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For all the time and frustration that humans expend interacting with computers, it is 

surprising that more attention is not paid to the impact the computers used by armed forces might 

have on security and peace. The military, like the rest of us, is dependent on its computers and 

interacts with them unceasingly, often in critical situations. Never before have our armies been so 

intimately dependent on their tools, certainly not ones as complex, or as apparently capricious as 

misapplied computers can be. This paper looks at the ways in which this peculiar human 

involvement with computer systems requires special attention, most critically in the military 

context, from po !icy makers and researchers. 

By any measure, computers have infiltrated every aspect of modern armed forces. In weapon 

systems, computers and digi ta! electronics are used for communications, navigation, weapon-path 

prediction and control, and for target identification, tracking, and projection. Computer systems 

are at the heart of all activities in command, control, communications, and intelligence (C31), 

including, increasingly, data management and interpretation. Management of military logistics 

depends on the same kind of extensive computer support found in any large-scale civilian 

activity. The total electronics budget for the Department of Defense (DoD) in 1988 was about $55 

billion. For 1987, $22 billion was budgeted on c3J equipmentl - and this sum does not include the 

substantial, secret, "black," budget in this area. The importance our society implicitly attaches 

to military uses of computers is dramatically evident in the military impact on civilian 

computing-technology research. About 70 percent of government-sponsored computer science at 

universities in the United States is now funded by the Department of Defense.2 

From the strictly parochial American viewpoint, computer and digital systems embody much 

of what gives the nation's armed forces a technological edge. For one thing. these systems are 

beginning to make available increasingly precise, so-called surgical, weapons for both regional 

and strategic situations, at a reduced risk to allied personnel. As this technology matures, it 

should expand military options and allow for planning a more finely tuned and smoother pace 

when the escalation of hostilities are required during a crisis. Technological leadership in this 

area could enhance a nation's ability to exert political influence in a crisis. 

Information about the status and activities of both friendly and hostile forces has always been 

essential to success on the battlefield. The speed of modem mechanized and aerial warfare has 

enormously reduced the time available for gathering, disseminating, and assimilating 

1 Office of the Under Secretary of Defense for Acquisition, Report of the Defense Science Board Task 
Force on Command and Control Systems Management,Washington, D.C.,1987), 10; see also Editors of 
Defense Electronics,The c31 Handbook, (EW Communications, Palo Alto,1986), 263. 

2 Joel Yudken and Barbara Simons, Federal Funding in Computer Science: A Preliminary Report , (IBM 
Research, Yorktown Heights, N.Y., 1988). 
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information, and for decisively acting upon it. Computer management of information is, therefore, 

essential, and effective implementation of computers may well provide the critical advantage on 

the battlefield. Similarly, the time scale for logistics support, which also requires widespread 

computer tools for its management, has been sharply reduced. 

American leadership in military computer technology is looked at with considerable envy by 

others, whether superpowers or developing countries. Computers and digital technology will 

become a ubiquitous factor in all of the world's military activities. The special kinds of problems 

I discuss in this paper will, therefore, increasingly concern those who worry about the peace and 

security of the world. 

The complexity of systems with embedded computers, and their widespread heavy use, is at 

the core of a major qualitative change in military process.I The most telling aspect is the way in 

which modem computer and digital-electronics technology has widened the information horizon. 

This change amounts to a phase transition in which the domain of immediate communication has 

expanded from the commander's own bunker to the whole battlefield, the regional theater, and, 

in essence, to the whole world. The result is a tight coupling of widely spread decision-making 

and action units. During a crisis or in battle, the information that computer systems make 

available can greatly help in avoiding mistakes that can result in serious, immediate loss of life, 

or escalation to even more disruptive levels of warfare. But, when mistakes are made, they can 

resonate widely. When failures occur, the common mode can be disastrous, creating chaos with 

consequences so widespread that von Clausewitz could never have conceived of them. Unreliable 

systems in such circumstances are unacceptable. 

The modem military infrastructure has the clear potential, particularly if misapplied, to 

amplify von Oausewitz's famous "fog and friction" in war. To take a simple example, battle 

analysts confronted with relatively complete information will show some variation in their 

perceptions of a particular threat. The spread in the distribution of their threat evaluations 

will increase as information is lost in the fog of an unreliable or ineffective computer system. More 

will evaluate the threat as very high or very low. Such a spread can obviously result in 

inappropriate and dangerous escalation. (Risk/threat perception by humans is very complicated 

and the subject of psychological research, some of which is relevant to this paper's discussion of 

human-computer interfaces.) 

The goal of this study of the military use of computers Is to identify key technical problems 

that could lead to serious instability in crises. The emphasis is on tactical systems and the 

potentially serious consequences of their misapplication or misuse. Many of the problems are 

1 The significance of the heavy use of computers by the military is not widely appreciated. 1 despite the 
efforts of Computer Professionals for Social Responsibility and others to bring some of the issues to 
public attention. 
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common to strategic command and control which naturally has gotten more military and academic 

attention. I Because of worldwide operations and the global information horizon, unreliable 

tactical operations, though primarily nonnuclear, are potentially as destabilizing and dangerous 

as unreliable strategic operations.2 Computers are embedded in "all critical [tactical] systems -

logistics, intelligence, surveillance and warning, communications, command and control, weapons 

guidance, training, etc." Many aspects of tactical operations cannot function effectively without 

computer networks.3 

Very disturbing is the widespread confusion, among both military and civilian decision 

makers, about what tasks computers realistically can be expected to accomplish and on what time 

scale. This matter is disturbing no matter whether one looks at it from the point of view of 

military effectiveness, from a concern about arms control and stability against crisis escalation, or 

from an interest in the economic strength of the United States and the proper application of the 

nation's public funds and human-talent resources. Unrealistic application of computers leads to 

fundamentally unreliable systems. For this reason, I also attempt in this paper to provide some 

guidance on what tasks computers do well and what tasks it would take extraordinary (or 

infinite) expenditures of resources to accomplish with them. 

Computers are fundamentally different from other technology used by civilian and military 

sectors of society in two basic ways: the degree of system complexity and the level of human 

involvement. Measured in terms of the numbers and dynamics of their internal states, computers 

are systems of extreme complexity. This complexity carries some of the apparent opaqueness and 

unpredictability that is characteristic of the human personality. The sometime resemblance to 

human capabilities is what research in artificial intelligence (Al) tries to exploit. Computer 

technology is the highest of high tech. Yet, unlike other technology, it is extremely difficult to 

quantify. What do you mean by complexity when you don't know all the system states? What do 

you mean by reliability when you don't know all (and, probably, not even most) of the failure 

modes? 

Also unique is the degree of intimate human involvement with computer systems. The human 

component is obvious and essential for specification, programming, definition of input, 

interpretation of output, and attempts to confound the system. Humans are involved in some of 

1 For a complete discussion of strategic c31, see Charles A. Zraket, "Strategic Command, Control, 
Communications, and Intelligence", Science 224 (1984):1306-11, and P. Bracken, The Command and 
Control of Nuclear Forces (New Haven, Conn.: Yale University Press, 1983). 

2 The important cause and effect relationship between having effective command and control systems 
and appropriate response was emphasized in (Office of the Under Secretary of Defense for Research 
and Engineering, Report of the Defense Science Board Task Force on Command and Control Systems 
Management, Washington, D.C. 1978), 6; see, also Gary Chapman , "The New Generation of High
Technology Weapons," in D. Bellin and G. Chapman, eds., Computers in Battle, Will They Work? 
(Boston: Harcourt Brace Jovanovich, 1987), 93-94. 

3 Charles A. Zraket, private communication, July 31, 1989. 
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these activities in other enterprises, such as the development of weapons, bridges, and vehicles, 

but never with anywhere near the intensity required for computers. What is different is that 

computers aid the intellectual rather than mechanical functions of humans. These are attempts to 

replace our most complex and "human" capabilities. Their specification and design require a deep 

and most intrusive self-analysis. This requirement for intensive human involvement is a profound 

and neglected aspect of the computer problem. 

Computer systems must be considered as part of the overall system in which they are 

embedded, not as one "of a collection of components"l or as "applique".2 In particular, it is 

essential that they be understood as human-<:omputer systems. When something goes wrong, it is a 

failure in "integrating a complex, highly contingent world of analog variations with both human 

subjectivity and discrete-state machines," as Gary Chapman puts it.3 The human-computer 

interface needs particular attention in critical situations requiring rapid decision making. 

Computers must be accepted as the useful but limited tools they are, not as some kind of allied 

organism with the all-too-common anthropomorphic qualities people attribute to them. 

This report covers selected key aspects of human-<:omputer systems. The starting point is an 

attempt to explain the extensive difficulties associated with improving - or even defining - the 

reliability of computer systems. Following is a discussion of hope and reality in the much

emphasized research field of artificial intelligence. The next section describes the importance of 

human interfaces with computers; and the one that follows flags a particularly acute matter, the 

security of networked computers, and the severe implications for stability in crises. The final 

section provides conclusions and a number of recommendations about important areas of research 

and policy related to human-<:omputer systems. 

I This point was emphasized in the SDI context in Report of the Defense Science Board; Task Force 
Subgroup on Strategic Air Defense (SDI Milestone Panel), Office of the Under Secretary of Defense for 
Acquisition, Washington, D.C., 1988), 3. 

2 The Eastport Study Group, "Summer Study 1985," in A Report to the Director of Strategic Defense 
Initiative Organization (Washington, D.C., 1985.) 

3 Gary Chapman, personal communication, August 10, 1989. 
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Reliability of Computer-Based Systems 

Computer hardware is subject in many, but not all, ways to the standard techniques of 

reliability engineering.I Redundancy has been exploited to produce extremely reliable duplex 

processor machines for situations requiring high availability, such as banking, airline 

reservations, and telephone switching. Tandem Computer Corporation specializes in such 

systems, and AT&T's 3B20D (et seq.) computers are widely used for switches. Their downtime, 

planned and unplanned, is less than two minutes per year in practice.2 The requirement on the 

development, sponsored by the Federal Aviation Administration (FAA), of an automated flight

control system, including its emergency mode, is for less than three seconds down time per year. 

It will most likely be possible to build isolated networked systems to similar reliability 

standards with appropriate redundancy. This expectation is reasonable, despite some concern 

about unpredictable chaotic effects, which have been observed in experiments involving 

asynchronous networks with nonlinear scheduling. Most important, it is possible to measure 

hardware reliability in terms of mean time to failure (MTTF) and to predict MTTF from 

measurements on components for a system in which the overall complexity is kept under control. 

This process is what allows one to design for improved reliability with redundancy, component 

selection, and reduction of component count. 

In computer software the situation is entirely different. Hardware performance and 

reliability have improved in the last 25 years by factors like a million and a thousand, 

respectively. There has been barely an order of magnitude improvement in any performance or 

reliability aspect of software - despite extensive research directed at what is ominously referred 

to as The Software Problem. Why is this the case? We use computers because they handle 

massive amounts of data that they can manipulate with data-dependent paths through complex 

logic. Convoluting the data states with program paths leads to a huge number of internal and 

final states. No human being can specify all the states for any but the most restricted 

applications. No human programmer can conceptualize all the states. No human tester can test 

all the states. 

Why can't we test software until it can be certified bug-free? Because, as E. W. Dijkstra said, 

''Testing can show the presence of bugs, never their absence."3 At the beginning of his book on 

software testing, Glenford Myers provides a simple homework assignment for his readers. The 

idea is to point out how difficult it is to test fully software written to even the simplest of 

I Daniel Siewiorek and Robert Swarz, The Theory and Practice of Reliable System Design, (Bedford, 
Mass.: Digital Press, 1982). 

2 W. N. Toy and L. E. Gallaher, "Overview and Architecture of the 2B20D Processor," The 3B20D Processor 
and DMERT Operating System, (Bell Laboratories, Naperville, IL) No. 2, (April 1983 ), 8. 

3 J.Dah~ E.W. Dijkstra, and C.A.R. Hoare. "Notes on Structured Programming," Structured Programming 
(London: Academic Press, 1972), 6. 
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specifications. The spec: read 3 integer values which are the lengths of a triangle's sides; print a 

message stating whether the triangle is scalene, isosceles, or equilateral. What test cases would 

you define for a program written to this spec? Experience with real bugs for this example suggest 

that the test cases must satisfy at least 14 issues. (Did you check the case (0,0,0)?) A group of 

highly experienced programmers averaged only 7.8 out of 14.1 This problem is so simple that 

formal logic methods could easily be used to prove the program carries out its specified task. The 

code required is a few tens of source lines. For large problems involving several million source lines 

of code (megaSLOCs), formal methods are impossible, and even highly experienced programmers 

would be able to define tests that would catch only a tiniest fraction of possible bugs. 

Everything said here about software applies to firmware. Firmware involves data, program 

instructions, or logic that is fixed in the memory or the wiring layer of an integrated circuit. The 

name firmware applies to read-only memory (ROM), programmable logic arrays (PLAs), gate 

arrays, and a large variety of other devices complex enough to contain extensive information. 

Generally, this information is prepared in a variant software language. What goes into one chip 

may consist of thousands of lines of code. The problem of firmware may be even more insidious 

than the problem of conventional software. Firmware is so intensively used in designing digital 

systems like computers that increasingly one sees hardware systems whose functionality traces 

almost entirely to software programs burned into silicon. The problem goes beyond firmware, 

strictly speaking. Large portions of VLSI chips, which dominate most digital hardware, are now 

defined in hierarchical design languages (HDLs) and then '1ogic-synthesized" or "silicon

compiled" automatically into the diffusion mask set used for the chip's fabrication. 

Redundancy works for computer hardware and for noncomputer systems; why not use it for 

software? The problem is, what do you make redundant? Running two identical copies of software 

(on reliable hardware) will give the same result, right or wrong. The failures in software are 

those of the humans in this aspect of the human-computer system. So what about redundant 

human programmers? The idea is referred to as n-version software development.2 Several 

independent and isolated teams build software to the same specifications. It is run in separate 

computers, and the results are compared. If the number of versions, n, is greater than 2, the 

computers can vote. Multiple-version software and multiple, isolated, independent testers are 

used in critical situations to improve reliability, despite the extra expense. One of the five 

computers on each of the space shuttles runs a second version of the software. (In fact, a delay in 

the first shuttle launch was caused by a veto from this computer. The veto resulted from a 

synchronization bug that had 1 chance in 60 of occurring.) 

1 Glenford J. Myers, The Art of Software Testing (New York: Wiley, 1979), I. 
2 J. C. Knight and P. E. Amman, "Issues Influencing the Use of N-Version Programming," (unpublished 

paper, Software Productivity Consortium, Reston, Va., 1988). 
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Without question, this technique improves reliability, but much less than one would expect 

from reliability theory for systems other than software. In hardware, if the probability of 

failure of one component is p, the probability that a system of n independent (parallel) 

components will fail is pn. If pis small, even n= 2 will result in very high reliability. However, 

the redundant components in software are human programmers or testers, and they are not 

independent. Human errors are correlated by culture (humans read the same textbooks and learn 

the same algorithms) and by genetics (the thought processes in different brains may differ, but 

not all that much). However, even n-version techniques are not a panacea that will eliminate 

software errors, they can be useful in controlling hostile infiltration of software development 

groups (an issue to be discussed in terms of the security of networked computer systems). If there 

are n, dependent, geographically isolated teams developing the same software, the probability 

of infiltrating all of them successfully does go as pn. Successful infiltration would be essentially 

impossible. 

Measuring software reliability is also a serious problem. Normally, to get a measure of MTIF, 

one averages the failure rate in a large sample. But the concept of multiple "samples" of software 

has no meaning. IBM has developed techniques that get around this problem for certain software 

products. Their answer is to measure a large sample of different usage. IBM measures the rate at 

which errors are found during an extensive debugging process involving release of the software to 

an ever-increasing circle of users. This technique is very effective for the errors of concern to IBM, 

which is "interested in failure-free execution intervals, rather than ... [an] estimate [of] errors 

remaining" IBM finds that 33 percent of errors are found after 5,000 user-years of being exercised 

(which IBM defines as 5,000-year MTfF) and therefore can be caught in a short time. The goal of 

this type of measurement is to determine a product-release date. 1 

What is special about the IBM experience is that it deals with compilers, linkers, operating 

systems, and other products that have a huge and diverse circulation. Users exercise all aspects of 

the software and quickly find the problems that most other users will find; these are the 

problems that matter to IBM's overall reputation. In other situations, the concern extends to the 

sum total of all the uncommon errors, those that could, for example, result in the crash of an 

airplane controlled by the software. In fact, so-called fly-by-wire software can at best be 

measured with present techniques to have a MTTF of 103-4 years. This compares to the normal 

standard for commercial aircraft components in the neighborhood of 106 years. 

1 Harlan Mills et al., IEEE Transactions on Software Engineering, SE-12, (1986), 3. 
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The problem for military computersl is, in this sense, similar to that for civil aviation and 

unlike that faced by IBM in its bug-rate measurements. David Pamas has identified a number of 

factors that make military computing unique. The five most critical factors can be paraphrased: 

(1) Realistic testing of weapon systems is dangerous and expensive. 

(2) Enemies don't think the way software designers think they do. 

(3) Antagonists will exploit otherwise rare flaws. 

(4) Battle induces common mode hardware failures, difficult for software to handle. 

(5) The input error rate is high because of human and equipment stress. 2 

Projects for the development of military computer systems are often extremely large and 

complex and take more than a decade from conception to implementation in the field. There is a 

serious shortage of trained software - and systems - engineering project managers, a shortage not 

unique to the defense sector.3 Few officials at the senior levels of the military have any in-depth 

knowledge of computers. Promotions are biased toward those in traditional field-commander 

roles. Those with computer expertise may opt for the silver lining and accept well-paid 

opportunities on the outside. The resulting shortage is compounded by the frequent rotation of 

management personnel, particularly in the military where the "three colonel" scenario is 

stereotypical. One colonel (or general) is the founder; the next keeps the project moving and gets 

promoted; the third takes the blame. 

Those working in the area of military computers and software generally agree that the biggest 

problem is the definition of requirements. A Defense Science Board (DSB) task force stated in 

1978, "The major difficulties are not primarily technical, but conceptual (What should the 

system do?).''4 The real requirements are only determined in actual use. Certainly the best, if not 

the only, way to develop correct requirements is to evolve them with repeated use. The 

implications of repeated real use of software for testing and evolution of requirements are not 

acceptable in the context of military combat. The military needs more "realistic tests and 

exercises," particularly for tactical forces, that include "processes and procedures for crisis 

management and transition to war."5 Exercises, simulations and careful design are essential, but 

they are far from complete in anticipating what will really happen under the stress of a crisis or 

battle. The 1987 DSB Command and Control Task Force emphasized, "A viable system for use in 

1 For an excellent discussion of software and computers in the military context, see the report prepared by 
the Office of Technology Assessment, SDI Technology, Survivability, and Software (Princeton: Princeton 
University Press, 1988), particularly Chapter 8, "Software" and Appendix A, "Technology for Producing 
Dependable Software"; see also C. A. Zraket, "Uncertainties in Building a Strategic Defense," Science 
235 (1987) 1600-06, and Alan Boming, "Computer System Reliability and Nuclear War ," in Bellin and 
Chapman, Computers in Battle,101-48. 

2 David Pamas, "Computers in Weapons," in Bellin and Chapman, Computers in Battle, 209. 
3 David Shore, "Danger: Software Ahead," Signal, (May 1989), 27-29. 
4 Report of DSB Task Force on Command and Control (1978),7. 
5 Report of DSB Task Force on Command and Control (1987),22. 
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time of war or crisis must therefore embody robustness and the potential for graceful 

degradation.'' 1 

The "software problem" perhaps may be understood best in terms of software's not being 

amenable to the usual kinds of quantitative-design disciplines practiced by engineers dealing 

with other technologies. The problem persists in spite of being recognized and attacked. Since as 

early as 1960, software engineering2 has addressed the issues of reliability in human 

programming of computers. In 1972 Frederick Brooks wrote the classic book on this subject based on 

his experience managing IBM's 05/360 development.3 It is amazing how little has been added by 

others in the years since. 

Traditionally, efforts have focused on means of organizing programs and making them 

understandable and readable. During the 1960s IBM provided free-flow charting templates to 

programmers. It is still considered undisciplined to fail to use such tools (or modern equivalents) 

to prepare a diagram of the logic flow of a program prior to starting on it. The flow chart should 

show what happens to data, from when it is input to when it is written out, including conditional 

actions and branches in the program that depend on the immediate state of the data. 

In the 1970s a number of different methodologies evolved and were promulgated. These formed 

frameworks intended to define paths toward analyzing requirements and then writing programs 

that are well structured and, thereby, more readable and understandable, less error-prone, and 

easier to test and debug. Now often generically lumped under the terminology structured analysis, 

structured design (SASD), these methodologies are much used. In the 1980s they have been 

incorporated into computer-workstation software as computer-aided software engineering (CASE) 

tools. CASE systems are now marketed by over a hundred, mostly start-up, companies. The 

crusade for more structure in software has left its impact on programming languages with 

"structured" constructs like do while and if then. Programmers have been steered strongly 

away from from using conditional and absolute go to . . . branches, which, according to the 

dogma, represent the evil that results in much unstructured, disorganized code. SASD and CASE 

tools have been valuable and have improved productivity, especially for complex programs, but 

they have not proven to be a panacea as some had hoped. The fact is not surprising if viewed in 

the historical context. One experienced software engineer comments that SASD and CASE are 

"just glorified flow charting, no different from the 60s."4 

l 1bid., 12. 
2 At this first mention of "software engineering", it is important to remind that "engineering" here docs 

not carry with it the usual implication that we are referring to a quantitative discip1ine, like, say, 
"mechanical engineering". We do not know how much stress will cause a software structure to collapse. 
In fact, as I try to show in the rest of this section, we do not even know what such a question means in any 
quantitative sense. 

3Frederick Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering (Reading, Mass.: 
Addison Wesley,1972). 

4 Private communication (1989). 
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Another traditional feature of research focus for software engineers has been in the area of 

large project management. Projects are divided up into phases of requirement, specification, 

design, coding, and testing, very much as in other fields of technology. 1 Extensive measurements 

support the common belief that the cost of errors increases by something like an order of 

magnitude for each project phase that passes before they are corrected. Extensive project

management methodologies are in place at IBM, AT&T, and other major software and computer

system developers. These insure that there is a careful review and documentation at each phase 

in an attempt to catch problems early. Design and specification changes are carefully tracked and 

controlled because of their possible impact on other parts of a system. When the emphasis is on 

the quality of reviews, rather than on paperwork and bureaucracy, such project management is 

very effective, perhaps the most effective means to ensure production of reliable software that 

does what is wanted. 

The DoD has recognized the importance of such project management. It promulgates software 

standards like DoD 2167 A which defines a rigorous and complex sequence of reviews and 

documents for DoD software contractors.1 DoD 2167 A requirements are so pervasive in the area of 

defense software that companies with CASE tools for the defense sector advertise "automatic 

2167 A document generation." Contractors staff offices just to produce the requisite 2167 A 

paperwork. A defense contractor executive with extensive project experience put it this way: 

"Contractors set up two teams, designers and book writers, to meet the requirements [of 2167 A]. It 

is coincidental if the results of the two teams are the same." 2 Military officers do not pay enough 

attention to the very difficult requirements phase, and give-and-take between those defining 

requirements and those specifying and designing a system is rarely adequate. 

Although 2167 A allows changes, it is normally used in one pass from requirements through 

design. The process is very difficult and results in requirements that bear little resemblance to 

reality. Requirements are typically 5 to 10 pages long per thousand lines of code, though there 

are many cases well outside this range in both directions. They are generally neither read nor 

reviewed properly, certainly not when the code "is over a million lines in scope". The project 

can't be stopped if, at any stage of the review sequence, it proves unsatisfactory. The executive 

continued: "Economic forces say proceed. So pretty soon you are reviewing something different. 

The books are irrelevant. You eventually have to go through a very painful merge because of the 

final tests." The result is a bottom up, rather than an intended top down design. The 2167 A 

"process fosters problems by being too detailed." The result is that irrelevant issues get in the 

1 One should note, as David Weiss comments, the significant absence of a production phase in software 
technology. 

1 Department of Defense, Military Standard: Defense System Software Development, DOD-STD-2167 A 
(Washington, D.C., 1988). 

2 Private communication 1989. 
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way of understanding what the project really needs to be able to accomplish. Another person, 

familiar with DoD software development, complained about the "excessive document load" that 

results from taking 2167 A "as gospel" and requiring every document item.1 The irony is recognized 

by many of having CASE tools automatically generate huge quantities of documents which are 

supposed to be read by humans without the benefit of automated aids. The other side of the coin 

is that prior to the present kind of standards DoD often had to suffer "the maintenance [costs] of 

undocumented, poorly developed systems."l 

CASE tools and the way in which DoD 2167 A or other rigorous review methodologies are 

conventionally applied represent the traditional approach to software engineering. More than 

this is clearly needed. Recognition has grown widely in the last decade of two concepts that are 

key to further improvement in software reliability: evolution of requirements and software reuse. 

A realistic and complete understanding of requirements is central to the goal of software that is 

reliable, effective, timely, and economically affordable. Big, complex projects are just too 

difficult to define completely from the beginning. In the military situation, successful evolution of 

requirements can be accomplished by keeping documents of requirements short at first with 

general descriptions of what is desired. As a design proceeds, the client and designers must work 

together on evolving and customizing requirements. Such a process requires a commitment of time 

and competent personnel to a continuing requirements process. Nothing is more important for 

obtaining military software that has a chance of being effective in a crisis. 

The difficulty is focusing the attention of clients, military or otherwise, on the requirements 

process. In the military this problem is exacerbated by frequent rotation of personnel. Those with 

the initiative to start a project are rarely around to see it through to completion and thus to 

influence a consistent evolution of requirements. Nonetheless, clients are rightly most concerned 

about their interaction with the computer system. This point of interaction is the human 

interface, where users input requests and receive output as display screens or paper reports. The 

technique of rapid prototyping is proving very effective in allowing quick turnaround of ideas in 

the development of human interfaces. Special or general-purpose computers are set up so that 

displays are easily changed. No consideration about performance or computer cycles is expended 

during prototyping. 

The process of rapid prototyping involves clients deeply in the decision-making process for 

requirements. A quick creative process to determine what a system will be like, using (often 

glitzy) color displays, seems to attract and hold clients' attention at this critical phase much 

better than the traditional exchange of arcane documents. This fun approach to requirements 

focuses on displays and screens, exactly where one should focus to get started on a proper 

1 Private communication 1989. 
1 David Weiss, private communication, August, 1989. 
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evolutionary top-down design. One can only hope that rapid prototyping will be strongly 

encouraged as part of the DoD procurement process. Deeper user involvement and understanding 

that lead to more accurate requirements, and evolved designs that meet real requirements, should 

overcome the puritanical sense that if a process doesn't hurt, there must be something wrong with 

it. Unfortunately, the benefits of rapid prototyping and extensive end user involvement, are less 

applicable in some areas, like aspects of automated weapons systems, where there is little 

human interaction. 

The deep involvement of users in the requirements and design process is so important to the 

ultimate success of a system that creative management methods are being applied to encourage 

such involvement. The problem comes in breaking away key client personnel from their ongoing 

responsibilities, the very responsibilities that the new computer system is supposed to assist. In a 

very successful and interesting experiment, DuPont isolated teams of users and software 

developers for periods of as long as six months. Each team was given a basic project definition 

and a "time box" in which it was to complete the new software project. The team was rewarded 

individually and together and celebrated in the house newsletter, if it succeeded within the 

allotted time. All teams succeeded, and the savings in cost to the corporation, compared to 

estimates based on experience with traditional approaches, was extraordinary. On average, the 

seven initial projects came in at 33 percent of the estimates. The key to this strategy was the use 

of rapid prototyping techniques, combined with full-time access by software developers to 

knowledgeable and competent users. The user-clients' understanding of their own requirements, 

and the realities of implementing them, deepened during the development process. In this way, 

not only were systems completed with great efficiency in the use of personnel, but the systems 

were also more likely to meet the real needs of the organization.I 

Rapid prototyping can be made more efficient by software storming, a short and intensive 

software development effort intended to get a first order approximation of the system 

requirements. According to an individual familiar with this approach, "Practice has shown that 

the issues uncovered in this ["storm") are the issues which require the most attention throughout 

the prototyping period."2 Prototyping is, in some sense, testing in advance. Therefore, just like 

testing, prototyping is subject to missing out where scenarios are not tried. Here one never finds the 

last requirement, as in testing one never finds the last bug.3 Involving end users in the process is 

not just a matter of asking them what they like. All too often they will tend towards preserving 

their existing work environment. Somehow in the rapid prototyping process end users must be lead 

beyond what is familiar to new approaches that will improve their capabilities. Typical of the 

many attempts to address the software problem, rapid prototyping must be used with the 

1 Peter R. Mimno, at seminar, "CASE Tools, Comparison and Review, "CASExpo, Anaheim, Calif., 1988. 
2 Andrea Weiss, private communication, August, 1989. 

3 Frank Maginnis, private communication, August 3, 1989. 
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understanding that it will have a limited impact. Its application in practice must be managed 

with care. One must know how to stop the prototype phase cleanly, identifying the requirements 

that have been learned, and not succumb to the temptation of accepting undisciplined prototype 

code as the basis for the final program. 

A rather vague concept that has received much attention in recent years is the reuse of mature 

(that is, relatively reliable) software. The core idea is obviously correct: to the extent you reuse 

reliable software, your software will be reliable.I The hype associated with software reuse 

mostly concerns the automatic cataloging of software and what it is meant to do. Automatic 

cataloging of software is an unrealistic promise that has been made by some in the artificial 

intelligence community. Clearly, if it were possible to define for a computer exactly what you 

wanted, and if there were a catalog of what existing software could do, all categorized well, then 

the problem would be solved. You would just click your mouse, and, voila, the software you needed 

would be ready to reuse, in perfectly (and relevantly) documented form. 

The idea behind reusing software is more subtle than the hype indicates. Two software

engineering approaches, one dating back to 1970, are important to the reusability goal. These are 

information hiding, a concept suggested by David Pamas in several early papers2, and, what can 

reasonably be considered its descendant, object-oriented programming. Parnas's deceptively 

simple idea is to have small teams of coders work on software modules. These modules 

communicate only through extremely well defined interfaces. The modules contain deliberately 

hidden information, one or more secrets that define how the module operates. Other modules -

and teams - know the interface definition but need not and should not know any but their own 

secrets. The secrets may, for example, refer to hardware-specific matters that are in this way 

isolated to single modules. In normal programs a change of hardware can have consequences 

throughout a huge software package. Pamas's secrets restrict consequences to single modules. Since 

consequences are kept local, information hiding allows easy evolution of requirements and change 

of software. It also is effective in allowing reuse of these very well defined and consequence

isolated modules. Information hiding encourages compartmentalized, well defined tasks, which 

are easier to catagorize for possible reuse. It does nothing to assist in the dream of automatic 

cataloguing. But at least, if a module is remembered, it is likely to be reusable. 

1 See, for example, Proceedings, Workshop on Reusability in Programming, (Newport, RI: ITT 
Programming,1983); and Will Tracz, ed., Software Reuse: Emerging Technology (Washington D. C.: IEEE 
Computer Society Press,1988 ). 

2 D.L. Parnas, "A Technique for Software Module Specification with Examples," Communications of the 
Association for Computing Machinery (ACM)l5 (1972): 330-36, "On the Criteria To Be Used in 
Decomposing Systems into Modules," Comm. of ACM 15 (1972):1053-58, and "On the Design and 
Development of Program Families," IEEE Transactions Software Engineering SE-2 (1976):1-9. 
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Object-oriented programming has gained notice in recent years, much of it as a result of the 

development of the Smalltalk language by the Xerox Palo Alto Research Center (PARC).1 

Smalltalk was subsequently discovered by Steve jobs on a legendary visit to Xerox PARC. It was 

then applied to the famous graphical human interface of Apple's Macintosh computer. Objects 

consist of data and one or more methods (like program procedures) that operates on the data. One 

communicates with objects by passing messages between them telling them what to do. The well

defined message-passing interfaces and the consequence-isolated methods of the objects are 

certainly within the spirit of the information hiding philosophy. A class of objects is defined 

once; it may have many objects that are instances of the class (such as the multiple windows on a 

Macintosh). Classes, with their own specialized traits, may inherit general traits from other 

classes (for example, the traits of a basic window may be inherited and augmented by scrolling 

capabilities). One reuses what is needed and never has to describe anything twice. This is true 

software reuse, building on what has been done before. A large object-oriented program is built up 

- and tested - object by object, in an evolutionary way that clearly reduces bugs. The ease of 

changing objects carries with it a disadvantage from a project management perspective, the 

difficulty of controlling change. 

In addition to Smalltalk, the original object-oriented programming system (OOPS), there are 

now object-oriented versions of the programming languages LISP (used in Al) and C. One version of 

object-oriented C, called C++, was developed by Bjarne Stroustrup at AT&T's Bell Labs, the 

originator of C, and is showing encouraging signs of standardization and widespread acceptance.2 

Objective C, developed by Brad j. Cox, was intended to demonstrate a technology that would 

allow, in principle, adding objects to other important languages, most importantly FORTRAN.3 

The DoD has put a tremendous investment into an effort to produce a new language called Ada. 

The DoD's regulations now require its contractors to use this huge and complex language, with a 

decreasing rate of exemptions. Ada has many modem software-engineering ideas in it, and apart 

from its complexity and size it represents, though many dispute this, a step forward over existing 

heavily used languages. Ada is commonly considered to be object-oriented. Object-oriented 

programming has many aspects, and Ada misses out on some that are central, including 

straightforward inheritance. 

Ada is a strongly typed language; thus programmers must define the type (such as integer, 

floating point, text string) of a variable before using it. This philosophy is meant to reduce errors 

1 A good introduction is Mark Stefik and Daniel Bobrow, "Object-Oriented Programming: Themes and 
Variations," Al Magazine, 6, 4 (winter 1986): 40-62. 

2 Bjame Stroustrup, The C++ Programming Language (Reading, Mass.: Addison Wesley, 1987). 
3 Brad J. Cox, Object-Oriented Programming, An Evolutionary Approach (Reading, Mass.: Addison 

Wesley, 1987). 
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since the compiler will catch misuse of a variable. Unfortunately, rigorous insistence on strong 

typing conflicts with allowing type changes at run time. Dynamic typing, also called loose 

binding, permits objects to do similar things to different types of data in ways that appear 

similar to the programmer or user. The information as to type is hidden with the data. Binding of 

type to data is usually done at compilation. Dynamic typing is important in deferring binding 

until a program is run. This has the effect of making more convenient a broader application of the 

inheritance mechanism. For many problems, dynamic typing greatly expands reusability and 

reduces errors. The debate over the advantages of strong and loose typing is ongoing. Clearly, 

despite DoD's goal, Ada cannot be the single language for everything. 

I have intended, in the preceding extended discussion, to give a flavor of what is unique about 

"the software problem" and why intuition and experience gained from other technology areas can 

be very misleading. Most important is to understand the extreme difficulty of making big 

advances in the productivity of writing software or the reliability of the result. There are no 

simple solutions. One needs to exercise considerable judgment in walking the knife edge between 

anarchy and the potential for sloppy unreliability, on one side, and excessively bureaucratic 

philosophy constraining creativity and changeability on the other. The reliability of military 

software relates directly to the sensible use of techniques and methodologies of modern software 

engineering. I 

The emphasis here has been on describing how the problem is being attacked. This is one good 

way of viewing this rather intangible subject and sensing how difficult the struggle to manage 

software development really is. Looked at from another direction, when computer systems are 

successfully applied, as they so often are, this serves to whet the appetite for applying them to 

more complex problems. A prime cause of the software problem is that our ability to imagine ever 

more ambitious systems is not limited. What is limited is our ability to understand and express, 

and then to produce and test, what we imagine, precisely enough to make our dreams work 

properly in reality. 

Because of the difficulties involved, producing reliable software in quantity makes great 

demands on the available pool of talent. The limited size of this talent pool must be addressed, 

even before the question of budgets and deficits, in determining whether the United States has 

the resources for any proposed computer-related project. For example, software talent that is tied 

up in a particular defense effort is not available for developing civilian systems to help maintain 

a competitive posture in international trade. Most seriously, attempting more projects than the 

talent pool can support is a prime cause of ineffective and failure prone systems in both the 

military and civilian sectors. 

1 Gene Layman and J. R. Robins, "Open Architecture for Modern Command and Control Systems," 
Signal, (August 1988): 83-89. 
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Artificial Intelligence and Expert Systems 

Artificial intelligence has attracted great interest and much publicity, often driven as much 

by wishfulness as accomplishment. The essential goal of AI is to apply the speed of computers to 

intelligent problem solving. Attempts to reach this goal have highlighted the essential 

differences between computers and the human brain. All computers follow the traditional von 

Neumann concept of a stored program based on a sequence of individual instructions that (a) fetch 

numbers, (b) perform arithmetic (+, -, x, +) or logical (and, or) operations on those numbers, (cl 

store results, and (d) determine succeeding instructions by sequence, branch, or conditional branch. 

Though some computers may be optimized for inference activities, they are all essentially 

numerical calculating engines. Intelligent problem solving is not primarily numerical but tends to 

involve pattern recognition and matching. 

AI perhaps may be described best as the effort to provide automated assistance to humans 

addressing nonnumerical problems, including such challenges as language translation, chess 

playing, speech recognition, vision, reasoning and deduction, theorem proving, and learning. A 

traditional working definition of Al, "the study of mental faculties through the use of 

computational methods," traces back to john McCarthy's original proposal for a summer study in 

1956 to be based "on the conjecture that every aspect of learning or any other feature of 

intelligence can in principle be so precisely described that a machine can be made to simulate it."1 

The history of the last three decades indicates that the goal of fully autonomous AI has 

succeeded only to the extent that McCarthy's original conjecture is true. When problems, and the 

means of solving them, can't be precisely defined or the requisite conventional computing power 

applied, autonomous AI has run into presently insurmountable obstacles. 

Because truly autonomous AI is so difficult to achieve, AI research has increasingly been 

directed toward providing tools to assist humans. The most common successful application of AI 

ideas has been in expert systems, which may be queried by humans to dispense expert 

information. So-called mixed-initiative decision aids are particularly important in the military 

context. These allow humans to interact, or not, with the computer at any point in the decision 

process. The intention is to allow each member of a human-computer team to handle what it is 

best at: the human, the global issues; the computer, the detailed doctrine. (Such aids are 

discussed later in this section). Also important has been a spin-off from the Al community- good 

human interfaces, techniques that effectively couple the nonnumerical human brain to the 

computer. (The importance of improving human interfaces, and using good ones, is the subject of 

the next section.) 

1 Eugene Chamiak and Drew McDermott, Introduction to Artificial Intelligence (Reading, Mass.: Addison 
Wesley, 1987), 6, 11. 
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AI has proved successful in allowing autonomous computers to accomplish, with available 

capabilities, tasks that have heuristic (rule-of-thumb) descriptions. The heuristic description 

has little, if anything, to do with the way a human brain does a task. It is a description adequate 

to instruct a brute-force, sequential, computing engine. This technique has worked well for chess: 

only top players, with considerable effort, can generally beat the best chess-playing computers. 

The computers search out and score large trees of possible options as they select best moves. Grand 

masters, in contrast to computers, tend to look at patterns on the board, before checking small 

search trees. (The oriental game of Go has a significantly larger combinatorial complexity than 

chess, and its play therefore, moves beyond the present threshold of what a brute-force computer 

can successfully challenge.) Using heuristics and computational speed, AI has been able to 

achieve very simple speech and pattern recognition, syntax analysis, and simple or repetitive 

aspects of theorem proving after humans have organized the proof (the four-color theorem was 

proved by computer). 

AI has encountered significant difficulties with problems that require a "common sense data 

base". Examples of areas where such a data base is critical are language translation and its 

prerequisite, natural-language understanding. Human beings carry around with them a lifetime 

of experience we call common sense. (We know, for example, that telephones are generally loose 

on tables or desks in buildings, but are sometimes attached to walls or outside pay booths, or to 

the dashboards of cars, in which they work only in or near cities and cost more per minute, and so 

on. ) The resulting knowledge of context and varying relation and form is what allows humans to 

"understand" language, as well as to parse it. The latter is closer to what computers really do 

than "understanding". 

Without a common-sense data base, it is impossible for a computer to act intelligently beyond 

the very restricted domain for which it has information, expert and otherwise. Efforts are in 

progress to produce a common-sense data base that would be available to systems trying to 

"understand" natural language and for limited-domain expert systems to access when inferences 

led outside their domains. It is not clear at what threshold of completeness a common sense data 

base would start to become useful nor what scale of resources would be required to get there. 

Nonetheless, the effort in this area, led by Doug Lenat, is extremely important to all problems 

requiring artificial understanding. I 

The goals of autonomous AI have also proven unattainable in areas where brute-force 

computational approaches require more power than the hardware can provide. Most difficult are 

problems involving recognition of sophisticated patterns. These include complex voice and scene 

patterns as well as lengthy logic and reasoning. As conventional computer hardware becomes more 

1 Doug Lenat, Mayank Prakash, Mary Shepherd, "CYC: Using Common Sense Knowledge to Overcome 
Brittleness and Knowledge Acquisition Bottlenecks," Al Magazine,, 6 (winter 1986): 65-85. 
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and more powerful, progress results automatically in these areas. However, full scale success, 

particularly in tasks involving open-ended logic and reasoning, is orders of magnitude away. 

The basic reason for all this difficulty lies in the attempt to use computation to imitate what 

the brain does. The brain does not compute. In order to compute, one must first analyze, as 

McCarthy suggested in 1956. But try to analyze how you discriminate between two human faces, a 

cat face and a human face, or two leaves on a forest floor. To the extent you can analyze a problem, 

you can compute it. If the analysis is complex, the number of computational steps may become 

enormous and out of reach. 

Before returning to the possibility of doing things more the way brains do, let's look at the 

important accomplishments in providing expert-system and mixed-initiative tools to assist 

rather than replace humans. Expert systems are rule-based programs for tasks requiring expertise. 

They tend not to use deductive logic, but rather abductive reasoning. The word abduction describes 

the unnatural process of generating explanations, cause from effect. Normal logic proceeds by 

deducing effect from cause. Abduction involves such heuristic techniques as plausible inference 

and the weighing of evidence. Most important, for lack of a broad understanding of the world 

shaped by common sense, expert systems must be limited to narrow and isolated domains. 

Expert systems generally are run on inference engines, specialized programs on von Neumann 

computers optimized to do the logical inference operations (if . . . then ... ) that expert 

systems use most heavily. Famous examples of the effective use of expert systems are diagnosis of 

breakdowns of railroad locomotives, and, in the case of Digital Equipment Corporation's VAX 

series of computers, determination of appropriate customer configurations. Expert systems appear 

to present a significant debugging problem when they get large. This implies that an inherent 

size limit may come into play in the future.I 

The process of obtaining knowledge from a human expert (on locomotives, for example) and 

putting it into a form that an expert system can refer to goes by the loaded name, knowledge 

engineering. Not surprisingly getting experts to agree, when there is more than one, is a 

significant problem. It is an interesting, perhaps semantic, question whether expert systems 

dispense knowledge or doctrine. One can imagine that when the use of medical diagnostic systems 

becomes widespread, any medical doctor who ignores the questions and conclusions of the systems 

will risk malpractice suits. 

In the military context, as one might expect, much of what is going into expert systems is, in 

fact, doctrine. For example, MOVES (Maneuver Planning Expert System) is a major subsystem of 

the AirLand Battle Management (ALBM) program, which supports planning at the corps and 

1 David Weiss, private communication, August, 1989. 
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division levels. The system's planning procedures are modeled "as a starting point after the 

doctrinal planning process described in various Army field manuals and taught at the Command 

and General Staff College"1 Such tools are potentially very valuable because they could relieve 

planners, heavily stressed by combat, of the cognitive load of remembering all the details of 

planning procedures. The machine could lead the error-prone, but sometimes creative, human 

through details and doctrine up to the level where the planner could concentrate on looking at the 

larger picture and selecting flexibly between alternatives. 

One might wish for decision-making aids in combat to broaden the availability of 

commanding genius. But, imagine, for a moment, subjecting someone like George Patton to 

knowledge engineering. Such genius is usually neither stimulated nor identified until a battle is 

joined. Present capabilities do not permit rapid knowledge engineering, certainly not on the time 

scale required for modem warfare.2 They do allow for input of a commander's guidance as do 

standard, non-computerized, U.S. military-planning procedures.3 Such input is a familiar means 

for creativity, if not genius, to enter the planning process at the last minute. However, expert 

systems, if they live up to their promise, will be able to incorporate advanced consideration of 

many more contingencies than a printed field manual can possibly cover. Clearly identified 

competent and knowledgeable military leaders must invest time in the slow process of "teaching" 

expert systems, as much as possible, about situations that go beyond what is covered by 

traditional doctrine. 

Since computers are now producing a tremendous flow of data both for behind-the-lines 

logistics and for battlefield activities, it is not only reasonable, but essential, to ask their 

assistance in managing and interpreting the data. 4 This includes assistance in routing and 

interpretation of intelligence and warning (l&W) data, fusing information coming from dispersed 

sensors, sources, and computer systems, and aiding commanders in evaluation of threats and 

options. Assistance in interpretation and evaluation represents a clear-cut application of mixed

initiative expert systems as decision making aids This extends with increasing sophistication a 

long standing military application of computers that predates expert systems. Though essential, 

such applications are potentially dangerous, the more so as the time scale for action gets shorter 

and the volume of data becomes more overwhelming. 

1 Gregory Stachnick and Jeffrey Abram, Army Maneuver Planning: A Procedural Reasoning Approach 
(unpublished paper, Advanced Decision Systems, Mountain View, Calif., 1988). This paper refers to 
Department of the Army manuals, FM 101-5, Staff Organization and Operations (1984); FM 100-5, 
Operations (1986); FM 100-15, Corps Operations (1987). 

2 Zvi Lanir, Baruch Fischhoff, and Stephen Johnson, "Military Risk-Taking: C31 and the Cognitive 
Functions of Boldness in War," Journal Strategic Studies 11 (1988), 96-114. This paper discusses the 
problem in combat situations of allowing "military boldness" supported by "calculated risk" 
computerized decision aids. 

3 Stachnick and Abram, Army Maneuver Planning, 3. 

4 Numerous articles on c31 in Signal magazine over the past few years have described this activity. 
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When information is dispensed clearly (see the discussion on human interfaces) and when 

humans are allowed full control of the decision process in mixed-initiative systems, decision aids 

can help enormously to reduce battlefield confusion. The result is to reduce the possibility of 

mistakes that could lead to crisis escalation. Conversely, such systems, by providing erroneous or 

misleading information, have the potential of destabilizing a situation. One cannot 

overemphasize the importance of getting the right information into these battlefield expert 

systems and making sure it is disseminated so that no mistake in understanding is likely. These 

tasks require a much heavier investment of a commander's time in "downloading" knowledge, 

policy, and doctrine into a system and, most critically, being sure they are presented in an 

unmistakable way. How decision aids are used and understood in the field will determine how 

the forces will act. It would certainly appear that commanders at very high levels should find it 

of immediate interest to check in on the rapid-prototyping sessions that define the tools the 

planning teams in units under their command will use. These vital matters deserve much more 

attention than they are getting. 

Some more radical research may also prove practical. An example is research into the concept 

of distributed decision aids spread out over a modem networked computer system. It should be 

possible to distribute information in such a way that, even in the ultimate fog of war, when 

communication links are down, the expert system will be able to suggest, on the basis of available 

information, what neighboring allied (and even enemy) commanders are likely to do.1 At the 

simplest level, knowing the procedural tools, and at least some of the data, available to other 

commanders will allow a simulation of their planning processes and forecasts of their likely 

actions. 

It is less reasonable to promise that systems will be able to do fully automatic, natural

language threat analysis of I&W traffic (though some effective sorting of traffic is now 

possible)2. Nor can the systems be expected to scan automatically raw voice, intercepted traffic, 

or imagery.3 What is possible are systems that will aid I&W analysts and improve their 

efficiency. Such systems will be important in dealing with the large increase in data, 

particularly imagery, from new satellites. Digitized imagery displayed on high-resolution 

workstations, combined with expert systems and well-configured data bases, will provide an 

environment that should increase analyst efficiency by a factor of two or so.4 Such a gain in 

1 Bruce Hamill and Robert Stewart, "Modeling the Acquisition and Representation of Knowledge for 
Distributed Tactical Decision Making," Johns Hopkins APL Technical Digest 7 (1986), 31-38. See also 
M.Athans, Command-and-Control (C2) Theory: A Challenge to Control Science, (Laboratory for 
Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Mass.) . 

2 Bruce Loatman and Stephen Post, "A Natural Language Processing System for Intelligence Message 
Analysis," Signal, (Sept. 1988): 41-45. 

3 Michael McCown, "Knowledge-Based Intelligence Systems," Signal, (April 1988): 101-103. 
4 Eamon Barrett, briefing, Lockheed Corporation, Mountain View, CA, July 1989. 
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productivity could prove critical, for example, to arms control progress. Verification depends 

more and more on an increasing flood of images and other data supplied by "national technical 

means". Improvements of more than an order of magnitude in the efficiency of handling l&W 

data are simply not on the immediate horizon; the barriers are very similar to those that affect 

software reliability and productivity. Wishing for more won't get it. 

The expectations from military AI research were largest and the wish list was most 

unrealistic in 1983, when the Defense Advanced Research Projects Agency (DARPA) initiated the 

Strategic Computing Program (SCP) with the mandate to "develop a new generation of computers 

that can SEE, HEAR, TALK, PLAN, and REASON [sic]."1 The Strategic Computing Program was 

named and announced within months of naming the Strategic Defense Initiative. SCP represented 

a conscious decision to "prove AI works." Related was the Reagan administration's effort to push 

DARPA toward supporting applied research and away from its decades-long role as the 

dominant, extraordinarily successful, mentor of basic research in computer science.2 The key 

demonstration projects were to be the Autonomous Land Vehicle, the Pilot's Associate, the Naval 

Battle Management System, the AirLand Battle Management System, and the Image

Understanding Program. The subgoals stated by fiscal year, were, to put it mildly, unreasonably 

optimistic. For example, subgoals for fiscal years 1992 and 1993 included: "Recognition of [spoken] 

Sentences. Independent of Speakers, from a 10,000-Word Vocabulary with Natural Grammar 

under Moderate Noise and Low Stress Conditions"; "Perform [visual] Reconnaissance in a 

Dynamically Changing Environment"; and "Interactive, multi-user acquisition, analysis, and 

explanation system which provides planning support and substantive understanding of streams of 

textual information."3 

Historically, AI has been oversold in the military context because its promises resonate with 

the prevailing perception of military needs by decision makers.4 As recognition of overselling 

has grown, expectations have become more realistic,s at least among practitioners if not among 

all high-level military and political decision makers. At DARPA the pendulum has swung, 

perhaps overswung, in the other direction. Shadows confused the autonomous land vehicle (ALV) 

1 Quoted by S. Ingvar Akersten in Allan M. Din, ed., Arms and Artificial Intelligence, (New York: Oxford 
University Press, 1987), 87. 

2 See, for example, Andrew Pollack, "America's Answer to Japan's MITI", New York Times, March 5, 1989; 
and Jonathan Jacky, 'The Strategic Computing Program," in Bellin and Chapman, Computers in Battle, 
171-208. 

3 Quoted by Akersten, in Din, Arms and Artificial Intelligence, 94. 
4 It is not just in the defense sector that AI has been pushed with overambitious goals. The Japanese, 

normally thought to be more judicious in such matters, fell victim to the same syndrome eight years ago 
when they announced their "fifth generation," predominantly Al, computer-research project. This 
project was cited as a threat to U.S. leadership in the environment in which DARPA's SCP was born. By 
now the goals -and accomplishments - of this project have been considerably scaled back. See, for 
example, Howard Ullman, '"Machine Dreams," The New Republic, July 17 and 24, 1989, 12. 

5 See, for example, Edward Taylor and Daniel Snell, "Artificial Intelligence in Command and 
Control,"SignaI, (April 1988): 25-29. 
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even on paved roads, and it never was able to move rapidly and decisively cross-<:ountry as 

planned. This project has been canceled quietly. Some argue strongly that the DARPA computing 

leadership is now decidedly Al-unfriendly, even toward research and development (R&D) into 

realistic mixed-initiative tools. 

Yet, the Strategic Computing projects did push the technology forward. Even if it takes brute

force computing, one should not discount the potential importance of even small advances in Al. 

The mentality for publicity, intrinsic to SCP projects, which were born with loud public promises 

about applicability, exacerbated technical problems in several of the projects. The promises were 

glitzy and required demonstration. The ability to show off AL V feats in dramatic fashion was 

almost an explicit project requirement, and a serious misdirection of resources and emphasis 

resulted. One should never oversell the potential or the successes of AI, or any other advanced 

R&D work for that matter. One shouldn't overreact to failures either. certainly not without a 

good understanding of what caused them. 

Today the long-term hope for achieving true (autonomous) artificial intelligence would 

appear to have switched to connectionist approaches to simulating the capabilities of the brain. 

This new and extremely active field of endeavor is usually referred to generically as neural 

networks, though practitioners have a variety of specialized meanings for the term. The activity 

represents the first true breakout from the von Neumann computer concept. Macroscopically, 

neural networks mimic the widespread networked interconnection of neurons and synapses in the 

brain. Microscopically, as any neurobiologist will tell you (some sneeringly), the connections in 

the network of the brain's neurons are more numerous by many orders of magnitude, with multiple 

rather than binary levels, than those of any imaginable electronic neural network.1 

Conceptually, electronic neural networks involve interconnected operational amplifiers 

(though many present-day implementations use digital logic). The output of each amp is fed 

through reinforcing and inhibiting (complemented) connections to many or all other amps. The 

weights of these connections may be adjusted. Input data is represented as levels feeding into some 

of the amplifier "neurons.'' After the network has had a chance to relax to an equilibrium state, 

the output of certain neuron amps can be interpreted as the "answer." If you get your weights and 

reinforcing/inhibiting connections right, the network will look at the whole picture, so to speak, 

and relax to the right answer. By feedback of correct answers (from a human looking at the same 

data), the weights can be automatically adjusted in a procedure that corresponds to a type of 

learning by the network. This ability to '1earn" is one of the most exciting factors that encourage 

optimism about neural networks. Another important factor is that the discrete and repetitive 

nature of neural network circuitry is particularly appropriate for the technology of very large-

1 Jacob T. Schwartz, ''The New Connectionism: Developing Relationships Between Neuroscience and 
Artificial Intelligence," D.,Jalus, (winter 1988): 123-42. 
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scale integration (VLSI). In fact, several designs for neural network chips are in progress at this 

time. The effort to develop chips is proceeding in parallel with conventional computer 

simulations of neural network topologies. 

Neural networks have clear potential for imagery recognition and interpretation and of 

recognition of patterns in other applications. Physically, neural networks created by VLSI 

should couple well to pixel sensors, for example, to allow direct interpretive readout. The 

excitement and publicity about neural networks appear to rest on a somewhat stronger conceptual 

foundation than do earlier flurries of promises about autonomous AI developments. This research, 

nonetheless, is in its infancy. Full-blown, revolutionary applications are far off, and not, by any 

means, guaranteed. However, processing capabilities that are more brain-like will remain key to 

Al's efforts to address big wishes. Despite the extreme simplifications made in copying what 

happens in real brains, neural networks may provide a sufficient breakthrough for real progress 

where pattern recognition is required. It remains to be seen whether the hopeful vision many see 

in connectionist approaches is an oasis or mirage. 
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Human Interfaces 

If the information flowing from a computer does not arrive correctly at the appropriate human 

brain (or vice versa), the human-computer decision-making system has not benefited from the 

computer's participation. The two partners in the activity, so to speak, have different 

personalities. The human brain is visually oriented and pattern-sensitive - and numerically 

slow. The computer is numerically oriented and computationally powerful - and insensitive to 

patterns and whole scenes. The computer works on small parts in terms of numbers. The human sees 

whole patterns and functions in terms of graphics. For the human-computer partnership to 

function effectively, the two must communicate through an effective interface. 

It is difficult to overstate the importance of human interfaces. Not only is the productivity of 

the human-computer system at stake but also, if wrong information is received, the result may be 

destructive. In the military context, wrong information can be seriously destabilizing. Computers 

can produce wrong information because of errors in a program or input data. (The famous "garbage 

in, garbage out" metaphor indicates wide appreciation of the problem). But even when computer 

information is correct, errors occur all too often at the human interface. Some of these errors have 

resulted in widely publicized disasters. The disasters are usually attributed to "computer error" 

or "human error" but in fact should be attributed to errors in the interface between computers and 

humans. 

The reactor problem at Three Mile Island (TM!) quickly grew out of control because operators 

could not cope with information displayed on a large wall of panel meters and status indicators. 

Utility companies had used such displays in conventional plants, where the displays had been 

acceptably matched to the information levels, time scales, and consequences of potential failures. 

An inadequate human interface design was an important contributor to the ultimate scale of the 

Three Mile Island disaster.l 

In January 1989 a 737 jetliner crashed on the Ml expressway in England. Even though fire 

indicator showed a serious problem with one engine, the plane should have had another working 

engine with sufficient thrust to land safely. Soon after the accident, it became clear that the 

pilot had shut down the wrong engine. The Times of London on January 19 headlined "Warning 

dials may hold secrets of Ml air crash." The display (figure 1) was a new style electronic 

readout, but its graphics had been patterned after those of electromechanical dial panels 

traditionally used in 737s. 

1 See, for example D. Canter and J. Powell, Summary of Report to Insurance Technical Bureau (Guilford, 
United Kingdom: University of Surrey, 1983) (quoted in James Thompson, Psychological Aspects of 
Nuclear War: A Statement of the British Psychological Society (New York: Wiley, 1985), 45. 
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An indicator for the good engine showed severe vibrations (correctly, since the engines were 

mechanically coupled), which perhaps caused the pilot to confuse the engines despite the fire 

indicators' pointing at the correct location of the problem. Whether or not this confusion, in fact, 

caused the crash, it is clear from the layout of the displays that in a difficult situation confusion 

could all too easily occur. The left/right "vib" engine dials are adjacent and away from the fire 

indicators (not shown). Indicators are kept in fixed locations, as had been required for mechanical 

meters. Problem indicators - and option selectors - are, thereby, not clustered in one place. Such 

clustering would nearly eliminate the type of error thought to have occurred. In part, inertia and 

tradition among pilots, in advising what they want in displays, led to the use of graphics that do 

not take full advantage of modem technology for electronic displays. 

When the U.S. Navy played back the tapes from the Vincennes command center, it was clear 

that the Aegis control system had not failed on the cruiser. It had provided full and accurate 

information as requested by the command center crew. Nor had the the ship's captain acted 

wrongly on the information that had reached him. Yet Iran Air 655 was shot down, in error. "In 

the Vincennes incident," a psychologist testified to Congress, "the highly sophisticated 

equipment performed flawlessly while breakdowns occurred in the machine-to-<ommander 

link."1 Something happened between the computer and the decision-making human that 

corrupted the information flow. Manifestly, the human interface failed. 

It is inappropriate to attempt here an analysis of the second-by-second chronology that led to 

the accident. Much of that chronology, and the Navy's analysis of the incident are available in 

the open literature.2 Somehow, the attribute "UNKNOWN - ASSUMED ENEMY" was attached 

to a commercial airliner as it was taking off from a mixed-use airfield and was never corrected in 

the critical and tense minutes that followed. Somehow the Aegis operators, information to the 

contrary on their screens, persisted in the misattribution. The ship was already engaged in a 

surface battle with Iranian gunboats, bullets bouncing off the steel. A gun failed, and the 

Vincennes heeled over in a full-speed, full-rudder tum to direct a working gun at a real enemy. 

Books fell off the command center shelves; lights dimmed. The command center operators - and 

some indicators that caught their attention - reinforced the fatal misattribution in a 

psychological phenomenon known as scenario fulfillment. 

The information was on screens, on comers of screens - well, it was at least available to be 

called up if anyone asked. Apparently, nowhere was all the fatal information associated with 

the firing decision popped up to one unmistakable display, isolated from extraneous information, 

1 Robert Heimreich, "On the Subject of the USS Vincennes Downing of Iran Air Flight 655," testimony 
before the U.S. House of Representatives Committee on Armed Services, October 6, 1988. 

2 William Fogarty et al., Formal Investigation into the Circumstances Surrounding the Downing of Iran 
Air Flight 655 on 3 July 1988: Investigation Report, (Department of Defense, Washington, D. C. 1988). 
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for evaluation by an officer. Just as in the case of the 737, before the Ml crash, the information 

had to be fused in human brains from many isolated bits of display information. The technology 

allows better these days.I 

Human failings were certainly a key factor on the Vincennes. Related to scenario fulfillment, 

another human failing, which has been studied in the laboratory, is thought to have played a 

role. This failing goes by the name perceptual hysteresis . When confronted with the same set of 

indicators for evaluation of a threat, analysts evaluate the threat differently depending on how 

those indicators tum on (see figure 2). If a small number of indicators tum on at first at high 

confidence, followed by more at high confidence, assessment of threat is lower than if many 

indicators come on together at low confidence and then increase together in confidence. The result 

is the folded threat response surface of Fig. 2, with a region of high threat perception from which 

it is difficult for people to retreat. Such perceptual trapping is suspected in the Vincennes 

scenario. 2 

Psychologists have cataloged many other types of human error in the subjective assessment of 

probability (see Table 1). The important lesson to be learned from the Vincennes incident, as well 

as the Ml crash and TM! disaster, is not that there are human failings. It is that the failings are 

amplified by stress and that good training alone will not eliminate them. To blame accidents on 

human errors is simplistic and unproductive. In an excellent review of the psychology and 

technology of distributed decision making, Fischhoff and Johnson note the common 

"misunderstanding of the role of people in person-machine systems, somehow reflecting a belief in 

the possibility of engineering the human side of the operations just as one might hope to engineer 

the mechanical or electronics side." They add, "A common sign of insensitivity is use of the term 

'operator error' to describe problems arising from the interaction of operators and system."3 The 

focus must be on making decision aids, and their human interfaces, so powerful that they have a 

chance at driving critical information through human perceptual barriers. 

A long-standing, apparently inherent resistance to paying adequate attention to good human 

interfaces is not unique to the military. This resistance is one aspect of a universal lack of 

emphasis on clarity in communication, a lack dramatically apparent in any literature from the 

defense sector. Communication and friendly computers seem not to be a macho priority. Like 

technical writing, designing good human interfaces makes demands on an uncommon mix of 

1 One shouldn't be too critical of the Aegis interface. Though Aegis represents nearly the latest in naval 
systems, it is based on early 1970s technology, and its human interface was probably ahead of its time. It 
takes years to bring a weapon system through the development and procurement process. 

2 Alexander Woodcock, "Perceptual Hysteresis: You Cannot Get There From Here," Signal, (July, 1988): 
51·57 {an article that anticipates the Vincennes); and "Deadly Threat: A Nonlinear Analysis," Signal, 
(March, 1989): 67-72. 

3 Baruch Fischhoff and Stephen Johnson, ''The Possibility of Distributed Decision Making,'' in Political
Military Decision Making (forthcoming). 
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aesthetic, humanist, and technical sensibilities. Defining requirements for a human interface, as 

well as permitting extensive rapid prototyping, runs counter to the usually rigid nature of the 

competitive procurement process. 

Other sources of resistance contribute. Experts exhibit a bit of technical territorial imperative 

and take some comfort in difficult interfaces at the boundary of their domains of expertise. There 

are probably also those with make-work attitudes who don't want things too easy for the troops. 

Some issues are legitimate, such as concerns that human interfaces could get in the way in a time

critical situation. This issue must be addressed in the design process. By definition, a good 

interface will reduce the time for human tasks. 

Influenced by distributed workstations and personal computers (PCs) like the Macintosh, much 

more attention is now being paid to human interfaces by defense-system designers. As noted 

earlier, rapid prototyping involves the end user of software in the evolving requirements of a 

project during design. Rapid prototyping has been particularly effective in attracting high-level 

users to consideration of human interface questions. Starting at the interface is a painless way to 

encourage top-down, system design practices that have the best chance of meeting real 

requirements. It encourages procurement organizations to overcome institutional 

compartmentalization and get real end users deeply involved in an evolving design process. This 

news is good but probably not good enough. 

A strong tendency remains to change traditional displays slowly, if at all, because of concerns 

about interfering with quick, habitual responses. A predilection also remains for displaying too 

much information on too many screens. One strategic project is now specified at over 300 screens 

containing "everything we had before" plus newly available information. Somehow, in the flood 

of so much information, the critical essentials must be synthesized and presented to the decision 

maker. The lack of such synthesis seems to be the common thread in the famous incidents cited 

here and elsewhere. Developers and end users must continue to address how to synthesize critical 

information in the development of effective strategic and tactical battle-management systems. 

The complexity and power of many modem systems permits little tolerance for errors and little 

time to make - and correct - operational decisions. Significant cross-disciplinary research should 

examine human interfaces and how they can reduce the effects of human failings in decision 

making and threat evaluation under high pressure of stress and time. The research should 

involve psychologists, multimedia communication specialists, graphic artists, and end users from 

military and civilian organizations that require good human interface tools. The headlines from 

places like Three Mile Island, the Persian Gulf, and scenes of air crashes, certainly cry out for 

this kind of research. 
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Network Security and Software Infiltration 

Despite a long history of demanding specialized computers, the defense sector now cannot 

ignore the revolution in networked workstations that is clearly under way throughout the 

business, technical, and military worlds. Workstations provide localized tools with the 

possibility of good human interfaces and excellent graphics. Their cost is extraordinarily low at 

each performance level. Mass-produced, open, commercial, networked desktop computers and 

their diverse software base, represent what may be the nation's most important area of 

technological leadership. The military today recognizes that it can't beat the cost, performance, 

and ease of use of these tools simply by producing its own small quantities. As a result, mass

produced, commercial desktop computers, their public software, and their public network 

technologies are rapidly spreading through the military and are being used to handle 

information and data at all levels of secrecy. 

At the same time, a series of highly publicized incidents in the civilian world demonstrate 

the vulnerability of such computer systems. The public has been startled by PC and network 

viruses and worms. Commercial and government computers have been threatened by international 

hacker groups, with ominous names like the Chaos Club of Hamburg or with alleged links to the 

KGBl, who break into sensitive (though apparently not secret) computers and by supposedly 

unassociated programmers who presumably by accident bring huge networks to their knees. It is no 

wonder that network security and software infiltration these days makes those involved with 

defense computing very nervous. 

The National Security Agency (NSA) has organized the National Computer Security Center 

(NCSC). The NCSC has prepared a classification scheme for "trusted computer systems," 

described in the so called Orange Book2 (see Appendix). Many familiar, widely used operating 

systems are (or could be) certified at the C2 level, including VAX VMS version 4.3 and higher, 

CDC NOS, and UNIX systems in general. Very little exists at higher levels of protection. IBM is 

aiming at B2 for its "secure XENIX" system and for its new environment of integrated software for 

development. B3 operating systems must have secure domains "small enough to be subjected to 

analysis and tests," and Al systems must suffer proof of security through formal specification and 

verification techniques. Honeywell's Secure Communications Processor (SCOMP) is an 

experimental system at the Al summit of the NCSC classification. Only twenty copies of SCOMP 

have been installed because of its limited scope and poor performance. 

1 John Markoff, "West Germans Raid Spy Ring That Violated U.S. Computers," New York Times, March 3, 
1989; see also Markoff's article in The New York Times , March 4, 1989. 

2 Department of Defense Trusted Computer System Evaluation Criteria, DOD 52.28-STD (Department of 
Defense, Washington, D. C., 1985). 
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The goal of secure operating and network system software at the Al level requires that a 

formal specification be written that defines precisely what the software will do. It is possible to 

prove formally that design of the code generated from such a specification, in fact, does what the 

spec says it should. The problem lies in writing a correct spec. Despite a limited scope, the formal 

specification for SCOMP requires the equivalent of over twenty dense pages of mathematical 

spec notation. This amount must be somewhere near (some evidence suggests it is beyond) the 

maximum that humans can produce with reasonable assurance that it is error-free. Note that 

even at this Al summit of security, there is no requirement to prove that the code implemented is 

equivalent to the verified design! 

Formal specification languages result in code about ten times longer than the spec. Program 

source code and specification languages present the same scale of difficulties in assuring their 

correctness. Formal methods, therefore, essentially extend by an order of magnitude the size of 

assuredly correct software segments, from about 1,000 lines to about 10,000. Though this may be 

extendable somewhat by a hierarchical application of formally proven modules, one soon gets 

into the problems of measurable software reliability discussed in an earlier section. A further 

problem is that as the size of formal mathematical proofs increases they quickly reach a point 

where confidence in the correctness of the proof itself is at issue. 

Since general operating systems, like VMS or UNIX, typically involve hundreds of thousands 

of source lines of code, it is not reasonable to expect the whole of such a system to be verified 

formally at the Al level of security. The trick is to restrict the problem to key security barriers 

that control access to data and to and from the network. If these barriers can be kept localized and 

small enough, it should be possible to prove them formally. This requirement of localizing secure 

points puts a strong demand on the overall architecture of the operating system and underlying 

hardware, a demand which may compromise other requirements. At the least, the process 

requires rethinking and redesigning the architecture of existing operating systems and computer 

families that have gained widespread popular acceptance. The changes required may well 

encounter insurmountable marketplace resistance. It is no wonder, then, that there has not been a 

stampede to develop the highest standards of "trusted computers systems" for networked civilian 

workstations. The military is caught between its need for secure systems and the enormous 

advantages of the technologically superior, though fundamentally insecure, distributed

workstation products available in the private sector. 

Unclassified information seems to indicate that secret data on secure networks is not 

vulnerable to even the most talented hacking. Such networks are physically isolated, with no 

connections to public networks or the telephone system. When data is allowed to leave a secure, 
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often Faraday-caged,1 site, it is tightly controlled and heavily encrypted. Networks mixing 

secret and open workstations are not presently in use. The NSA is addressing the technological 

challenge of securing the secret part of such a mixed environment. It is evaluating hardware, 

called Blacker Boxes, which is designed to isolate secret parts of networks and to screen data 

crossing the network fence.2 

In general, then, the problem of distributed computing and network security is being addressed 

through approaches focusing on hardware, software, and consciousness raising. Public operating 

systems can be expected to evolve slowly but steadily to more secure forms. Ultimately, sometime 

in the twenty-first century, these systems will reach NCSC A 1 levels. All these developments 

are good from the viewpoint of military security, and encouraging for those concerned about crisis 

escalation during the confusion that could result from misguided or malicious attacks on military 

networks or operating systems. 

One big worry remains. Networks and computers - apparently at all levels of security - are 

now vulnerable to "Trojan horses" left by hostile infiltration of software-development groups. 

Software (or firmware) may be entered and changed through a variety of devious techniques, 

which may, for example, trigger self-destructive actions at a later time. The infiltrators may 

leave just a few lines of code as a "hook" for future access. Even formal methods are not an 

absolute barrier; such a hook could be installed in the depths of a very mathematical, lengthy, 

formal specification, or someone could attempt to modify the code after it had been verified. 

For sensitive code related to strategic control, checking of software by two persons is common. 

For some nuclear weapon software, a second team has been used to disassemble code. Other 

conceivable, and expensive, countermeasures, can be used against infiltration of particularly 

critical code during development or maintenance. One such measure is the use of the n-version 

software technique described earlier, with frequent voting by the versions. The likelihood of 

successfully infiltrating one highly classified and secure software development group is very low. 

The likelihood of infiltrating two or more - and implementing hidden sabotage that behaves in 

the same way - is negligibly small. 

A second countermeasure against infiltration is to use a strict audit trail of secret function 

check sums during development and maintenance of software. A simple check sum is the sum of the 

numerical values of all words, in a data transmission, for example. If the number is the same at 

both ends of the transmission, one can be reasonably satisfied the data got through correctly. The 

idea is to maintain a secret function of values of all words in the binary image of a program (and 

the formal specification) and to audit that this function value stays the same except under 

1 A Faraday cage is fully enclosed on all sides in a conducting metal shield so that no electromagnetic 
signals can escape. 

2 Ronald Elliott, 'The Integrated Tactical Data Network," Signal, (March 1989): 53-56. 
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carefully supervised circumstances, when small incremental changes to the code are made with 

several people present. This, or a similarly onerous mechanism, could provide the necessary 

assurance that no unauthorized tampering has altered the code and specifications since their 

inception. n-version software techniques may already be in use for such purposes. Strict audit 

trails of check sum like functions of programs or specifications apparently are not in use, but in 

critical situations should be. 

The potential consequences of the successful infiltration, unlikely as it may be, of a software 

development project are no less overwhelming than those of any other major breach of military 

defense. The vulnerability is widespread. The Soviets, for example, are exposed since their 

computers are primarily clones of U.S. machines. Some of their computers run on copies of 

standard operating-system software. I Viruses are known to spread like wildfire through Soviet 

PCs. 2 As the Soviets increase their use of networked workstations, the problem is likely to 

become more severe for them. They should certainly worry that Trojan horses may reside in the 

commercial software they have "borrowed" or been permitted to buy. 

The use of computer sabotage is not restricted to countries with the capabilities of the 

superpowers. Such sabotage is available to any Third World country that has access to 

technically educated nationals or friends. A country with terrorist or other malicious inclinations 

can use sabotage equally easily against regional or northern enemies. A recent personal computer 

virus that affected users in North America and Europe was initiated in Pakistan. Though it was 

not a realistic threat in the military context, the attack serves nonetheless, as a reminder that 

sophisticated software capabilities increasingly exist in places one normally would not consider 

technologically advanced. 

This global ability to attempt attacks on computers should be sobering. Even if our country can 

"trust" and protect its critical military software and systems, other countries may not be able to 

protect theirs. The result is a potential threat to stability, at least in regional conflicts, from 

deliberate, controlled attempts to sabotage c31. Throughout history it has been widely accepted 

as good military practice to attack command and communication systems, except for 

communication links required for retreat or surrender. Does this attitude remain acceptable in a 

world that is tightly coupled in terms of security? Where the horizon of instantaneous 

communication now covers the globe? Where the short time scale of escalation to even regional 

nuclear weapons could result in disastrous consequences? Such questions should be the subject of 

another study. 

1 A visit to a Soviet computer center is like a science fiction trip back in time to early U .. 5 .. installations. 
See, also, Seymour Goodman, William McHenry, Ross Stapleton, "General Purpose Computer Systems 
in the Warsaw Pact Countries, "Signal, (December 1984), 87-101. 

2 Gary Chapman, personal communication, August 10, 1989. 
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Conclusions and Recommendations 

I have covered here a number of topics that have something to do with computers and defense, 

but otherwise might seem unrelated at first glance. The common thread is as important as it may 

be subtle: computer systems are intimately involved with human beings and their decision 

making. In the military context computer systems, improperly conceived or applied, could thus 

amplify the fog of war to a degree never before encountered - and in an era where such confusion 

can lead to escalation with enormous consequences. The problem requires understanding of two 

related general issues: the reliability of human-computer systems and the question of what can be 

expected reasonably of computers and their software, given the technology, talent and budgetary 

resources available for their design, production, and testing. 

To use computers with any ignorance of reliability is to saunter irresponsibly into the 

battlefield computer fog bank. The issue of reliability is indeed being addressed, with great 

thoroughness, in well identified and quantifiable areas like communications. However, as this 

report has tried to demonstrate, there is a strong need for more attention and a deeper 

understanding by decision makers where questions of reliability are less obvious and more 

difficult to quantify. This study has pointed, in particular, to development of software and 

firmware, network and system development security, and the human interface channel between 

the computer tool and the human. 

Appraisals of what is possible now appear somewhat more realistic. In the early 1980s 

outrageous claims were being made about what computers could do in artificial intelligence and 

missile defense. Unfortunately, the tendency continues for many in the civilian and military 

worlds to confuse technological wishes with real options. A serious problem results for policy 

making in science and technology. Researchers often intensify the problem with exaggerated, 

fund seeking, statements to the media. Typical are overblown promises after significant but 

embryonic advances and announcement of discoveries before they are substantiated. (The recent 

public excitement over warm-temperature superconductivity and the "discovery" of significant 

energy production in cold fusion come to mind.) It is important for policy makers to remember that 

society's needs and wishes are not strongly correlated with what technology can deliver. 

Sometimes it is possible to meet wishes. Often it is not. 

Similarly, resource limitations are not just budgetary but also involve the extent of the 

nation's (or the world's) talent pool. Complex projects require talented personnel who are trained 

and knowledgeable at all levels including management and execution. Managers familiar with 

large system projects know that the key to success is to contain the complexity from the start. 

Complexity is difficult to quantify, but it is clear that a project team can successfully get its arms 

around just so much complexity. The nation's defense systems, including those that are 

operational and those under development, taken together form an even bigger system, in this 
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sense. The number and variety of individual subsystems certainly are important factors in the 

measure of complexity of this super-system. The defense and political leadership must 

understand the complexity of the overall defense system so that it can be effectively staffed and 

managed. The numbers of weapons and defense computer systems should be reduced to levels 

where one can be confident of having adequate talent resources available to manage them at 

acceptable levels of reliability. 

This line of thinking takes one to even more serious concerns. Defense systems are a subset of 

national activities in technology. Talent that goes into technology for defense is not available for 

technology activities in other fields that are critical to the nation's technological viability and 

its ability to compete in the international economy. Management of talent resources has 

widespread implications that cry out for attention. 

The following are specific recommendations regarding policy research: 

• Underlying this report has been the conjecture that increasing the fog of war is 

destabilizing. The consequences of this conjecture are so important that the subject 

should be put on a firm research foundation. Specifically researchers need to analyze 

carefully the impact that unreliable, ineffective, and infiltrated computer systems can 

have on stability in times of crisis. Study should also be directed at questions 

associated with the appropriateness of and the possibilities and mechanisms for 

international action to prevent destructive penetration, by means of software or 

networks, of one country's military computers by those of another country. 

• The general level of understanding of the capabilities, limitations, and costs of 

computer projects by decision makers must increase. A well-staffed center should 

provide politically neutral technical advice about computers and their application. 

The subject should also be addressed with explicit support for subgroups under such 

government advisory entities as the Assistant to the President for Science and 

Technology at the White House and the Congressional Office of Technology Assessment 

(OTA). 

• Policy makers must examine the quantity and quality of resources in personnel talent 

resources, and the competing demands for these resources by high-tech projects in the 

defense and civilian sectors. This difficult effort must involve more than just a count of 

graduate degrees in electrical engineering; it must get at a measure of the availability 

of key technical talent and its match to project requirements. Again, the effort could be 

organized under the auspices of an organization at the level of the White House science 

advisor or Congress. The armed forces should adjust promotion practices to encourage 

those with computer expertise to stay in the military. 
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• The government and DoD should return to intensive funding of basic rather than 

applied research in computer science. Specifically, support should cover work on 

connectionist approaches, software-engineering tools and methods and project 

management, human interfaces, and on improving the time to input knowledge to and 

the verification of expert systems. 

• The DoD must invest much more of the time of its most experienced and knowledgeable 

military officers in the continuing and evolutionary definition of system requirements, 

and in the knowledge engineering of expert systems. The DoD should research means to 

increase such involvement through policy, incentive, and the use of attractive tools and 

procedures. In the same spirit, it should encourage, as part of the procurement process, 

the extensive use of rapid-prototyping techniques involving operationally experienced 

officers. 

• Priority in funding should go to cross-disciplinary research into human interfaces, 

including research into how human interfaces can reduce the effects of human failings in 

decision making and threat evaluation under high stress and pressures of time. The 

research should involve psychologists, specialists in multimedia communication, 

graphic artists, and end users from military and civilian organizations that require 

good human interfaces. 
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Table 1 

Human Failjnp; Subjective Assessment of Probabjlity of Biasesl 

Representativeness Availability 

Insensitivity to prior probability of Biases due to the retrievability of 
outcomes instances 

Insensitivity to sample size Biases of imaginability 

Misconceptions of chance Illusory correlation 

Insensitivity to predictability 

The illusion of validity 

Misconceptions of regression 

Adjustment and anchoring 

Insufficient adjustment 

Biases in the evaluation of conjunctive 
and disjunctive events 

Anchoring in the assessment of 
subjective probability distributions 

1 Summarized from D. Kahneman, P. Slavic, A. Tversky, Judgement Under Uncertainty: Heuristics and 
Biases, (New York: Cambridge University Press, 1982). 
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Figure 1 - Electronic display panel as seen by pilots in the Boeing B-737 that crashed on the Mt 
expressway in England in January 1989. Although electronic, the display graphics simulates 
electro-mechanical displays to which pilots have been accustomed. This system does not take 
advantage of the capability of computerized displays to cluster problem indications and options 
in one place. (Reprinted from Times [London), January 19, 1989) 
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Figure 2 - Perceptual hysteresis in threat assessment. The folded threat assessment surface shown 
here is an example of how multivalued assessment functions of the two variables, number of 
active threat indicators and level of confidence, can develop. In this figure the analyst 
assessment (A) is measured on the vertical axis. The number of indicators (N) and level of 
confidence (L) are measured on the two horizontal axes. It is possible for an analyst to come to 
different assessments (A' ,A") at the same values of n' and L' depending on the path travelled 
from the quiescent initial condition (n°, L 0 ). If confidence increases after indicators tum on, 
experiments indicate that the assessment level (A") will be higher than if the number of 
indicators increases after confidence in them is already higher (A') This is an example of 
ambiguity in perception caused by "preconditioning." (Adapted from Alexander Woodcock, 
Signal, (July, 1988): 51-57 and (March, 1989): 67-72.) 
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Appendix 

NCSC Classification of Trustt:d Software Systemsl 

The classes of systems recognized under the trusted computer system evaluation criteria are 

as follows. They are presented in the order of increasing desirability from a computer security 

point of view. 

Class (D): Minimal Protection 

This class is reserved for those systems that have been evaluated but that fail to meet the 

requirements for a higher evaluation class. 

Class (Cl): Discretionary Security Protection 

The Trusted Computing Base (TCB) of a class (Cl) system nominally satisfies the 

discretionary security requirements by providing separation of users and data. It incorporates 

some form of credible controls capable of enforcing access limitations on an individual basis, i.e., 

ostensibly suitable for allowing users to be able to protect project or private information and to 

keep other users from accidentally reading or destroying their data. The class (Cl) environment 

is expected to be one of cooperating users processing data at the same level(s) of sensitivity. 

Class (C2): Controlled Access Protection 

Systems in this class enforce a more finely grained discretionary access control than (Cl) 

systems, making users individually accountable for their actions through login procedures, 

auditing of security-relevant events, and resource isolation. 

Class (Bl): Labeled Security Protection 

Class (Bl) systems require all the features required for class (C2). In addition, an informal 

statement of the security policy model, data labeling, and mandatory access control over named 

subjects and objects must be present. The capability must exist for accurately labeling exported 

information. Any flaws identified by testing must be removed. 

Class (82): Structured Protection 

In class (82) systems, the TC8 is based on a clearly defined and documented formal security 

policy model that requires the discretionary and mandatory access control enforcement found in 

class (Bl) systems to be extended to all subjects and objects in the ADP system. In addition, covert 

1 From Department of Defense Trusted Computer System Evaluation Criteria, DoD, 52.28-STD, 
(Department of Defense, Washington, D. C., 1985). 
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channels are addressed. The TCB must be carefully structured into protection-critical and non

protection-critical elements. The TCB interface is well-defined and the TCB design and 

implementation enable it to be subjected to more thorough testing and more complete review. 

Authentication mechanisms are strengthened, trusted facility management is provided in the 

form of support for system administrator and operator functions, and stringent configuration 

management controls are imposed. The system is relatively resistant to penetration. 

Class (B3): Security Domains 

The class (B3) TCB must satisfy the reference monitor requirements that it mediate all 

accesses of subjects to objects, be tamperproof, and be small enough to be subjected to analysis and 

tests. To this end, the TCB is structured to exclude code not essential to security policy 

enforcement, with significant system engineering during TCB design and implementation directed 

toward minimizing its complexity. A security administrator is supported, audit mechanisms are 

expanded to signal security-relevant events, and system recovery procedures are required. The 

system is highly resistant to penetration. 

Class (Al): Verified Design 

Systems in class (Al) are functionally equivalent to those in class (B3) in that no additional 

architectural features or policy requirements are added. The distinguishing feature of systems in 

this class is the analysis derived from formal design specification and verification techniques 

and the resulting high degree of assurance that the TCB is correctly implemented. This assurance 

is developmental in nature, starting with a formal model of the security policy and a formal top

level specification (FfLS) of the design. In keeping with the extensive design and development 

analysis of the TCB required of systems in class (Al), more stringent configuration management is 

required and procedures are established for securely distributing the system to sites. A system 

security administrator is supported. 


