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I. INTRODUCTION 

unlike the Tevatron, the proposed Fermilab ~fain Injector has only one beam cir
culating, either proton in one direction at one time or antiproton circulating in the 
other direction at another time. As a result, a beam-position monitor with one termi
nal per stripline will be enough. This can be accomplished by shorting one end of the 
directional beam-position monitor in the Tevatron.1 The monitor impedances seen by 
the beam should be unchanged and so does the signal monitored at the terminal. The 
elimination of one terminal not only leads to simplification of monitor fabrication and 
installation. It amounts to a lot of savings also. 

The computation of stripline impedances has been discussed by many authors."3 

However, most of the discussions have been more or less intuition oriented. \Ve would 
like to bring in the concept of transmission line rigorously and see how a bunch current 
is reflected and transmitted. A time-domain picture is used and followed throughout, 
although some computations have to be done in the frequency domain when the con
cept of impedance is introduced. For simplicity, we assume the transmission line to 
be nondissipative and nondispersive. The equations governing the transmission line 
and the input impedance with various terminations are reviewed in the Appendix. We 
discuss in Sects. II and III, respectively, the stripline shorted at one end and the di
rectional stripline with matched terminations at both ends. In Sect. IV, we deriw the 
impedance and monitored signal of a stripline terminated at the center, and discover 
that there are no resonances when the velocity of the beam pa.rticles is equal to the 
velocity of the transmission line. In Sect. V, transverse impedances are discussed. 

II. STRIPLINE SHORTED AT ONE END 

This is the proposed stripline that we are interesting in. It consists of a plate of 
length l with termination impedance Z0 at the upstream end (z = 0) and shorted at 
the downstream end ( z = £) as shown in Fig. la. For the convenience of discussion, 
we extend the plate to z = -l as in Fig. 1 b and take the limit ( ___, 0 at the end. 
The stripline is at a constant distance from the beam pipe surface, forming with it a 
transmission line of characteristic impedance Z0 and velocity v. Consider a localized 
ultra-relativistic bunch of current i0 (t-z/c) defined by 

(2.1) 

traveling to the right, where c is velocity of the beam particles which we take as the 
velocity of light. An image pulse current -i0 (t - z/c) will be induced on the upper 
surface of the stripline. To maintain neutrality, there should also be an image current 
-+ i 0 (t-z/c) on the lower surface for -( < z < O, which we are concentrating on now. Let 
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us assume that this current pulse passes z = 0 at time t = 0. \ 11/hen this current reaches 
z = 0, it sees a termination impedance Z0 and a transmission line of characteristic 
impedance Z0 in parallel. The current therefore splits into two equal parts with one 
half ~i0 (t) flowing across the termination. The other half ~i0 (t - z/v) flows into the 
z > 0 part of the stripline, but with velocity v, the velocity of the transmission line. 
When it reaches the downstream end z = l at time l/v, it is reflected. \\'hen the 
reflected current reaches the upstream end z = 0 again at time U/v, it sees a matched 
termination Z0 and is completely absorbed without any more reflection according to 
Eq. (A.12). Therefore, the total current in the transmission line can be written as 
Eqs. (A.9) and (A.12):, 

it(l,z) = ~ {io(t - z/v)-+-ioi(t-l/v) + (z-l)/v]} , 
2 

and the total current flowing across the termination is 

iT(t) = ~ [io(t) - io(t - 2f/v)1 

(2.2) 

(2.3) 

The positive sign is chosen for the reflected current in Eq. (2.2) because the stripline is 
shorted at z = £/2. The total current at z = 0 is 

it(i, 0)-'- iT(t) = io(t) (2.4) 

equal to the incident current at z = 0- as required. To see that Eq. (2.2) is indeed 
correct, let us go to the frequency domain. The currents become 

il(w, z) = ~ Io(w) [e-jkz + ejk(z-2l)] , 

iT(w) = ~ f 0(w) [i - E-i2kt] , 

where k = w/1'. Their ratio at z = 0 is 

it(w, 0) 

iT(W) 

1 _ E- j2kl 

1 _ e-i2kl 

1 

j tan kl 

(2.5) 

(2.6) 

(2. 7) 

which is just the ratio of the termination impedance Z0 to the input impedance jZ0tan kl 
,Eq. (A.14)] of a shorted line, and is just the ratio into which the current at z = 0-
should split in the frequency domain. 

The potential along the stripline is, from Eqs. (2.5), (A.3) and (A.4), 

et(t,z) = ~Zo{io(t - z/1')-io!(t-l/v)- (z-l)/v]} (2.8) 
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which vanishes at z = l as required. In the frequency domain, using Eqs. (2.5) and 
(A.8) or taking the Fourier transform of Eq. (2.8). the potential is 

e1(w,z) = ~ Z010(w) [e-;b - e;•('- 21lj (2.9) 

The potential at z = 0 is 

(2.10) 

which can also be obtained by multiplying the current through the termination ;T by 
the termination impedance Z0 • The longitudinal impedance seen by the particle bunch 
or the image current at z = 0- is therefore 

Z = e1(w,O) = ~ z [i - -j2•1] 
1 10 ( w) 2 ° e 

(2.11) 

This is in fact exactly the same as the parallel impedance of the termination impedance 
Z0 and the impedance of the shorted transmission line j Z0 tan kl. 

In the time domain, the potential at z = 0 is 

1 
e1(t,O) = 2 Z0 :i0 (t)- io(t - U/vl: (2.12) 

Therefore, if we monitor at the termination, we will see first half the bunch pulse 
followed at a time 2£/v later by the other half but with opposite sign. 

In the above, we assume that the stripline wraps around the beam completely. How
ever, if the stripline subtends an angle ¢0 at the beam pipe axis, all the currents i1 and 
i 7 should be multiplied by ¢0 /2rr because this is the fraction of the image current of the 
beam collected by the stripline. This applies also to the potential Et of Eqs. (2.8), (2.9), 
and (2.12). However, the average potential drop seen by the beam is only (¢0 /2rr)c1 

because only a fraction </Jo/2rr of the image current crosses the gap and sees the poten
tial drop. Therefore, the impedance of the stripline as seen by the beam in Eq. (2.11) 
will be reduced by ( ¢0 /2rr )2 • 

III. DIRECTIONAL STRIPLINE TERMINATED AT BOTH ENDS 

The directional s\ripline is shown in Fig. 2. Similar to the shorted one discussed in 
Sect. II, the image current pulse on the underside of the stripline splits into two equal 
parts at z = 0, one half going through the termination of Z0 • The other half goes into 
the transmission line formed by the stripline and the beam pipe and is totally absorbed 
by the termination impedance Z0 at z = l without reflection. 
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The image current on the upper surface of the stripline travels with the same velocity 
as the particle bunch. When it reaches the z = £ gap at time £/c, it goes into the 
underside of the stripline. Here, it splits into two equal parts, one half going across 
the downstream termination while the other half traveling backward to the left and 
is absorbed by the upstream termination without reflection. Thus the current on the 

underside of the stripline is 

1 
iL(t,z) = z{i 0 (t -- z/v) + i 0 [(t-£/c) ~ (z-£)/c·]}. (3 .1) 

The currents passing through the upstream (left-hand) and downstream (right-hand) 
terminations are respectively, 

1 
iT.(t) = z{i0 (t)- i0(t-l/c-l/v)} 

iT,(t) = ~{i0(t-i/v) - i 0 (1-l/c)}. 
2 

The potential along the transmission line is, according to Eq. (A.4), 

et(t,z) = ~ Zo{i0 [t- z/v]- i0 [(t--i/c) + (z-i)/v}, 

( 3.2) 

(3.3) 

(3.4) 

which gives at z = 0 and z = l the correct potential at the upstream and downstream 
tt>rmi na.tio11s: 

eT.(t) = ~ Zo{io(t)- io(t-£/c-l/v)}, 

eT,(t) = ~ Zo{io(t - f/v)- io(t - i/c)}. 
2 

(3.5) 

(3.6) 

We see that if the velocity of the particle beam c is equal to the characteristic 
velocity v of the transmission line, the potential at the downstream termination eT,(t) 
vanishes. For this reason, the situation becomes exactly the same as for the shorted 
stripline discussed in Sect. II. In practice, the velocity of a transmission line is very near 
to c, unless there is so obstructions in the line to lower the velocity. The potential at 
the upstream termination er.(t) displays also a current beam pulse followed by another 
beam pulse of the opposite sign at a time 2£/v later. 

To derive the impedance of the stripline, we need to resort to the frequency domain. 
The potential along the stripline or Eq. (3.4) becomes 

(3. 7) 
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The potentials at the upstream and downstream ends are, respectively, 

eT.(w) = ~ Zolo(w) { 1 -- e-jkl(I+v/c)} ' 

er,(w)=~Zofo(w){e-jkl_e-Jklv!c}, 

(3.8) 

(3.9) 

which can also be obtained hy Fourier transforming Eqs. (3.5) and (3.6). These poten
tials are seen respectively by currents ! 0 (w) at the upstream end and ! 0 (w)e·iwl/c at 
the downstream end, contributing impedances 

Z11. = ~ Zo { 1 - e-jkl(I+v/c)} (3.10) 

Z1 d = - ~ Zo { e-jkl(l-v/c) - 1} . (3.11) 

The longitudinal impedance of the whole stripline is the sum of the two or 

z
11 

= ~ z0 { [ 1 _ e-jkl(I+v/c)] + [ 1 _ e-jkl(l-v/c)]} , ( 3.12) 

which is exactly Eq. (2.10) if v = c. The above impedance can be checked against the 
power dissipation across the two terminations; i.e., 

(3.13) 

IV. STRIPLINE TERMINATED AT THE CENTER 

The stripline has its upstream end at z = -l/2, its downstream end at z = £/2, 
and is terminated at z = 0 by an impedance Zr as shown in Fig. 3. It forms a trans
mission line with the beam pipe having characteristic impedance Z0 and velocity v. 

Besides reflections at the upstream and downstream ends, currents will also be partly 
transmitted and reflected at the termination. An analysis in the time domain will be 
extremely complicated, because it involves the summation of infinite number of reflected 
and transmitted pulses. Here, we first solve the problem in the frequency domain and 
transform the results back to the time domain. After that, direct derivation in the time 
domain is pursued. 

1. Impedance seen by the beam 

The particle beam current i 0 [t - (z+f/2)/v· feeds the stripline by inducing currents 

. [ z+l/2] to t - , 
v 

( 4. I) 
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on the underside of the stripline, respectively, at the left and right ends. For the 
discussion below, let us simplify the problem by assuming the equality of the particle 
beam velocity c and the line velocity v. This assumption is later relaxed in Sect IV .3. 

In the frequency domain, the currents on the upstream (left) and downstream (right) 

sides of the underside of the stripline are, respectively, 

(4.2) 

and 

( 4.3) 

where J0 (w) is the Fourier transform of the bunch current at z = -l./2. In the above, 

;., i,. a, and b are functions of w, although thew-dependency has been suppressed for 
convenience. The expressions in the squared brackets have been writ.ten in such a way 
that they vanish at z = -l/2 or z = l/2, the correct reflection condition for open-circuit 

ends. The corresponding potentials on the upstream and downstream sides are 

( 4.4) 

and 

e,(z) = Z0 10 (w) {-ei•('- 3112l + b [e-1•('- 1121 + ei•(,-t/2 l]} . (4.5) 

These potentials have to be equal at z = 0, therefore 

( 4.6) 

The current through the termination is 

;r = i.(O) - i,(O) = l 0(w) { e-jkl/2 - e-ik3l/Z +(a, b) [e-jkl/ 2 + ejkl/ 2]} (4.7) 

which is equal to e.(O)/ZT. or 

Zo{E-jkl/2+a [e-jkl/2_ejkl/2]} = zT{e-jkl/2_e-jk31/2 + (a+b) [e-jkl/2+ejkl/2]} 

( 4.8) 

\Vith a= e-Jkl and .8 = Zr/Z0, Eqs. (4.7) and (4.8) can be rewritten as 

( 

14 a 

l+a + ;3(1-a) 

-1-·a ) (:) 
6 

( 

-a(l+a) ) 

-a+ pa(l-a) 
( 4.9) 



from which one obtains readily 

Q 

a. = -~ ---~-~ 

l+a + 2/3(1-a) 
and 

b = _ aia+2/3(1-a) . 
l+a + 2/3(1-a) 

( 4.10) 

The potentials at the upstream end (z = -£/2) and downstream end (z = £/2) are, 
respectively, 

(2/3+1)(1-a) 
f:,(-£/2) = Zolo(w)(l + 2a) = Z010(w) • . ( ) , 

1-ca' 28 1-a 
(4.11) 

_ a(2/3-1)(1-a) 
e,(£/2) = Z0 10 (w)(-a + 2b) = Z0 10 (w) ( ) . 

l+a + 2{3 1-a 
( 4.12) 

The longitudinal impedance seen by the beam crossing the upstream gap is obtained 
by dividing e,(-£/2) by l 0 (w), 

(2/3+ 1)(1-a) 
Z1, = Z0 ------·-- • 

·• l+o + 2{3(1-o) 
(4.13) 

The longitudinal impedance seen by the beam crossing the downstream gap is obtained 
by dividing -e,(£/2) by al0 (w). where a is the transit-time phase lag of the bunch, 

(2/3-1)(1-a) 
z11 ' = -Z0 1+a + 2/3(l--n) · 

The total longitudinal impedance of the stripline is the sum of the two, or 

2(1-o) 
Z1 = Zo--~-~-

. 1 + Q + 28(1- Q) 

(4.14) 

(4.15) 

Equation (4.15) is more complicated than Eq. (3.8) because there are infinite reflections 
and both ends and the center of the stripline. This remains true even if we let ZT ~ Z0 • 

At low frequency. the stripline impedance becomes 

Z
1 

= jkf [l - jf3k£] ( 4.16) 

which is inductive. 

2. Potential at the terminal 

Let us examine the potential at the termination (z = 0), which is 

ET= Zolo(w)ejklf'[a, a(l +a)] . ( 4.17) 
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Substituting the solution for a, we get 

e = Z I (w)a112 2/3(l-a) 
T 

0 0 
l+a + 2/3(1-a) 

( 4.18) 

There is only power dissipation across the termination impedance, which is 

1- 12 
p - _!21_ 

T - 2Z . 
T 

( 4.19) 

It is easy to verify with the aid of Eqs. ( 4.15) and ( 4.18) that this power lost is exactly 
equal to 

P = ~ l1o(w)l 2 ReZ1. ( 4 .20) 

In order to study the temporal behavior, we expand Eq. (4.18) in powers of a: 

where 
2/3 - 1 

T/ = ---
2/3 -+ 1 

( 4.22) 

whose magnitude always less than unity. Transforming to the time domain, we have 

eT(t) = ~ Zo(l-TJ)io(t-£/2v)- (l-TJ)i 0(t-3£/2v) 

- TJ( l -TJ )i0 ( t-5( /2v) - TJ'( 1-1) )io( t- 7£ /2v) - 7) 3
( 1--7) )io( t-9l /2v) - · · · . . ( 4.23) 

The first term in the squared bracket represents the first arrival of the image pulse from 
the upstream end at time £/2v. Part of this pulse is reflected, part of it is transmitted, 
and the rest passes through the termination. At time l/v, the reflected and transmitted 
parts reach, respectively, the upstream and downstream ends of the stripline and are 
reflected again. Al this moment, the beam feeds the downstream end of the stripline 
with an image pulse [Eq. (4.1)]. All these arrive at the termination at time 3£/2v 
giving rise to the second term in the squared bracket of Eq. (4.23). The reflections and 
transrnissions go on indefinitely. 

3. Solution in the time domain 

We now look into the time domain directly. The solution is illustrated in Fig. 4. We 
start with a beam pulse of current i 0 (t - ( z + l /2) / v '. This current enters the upstream 
(left) end at time zero. At a time £/2v later, the current reaches the termination ZT 
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(z = 0). It is reflected as pi0 [t-'-(z-£/2)/v: and transmitted as pi0 ]t-(z+£/2)/vj, 
where the reflection coefficient p and the transmission coefficient p are given according 
to Eq. (A.19) by 

l 
p= 28+1 = 

1-1} 

2 
and 

23 
p=l-p=-'~ .. 

2,3~1 

1+1/ 

2 

with (3 = Zr/ Z0 . The current flowing down the termination is therefore 

iT = (1 + p-p)io [t -£/2v] . 

( 4.24) 

( 4 .25) 

The reflected and transmitted currents reach respectively the left and right ends at 
time l/v. There, because the line is open, they are reflected as -pi0 [t-(z+3£/2)/v: 
and - pi0 :t + ( z - 3£/2)/v J. At this moment, the beam pulse reaches the downstream 
(right) end of the stripline and induces a current i 0 [t+(z-3£/2)/v: flowing into the the 
stripline from the right. We continue to follow the reflections and transmissions of these 
two input sources. The reflected and transmitted currents are shown in Fig. 4. Those 
currents originate from the left-hand source are written above the arrows and those 
currents originate from the right-hand source are written below. The total current in 
a region of the stripline is the sum of all the reflected and transmitted currents in that 
region. For example, the current flowing through the termination at z = 0 is 

iT = (1-'-p-p)io(t-l/2v)- (l+p-p)2 iio(f-3l/2v) + (p-p)io(t-5l/2v) 

+ (p-p)2 i 0 (t-U/2v) + (p-p) 3i0 (t-9f./2v)-'- · · ·] 

The voltage across the termination is 

(4.26) 

( 4.27) 

With the help of Eqs. (4.22) and (4.24), it 1s easy to show that Eq. (4.27) is indeed 
identical to Eq. ( 4.23). 

4. Resonances 

The longitudinal impedance of the stripline seen by the beam in Eq. (4.15) can be 
rev1:ritten as 

l - a 
Z11=Zo(l-71) , 

l - 71a 
( 4.28) 

where 71 is giYen by Eq. (4.22). For resonances to occur, we must have 71 = ,,-1 = ejkl 

or 
(3 = ZT 

Zo 

1 
( 4.29) 

2j tan kf 
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The characteristic impedance Z0 of a transmission line is mostly real, and so is the 
termination impedance z,, implying that resonances are not possible. 

At the first thought, this result is very puzzling, because such of stripline system 
can support resonances. To demonstrate this. let us omit for the time being the current 
induced by the beam at the downstream port '.Eq. (4.1)]. This is equivalent to omitting 
ejk('- 3112) from Eqs. (4.3) and (4.5), or e-J3kl from Eqs. (4.6) to (4.8), or the o 2 terms 
on the right side of Eq. (4.9). The result is 

, o(l-a-2130) 
a=---~------~ 

(l+o)[l+o- 2i3(1-a)] 
and b' = _ . 2a~ _ 

(1-a) 1-a..;. 2i3(1-a) 
(4.30) 

The potential at the upstream end (z = -£/2) is 

_, 1 + T}0
2 

e ( -£/2) = Zofo(w) ( )( -) 
' l J. Q ) - TJO 

( 4.31) 

which is just the input impedance of a transmission line of length £/2 terminated with 
an impedance formed from the parallel of ZT and another open-ended transmission line 
of length £/2. The potential at the downstream end (z = i/2) is 

e' (£/2) = Z
0
1

0
(w) (l-TJ)o 

' (l+a)(l-TJn) 
(4.32) 

It is obvious from Eqs. (4.31) and (4.32) that the potential on the stripline resonates 
"\\'henever 

(4.33) 

or when the length of the stripline t equals an odd number of half-wavelengths. In fact, 
the potential along the line for the lowest resonant mode (£=half wavelength) is given 
by 

1. (l )-'() . irz im + a e :: =- - s1n - . 
a--1 £ ( 4.34) 

Now let us include the induced current at the downstream port. Its effect to the 
stripline is exactly the same as the induced current at the upstream port. The only 
difference is that this downstream-port current is of negative sign going in the opposite 
direction and with a phase lag of a = e-jkl. It drives a resonance with potential exactly 
the same as Eq. (4.34), but with sign reversed. The resonance is therefore cancelled 
exactly. 

More accurately, the transit-time phase lag of the bunch across the stripline should 
be 

a'= e-jwl/c =- e-jklv/c ( 4 .35) 
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where c is the velocity of the bunch particles. Accordingly, the potentials at the up
stream and downstream ends are, respectively, 

i\(-£/2) = ((-£/2) - o'e:(£/2), 

e,(£/2) = ((-£/2) - '~(t'. 2 l . 
a 

(4.36) 

( 4.37) 

If the velocity of the transmission line vis equal to the velocity of the particle bunch c, 

it is easy to verify that the resonance factor ( 1 + o) in the denominators of Eqs. ( 4.36) 
and ( 4.37) are cancelled so that the resonances disappear. We then recover Eqs. ( 4.11) 
and (4.12). However, if v is different from c, there are no such cancellation. From 
Eqs. ( 4.36) and ( 4.37), the longitudinal impedance seen by the beam will become 

1-o (o-n')(oo'-1) 
Z1=Zo(l-71)--+Zo(l+71)( )( ) . 

1-710 l+o l-710 a' 
( 4.38) 

In the above, the first term is the impedance given by Eq. (4.15) or Eq. (4.28) and the 
second term accounts for the difference in v and c which contributes to the resonances. 

From Eq. (4.33), the frequency of then-th resonance is 

1rV 
Wn=(2n-1)l . (4.39) 

The strength of the resonance is determined by the shunt impedance over figure of 
merit, R/Q. The latter is related to the residue of z,, at w = Wn by 

lim (w - wn)Z11 = - w~ (R) 
w-w. 21 0 

• n 

(4.40) 

We obtain 
8Zo 2 7r1' 

----cos 
(2n-l)ir 2c 

(4.41) 

which is independent of Zr as expected. When vis sufficiently close to c, Eq. (4.41) 
reduces to 

(R) = 27rZ0 ("ll-i)'. 
Q n (2n-I) C 

(4.42) 

V. TRANSVERSE IMPEDANCE 

To measure the transverse offset of the beam from the center of the beam pipe, we 
need two striplines on either side of the beam, each subtending an angle </>0 at the pipe 
axis. To compute the transverse impedance, we place a dipole beam at the beam axis 
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and calculate the the amount of image current induced on the striplines. The voltage 
across the upstream and downstream gaps of each stripline can be derived as in the 
above discussions. The longitudinal impedance of the dipole mode, Z,) can then be 
inferred by equating the power loss at the termination impedances. The transverse 
impedance (of the dipole mode) can then be obtained using the relation 

( 5.1) 

The derivation has been given in detail in Ref. 3. In general, the transverse impedance 
in the direction from one stripline to the other of the pair is related to the longitudinal 
impedance of a pair by 

( )

2 
c 4 -24>0 

ZJ.(w) = -b - sm -Z1
1
(w). 

w 2 ¢0 2 · · 

where bis the radius of curvature of the striplines encircling the beam. 
impedance in the other transverse direction is zero. 

12 
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APPENDIX 

1. The telegrapher's equations 

A transmission line consists of two conducting surfaces running in say the z-direction. 
One of the surfaces is grounded. At time t and position z on the other surface, there is 
a. current i(t,z) and a potential e(t,z), which are not independent of each other. Since 
we are interested in a lossless and nondispersive line, the line carries only an inductance 
L per unit length and a capacitance C per unit length, which are frequency indepen
dent. Across a length dz, the potential drops by de due to the inductance Ldz, and the 
current changes by di due to the capacitance Cdz (see Fig. 4). The voltage and current 
are therefore related by 

8e=-L8i 
8z 8t ' 

8i = -C8e (A.l) 
8z 8t 

which are called the telegrapher's equations. It is clear from Eq. (A.l) that i(t, z) and 
e(t, z) satisfy a wave equation with a velocity of 

I 
v - -- (A.2) - .;re. 

The general solution is 

i(t,z) = f(t - z/v) + g(t + z/v), (A.3) 

representing a wave traveling to to the right and a wave tra.veling to the left. With the 
help of Eq. (A.l), the potential can be obtained easily as 

e(t,z) = Z 0 [f(t- z/1,)- g(t - z/1•) (A.4) 

where we have introduced the characteristic impedance of the transmission line, 

IL 
Zo = \ C . (A.5) 

Attention should to paid to the signs in Eqs. (A.3) and (A.4). 

In the frequency domain, we have for example, 

i(t = z/v) = J dw ;c;c(w,z)e1wt (A.6) 
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where 

k = w/v , (A. 7) 

represents wave traveling to the right (left), and J 'f ( w) is given by Eq. (2. 1 ). Substitution 
into Eq. (A.l) gives 

2. Input Impedance 

Consider a transmission line of length i. and terminated with an impedance ZT as 
shown in Fig. 5. Consider an input current flowing in the positive z-direction. This 
current will be reflected at the end of the line ( z = £). So the total current is, for one 
frequency, 

(A.9) 

where k = w/v and p is the reflection coefficient. The potential along the line is. 
according to Eq. (A.8), 

(A.10) 

The reflection coefficient p can be determined easily by matching the terminated impe
dance ZT to the ratio of the potential and current at z = e, or 

ZT = ~(w,l) = Zol -p 
i(w,l) 1 + p 

(A.11) 

The reflection coefficient for the current is 

Zo - Z 
p = . T 

Zo ~ ZT 
(A.12) 

The reflection coefficient for the potential will be the negative of this. The time-domain 
picture can be obtained by performing inverse Fourier transforms on Eqs. (A.9) and 
(A.10). \Ve see that, providing that Z0 and ZT a.re frequency-independent, the reflected 
current or potential has exactly the same wave form as the incident current or poten
tial. In order words, providing that Z0 and ZT are frequency-independent, the above 
formulation can be carried out in the time domain. 

The input impedance is the ratio of the potential to the current at z = 0, or 

Z
.-z I-pe-i2kl -ZjZotankl+ZT 
i- 0 - 0 . 

1 + pe-12kl Z0 + ;ZT tan kl 
(A.13) 

Note that when ZT = Z0 , p = 0 implying that there is no reflection at the termina
tion. In order words, the current (or potential) flowing into the termination is totally 
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absorbed. lTnder this situation, the input impedance z, is just the characteristic impe
dance Z0 of the line. 

If the transmission line is short-circuited at z =£,i.e., Zr = 0, the input impedance 
lS 

z, = j Z0 tan kf , (A.14) 

which is purely reactive and can take on any value depending on the frequency w and 
the length C of the line. 

3. Reflection and transmission 

Consider two transmission lines having the same velocity v and characteristic impe
dance Z0 joined together by a termination impedance Zr at z = 0 as shown in Fig. 7. A 
wave coming from the left will be partly reflected and transmitted. The total currents 
on the left and the right of the termination are given by 

and 
- "k i,(w, z) = Io(w )pe~' ' 

(A.15) 

(A.16) 

respectively, where p and pare the reflection and transmission coefficients. The voltage 
at the termination can be obtained from Eqs. (A.15) or (A.16) by applying Eq. (A.4), 
or 

eT(w) = Zolo(w)(l - p) = Zolo(w)p. (A.17) 

The current through the termination impedance Zr is 

;r(w) = Ia(w)(l + p - p), (A.18) 

which is also equal to eT/ZT. Therefore, we get 

1 
and 

28 
p = 28 -'- 1 ' (A .19) 

p = 2(3 + 1 

with p + p = 1 and (3 = Zr/ Zo. Note that if Zr and Zo are frequency-independent, p 

and p are are frequency-independent. If we perform an inverse Fourier transform on 
Eq. (A.15) or Eq. (A.16), we will find that the current or potential wave form does not 
change after reflection and transmission. 
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z = -t; 0 
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Fig. 1. Stripline terminated at near end and shorted at far end. 
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z ~ 0 

Fig. 2. Stripline terminated at both ends. 

z ~ -£/2 0 £/2 

Fig. 3. Stripline terminated at the center. 
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z =H/2 

Fig. 4. Reflected and transmitted currents in a stripline terminated 

at the center. The source is a beam current i 0[t-(z+2/2)/v]. 
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Fig. 6. Input impedance 
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- ; 0{t-z/v) 

pi 0(t+z/v) -

z = 0 

Fig. 7. Reflection and transmission at a termination. The 
reflection and transmission coefficients for current 
are denoted by p and p . 
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