 until later.

Line 20: Here we print the information about the polynomial,

g3(a)g5(sin a); where a = xy + yz + zx ;

truncated at degree 6 (see Source Line 14). The Jet function g is invoked twice, the results multiplied

together, and the member function Jet::printCoe�s() invoked, which, as before, sends the result to the

output stream. This results in the second chunk of output, which indicates the polynomial, y2z2 + 2xyz2 +

2xy2z+x2z2+2x2yz+x2y2+y3z3+3xy2z3+3xy3z2+3x2yz3+6x2y2z2+3x2y3z+x3z3+3x3yz2+3x3y2z+x3y3.

I leave it to the reader to explain why all the coe�cients are integers and to determine whether this remarkable

property extends to terms of higher degree.

Lines 4-5 and 17-18: The Jets term and a are �rst declared and then assigned values, in separate lines.

Each could have been combined into one line, as in \Jet term = x; ."
3
However, there is a subtle reason

for not doing this. Compilers interpret the statement \Jet term = x;" as equivalent to \Jet term(x);" and

invoke the copy constructor, not the member function Jet::operator=, to assign the value. Because of the

way Jet variables store data,
4
this may result in an error. Therefore, it is recommended that Jets always be

declared and assigned values on separate lines.

3.3 Di�erentiation

In Section 3.1 we printed the value of a particular derivative of a function. The corresponding AD operation

is to take the derivative of a function, thereby creating a new function. The Jet method which does this is

Jet::D. We will illustrate its use by calculating coe�cients of the Hermite polynomials,

Hn(x) = (�1)nex
2 dn

dxn
e�x

2

: (8)

Source: Hermite.cc

1 #include "mxyzptlk.rsc"

2 main(int argc, char** argv) {

3 if(argc != 2) {

4 cout << "\nUsage: " << argv[0] << " n"

5 << endl;

6 exit(0);

7 }

3I defy you to punctuate this sentence correctly.
4The envelope-letter idiom is employed.

10

8 int n = atoi(argv[1]);

9 Jet::Setup(1, 2*n);

10 coord x(0.0);

11 Jet f, g;

12 int d = 1;

13 f = exp(- x*x);

14 g = f;

15 int k = 0;

16 cout << "Results for k = " << k << endl;

17 (g / f).printCoeffs();

18 for(k = 1; k <= n; k++) {

19 g = - g.D(&d);

20 cout << "Results for k = " << k << endl;

21 (g / f).printCoeffs();

22 }

23 }

Output:

hazel 1: Hermite 4

Results for k = 0

Count = 1, Weight = 0, Max accurate weight = 8

Reference point:

0.000000e+00

Index: 0 Value: 1.000000e+00

Results for k = 1

Count = 2, Weight = 1, Max accurate weight = 7

Reference point:

0.000000e+00

Index: 0 Value: 0.000000e+00

Index: 1 Value: 2.000000e+00

Results for k = 2

11

Count = 3, Weight = 8, Max accurate weight = 6

Reference point:

0.000000e+00

Index: 0 Value: -2.000000e+00

Index: 2 Value: 4.000000e+00

Results for k = 3

Count = 4, Weight = 7, Max accurate weight = 5

Reference point:

0.000000e+00

Index: 0 Value: 0.000000e+00

Index: 1 Value: -1.200000e+01

Index: 3 Value: 8.000000e+00

Results for k = 4

Count = 5, Weight = 8, Max accurate weight = 4

Reference point:

0.000000e+00

Index: 0 Value: 1.200000e+01

Index: 2 Value: -4.800000e+01

Index: 4 Value: 1.600000e+01

Comments:

Line 9: The value of n has been entered on the command line. The reason for setting the second argument

of Jet::Setup to 2n rather than n will be explained shortly.

Line 10: It would be a useful exercise to understand why the reference point must be zero. How would

the results change if a di�erent reference were chosen? (Try it!)

Lines 13-14: f is assigned the jet containing e�x
2

: g will take on the values (�1)k d
k

dxk
e�x

2

; for k = 0 : : :n;

so we begin by setting it equal to f.

Line 19: Here is where the di�erentiation is done. In each step of the loop (Lines 18-22), a single derivative

of g is taken and stored back into g. The order of the derivative is determined by the argument of Jet::D,

which is an array of doubles, just like that of Jet::derivative. In this case, since the problem space is one

dimensional, the address, &d, serves the same purpose as the name of an array. Notice that the same e�ect,

apart from the sign, would have been obtained somewhat less e�ciently by substituting \g = f.D(&k)" for

Line 19.

12

Lines 17 and 21: These are the output lines. Looking back to Eq.(8), we see that it is only necessary

to print out the coe�cients from g/f to obtain the desired polynomials. Looking at the output, we identify

the polynomials.

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 � 2

H3(x) = 8x3 � 12x

H4(x) = 16x4 � 48x2 + 12

Line 9 (again): Now let us return to the arguments of Jet::Setup. A Jet variable carries polynomial

coe�cients only up to the particular order determined by Jet::Setup. When a derivative operation is

performed, the degree of the representative polynomial decreases by one. This is re
ected in the \Max

accurate weight" �eld in the output. We begin with a jet of degree 8. At each step through the loop, a single

di�erentiation is done, so that by the end we have a jet of \maximum accurate weight" 4, corresponding

to the degree of the requested polynomial. The information about accuracy is carried through arithmetic

operations, so that the \maximum accurate weight" of g/f is automatically determined by g, not f. Had we

begun with a jet of smaller degree, the �nal polynomial would not have contained all the coe�cients required.

Thus the argument of Jet::Setup was determined by our prior knowledge that Hn(x) is a polynomial of

degree n.

3.4 Maps and Jacobians

A Map is an object that models a multi-dimensional di�erentable function: � : Rn ! Rn: This example

prints the Jacobian matrix of the transformation from Cartesian to polar coordinates, @(x; y; z)=(r; �; �);
and its inverse, @(r; �; �)=(x; y; z); at a point speci�ed on the command line.

Source: survey.cc

1 #include "mxyzptlk.rsc"

2 main(int argc, char** argv) {

3 if(argc != 4) {

4 cout << "\nUsage: " << argv[0]

5 << " <r> <theta (deg)> <phi (deg)>\n"

6 << endl;

7 exit(0);

8 }

9 const double d2r = M_PI / 180.0;

13

10 MatrixD M(3, 3);

11 Jet::Setup(3, 1);

12 coord r (atof(argv[1])),

13 theta (d2r*atof(argv[2])),

14 phi (d2r*atof(argv[3]));

15 Map position;

16 position.SetComponent(0, r * sin(theta) * cos(phi));

17 position.SetComponent(1, r * sin(theta) * sin(phi));

18 position.SetComponent(2, r * cos(theta));

19 M = position.Jacobian();

20 cout << M << "\n\n" << M.inverse() << endl;

21 }

Output:

hazel 1: survey 1. 30. 45.

(0.35355339, 0.61237244, -0.35355339,)

(0.35355339, 0.61237244, 0.35355339,)

(0.8660254, -0.5, 0,)

(0.35355339, 0.35355339, 0.8660254,)

(0.61237244, 0.61237244, -0.5,)

(-1.4142136, 1.4142136, 0,)

Comments:

Lines 12-14: The coordinates (r; �; �) are read from the command line and coord variables are declared

with these values. Multiplication by d2r merely converts from degrees to radians.

Lines 15-18: A Map variable is declared and its components set. position is to model the function,

� : (r; �; �) 7! (x; y; z) = (r sin � cos�; r sin � sin�; r cos �) :

The member function Map::SetComponent is used to set the corresponding components of position.

Lines 10, 19-20 A 3� 3 Matrix of double precision numbers, M, is declared, and the member function

Map::Jacobian() is used to load M with the Jacobian of position. Finally, in Line 20, the Matrix and its

inverse are sent to the output stream.

14

3.5 Evaluation

A Jet variable models a mathematical Jet by containing the coe�cients of its polynomial representative. The

member function Jet::operator() provides a mechanism for evaluating that polynomial. We'll illustrate

that by evaluating e�x
2

sin y using its Jet representative and comparing to the exact value.

Source: ev.cc

1 #include "mxyzptlk.rsc"

2 main(int argc, char** argv) {

3 if(argc != 4) {

4 cout << "\nUsage: " << argv[0]

5 << " x y n\n"

6 << endl;

7 exit(0);

8 }

9 int deg = atoi(argv[3]);

10 Jet::Setup(2, deg);

11 coord x(atof(argv[1])), y(atof(argv[2]));

12 Jet f = exp(-x*x) * sin(y);

13 double point[2];

14 while(1) {

15 cout << "Enter x and y: ";

16 cin >> point[0] >> point[1];

17 cout << "Jet answer: "

18 << f(point)

19 << " Exact answer: "

20 << sin(point[1]) * exp(- point[0]*point[0])

21 << endl;

22 }

23 }

Output:

hazel 1: ev 1 1 16

Enter x and y: 1 1

Jet answer: 0.30956 Exact answer: 0.30956

Enter x and y: 0.4 1.6

Jet answer: 0.85178 Exact answer: 0.85178

15

Enter x and y: 2 2

Jet answer: 0.0166206 Exact answer: 0.0166544

Enter x and y: 0 0

Jet answer: 4.05366e-05 Exact answer: 0

Enter x and y: ^C

hazel 2: ev -0.5 1.5 8

Enter x and y: -1.0 1.0

Jet answer: 0.309656 Exact answer: 0.30956

Enter x and y: 0 0

Jet answer: -0.00358171 Exact answer: 0

Enter x and y: -1.5 0.5

Jet answer: 0.0870872 Exact answer: 0.0505311

Enter x and y: ^C

Comments:

Line 11: As in Section 3.1, the reference point is speci�ed on the command line of the program. coord

variables are set in preparation for calculations.

Lines 12 and 18: Most of this program is similar to what we've seen already. Line 18 contains the

new operation. After f is constructed in Line 12, it is used in Line 18 to evaluate the polynomial that it

represents. The loop in Lines 14-22 repeats inde�nitely, and the results for several values of point can be

seen in the Output. On the command line, we have speci�ed that (x; y) = (1; 1) be the reference point of

the problem, and that the representative polynomials be truncated at degree 16. The rest of the program

need not use the reference point explicitly. In particular, Line 18 makes no mention of it. Thus, for example,

to �nd f((0:4; 1:6)) we enter 0.4 and 1.6, as would be most natural. The Jet itself knows its own reference

point and subtracts it automatically before evaluating the polynomial.

3.6 Filters

Filters are available to create new Jets by selecting a subset of the coe�cients contained in an already existing

Jet. The most basic �lter simply selects coe�cients whose weights lie with a given range. We illustrate that

by calculating e using two di�erent power series.

Source: evaltest.cc

1 #include "mxyzptlk.rsc"

2 main() {

3 double r[3], s[3];

4 Jet::Setup(3, 7);

16

5 coord x(0.5), y(0.4), z(0.0);

6 Jet u, v;

7 u = exp(x);

8 v = exp(x + y + z);

9 r[0] = 1.0; s[0] = 0.33;

10 r[1] = 0.0; s[1] = 0.33;

11 r[2] = 0.0; s[2] = 1.0 - s[0] - s[1];

12 for(int w = 1; w <= 7; w++) {

13 printf("%d: %lf %lf \n",

14 w,

15 (u.filter(0, w))(r),

16 (v.filter(0, w))(s)

17);

18 }

19 }

Output

hazel 1: evaltest

1: 2.473082 2.705563

2: 2.679172 2.717861

3: 2.713520 2.718271

4: 2.717814 2.718282

5: 2.718243 2.718282

6: 2.718279 2.718282

7: 2.718282 2.718282

Comments

Comment 1: We shall expand two functions, u(x; y; z) = exp(x) and v(x; y; z) = exp(x+ y + z); both

about the point (x; y; z) = (0:5; 0:4; 0:0): The problem space is therefore three dimensional. We shall retain

terms only up to degree seven.

Comment 2: In setting the points of evaluation, the application program need not remember or explicitly

refer to the reference point: the Jet variables know themselves where they were evaluated. (In fact, we even

could have expanded u and v about two di�erent reference points.)

Comment 3: In this loop we �lter Jet variables of various weights up to the maximum of seven. In this

way we can follow the accuracy of the series as the number of terms increases. The reader should be able to

explain easily the greater accuracy of one series over the other, as shown in the output.

17

3.7 Concatenation

The object of this exercise is to compute a derivative of two functions which have been concatenated together.

The problem space is two dimensional, u = (x; y)T : Consider the two mappings,

a(u) =

xy2 + exp(x+ y)

cos(yx2)
x+ 2

!
; (9)

b(u) =

sinx cos y

exp(x3)
xy

!
; (10)

and their composition,

c(u) = b(a(u)) : (11)

We shall calculate both components of @5c=@x3@y2jw=(0;0):

Source: concattest.cc

1 #include "mxyzptlk.rsc"

2 main() {

3 Jet q, v, w, z;

4 static int index[] = { 3, 2 };

5 double answer[2];

6 Jet::Setup(2, 7, 2);

7 coord x(0.0), y(0.0);

8 Map a, b;

9 a.SetComponent(0, q = x*y*y + exp(x + y));

10 a.SetComponent(1, v = cos(y*x*x) / (x + 2.0));

11 w = sin(q) * cos(v);

12 z = exp(q*q*q) / (q*v);

13 x.set(a(0).standardPart());

14 y.set(a(1).standardPart());

15 b.fixReferenceAtEnd(a);

16 b.SetComponent(0, sin(x) * cos(y));

17 b.SetComponent(1, exp(x*x*x) / (x*y));

18 b(a) .derivative(index, answer);

19 cout << "Using composition: " << answer[0] << " "

18

20 << answer[1] << endl;

21 cout << "Using explicit formulas: " << w.derivative(index) << " "

22 << z.derivative(index) << endl;

23 }

Output:

hazel 1: concattest

Using composition: -25.2155 50880.8

Using explicit formulas: -25.2155 50880.8

Comments:

Line 7: There was really no need to carry terms of degree seven for this calculation: �ve would have been

su�cient. Notice that Jet::Setup is invoked after Jet and Map variables have been declared in Lines 3-4.

This is not good practice, but it was done here to illustrate this particular capability of MXYZPTLK. It

is permitted to declare variables before invoking Jet::Setup. This allows for the possibility of giving Jet

variables global scope. It is only necessary that Jet::Setup be used before carrying out operations on these

variables.

Lines 9-10 and 16-17: The Jets a and b are initialized so as to model the mappings a and b appearing

in Eqs.(9) and 10. In the process of doing that, the components of a are loaded into the Jets q and v for

later use.

Lines 13-15: Before setting the components of b, the reference point must be adjusted. When a was

declared, it was assigned the same reference point as a, a reference determined by the declarations in

Line 7. However, since we are going to concatenate b with a to form b(a), if (0; 0) is the reference point

of a, then we must reset the reference point of b to be a((0; 0)): This is done with the member functions

Map::�xReferenceAtEnd, which adjusts the reference point of a mapping to the image of the reference

point of another mapping. In addition, the coordinates x and y are reset to the new reference point, using

coord::set, prior to their reuse Member function Jet::standardPart returns the polynomial coe�cient c0
and is used here to �nd a((0; 0)):

Line 18: First the two Jets b and a are composed, in accordance with Eq.(11). The member functions

Map::derivative is used to load the desired derivatives into the array answer.

Lines 19-23: Using b(a) and using w and z are compared. The results should be, and are, identical. Notice

the di�erences between Jet::derivative and Map::derivative. The latter evaluates the desired derivative

for each component of the Map and returns the resulting numbers in an array argument.

3.8 Inversion

If the function f : Rn ! Rn
is invertible at the reference point uo, then the member functionMap::Inverse

allows one to compute the (multidimensional) Jet corresponding to the local inverse map, f�1 at the reference

19

point f(uo): In the demo below we invert the function

f :

0
@ x

y

z

1
A 7!

0
@ 3 + x+ 3y + xy � yz

�1 + y � x+ z + xz + y2

2 + z + 2x+ yz � xyz

1
A

at uo = (�1:2; 3:5; 2:1)T: The Output section is rather lengthy, but comments do indeed follow it, as usual.

Source:

1 #include "mxyzptlk.rsc"

2 main() {

3

4 Jet::Setup(3, 4, 3);

5 coord x(-1.2), y(3.5), z(2.1);

6 Map f, u;

7 f.SetComponent(0, 3.0 + x + 3.0*y + x*y - y*z);

8 f.SetComponent(1, -1.0 + y - x + z + x*z + y*y);

9 f.SetComponent(2, 2.0 + z + 2.0*x + y*z - x*y*z);

10 u = f.Inverse();

11 cout << "\n====== f.printCoeffs(); ====================\n" << endl;

12 f.printCoeffs();

13 cout << "\n====== u.printCoeffs(); ====================\n" << endl;

14 u.printCoeffs();

15 cout << "\n====== f(u).printCoeffs(); =================\n" << endl;

16 f(u).printCoeffs();

17 cout << "\n====== u(f).printCoeffs(); =================\n" << endl;

18 u(f).printCoeffs();

19 }

Output:

====== f.printCoeffs(); ====================

************ Begin LieOperator::printCoeffs ********

Weight: 3

**** Component index = 0

20

Count = 6, Weight = 2, Max accurate weight = 4

Reference point:

-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 7.500000e-01

Index: 0 0 1 Value: -3.500000e+00

Index: 0 1 0 Value: -3.000000e-01

Index: 1 0 0 Value: 4.500000e+00

Index: 0 1 1 Value: -1.000000e+00

Index: 1 1 0 Value: 1.000000e+00

**** Component index = 1

Count = 6, Weight = 2, Max accurate weight = 4

Reference point:

-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 1.553000e+01

Index: 0 0 1 Value: -2.000000e-01

Index: 0 1 0 Value: 8.000000e+00

Index: 1 0 0 Value: 1.100000e+00

Index: 0 2 0 Value: 1.000000e+00

Index: 1 0 1 Value: 1.000000e+00

**** Component index = 2

Count = 8, Weight = 3, Max accurate weight = 4

Reference point:

-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 1.787000e+01

Index: 0 0 1 Value: 8.700000e+00

Index: 0 1 0 Value: 4.620000e+00

Index: 1 0 0 Value: -5.350000e+00

Index: 0 1 1 Value: 2.200000e+00

Index: 1 0 1 Value: -3.500000e+00

Index: 1 1 0 Value: -2.100000e+00

Index: 1 1 1 Value: -1.000000e+00

21

************ End LieOperator::printCoeffs ********

====== u.printCoeffs(); ====================

************ Begin LieOperator::printCoeffs ********

Weight: 4

**** Component index = 0

Count = 35, Weight = 4, Max accurate weight = 4

Reference point:

7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: -1.200000e+00

Index: 0 0 1 Value: 1.842162e-01

...

Index: 3 0 1 Value: 1.291290e-01

Index: 3 1 0 Value: -6.330736e-02

Index: 4 0 0 Value: 5.789563e-02

**** Component index = 1

Count = 35, Weight = 4, Max accurate weight = 4

Reference point:

7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 3.500000e+00

Index: 0 0 1 Value: -1.936699e-02

...

Index: 3 1 0 Value: 1.901941e-02

Index: 4 0 0 Value: -1.652798e-02

**** Component index = 2

Count = 35, Weight = 4, Max accurate weight = 4

Reference point:

7.500000e-01 1.553000e+01 1.787000e+01

22

Index: 0 0 0 Value: 2.100000e+00

Index: 0 0 1 Value: 2.385095e-01

...

Index: 3 1 0 Value: -8.390785e-02

Index: 4 0 0 Value: 7.560193e-02

************ End LieOperator::printCoeffs ********

====== f(u).printCoeffs(); =================

************ Begin LieOperator::printCoeffs ********

Weight: 1

**** Component index = 0

Count = 2, Weight = 1, Max accurate weight = 4

Reference point:

7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 7.500000e-01

Index: 1 0 0 Value: 1.000000e+00

**** Component index = 1

Count = 2, Weight = 1, Max accurate weight = 4

Reference point:

7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 1.553000e+01

Index: 0 1 0 Value: 1.000000e+00

**** Component index = 2

Count = 2, Weight = 1, Max accurate weight = 4

Reference point:

7.500000e-01 1.553000e+01 1.787000e+01

23

Index: 0 0 0 Value: 1.787000e+01

Index: 0 0 1 Value: 1.000000e+00

************ End LieOperator::printCoeffs ********

====== u(f).printCoeffs(); =================

************ Begin LieOperator::printCoeffs ********

Weight: 4

**** Component index = 0

Count = 3, Weight = 4, Max accurate weight = 4

Reference point:

-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: -1.200000e+00

Index: 1 0 0 Value: 1.000000e+00

Index: 0 4 0 Value: -4.786373e-15

**** Component index = 1

Count = 3, Weight = 4, Max accurate weight = 4

Reference point:

-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 3.500000e+00

Index: 0 1 0 Value: 1.000000e+00

Index: 0 4 0 Value: 9.367778e-16

**** Component index = 2

Count = 3, Weight = 4, Max accurate weight = 4

Reference point:

-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 2.100000e+00

24

Index: 0 0 1 Value: 1.000000e+00

Index: 0 4 0 Value: -3.265400e-15

************ End LieOperator::printCoeffs ********

Comments:

Lines 5-10: The Map variable f is constructed using methods already described in preceding demos.

Line 10 invokes the member function Map::Inverse() to load the inverse of f into u. We decide to retain

terms only through degree 4.

Lines 11-14: The coe�cients in f and u are printed �rst. Each is a three-component map, each component

being a Jet. The components are written separately and identi�ed. In comparing the program variable f to

the mathematical function, f , remember to take the reference point into account.

Lines 15-18: Here is the acid test. If indeed f and u model inverse Jets, then it must be that f(u) and

u(f) model the identity functions at their respective reference points, uo and f(uo): The output shows that

this is indeed the case apart from a term of fourth degree in u(f) which is clearly due to machine error.

You should thoroughly review the output at this point to be sure you understand why the printed coe�cients

support this claim.

We have not yet included a program using complex valued jets. So as to include at least one such

example, what follows is source code for an analogous inverse calculation but using complex maps with a

reference point of (�1:2 + 0:9i; 3:5 + 1:7i; 2:1� 0:3i): The required extra call to JetC::Setup is a
aw in

the MXYZPTLK software and will be corrected. The rest of the program is just written in parallel to the

previous one, except that coordC and CMap objects are used.

Source:

1 #include "mxyzptlk.rsc"

2 main() {

3

4 Jet::Setup (3, 4, 3);

5 JetC::Setup(3, 4, 3);

6 coordC x(complex(-1.2, 0.9)),

7 y(complex(3.5, 1.7)),

8 z(complex(2.1, -0.3));

9 CMap w, u;

10 w.SetComponent(0, complex(3.0, 1.0) + x + 3.0*y + x*y - y*z);

11 w.SetComponent(1, complex(-1.0, 0.2) + y - x + z + x*z + y*y);

12 w.SetComponent(2, complex(2.0, -0.9) + z + 2.0*x + y*z - x*y*z);

25

13 u = w.Inverse();

14 cout << "\n====== w.printCoeffs(); ====================\n" << endl;

15 w.printCoeffs();

16 cout << "\n====== u.printCoeffs(); ====================\n" << endl;

17 u.printCoeffs();

18 cout << "\n====== w(u).printCoeffs(); =================\n" << endl;

19 w(u).printCoeffs();

20 cout << "\n====== u(w).printCoeffs(); =================\n" << endl;

21 u(w).printCoeffs();

22 }

3.9 Lie Operators

MXYZPTLK contains a Lie operator object which acts on Jets. In the example below, we will model the

\equations of motion,"

_x = x(2y3 � x3); _y = �y(2x3 � y3) :

using the Lie operator,

V = x(2y3 � x3)
@

@x
� y(2x3 � y3)

@

@y
: (12)

This vector �eld possesses an invariant: f(x; y) = x2=y + y2=x: The program will test the invariant property

by applying the Lie operator. That is, it will check the condition, Vf = 0:

Source: Lie K Test.cc

1 #include "mxyzptlk.rsc"

2 main(int argc, char** argv) {

3 if(argc != 4) {

4 cout << "\nUsage: " << argv[0]

5 << " deg x y"

6 << endl;

7 exit(0);

8 }

9 Jet::Setup(2, atoi(argv[1]), 2);

10 coord x(atof(argv[2])), y(atof(argv[3]));

26

11 LieOperator V;

12 V.SetComponent(0, x*(2.0*pow(y, 3) - pow(x, 3)));

13 V.SetComponent(1, - y*(2.0*pow(x, 3) - pow(y, 3)));

14 (V ^ (x*x/y + y*y/x)).printCoeffs();

15 }

Output:

hazel 1: Lie_K_Test 5 1.7 3.5

Count = 6, Weight = 5, Max accurate weight = 4

Reference point:

1.700000e+00 3.500000e+00

Comments:

Lines 11-13: After declaring the LieOperator V we set its components in the same way as we would a

Map variable. In fact, the two are, more or less, synonomous, in the sense that both contain an array of jets.

Of course, they are very di�erent mathematical objects.

Line 14: The mathematical operation of a Lie operator on a function is implemented via the method

LieOperator::operator^}(const Jet\&).} The operator symbol ``*" was not used for this in order

to avoid confusion with statements like,

LieOperator V, W, Y;

Jet f;

...

W = f*V;

Y = V*f;

~~,

which are meant to model the mathematical operations,W = Y = fV: The output shows no terms because

the only non-zero ones are due to machine error appearing at degree 5, which is higher than the \Max

accurate weight."
5
That no terms are printed is equivalent to saying that the Jet is identically zero.

Of course, this test applies only to the reference point. Automatic di�erentiation is not symbolic di�er-

entiation, for which a zero result would apply everywhere.

5The fact that these useless terms are even carried around is an anomaly that, it is hoped, will be eliminated in future
versions of MXYZPTLK.

27

3.10 Brackets

The commutator of two Lie operators is itself a Lie operator. This binary operation is accomplished in

MXYZPTLK by sandwiching the operator symbol \^" between two LieOperator objects. We will illustrate

its use by calculating the action of V, de�ned in Eq.(12), W, de�ned as

W = y
@

@x
� x

@

@y
;

and [V;W] on the function f = x2 + y2:

Source: lbtest.cc

1 #include "mxyzptlk.rsc"

2 main(int argc, char** argv) {

3 if(argc != 4) {

4 cout << "\nUsage: " << argv[0]

5 << " deg x y"

6 << endl;

7 exit(0);

8 }

9 Jet::Setup(2, atoi(argv[1]), 2);

10 coord x(atof(argv[2])), y(atof(argv[3]));

11 Jet f = x*x + y*y; // Equivalent to "Jet f(x*x + y*y);"

12 LieOperator V, W;

13 V.SetComponent(0, x*(2.0*pow(y, 3) - pow(x, 3)));

14 V.SetComponent(1, - y*(2.0*pow(x, 3) - pow(y, 3)));

15 W.SetComponent(0, y);

16 W.SetComponent(1, -x);

17 (V^f) .printCoeffs();

18 (W^f) .printCoeffs();

19 ((V^W)^f) .printCoeffs();

20 }

Output:

hazel 1: lbtest 3 1 1

Count = 8, Weight = 3, Max accurate weight = 2

28

Reference point:

1.000000e+00 1.000000e+00

Index: 0 1 Value: 1.400000e+01

Index: 1 0 Value: -1.400000e+01

Index: 0 2 Value: 2.800000e+01

Index: 2 0 Value: -2.800000e+01

Count = 0, Weight = -1, Max accurate weight = 2

Reference point:

1.000000e+00 1.000000e+00

Count = 10, Weight = 3, Max accurate weight = 2

Reference point:

1.000000e+00 1.000000e+00

Index: 0 0 Value: 2.800000e+01

Index: 0 1 Value: 7.000000e+01

Index: 1 0 Value: 7.000000e+01

Index: 0 2 Value: 6.000000e+01

Index: 1 1 Value: 1.600000e+02

Index: 2 0 Value: 6.000000e+01

Comments:

Line 11: This is the declaration of a Jet variable using its copy constructor. BE AWARE: doing this is
a little dangerous, because Jets employ an envelope-letter idiom for storing data. It is recommended that

Jet variables always be declared and initialized separately. In this case, it would have been better to have

written,

Jet f;

f = x*x + y*y;

Line 19: Most of the program is similar to what has gone before. This line contains the only new operation,

taking the commutator of V and W before acting on f.

MXYZPTLK also contains a Poisson bracket operation, accomplished by sandwiching the operator sym-

bol \^" between two Jets. That is, f^g models f f; g g when f and g are Jet variables just as U^V models

[U; V] when U and V are LieOperator variables. The next example employs both Lie brackets and Poisson

brackets to test the well known antimorphism,

[Va; Vb] = �Vf a; b g :

29

We will let

a(x; p) = x21x
3
2p1p

4
2 ;

b(x; p) = sin(x1p
2
2x

3
2) :

The brackets will be evaluated at the arbitrarily selected reference point, (x; p) = (0:32; 0:5;�3:1;1:5): As
an added bonus, we will test the Jacobi identity, using a third function, c = exp(p1x1 + p2x2):

Source:

1 #include "mxyzptlk.rsc"

2 main() {

3 double u1(0.32), u2(0.5),

4 v1(-3.1), v2(1.5);

5 Jet::Setup(4, 6, 4);

6 double w, y, z, answer;

7 coord x1(u1), x2(u2), p1(v1), p2(v2);

8 Jet a, b, c, pb;

9 // -- Calculation of Poisson bracket via Jets

10 a = (x1*x1) * (x2*x2*x2) * p1 * (p2*p2*p2*p2);

11 b = sin(x1 * (p2*p2) * (x2*x2*x2));

12 pb = a^b;

13 cout << "Computed by Jet: " << pb.standardPart() << "\n";

14 // -- Hand calculations

15 w = (u1*u1) * (u2*u2*u2) * v1 * (v2*v2*v2*v2);

16 y = u1 * (v2*v2) * (u2*u2*u2) ;

17 z = cos(y);

18 answer = w*y*z*(6.0/(u2*v2) - 1.0/(u1*v1) - 12.0/(u2*v2));

19 cout << "Exact answer : " << answer << "\n";

20 cout << "And also : "

21 << (((x1*x1) * (x2*x2*x2) * p1 * (p2*p2*p2*p2)) ^

22 (sin(x1 * (p2*p2) * (x2*x2*x2)))

23).standardPart()

24 << "\n\n";

25 // -- Test of the Jacobi identity

26 c = exp(p1*x1 + p2*x2);

27 cout << "Jacobi identity" << endl;

28 ((a^(b^c)) + (b^(c^a)) + (c^(a^b))).printCoeffs();

29 // -- Hamiltonian vector fields

30

30 LieOperator V_a (a);

31 LieOperator V_b (b);

32 LieOperator V_pb(pb);

33 cout << "Hamiltonian test" << endl;

34 (V_pb + (V_a ^ V_b)).printCoeffs();

35 }

Output:

hazel 2: pbtest

Computed by Jet: 0.125897

Exact answer : 0.125897

And also : 0.125897

Jacobi identity

Count = 84, Weight = 6, Max accurate weight = 4

Reference point:

3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

Hamiltonian test

************ Begin LieOperator::printCoeffs ********

Weight: 6

**** Component index = 0

Count = 28, Weight = 6, Max accurate weight = 4

Reference point:

3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

**** Component index = 1

Count = 49, Weight = 6, Max accurate weight = 4

Reference point:

3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

**** Component index = 2

Count = 49, Weight = 6, Max accurate weight = 4

Reference point:

3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

31

**** Component index = 3

Count = 49, Weight = 6, Max accurate weight = 4

Reference point:

3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

************ End LieOperator::printCoeffs ********

Comments:

Lines 9-12, 14-18: The Poisson bracket is computed two ways: (1) using the binary operator ^ on Jet

variables a and b and (2) for comparison, using its algebraic expansion on variables of type double. Line 12

contains the actual Poisson bracket, written as a binary operator on two Jet variables, using the same symbol

as for LieOperator variables.

Lines 20-24: This third calculation emphasizes that Jet methods and operators work not only on formally

declared Jet variables but also on expressions which evaluate to Jet variables. Of course, that is obtained for

free as a feature of the C++ language.. The hand calculation of Lines 14-18 is repeated but using coords.

Line 28: This tests the Jacobi identity. The expression should evaluate to zero, and the Output indicates

that it does. The extra parentheses make certain that everything gets evaluated in the proper order. Not

only is the Poisson bracket operation non-associative (and non-commutative), its precedence relative to other

operations is an issue best left unexplored.

Lines 30-32: This form of declaring a LieOperator takes a Jet variable as an argument and builds the

Hamiltonian vector �eld associated with it.

Line 34: Finally, the morphism test itself. What is calculated here is,

Vfa; bg + [Va; Vb] ;

and the Output indicates that the result is indeed zero. (That is, no terms are printed.)

3.11 Exponential maps

The member function LieOperator::expMap performs an exponential map of a LieOperator and applies

it to a Jet to obtain the resulting Jet. In the example below, we will use LieOperator::expMap to

\integrate" the equations of motion,

_x = x(2y3 � x3); _y = �y(2x3 � y3) :

using the Lie operator already written in Eq.(12). Recall that this vector �eld possesses an invariant:

x2=y + y2=x: The program tests the map by the value of this invariant both before and after the time step.

32

Source: Lie L Test.cc

1 #include "mxyzptlk.rsc"

2 main(int argc, char** argv) {

3 if(argc != 3) {

4 cout << "\nUsage: " << argv[0]

5 << " deg t"

6 << endl;

7 exit(0);

8 }

9 int deg = atoi(argv[1]);

10 double t = atof(argv[2]);

11 Jet::Setup(2, deg, 2);

12 coord x(0.0), y(0.0);

13 LieOperator V;

14 V.SetComponent(0, x*(2.0*pow(y, 3) - pow(x, 3)));

15 V.SetComponent(1, - y*(2.0*pow(x, 3) - pow(y, 3)));

16 Jet f, g;

17 f = V.expMap(t, x);

18 g = V.expMap(t, y);

19 double a, b, z[2];

20 while(1) {

21 cout << "Enter x and y: ";

22 cin >> z[0] >> z[1];

23 a = f(z);

24 b = g(z);

25 cout << "(" << z[0] << ", " << z[1] << ") maps to ("

26 << a << ", " << b << ")" << endl;

27 cout << "Before: " << setprecision(5)

28 << z[0]*z[0]/z[1] + z[1]*z[1]/z[0]

29 << " After: " << setprecision(5)

30 << a*a/b + b*b/a << endl;

31 }

32 }

Output:

hazel 1: Lie_L_Test 20 1.

Enter x and y: .3 .5

33

(0.3, 0.5) maps to (0.380158, 0.53075)

Before: 1.0133 After: 1.0133

Enter x and y: .4 .6

(0.4, 0.6) maps to (0.56134, 0.59739)

Before: 1.1667 After: 1.1632

Enter x and y: .5 .7

(0.5, 0.7) maps to (0.65366, 0.57497)

Before: 1.3371 After: 1.2489

Enter x and y: .6 .8

(0.6, 0.8) maps to (0.75124, 1.4679)

Before: 1.5167 After: 3.2528

Enter x and y: ^C

hazel 2: Lie_L_Test 20 -1.

Enter x and y: -.3 -.5

(-0.3, -0.5) maps to (-0.380158, -0.53075)

Before: -1.0133 After: -1.0133

Enter x and y: -.4 -.6

(-0.4, -0.6) maps to (-0.56134, -0.59739)

Before: -1.1667 After: -1.1632

Enter x and y: -.5 -.7

(-0.5, -0.7) maps to (-0.65366, -0.57497)

Before: -1.3371 After: -1.2489

Enter x and y: -.6 -.8

(-0.6, -0.8) maps to (-0.75124, -1.4679)

Before: -1.5167 After: -3.2528

Enter x and y: ^C

Comments:

Lines 9-12: The degree of the representative polynomial is established, and the size of the time step is

read from the command line. After Jet::Setup requests a two-dimensional phase space, its coordinates, x

and y, are declared.

Lines 13-15: Components of the LieOperator V is constructed so as to model the vector �eld, V, written

above.

Lines 17-18: These lines perform the exponential map operation on the jets x and y. The corresponding

mathematical operation would be written,

f = etVx; g = etVy :

We are applying the exponential map the coordinate functions themselves. Thus, if (x1; y1)=mapsto(x2; y2)

under the
ow of Eq.(12), it must be that x2 = f(x1) and y2 = g(y1):

Lines 19-31: Within an inde�nite loop, points are entered and converted with Jets f and g. Values of

the invariant are printed for the \initial" and \�nal" states. The Output shows two runs of this program,

for time steps �1: Polynomials are truncated at degree 20. There are two things to note: (a) symmetry is

34

correctly preserved (i.e., t!�t; x!�x; and y !�y), and (b) the polynomial representation fails rapidly

as the size of the argument increases. The latter property is not helped by taking more polynomial terms. The

problem of determining the radius of convergence of an exponential map is an ongoing topic of research. Note,

however, that regardless of whether the series converges or not, the coe�cients in the truncated polynomial

are computed exactly.6

6There is a codicil to this: V must map zero to zero and not start with a linear term.

35

4 Functions and methods

In this section we describe the functions and methods
7
currently available in MXYZPTLK, arranged in the

order in which they probably would be used in most programs.

4.1 Setup function

void Jet::Setup(int n, int w, int s, double* r, double* sc)

Before Jet variables can be used, the application program must provide information on the dimensions

of the problem space and on an initial reference point. This is done with a Setup function which must be

invoked before using Jet variables in arithmetic or analytic operations. The formal arguments, all input, are

interpreted as follows.

int n: Dimension of the problem space, the total number of dynamical and control coordinates.

int w: The maximum derivative weight to be carried by Jet variables. If we interpret a Jet variable as a

multinomial, then its degree will be � w:

int s: The number of dynamical coordinates, i.e., the dimension of \phase space."

double r[n]: An array containing the reference point.

double sc[n]: An array containing numbers characterizing the scale of each coordinate.

Every argument is provided a default value in the header �le Jet.hxx. These are: n = 6, w = 1, s = 0,

r = 0, and sc = 0. If s is not declared explicitly, the default option of 0 means that all variables are considered

to be control variables, and neither concatenation nor Poisson brackets will be allowed (see Sections 4.7 and

4.8). If a reference point is not declared, it will be set to the \origin," an array of zeroes. Finally, if the

scaling array, sc, is not explicitly given, Jet::Setup will assume that all the values of all variables will have

roughly unit magnitude. Jet::Setup will stop the application program if arguments s and n do not satisfy

0 � s � n:

In principle, Jet::Setup should be invoked before the formal declaration of Jet variables, but this is not

always possible. For example, an application program may contain a fragment like this:

7A \method" is a public member function of either the Jet or LieOperator class.

36

Jet x;

Jet y;

main() {

Jet::Setup();

...

}.

Here, x and y are meant to be global variables, so they are initialized when the program begins to run

and before the Jet::Setup function can be invoked. What happens in such a case is this: the C++ Jet

constructors only partially initialize these variables and load their addresses into a queue. When Jet::Setup

is �nally invoked, this queue is traversed, and the initialization of any variable which had been declared

previously is completed.

4.2 Setting the reference point

(a) static void Jet::FixReference (const double*)

(b) static void Jet::FixReference (const int*)

(c) static void Jet::FixReference (const Jet&)

(d) static void Jet::FixReferenceAtStart (const LieOperator&)

(e) static void Jet::FixReferenceAtEnd (const LieOperator&)

(f) void Jet::�xReference ()

(g) void Jet::�xReference (const double*)

(h) void Jet::�xReference (const Jet&)

(i) void Jet::�xReferenceAtEnd (const T&)

(j) void Jet::�xReferenceAtStart (const T&)

(k) void T ::�xReference (double*) Note: T is either a Map

(l) void T ::�xReference () or a LieOperator

(m) void T ::�xReference (Jet&)

(n) void T ::�xReferenceAtEnd (const T&)

(o) void T ::�xReferenceAtStart (const T&)

Every Jet variable carries the coe�cients of a polynomial that is the simplest representative of an

equivalence class of functions. In addition, it also carries the reference point at which the equivalence class

is established. Whenever a Jet variable is declared, therefore, a reference point must be given. If one is

not assigned explicitly, it is done implicitly by using a default reference point, established initially as the

argument of a Jet::Setup fuction. Jet variables declared either before or after its invocation are assigned

this reference point as their own. Alternatively, if the calculation is initialized by declaring a number of

coord variables, then their values automatically become the components of the default reference point.

37

However, the default reference point need not remain the same throughout a program. It can be changed

by one of the �rst four functions listed above. The �rst sets it value to that of an array provided by the user.

Changing this array later in the application program will not, by itself, change the default reference; another

invocation of Jet::FixReference would be required. Form (b) of this function sets (or resets) the default

reference point to that of an already de�ned Jet variable. The third function, Jet::FixReferenceAtStart,

sets the default reference to the reference point of its argument; the fourth, Jet::FixReferenceAtEnd,

sets it to the standard part of its argument. For example, suppose the �rst component of a LieOperator

u prolongs the function cos(xy + �=2); while the second component prolongs sin(xy + �=2); both about

the point (x; y) = (

p
�;�

p
�): Then \Jet::FixReferenceAtStart(u)" would set the default reference to

(

p
�;�

p
�); while \Jet::FixReferenceAtEnd(u)" would set it to (0;�1): The latter function is essential

for doing concatenation correctly (see Sections 4.7 and 3.7).

The ten methods (e)-(n) are public members of the Jet and LieOperator classes. They perform analagously

to the �rst four, but rather than acting on the default reference point, these members adjust the reference

point of the individual variables. For example, in the fragment

Jet x, y, z;

...

x.fixReference(y);

z.fixReference();

the .�xReference member sets the reference point of x to that of y, while the reference point of z is

set to the current default reference.

4.3 Initializing a calculation: coordinates

(a) coord::coord (double x)

(b) void Jet ::setVariable (int j)

(c) void Jet ::setVariable (double x, int j)

(d) void T ::SetComponent(int j, const Jet& x) Note: T is either a Map

or a LieOperator

AD/DA arithmetic must begin by identifying a set of variables as di�erentiable coordinate functions. The

simplest way of doing this is to declare coord variables, as was done in the demos of Section 3. However,

this is not the only way. Jet variables can also act like coordinates After setting the default reference point

with Jet::Setup or JetFixReference, one simply assigns an \index" to each coordinate variable, as in the

fragment below.

38

...

static double r[] = { 0., 1., -1. };

Jet::Setup(3, 12, 0, r);

Jet x, y, z, f;

x.setVariable(0);

y.setVariable(1);

z.setVariable(2);

f = exp(x*y + z);

This identi�es the phase space coordinate array, u � (x; y; z): The variable f will contain data on the dif-

ferentiable function, f(u) = exy+z ; with derivatives evaluated at the point u = (0; 1;�1): These data can be

accessed through a selection method (explained in Section 4.6) by using the indices that were assigned by

.setVariable.

A second way of initializing a Jet calculation employs the second form of .setVariable to declare a Jet

variable as a coordinate while simultaneously setting its value. This method is not recommended: it resets

the default reference point one component at a time, so that a invoking .�xReference would be required

after the fact.

...

Jet::Setup(3, 12);

Jet x, y, z, f;

x.setVariable(0.0, 0);

y.setVariable(1.0, 1);

z.setVariable(-1.0, 2);

x.fixReference();

y.fixReference();

f = exp(x*y + z);

The two LieOperator methods enable one to declare a component of a LieOperator variable to be a

coordinate | which is useful in the control sector | or to load Jet variables into speci�c components |

prior to concatenation, for example. Their use was illustrated in Section 3.

39

4.4 Operators

Logical and arithmetic binary operators act the way one naturally expects. The replacement operator, =,

enables the replacement of one Jet, or LieOperator, variable by another, while the logical operators == and !=

test whether two variables are equivalent. Arithmetic operators +, -, * and /, when sandwiched between

two Jet variables, activate the corresponding arithmetic operations of addition, subtraction, multiplication,

and division. In addition, the subtraction symbol, -, also acts as a unary operator on Jet variables, indicating

that they are to be negated. The C++ operators +=, -=, *=, and /= are available as well.

When placed between two LieOperator variables, the \multiplication" operator, *, initiates concatenation

rather than multiplication. This will be discussed in detail in Section 4.7.

Components of a LieOperator can be accessed as one would expect, using member function Jet LieOp-

erator::operator()(int). For example,

Jet x, y, z, ... ;

LieOperator u;

...

x = u(0);

y = u(1);

z = u(2);

...

will load the zero-th component of u into x, the �rst into y, and so forth.

In addition to these, the binary operator caret, ^, placed between two LieOperators takes their commu-

tator, and between two Jets, performs a Poisson bracket. We delay its description to Section 4.8.

All binary operators except concatenation, which has its own subtleties, check to be sure that their two

operands have the same reference point. If they do not, then an error message is written on the standard

output, and the application program is stopped. Of course, the replacement operator, =, automatically sets

the reference point of its left-hand operand to that of the right-hand one.

4.5 Transcendental functions

Most of the C++ transcendental functions available for \double" variables have been written for Jet vari-

ables as well. Speci�cally, the MXYZPTLK library currently contains the functions sin, cos, tan, asin, acos,

atan, exp, sinh, cosh, tanh, log, log10, pow, sqrt, and w (the complex error function). Except for pow, each

takes a Jet argument and, as one would expect, returns a Jet result. Two signatures are available for pow:

Jet pow(const Jet&, int) and Jet pow(const Jet&, double).

40

4.6 Selection methods

(a) double Jet::standardPart ()

(b) double Jet::derivative (int* m)

(c) double Jet::weightedDerivative (int* m)

(d) void T ::standardPart (double* x) Note: T is either a Map

(e) void T ::derivative (int* m, double* x) or a LieOperator.

(f) void T ::weightedDerivative (int* m, double* x) W is either a Jet,

(g) W W ::�lter (int wgtLo, int wgtHi) a Map, or a LieOperator.

(h) W W ::�lter (char (*f) (const int*, double) [])

A number of methods access parts of Jet variables without changing the variable. As a Jet member

function, .standardPart, returns as its value the image of the reference point, f(uo):
8
As a LieOperator

method, it accepts an array pointer (that is, the name of an array) as argument and loads the \standard

parts" of all its components into this array. For example:

...

double x[8];

LieOperator y;

...

y.standartPart(x);

if(x[3] == y(3).standartPart()) cout << "All is OK\n"

...

The .derivative and .weightedDerivative routines return the value of a speci�ed derivative or com-

ponent of the polynomial representative of the jet. Their argument is interpreted as the name of an integer

array containing the indices of the desired derivative. For example, if f models a jet containing f : R3 ! R,

at the point w, then the derivative @6f(x)=@x0@x
3
1@x

2
2jx=w can be obtained as follows.

...

Jet f;

double d, w[3];

static int m[] = { 1, 3, 2 };

...

Jet::Setup(3, 10, w);

...

d = f.derivative(m);

...

The .weightedDerivative returns a polynomial coe�cient, which is the derivative weighted by factorials of

the indices. These are, according to Eq.(2), the actual coe�cients which would appear in the truncated poly-

8The name of this method is a throwback to the days when connections between DA and nonstandard analysis were being
stressed.

41

nomial representation of f , and they, not the derivatives, are the actual numbers stored in a Jet variable.
9

Thus, if we replace .derivative with .weightedDerivative in the example above, then the value returned

would be (1! 3! 2!)
�1@6f(x)=@x0@x

3
1@x

2
2jx=w:

As with .standardPart, the LieOperator and Map versions of .derivative and .weightedDerivative

load the values of the derivative for each component of the operator (or map) into the array pointed to by

the additional argument, double* x.

The .�lter methods return a variable whose polynomial terms are a subset of those of the object on

which they are invoked. Letting W stand for either a Jet, Map, or LieOperator, form (g) returns a W

object with terms whose degrees are bounded by the arguments, wgtLo and wgtHi, inclusively. Form (h) is

more
exible, taking as its argument an array of decision functions which determine the terms to be �ltered

into the W object to be returned. As an example, consider the code fragment,

char c0(const int* index, double /* value */) {

return index[0] == 0;

}

char c1(const int* index, double /* value */) {

return index[0] == 0 && index[1] < 5;

}

char c2(const int* index, const complex /* value */) {

return value > 100.0;

}

typedef char (*FUNCPTR)(const int*, const complex);

static FUNCPTR crit[] = { c0, c1, c2 };

main() {

...

Map f, g;

...

g = f.filter(crit);

...

}

The �rst argument of the criterion functions is interpreted as an array of integers which represent the index

of one term in a polynomial; the second argument is interpreted as the value of the coe�cient associated

with the �rst argument. Given this information, the function decides whether the term passes the �lter.

With maps, di�erent �lters can act on di�erent components of the map, which is the reason for putting them

into an array. In the fragment above, because of their positions in the array crit, c0 examines the terms in

9In fact, the .derivative method �rst invokes .weightedDerivative and then multiplies by the factorials.

42

f(0), c1 in f(1), and c2 in f(2). Acting on

f :

0
@ x

y

z

1
A 7!

0
@ 300xy2 � 12y3 + yz

32y8z4 + 72y2

137x2y2 � 75xyz

1
A

it would produce the result

g :

0
@ x

y

z

1
A 7!

0
@ �12y3 + yz

72y2

137x2y2

1
A :

4.7 Evaluation and concatenation

(a) double Jet::operator() (double*)

(b) Jet Jet::operator() (Jet*)

(c) Jet Jet::operator() (T&) Note: T is either a Map

(d) T T ::operator() (T&) or a LieOperator.

A Jet variable stores the coe�cients of a truncated polynomial. Form (a) above enables one to evaluate

that polynomial at a point in the problem space. The argument is interpreted as an array of doubles

containing the point of evaluation. Jets and Maps keep track of their own reference points, so that the user

program need not subtract it explicitly in specifying the argument. (See the example in Section 3.5.)

Let �; : RNd+Nc ! RNd+Nc be two mappings of the problem space into itself which act like the identity

on the control sector. That is, only the dynamical coordinates change under the action of � and ; the

control variables are not touched. The composite map, h = � � : u 7! �((u)); is a mapping of the same

type. This operation is performed by form (d) of .operator(). However, notice that although the reference

points of h and are identical, say a, the reference point of � is (a): The reference point must be explicitly

declared, using the �xReference methods, before performing concatenation.
10

The demo in Section 3.7

provides an example showing how this is done.

When the control sector is not empty, all Map and LieOperator operations and methods assume that the

�rst Nd components refer to the dynamical sector and the �nal Nc to the control sector, these having been

determined by the Jet::Setup function.

Keep in mind that all manipulations are performed on truncated polynomials. Thus, � � will contain

terms only up to the degree of truncation. All higher degree terms which normally appear when concatenating

two polynomials are ruthlessly eliminated.

10What physicists call \concatenation," mathematicians call \composition."

43

Form (c) is similar except that a single jet is concatenated with a map. Thus, if f; g : RN ! R and

� : RN ! RN ; then the correspondence is:

g = f � � $ g = f(Phi); ;

where g and f are Jet variables, and Phi is a Map variable.

Form (b) of concatenation will work only if the problem space is one dimensional, for the operation

f � g does not make sense otherwise. Similarly to form (a), the argument is interpreted as an array of Jet

variables.

4.8 Di�erentiation and Poisson brackets

(a) Jet Jet ::D (int* m)

(b) Jet LieOperator ::operator^ (Jet&)

(c) LieOperator operator^ (LieOperator&, LieOperator&)

(d) Jet operator^ (Jet& x, Jet& y)

Derivatives of jets are themselves jets, and each function listed above performs an action of di�erentiation.

For example, if u; v : R5 ! R; and we want to implement the functional correspondence, v � @7u=@x20@x1@x
4
3,

using Jet variables, this could be accomplished as follows.

...

Jet::Setup(5, 10);

Jet u, v;

static int m[] { 2, 1, 0, 4, 0 };

...

v = u.D(m);

The Jet variable u itself would be unchanged by this method.

Taking derivatives lower the degree of a mathematical jet and, correspondingly, lowers the maximum

accurate weight of a Jet variable. Thus, if u stores derivatives of the real valued function u through weight

w, and we de�ne v to be an mth
-order derivative of u, then v can store the derivatives of v accurately only

through weight w �m; all derivatives of higher weight being unknown. In the small fragment shown above,

only derivatives through order 3 will be correctly stored in v, because the call Jet::Setup requested only

derivaties through order maximumorder 10 be stored in any Jet variable, particularly, in u. A private datum

of each Jet variable keeps track of the maximum weight of accurately stored derivatives, which may be less

than the maximum weight declared by the Jet::Setup function. These data are used by and propagated

through arithmetic operations, so that errors will not arise. In principle, an applications program could

request a di�erentiation or invoke a selection method which cannot be carried out accurately because of

44

di�erentiations executed previously. If this happens, then the Jet class will refuse to cooperate and will

write an error message to the standard output.

The badly overloaded operator symbol ^ indicates the action of a LieOperator on a Jet and two

di�erent kinds of brackets. Form (b) implements the former.

g = Vf $ g = V^f

Form (c) implements the commutator of two Lie operators, which is itself a Lie operator.

U = [V;W] $ U = V^W

Finally, if the dynamical sector has even dimension, say Nd = 2n; it can be (and usually is) interpreted as

a phase space whose �rst n components are \positions" and whose second are \momenta." The Poisson

bracket is then well de�ned, and Jet implements this operation via form (d).

h = f f; g g $ h = f^g

Because all these operation requires taking derivatives, the maximum accurate weight of the resultant is

generally smaller than that of its operands. This reduction does not occur, however, when the objects map

their reference points to the origin, for example, if the image of the reference point is zero under both f and

g. Again, MXYZPTLK stores that information automatically so that the user program need not keep track

of it explicitly.

ACKNOWLEDGEMENT

I was indebted to Herbert Wilf for a stimulating discussion of his ranking algorithm [14, 15, 9] which is

at the core of evaluation and concatenation. Jim Holt extended the code for classes Jet and LieOperator

to implement classes JetC and CLieOperator. I am also grateful to him for using MXYZPTLK in his own

programs. His continually pushing this library to its limits has been repeatedly helpful in exposing weak

points and suggesting improvements.

References

[1] Robert L. Anderson and Nail H. Ibragimov. Lie-B�acklund Transformations in Applications. Society

for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1979. SIAM Studies in Applied

Mathematics.

[2] M. Berz. Di�erential algebra { a new tool. In Floyd Bennett and Joyce Kopta, editors, Proceedings

of the 1989 IEEE Particle Accelerator Conference. IEEE, March 20-23, 1989. IEEE Catalog Number

89CH2669-0.

45

[3] Martin Berz. Nuclear Instruments and Methods, A258:431, 1987.

[4] Martin Berz. Di�erential algebraic description of beam dynamics to very high orders. Particle Acceler-

ators, 24(2), March 1989. to be published.

[5] Bruce Eckel. Using C++ . Osborne McGraw-Hill, Berkeley, 1989.

[6] Etienne Forest, Martin Berz, and John Irwin. Normal form methods for complicated periodic systems:

A complete solution using di�erential algebra and lie operators. Particle Accelerators, 24(2), March

1989. To be published.

[7] Leo Michelotti. Di�erential algebras without di�erentials: an easy C++ implementation. In Floyd

Bennett and Joyce Kopta, editors, Proceedings of the 1989 IEEE Particle Accelerator Conference. IEEE,

March 20-23, 1989. IEEE Catalog Number 89CH2669-0.

[8] Leo Michelotti. Exploratory orbit analysis. In Floyd Bennett and Joyce Kopta, editors, Proceedings

of the 1989 IEEE Particle Accelerator Conference. IEEE, March 20-23, 1989. IEEE Catalog Number

89CH2669-0.

[9] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, New York, 1978.

[10] L. B. Rall. Automatic di�erentiation: Techniques and applications. In Lecture Notes in Computer

Science No. 120. Springer-Verlag, 1981.

[11] L. B. Rall. The arithmetic of di�erentiation. Mathematics Magazine, 59:275{282, 1986.

[12] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Massachusetts, 1986.

[13] Roy Thatcher. Programming in C - a word of caution. Fermilab Computing Division Newsletter,

Vol. XVIII, No. 1, pp. 3-4, Jan-Feb 1990.

[14] Herbert S. Wilf. A uni�ed setting for sequencing, ranking, and selection algorithms for combinatorial

objects. Advances in Mathematics, 24:281{291, 1977.

[15] Herbert S. Wilf. A uni�ed setting for selection algorithms (II). Annals of Discrete Mathematics, 2:135{

148, 1978.

46

	Fermilab-FN-0535
	Fermilab-FN-0535-Rev.

