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Abstract 

Results of energy deposition calculations are reported for proton 
beams of 1 TeV to 20 TeV incident on a variety of targets and for a 
large range of rms beam si1es. Targets include solid cylinders (dumps) 
of various materials as well as segmented dumps, i.e. 1 slabs of variable 
thickness spaced apart 1 which allow the beam and developing cascade 
to spread radially with consequent reductions in maximum energy de-
posited. The case of oblique incidence of beam on target is contrasted 
with perpendicular entrance. Application to beam sweeping and to 
other practical uses are briefly discussed. 

1 Introduction 

This paper provides some background information on energy deposition den· 
sities in large targets for incident protons in the TeV regime. Such informa· 
tion is useful, e.g., in design of beam dumps and in assessing consequences 
of beam Joss in superconducting magnets and detector components [l]. The 
present study is complementary to earlier work [2] which dealt with hadron 
and muon dose outside relatively thick shields but has the same motiva
tion and perspective as [2], i.e., to serve as rough guide from which more 
detailed design and development work can be launched. Specifically, it is 

·Present address: CERN, Geneva, Swit1erland. 
1Fcrmi National Accelerator Laboratory is operated by Universities Research Associa

tion under contract with the US Department of Energy, 
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attempted to calculate the energy density, and its spatial dependence, in 
a thick target in the broad vicinity of its maximum, which is expected to 
occur along the beam axis at depths of up to a few interaction lengths into 
the target, depending on beam size. Analysis of these problems is excluded 
from consideration in [2]. 

The energy range explored is between 1 and 20 TeV (fixed target) with 
emphasis on the latter since less is known from experience at the higher 
energies and since potential problems are more severe there for the SSC: the 
energy is higher, beams are smaller and magnets are operated closer to their 
quenching limit. A sample of I Tel' and IO TeV results indicates how the 
calculations scale with energy and has some direct interest as well: Tevatron 
[3] and injection into SSC (I Td'), and the contemplated Large Hadron Col
lider at CERN (- IOTel')- Only incident protons are considered. All results 
presented here derive from the Monte-Carlo program CA SIM [4] which sim
ulates hadronic cascades, supplemented by AEGIS [5] for electromagnetic 
showers. To apply CA SIM in the multi-Te V domain to the type of problems 
addressed here necessitates major changes in both particle production and 
transport. A brief discussion of these matters appears in Sec. 2. ln addition 
to incident proton energy, other variables of the problem explored here are 
target atomic number, beam size, and beam-target geometry. The target 
species studied are carbon, aluminum, iron, and tungsten. These cover most 
of the Z-range, and each is directly useful. In all cases the beam distribu
tion is assumed to be Gaussian in <each transverse coordinate with Uz = uy 

and with a:'= y' = 0 for all particles. Beam size ranges from u = 0.005 cm to 
20 cm. Three geometries are analyzed: (1) (the quintessential) solid cylin· 
ders with beam on axis, (2) solid targets with beam incident at relatively 
small (grazing) angles to the surface, and (3) segmented targets which inter
rupt the build-up of the cascade and thereby increase its transverse spread 
and dilute the energy density. Only targets of homogeneous composition are 
included. Heterogeneous targets, while readily accomodated in the program, 
typically evolve only in the later stages of a design. The same holds true for 
a more complete description of the incident beam. 

Results, along with some practical implications, are discussed in Sec. 3 
and are all presented in graphical form. To prevent the text from becom
ing too fragmented, the (full page) figures exhibiting the main results are 
placed at the end, while a few explanatory figures remain in·text. The 
Appendix contains a brief comparison of the present work with other cal
culations [6] at these elevated energies and with an experiment [7] at lower 
energy (300 Gel'). A note on notation: the symbols for energy deposition 
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density used throughout are 

PE: energy density anywhere in the target; 

P'E"": maximum PE at a given depth (or for any other coordinate held 
fixed); 

P'E"": maximum PE encountered in the entire target. 

2 Physical Models 

This section outlines changes made in CASIM to address specifically the 
problem of energy deposition at Te V energies. These changes consist chiefly 
of extending the physical model of inelastic interactions of hadrons with 
nuclear targets to 20Te V-plus lab energy and of a more refined simulation of 
the energy deposition along a particle's trajectory. Since beams are generally 
smaller in transverse size at these energies, partidular attention must be paid 
to lateral spread of the energy deposition at small radii. 

The physical processes occurring in a thick target can be broadly clas
sified as elastic, radiative, and inelastic. The elastic processes included are 
multiple- and large-angle Coulomb scattering, coherent and incoherent nu
clear scattering and collisions with atomic electrons. The radiative part 
consists of bremsstrahlung and direct pair production both off nuclei and off 
atomic electrons. The typical inelastic interaction with a target nucleus is 
characterized by the production of (many) additional particles (see Sec. 2.1 ). 
However, when a collision proceeds diffractively and only the target nucleon 
is excited to a state of low invariant mass, the incident particle loses very 
little momentum and resembles an elastically scattered one. This case is 
treated separately from the other inelastic events [8]. For completeness, 
inelastic interactions of hadrons with atomic electrons are also included [9]. 

To put the models of particle production and energy deposition into 
proper perspective it is recalled that CASIM is a weighted Monte Carlo 
calculation. Briefly, when a hadron member of the cascade undergoes an 
inelastic nuclear interaction only one cascade propagating particle is selected 
to represent all outgoing particles. Pursuing this throughout the cascade 
means such a particle represents an entire generation of cascade particles. 
Particle type, momentum, and angle are selected from an inclusive distribu
tion (and its integrals), which represents the assumed physical model, but 
weighted by the energy of the outgoing particle. The latter assures that 
particles are represented roughly in proportion to their ability to produce 
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more particles in subsequent generations. For most applications, in addition 
to the propagating particle, one or more recording particles are generated 
from each inelastic interaction with intent to simulate the contributions of 
their generation to the specific problem being analyzed. However, for en· 
ergy density calculations of the type reported here, propagating particles 
also serve well as recording particles. This is also computationally efficient 
since it obviates the need to generate the extra particles. 

At present, particles below 600 GeV are still treated as in the 'old' 
CASIM, both insofar as hadroproduction and energy deposition character
istics are concerned (except for a more complete simulation of the spatial 
distribution of the energy deposited by 6-rays, see below). The model has 
been reasonably successful in comparisons with thick target experiments in 
this energy range, including target heating in a variety of materials [10,11 ]. 
Some recent criticisms [12,13] point to a discrepancy between CASIM and 
other codes. This discrepancy appears limited to higher atomic weight tar
get materials and is attributed [13] to an overestimate of the leading particle 
component in the (Hagedorn-Ranft [14]) particle production model used in 
CASIM. Qualitatively, this seems plausible, based on observed trends in re
cent particle production experiments on nuclear targets [15]. Being limited 
to heavy nuclear targets, such a discrepancy would not necessarily contra· 
diet the comparisons referred to above (except possibly some target heating 
experiments [11]). Recently published comparisons of CASIM results with 
experiment [7] in [12,13] are discussed in the Appendix, along with a more 
complete CASIM simulation of that particlular experiment [7]. 

2.1 Hadron Production 

ln addition to the above mentioned question for heavier targets, the Hage
dorn-Ranft hadroproduction model [14] used in CASIM is in obvious diffi
culty at SSC energies, as discussed in [2]. While these difficulties are not 
expected to invalidate estimates of, e.g., dose outside of a thick shield, esti
mates of the maximum energy deposition, which receives large contributions 
from the first few generations of the hadronic cascade and associated elec
tromagnetic showers, are expected to be much more sensitive to the particle 
production model. For this reason hadroproduction is treated differently 
here above a somewhat arbitrary cut-off energy of 600 Ge V. 

The difficulties of the Hagedorn-Ranft model in the multi- Te V regime 
are not surprising considering the factor of 103 or so in energy between where 
the model was conceived (and where its parameters are fixed) and the SSC 
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regime. In addition, experimental and theoretical understanding gained in 
the interim can be incorporated into a mod'1 which is both simpler and 
more readily extrapolated and which can be easily adjusted to accomodate, 
e.g., new data from CERN and Tevatron colliders or new results of Monte 
Carlo calculations [16,17] of hadron production. 

Such a model, which qualitatively satisfies the general features of inclu
sive hadroproduction and energy conservation, is briefly outlined below. It 
is recalled that CASIM uses inclusitie distributions to represent hadropro
duction and limits itself to nucleons and pions. Energy is conserved (on 
average) in hadroproduction, and these particles are sufficiently represen
tative of all baryons and mesons for (general purpose) energy deposition 
calculations. Three types of particles are distinguished: (a) leading parti
cles, (b) 'wounded' nucleons, and (c) produced pions. All cross sections are 
assumed to factorize in rapidity, y, and in PT· 

2.1.1 Leading Partides 

The invariant cross section Ed3o-/dp3 = (1/7r)d3o-/dydp} is assumed to be 
constant over the entire range of y. This is close to what is observed ex
perimentally for Feynman-:z: above 0.2 [18]. Its continuation over the entire 
range is made for simplicity and does not contradict measurement or the 
general physical picture. More precisely: 

~: = k; (0.18 - o.o6v1nA) / (1 - C,) (1) 

where kP = 1.0 and k, = 0.45 are both taken from experiment [18] and kn= kp 
is assumed. A in Eq. l is the atomic mass number and C, is the charge 
exchange probability, assumed to equal 1/3 for both nucleons and pions. 
For the latter double charge exchange is neglected. The y-limit refers to 
lab rapidity for collision with a nucleon. Since the k, are independent of 
energy, a flat spectrum in y means a slow growth in the average number 
of leading particles. This is not necessarily unphysical, since their number 
within a fixed rapidity interval of either incident particle stays constant and 
since their total number remains well below two even at 40 Tel'. 

The p} dependence is assumed to obey: 

du 1 i::i::z 1 -- = k(e-apT + be-"PT + ce-"T) 
dp} 

(2) 

where k normalizes do-/drr to unity and where o=4.7,/3=3.4,-y=l.0,b= 
0.03A0·4, and c = [0.03 {In (lnp) - 2), OJmaz· Most of the PT dependence is 
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in the constants a and /3 which are from CERN ISR p - p data [19), while 
b introduces an observed A-dependence at high PT [15). The third term 
causes a slow rise in (p}) with incident momentum so as to match CERN 
Collider results [20). 

2.1.2 'Wounded' Nucleons 

These are nucleons which have been struck by the incident particle (ignoring 
any possible difficulties with this concept). Their average number is assumed 
to be ii= uhpA/uhA, where subscripts hp and hA refer to hadron-proton 
and hadron-nucleus collisions. The y-distribution is represented by a half
Gaussian in the backward hemisphere, peaking at y' = 0 (y' = y/Ymo•) and 
with Uy• = 0.23 (= u;,, see below). The PT dependence is as for leading 
particles (Eq. 2). These wounded nucleons share only a small fraction of the 
incident energy and are not very important in energy deposition studies. 

2.1.3 Produced Pions 

The y' distribution is assumed to be Gaussian, truncated at both kinematic 
limits. The peak is assumed to be at y' = 0.5 - 0.07(v - 1 ), with ii as for 
the wounded nucleons and Uy•= 0.23. These values are obtained from fits to 
experiments at lower energies. An energy dependent normalization ensures 
overall energy conservation. The PT dependence is again as for leading 
particles except that a= 7.3, f3 = 2.5, and b = 0.012A0 ·4 here while c and "f 
remain the same. 

Fig. 1 shows the average charged particle multiplicity and inelasticity of 
the different components for nuclear targets, as a function of energy. 

2.2 Energy Deposition 

The basic algortihms of energy deposition are discussed in [4) and [5]. A 
description of the elastic and radiative processes, which become important 
with increasing energy, and their implementation into Monte Carlo trans
port has appeared elsewhere [8,21 ]. To deposit the energy associated with 
those point processes, which produce photons or electrons, AEGIS [5] is 
called upon to generate electromagnetic showers. It should be noted that, 
in AEGIS, electrons below 5 MeV are allowed to range out. Collisions with 
atomic electrons which transfer less than 10 MeV kinetic energy are not 
simulated in detail. The average energy loss in a Monte Carlo step is de
termined and a random energy loss, chosen from a Landau distribution, 
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Figure 1: (top)-Average charged multiplicity for p and 'II" on nuclear targets 
versus momentum. (bottom)-Average inelasticity for leading particles and 
'wounded' nucleons for p and,,. on Carbon and Tungsten versus momentum. 
Missing inelasticity goes into produced pions. 
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is applied. To deposit this energy, a point is selected randomly along the 
particle's trajectory, taking account of multiple Coulomb scattering. The 
fraction carried off by electrons with energy below 0.10 MeV is removed lo
cally. The fraction with (0.10 $ T. $10 MeV) is deposited at a point chosen 
randomly along the residual range of a representative electron originating at 
this point. The kinetic energy of this electron is selected from a T.-1 distri
bution, which closely approximates T.P(T.), where P(T.) is the probability 
[22] of producing an electron with kinetic energy T •. Its angle with respect 
to the incident direction, 8.::: arcsin ../2m.T./p., follows from momentum 
conservation. Energy losses for T. > 10 MeV are fully simulated. A similar 
algorithm is incorporated in AEGIS. 

The recoil energy of nuclei following coherent scattering is deposited 
locally since their range is well below the smallest beam size studied here. 
For incoherent scattering, the energy carried off by the target nucleon is 
deposited in the general vicinity of the particle track using the CASIM 
alogorithm. 

3 Results 

Calculated results for the three geometries mentioned in the Introduction 
are surrunarized in a set of graphs. The combinatorics of geometry, type of 
material, incident energy, etc., discourage an exhaustive treatment. Even 
for the small subset of calculations actually performed much more infor
mation is generated than can reasonably be reproduced here. For oblique 
incidence geometry and for segmented targets, the variations are virtually 
endless and what is included amounts to no more than a few examples. The 
results presented here are limited to targets of homogeneous composition. 
In performing the calculations, this limitation is exploited by writing for 
each material and energy (and for a sufficiently large number of incident 
particles) a 'history file' which contains serial identification, type, coordi
nates, direction, and momentum at birth for each particle participating in 
the cascade. A separate program then reads the history file and attends 
to the energy deposition routines. Each particle is now traced through the 
geometry in the usual fashion, with absorption taken into account on aver
age, i.e., by reducing its weight exponentially with distance traversed, while 
the various contributions to the energy deposition are simulated and tal
lied. These particles are traced until escape or until their weight becomes 
negligible. Electromagnetic showers are also traced in this stage. Since, 
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for a homogeneous target (including one with voids), different geometries 
can be simply related by geometric scaling such a file can thus be used 
repeatedly with savings in computing time. Other computational benefits 
are that each half-program is simpler to deal with in terms of debugging, 
storage requ.irements, etc. Because of the common genealogy, results for 
different geometries are statistically strongly correlated. This is most useful 
in analyzing related geometries such as beams at different angles for oblique 
incidence, since systematic trends become more easily discerned. 

The results presented here are smoothed with respect to statistical fluc
tuations, which are an obvious consequence of the Monte Carlo technique 
and are more prevalent at large z and/or r. Such smoothing may succeed 
more readily when done simultaneously for a large number of (interrelated) 
cases than for an isolated calculation. Hence it seems sensible to do so here, 
rather than serve the calculated results 'raw', but the user should remain 
aware of it. 

Practical applications of the results included in this note center on the 
problem of beam dumping, accidental or intentional. Where such matters 
are discussed below, it is strictly from the narrow perspective of energy de
position. The many other questions which arise in this connection regarding 
heat transfer, shock waves, structural stability, quenching, radiological con
siderations, etc., are not addressed here. 

3.1 Cylinders 

The geometry studied here is the venerable cylindrical geometry with a beam 
entering the target centered on the axis. To save computing time the trick 
of simulating several beam sizes within the same run [23] is employed. (Es
sentially, a pencil beam is brought in along the cylinder axis and whenever 
an energy deposition event occurs a randomly variable vector, representing 
the distance of the beam particle to the cylinder axis, is added to the ra
dially transverse event coordinates. The point made about manifold use of 
the history files applies in even stronger form here since different beam sizes 
are now fully correlated and thus intercomparison is greatly facilitated.) 
As mentioned in the Introduction, beams all have Gaussian profiles with 
u = u, =Uy• Twelve different beam sizes are simultaneously simulated rang
ing in size from 0.005 cm to 20 cm. Energy deposition is collected in a set 
of ring-shaped cells with their radii adjusted to each beam size, ranging in 
size from r < 0.5u to 15u < r < 20u. 

Contours of equal energy density in the z-r plane are presented in 

9 



Figs. 2-17. They are shown for two beam sizes, <r = 0.15 cm and <r = 2 cm, 
for all four of the materials at 20 Te V, and for carbon and tungsten also at 
1 TeV and 10 Tei'. The choice of these beam u's reflects the beam sizes an
ticipated at the SSC beam abort dump. If beam is dumped at 20 Te V, and 
both the blow-up lens and spiral kickers fail, it would be rougl>Jy <r = 0.15cm 
in size. If only the spiral kickers fail it would be about <r = 2 cm [24]. 

Maximum energy density as a function of z, i.e., the energy density on the 
beam axis, is shown in Figs. 18-25. Target materials and beam energies are 
the same as for the contour plots but here the entire gamut of beam sizes is 
included. The on-axis energy density is estimated using an algorithm which 
assumes that the radial distribution of the energy density is a superposition 
of a (slowly spreading) Gaussian beam plus a growing tail due to cascading. 
At low z the difference between p';;"' and PE (averaged over the on-axis bin, 
r<u/2)is predictable and small(~ 63). At large z results begin to suffer 
statistically in the central r bins but there the algorithm serves to combine 
them in an improved estimate of p';;"'. 

3.2 Beam Sweeping 

The immediate utility of the results on the solid cylinders for beam dump 
questions is clear without further elaboration. The results are also useful, 
at an intermediate level, to calculate energy densities resulting from beam 
sweeping. (The formulae given below are applicable to segmented dumps 
as well.) Beam sweeping lowers the maximum energy deposition by means 
of kicker magnets with oscilllating fields which cause the beam spot to be 
swept, in various patterns, on the face of the dump. They are, e.g., part 
of the SSC abort beam dump design. A few remarks on this subject, with 
particular applicability to the results presented here, follow. 

The dilution in PE achieved via beam sweeping is calculated analytically 
from the Monte Carlo results much in the manner of Ijspeert and Stevenson 
[25], but adapted to the results generated here. Ref.[25] starts out with a 
pencil beam and uses the distribution 

PE= 1 + (r/a)2 
Po (3) 

which approximates the radial variation of PE, as predicted by the FLUKA 
[26] program, at a depth corresponding to the maximum of the laterally 
integrated energy density, where p0 and a also are fixed. The limitation 
to this particular depth is somewhat troublesome (though not so much for 
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application to dumping, see below). The procedure described here yields 
PE" the energy density produced by the sweeping beam, at any depth, which 
is necessary for an accurate determination of the maximum PE• occurring 
in the target. 

As mentioned above, PE is fitted to a Gaussian plus a tail in the program. 
This provides the on-axis energy density, Po(z), as well as O'(z), at all z 

(4) 

with the arguments of Po and O' in Eq. 4 suppressed for clarity. 
At low depth, the validity of Eq. 4 in the central region rests on the 

assumption of a Gaussian beam. At large z, small r, similarity with multiple 
scattering suggests that the small angle processes once again yield Eq. 4. It 
makes sense then to adopt Eq. 4 at all z. In the discussion below the tail at 
large r is ignored, i.e., it is assumed that Eq. 4 describes all of PE· This is 
already quite accurate for finding P'E~'(z). One approach to include the tail 
is to replace Eq. 4 by a sum of two or more Gaussians since the formulae given 
below readily generalize to that case. Generalization to beams with u, 'f uy 
is likewise easily accomplished but likewise not done explicitly here. The 
different sweeping modes included here are directly borrowed from Ref. [25). 

3.2.l Linear Sweeping 

Linear sweeping here means that the center of the Gaussian beam sweeps 
back and forth along a line of length L. The sweep velocity is constant, 
except at the turning points. This leads to an energy density 

PE• ::: 

L 2 2 1 I z _, -(z--{} 

- Pot ••2 d~ 
L =k , 

(5) 

where ~is the coordinate of the beam's center. Integration yields 

Pov'21iu -5 [ j (L/2 + "') j (L/2 - "')] PE• = L e '• er r,; + er r,; _ 
2 v2u v2u 

(6) 

For L ;;l> u, which is the case of most interest, and for iz I «: L, the er j's in 
Eq. 6 approach unity and 

(7) 
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From the geometry it is clear that PE• is maximal at :z = y = 0. From Eq. 6 

maz = ./2irpot7 er/ (-L-) 
PE, L 2y'217 (8) 

and for L ::> t7 either Eq. 7 or Eq. 8 yields 

moz( ) J21rpo(z)17(z) 
PE, z = L (9) 

where the arguments of p£:z, p0 , and u are explicitly reintroduced to call 
attention to the z-dependence. For small L, the error functions in Eq. 6 can 
be expanded in series to describe PE .. For L ¢: u, p£:z approaches Po as 
expected. 

3.2.2 Circular Sweeping 

In circular sweeping the beam center is swept with uniform velocity along a 
circle of constant radius 

p 12" (•-Jl,l'J 
PE• = - e- >• def> 

211' 0 
(10) 

where R and If> are the sweeping radius and azimuthal angle. This integrates 
out to 

PE•= Polo(~;) e-",:f' (11) 

where 10 is the modified Bessel function of the first kind and zeroth order. 
The maximal PE• occurs for r given by the solution to 

(12) 

For R ::> 17, as would typically prevail, the Bessel functions approach each 
other asymptotically and p£:z occurs at r = R, as expected. By using the 
asymptotic formula for 10 , Eq. 11 becomes 

Pot7 _ 1·-~J' J21rpou _ !•-~J' 
PE• = -i===e 2• ~ e 2., 

../2n R 211" R 
(13) 

i.e., linear sweeping along a circle of radius R, see 
applies to p£:' as well: 

Eq. 7, and the analogy 

m••( ) v'21<Po(z)t7(z) 
PE, z = 211'R . (14) 
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For Rr <: o-2 the series expansion of the Bessel functions can be used to 
describe PE•· It is again easy to show that the maximum PE• approaches Po 
as R-> 0. 

3.2.3 Spiral Sweeping 

A spiral sweep, e.g., of the type proposed for SSC [l], can be approximated 
by a set of concentric circular sweeps with each circle contributing the same 
number of particles. In the limit of an infinite number of circles, the sum 
over circles becomes the integral of PEdR from R 1 to Rz, averaged over 
(R 2 - R 1 ). Assuming R 1 ~er, Eq. 13 leads to 

Po<r liR' 1 _I·-~>' 
PE• = --e ,. dR. 

v'zlr (R2 - R,) R, VrR 
(15) 

From the geometry, p'£:' is expected to occur close to the inner limit circle. 
To estimate p'£:', r is replaced by R1 in Eq. 15 and, since most of PE• at R1 

derives from beam at nearby R, it is only a slight overestimate to replace 
./l[Jl in the denominator of Eq. 15 by R 1 as well. Then 

maz Po<1
2 f (R2 - R,) 

PE, = 2R1 (R2 - R,) er v'zu . (16) 

If ( R 2 - R 1 ) ~ u, as is needed for effective dilution, er/ ( R~:1 ) ~ 1 and 

(17) 

Given R 2, the maximal excursion, the question arises for what R1 is p'£;' 
a minimum. It is easily derived from Eq. 17 that this occurs at R1 = R2 /2 
where pma'J! - p0(.z:)u2(z) 

Ea - 2R~ ' 

3.2.4 Depth Dependence 

It is interesting to further explore the depth dependence of p>g;' for the 
different sweeps. The final expressions for each case indicate the way that 
the shape of the depth dependence is altered from Po( z) itself, by the depth 
dependence of u( z) (u p0 , for linear/ circular- and u 2 p0 , for spiral sweeps). 
The effect will thus be more pronounced for smaller beams, heavier targets, 
and for spiral vis-a-vis linear/circular sweeping. 

Fig. 26 shows, by way of illustration, p'lJ"' (=Po), in relative units, for 
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a Gaussian beam of a= 0.02 cm (see Fig. 22) as a function of z along with 
p'g"2 for a linear/circular sweep (ex apo), and for a spiral sweep (ex a 2p0 ). 

The variation of a with depth is shown on the top of Fig. 26. (This is the 
sigma of a single Gaussian fit to PE for 0 < r < 2.5a and is meant for 
illustrative purposes only. The description would no doubt improve if one 
were to use a sum of Gaussians for the radial dependence.) The difference in 
depth dependence of the sweeps is clearly noticeable. Fig. 26 also exhibits 
a potential difficulty with the approach of [25]. The depth at which to find 
the overall P'f:z depends upon the sweeping mode and does not coincide 
with the depth dependence of the laterally integrated energy density, which 
peaks at still larger z than the curves of Fig. 26. Using a fit at the maximum 
of the integrated PE overestimates the radial spread and underestimates the 
peak energy deposition. That P'i:z has a depth dependence intermediate 
between p0 and the laterally integrated one is not surprising since the latter 
is equivalent to that of a beam uniformly distributed over a large area, 
something which is not accomplished by the sweeping modes included here: 
for a linear/ circular sweep only one dimension of the beam is spread out 
and even for a spiral sweep the particle density is still nonuniform (denser at 
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small radii). For typical beam dumping, the errors made by assuming P'E:• 
and the lateral integral of PE peak at the same z will not be large (10-203). 
Details of depth dependence are apt to be much more significant in targetry 
problems [27]. The present approach, based on Gaussian distributions, is 
quite well suited to such problems. For more complicated beam distributions 
and/or sweeps the approach, mentioned above, of treating simultaneously a 
set of Gaussians with differing O', can obviously be extended to sweeping. 

3.3 Segmented Targets 

The geometry for this case consists of a set of plates separated by gaps 
and followed by a solid dump. All of the plates as well as the dump are 
of the same material. As with the solid cylinders, a single computer run 
simultaneously treats several beam sizes ( u = 0.02, 0.05, 0.15, 0.5, 2.0, and 
10 cm). In a similar vein, four positions of the solid dump can be simulta
neously superposed on the same configuration of plates and spacings, again 
with savings in computing time and enhanced statistical discrimination, as 
pointed out in connection with the history files and parallel treatment of 
beam distributions. The geometry studied here is quite primitive consider
ing the vast array of options available by varying, within the same geometry, 
plate thickness, plate spacing, and material composition. The choices made 
here reflect mostly convenience and ease of interpretation. 

3.3.1 Calculations 

For this geometry, results from one computer run for each of the four mate
rials are reported here. For carbon and aluminum the plate thickness chosen 
is 2 cm, while for iron and tungsten it is 1 cm. The distance from the front of 
each plate to the front of the next one is always 1 m. Solid dumps begin after 
50, 100, and 150m for carbon and aluminum, after 40, 80, and 120m for iron, 
and after 15, 30, and 45 m for tungsten. As a cross-check with the cylinder 
results, a solid dump is also started at zero depth. Only results for beam 
u's of 0.15 and 2 cm are presented here. Figs. 27·34 show the maximum 
energy density as a function of depth into the array. For convenience depth 
is expressed in g / cm2 of the material (thus skipping over the gaps) and with 
all discontinuities in P'E"" smoothed out. The pattern is the same in all 
of the graphs: the upper curve corresponds to P'E"" for a solid dump and 
the lower one to p';;"" for a completely segmented dump. The in-between 
curves, launched at regular intervals from the lower one, correspond to the 
solid dumps starting at that depth. It can be readily determined from such 
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curves at what depth in the array a solid dump can be placed so that p'g0
• 

in the dump does not exceed PE"' in the array. 

3.3.2 Practical Implications 

The segmented dump case, along with the oblique incidence geometry, as· 
pires to lower P£0

• significantly and are thus applicable, at least in principle, 
to the problem of dumping. The virtues of a passive versus an active dump, 
i.e., one with magnets (or at least electro-magnets) for blowing up and/ or 
sweeping, must somehow be factored in when assessing the difficulties asso
ciated with these odd-ball geometries. 

The results indicate that, while substantial reductions in prg•• are pos
sible, the structures must become uncommonly long to be worthwhile. For 
example, Fig. 21 shows that a reduction in P£"• by a factor of~ 200 (roughly 
the ratio of the maxima of the upper and lower curves) is possible for carbon 
with the arrangement studied there. Unfortunately, a solid dump cannot 
start until well off-scale, i.e., only after several hundred meters of the ar
ray. Since there must be a sufficiently thick mantle of iron and/or concrete 
surrounding the plates to contain induced radioactivity, this appears uneco
nomical. Perhaps a shorter (denser) array with a lesser reduction in P':'"• 
is still worth contemplating. The calculation for aluminum uses the same 
geometry as carbon so that Figs. 21 and 23, as well as Figs. 22 and 24, are 
directly comparable. For aluminum with the solid dump starting at 150 m, 
the peak in the dump is comparable to the peak in the plates. However, 
P'Jl0 • is, in both cases, ~ 5 times higher for the aluminum and one needs to 
go to a larger spacing to match the prg•• in carbon. Glasses and ceramics, 
which might be the material of choice for such a dump, can be approximated 
by aluminum when corrected for density. 

3.4 Oblique Incidence 

The variation of the energy density distribution in the target with angle 
of incidence of the beam is briefly examined. That there is a variation 
with angle, other than the trivial one connected with a coordinate rotation, 
is made plausible with the help of Fig. 35. The same beam of (mono
energetic, parallel incident) particles is shown (in superposition) to strike 
two targets, one at right angles and the other at a relatively shallow angle 
8. For simplicity, neglect all radial spreading of the beam particles or of 
the internuclear cascades they induce, so that all energy is deposited along 
a straight line. Each such trajectory can be imagined to represent a large 
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Figure 35: Beam striking target at small angle (! superposed on normal 
incidence (for which energy density peaks in elementary volum'e \'). 

number of incidents which justifies using the average (laterally integrated) 
energy deposition along each track, shown schematically in Fig. 36. For 
perpendicular incidence, the maximum energy density along each trajectory 
occurs at the same depth (distance from surface) as indicated in Fig. 35 by 
the location of the small volume, l'. For oblique incidence the energy density 
along ray B (shown crossing\') is the same, but along A and Cit is no longer 
in step (see Fig. 36) and the energy deposited in\! is reduced. This picture 
also illustrates that to be effective(!<~ a/~ where a is the beam size and ~ 
represents the width of the laterally integrated density which points to rather 
small O's. At very small(! there is additionnal reduction of the energy density 
when leakage of particles out of the front face becomes significant. This 
happens when IJ becomes comparable to the angle of emission of secondaries 
in the cascade. 

While leaving the conclusion intact, the radial spread of the cascade and 
a nonuniform distribution of the beam considerably complicate the above 
picture and discourage the use of simple geometric arguments to convert data 
or predictions valid for perpendicular incidence to the oblique case (or to 
interrelate results for different theta). Instead energy densities are explicitly 
calculated for oblique incidence at a number of angles. From inspection of 
the results some approzimate scaling rules then re-emerge along with some 
perception of their accuracy and their domain of validity. 
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Figure 36: On average, rays A, B, and C all peak at the same depth for 
perpendic:Jar incidence, at different depths for oblique incidence. 

3.4.l Calculations 

The results presented here are intended as illustrations and not as a sys
tematic exploration of the subject. The target is assumed to be solid <ind 
homogeneous. The calculation is run simultaneously for several beam u's 
as in the case of perpendicular incidence. The geometry suggests collecting 
the energy deposited in prism-shap•d rtlls as shown in Fig. 37. In the 
plane perpendicular to the target face and containing the beam axis, the 
Zb-axis is perpendicular to the beam axis ( zb) and points out of front face 
of the target. The y-axis completes an orthogonal system with :rb and Zb· 
This system is now replaced with an oblique coordinate system wherein the 
axis z,, perpendicular to the target face, replaces the Zb axis, and the prism 
walls are the planes of constant z( = Zb), constant y, and constant z,, For 
convenience, all cells have identical dimensions. The z and y dimensions 
are adjusted according to beam size while the length of the slices along z, 
are chosen inversely proportional to the incident angle, i.e., constant steps 
along Zb. In accordance with Fig. 37, z is measured from the yzb plane with 
positive z pointing out of the front face of the target. 

The resulting energy deposition is symmetric in the y variable and this 
is exploited by sorting on (y( only. This is not the case for z as illustrated 
for the case of a O' = 0.15cm beam of 20TeV protons incident on aluminum 
at an angle of 0.001 rad. Fig. 38 shows contours of equal energy deposition 
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Figure 37: Binning scheme for oblique incidence. Target thickness along z1 

changes with angle of incidence, {), hut remains the same along z0• 

in the top slice (0 < z, < 0.04cm, i.e., the first 40cm along the beam) of the 
target and reveals a clear bias toward positive :z:. This is not surprising if one 
considers the contributions to PE due to lower energy particles, exemplified 
b)' broad and isotropic angular distributions in the lab. From Fig. 37 it 
is easv to see that, in the top layer of the target, the bins at positive :z: 
lie much closer to the beam axis than those at negative :z:. In the bottom 
slice, (0.36 < z, < 0.40 cm) and under the same beam/target conditions, 
Fig. 39 shows that the situation is reversed which is likewise to he expected 
from the geometry. Also for this same case, Fig. 40 shows how the shift 
takes place as a function of z1 in the form of a contour map of PE in the 
y = 0 plane, where PE(Y) is expected to peak. These observations may lead 
to questjons about the peculiar binning scheme of Fig. 37. However, this 
scheme has the advantage of simple (and automatic) adaptation to change 
in angle and beam width. It also leads to easy evaluation of the maximum 
energy deposition, both as to its value and its location within the target. 

Since P'£"" for the entire target appears to be the most important datum 
for a given material, incident angle, and beam spread, the results can be 
summarized compactly, as in Fig. 41 for 20TeY protons on aluminum. This 
presents P'E"" for four different beam sizes as a function of incident angle, 
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and illustrates the rather small angles required before any gain is made. At 
the very small angles there is an important caveat. The target thickness 
assumed for the (aluminum) target of Fig. 41, is (for all 8) 400 cm along 
the beam direction, which, e.g., for () = 10-6 reduces to a thickness of 
4 · io-• cm. This is not only impractical in an experimental sense but also 
strains the energy deposition model of the calculation, e.g., certain 'local' 
deposition mechanisms become diffuse on so small a distance scale. These 
complications are not further pursued here. 

Some results for 20 TeV protons on iron are shown in Figs. 42-45. The 
depth dependence of P'E"" for each of the various angles and for a beam 
of r:r = 0.15 cm is shown in Fig. 42, and for r:r = 10 cm in Fig. 43. The 
maximum energy densities for the entire target are summarized in Fig. 44 
which presents P'£0

" for four different r:r's as a function of angle. The trends 
are quite similar to the aluminum case and suggest use of the scaling variable 
(J / r:r 2 as demonstrated in Fig. 45, where ?£0

" is seen to vary linearly with 
this variable over a large range of r:r and fJ. 

Fig. 46 illustrates the energy dependence connected with oblique inci
dence. It shows results similar to Fig. 44 (and Fig. 41) but for the case of 
1 Tel' protons on iron. As expected at this lower energy, the angles need 
not be quite as small before ?£"" is significantly lowered. Deviations from 
scaling are also obvious at the smallest incident angles and are probably 
connected to the relative importance of the various energy deposition mech
anisms. The caveat concerning the small angle results, mentioned above, 
applies here as well. 

3.4.2 Practical Implications 

As already remarked, for intentional beam dumping the small angles of 
incidence required before ?£"" is substantially lowered, tend to preclude 
much practical use. Furthermore the angular dispersion of the beam, which 
has been neglected here, becomes significant in comparison with such small 
angles. But perhaps some variation of this geometry may succeed, e.g., a 
long pipe with a very slight bend or taper (situated in a larger structure) 
could avoid some of the steering problems associated with the small angles. 
This could possibly be combined with the notion of segmented beam dumps 
by introducing suitably spaced foils or plates into the pipe to speed dispersal 
of the beam. Contrasting the 1 TeV and 20Tel' results suggests examining 
oblique incidence at yet lower energy although conventional beam dumps do 
not pose a problem there, at least at present day intensities. 
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For accidental beam dumping the small angle oblique incidence geometry 
may provide a starting point, since this will be the prevalent condition when 
beam is lost inside the aperture. In actuality, particles hitting the beampipe 
wall will seldom fit the description adopted here (Gaussians with u, = "• 
and with, for all particles, z' = 8, y' = 0 ). But while serious calculations 
need sufficient detail about the beam in phase space (see, e.g., Ref.[28]) 
this may be quite difficult to ascertain unless one can identify the dominant 
beam loss mechanism( s ). In the absence thereof one may try and bracket 
the maximum energy deposition using the Gaussians (or a superposition of 
Gaussians with different (}and a). 

Appendix 

A number of comparisons of CA SIM with experiment and other calculations 
[4,10,29] already exist. Here, CASIM results are compared with experiments 
'.7] at 300 GeV and with calculations [6] at 20 TeV. CASIM, along with 
some other calculations [12], has already been compared with the data of 
Muraki et al. [7] but since the methodology of [12] is debatable, the CASIM 
comparison is repeated here. Comparisons with other predictions is limited 
to the calculations of Mokhov which appear to be the only published results 
in the 20 TeV regime directly comparable to the ones presented here. More 
complete intercomparisons would certainly be worthwhile. 

The paper of Muraki et al. describes a classic beam dump experiment 
wherein 300GeV protons strike an iron dump, about 75cm long and consist· 
ing of a series of slabs ranging in thickness from 2.5 cm at the front to 15 cm 
for the bulk of the dump. X-ray films are placed in 0.5 cm wide slots sepa· 
rating the slabs. The photographic density of the irradiated film is taken as 
a measure of energy deposition. At each slot (z-location) the energy deposi· 
tion is reported at radii r = 0, 1, 2, 4, 8, 10, and 12.5 cm. The incident beam 
is described by a fairly narrow peak (with a diameter of 0.18 cm at half its 
maximum) plus a substantial tail ('possibly due to muons' [7]) extending 
beyond 3.5 cm. The experiment is repeated in identical geometry but with 
lead as the target material. The energy densities are quoted in arbitrary 
units. 

In [12] calculated results of CASIM, FLUKA [26], and GEISHA [30], 
obtained for homogeneous targets, are compared with the Muraki et al. 
experiment. The comparison is limited to the r = 1, 4 and 12.5 cm data. For 
the iron plates, the normalization problem is taken care of by fitting ('by 
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eye' [12]} the r = 1 cm data to the calculations. (For lead, their procedure 
is less clear [31].) As Ref. [12] concludes, the comparison is certainly more 
flattering to FLUKA and GEISHA than to CASIM. This is not surprising 
since this holds true already for the results in the iron at r = 1 cm where 
they are 'normalized'. In addition to this arbitrariness, the comparisons of 
Ref. [12] are carried out in a location where PE is down a factor of - 20 from 
fiE"z which makes them even less germane to the present main concern, viz., 
estimating P'E"z in a thick target [32]. Mokhov [6,13] offers a more complete 
comparison, including a faithful simulation of the geometry, and normalizes 
the data to his calculated result at z=O,r=O [33]. The same simulation and 
normalization procedure is followed here, using CASIM. The energy density 
of - 0.16 GeV/cm3 predicted in the emulsion at z =0, r = 0 (and practically 
independent of target material) agrees well with [6]. But the procedure is 
not completely free of difficulties since the normalization question is closely 
tied to the assumed beam shape and this involves some arbitrary choices 
made in the simulation. Based on [7] the calculation assumes a Gaussian 
beam profile (<7, = 0.076 cm) plus a tail which is supplied numerically and 
is based on Fig. 3 of [7] for z > l.5cr. No information is given for radii 
above 3.5 cm, but instead of an abrupt cut-off the beam profile is assumed 
to decline linearly to zero at z = 5 cm. An identical distribution in y is 
assumed. All particles, peak and tail, are assumed to be 300 Ge V / c protons 
with z'=y'=O. 

Because of the superior experimental resolution ( 'S 0.1 mm), smaller than 
the beam width, an average over some relatively large radius is unacceptable 
if one wishes to compare with the reported r = 0 results. Instead the 
maximum energy density on axis is estimated using a radial subdivision of 
d = 0.025 cm at small radii. At the larger r, where there is less radial 
variation of the energy density, Monte Carlo results are averaged over t1r'• 
ranging from 0.5 to 3 cm. The z = O, r = 0 result especially (and hence 
overall normalization), but all other results as well, is quite sensitive to 
detail regarding the incident beam. The r = 0 predictions are most sensitive 
to the assumptions about the peak, while those about the distribution of 
the tail have more effect elsewhere [34]. 

In addition to the radial binning and beam distribution, special measures 
are introduced to cope with the relatively small thickness of the X-ray film 
packs. Ordinarily, when the entire volume serves as detector, it suffices 
to deposH the energy associated with a given process at a futlte number 
of locations along a, somewhat idealized, particle trajectory. In the present 
geometry only a few such events would fall within the active volume, causing 
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the calculation to converge too slowly. To boost the statistical impact of 
such a trajectory, it is traced boundary to boundary but with the essential 
physical approximations of the method preserved. Where it crosses (or stops 
in) an active volume an amount of energy proportional to the length of the 
trajectory in that volume is deposited, consistent with the condition that 
for an infinitely long run the results should be the same as those of a regular 
CASIM calculation. 

Results of the calculation are shown in Fig. 4 7. Statistical problems 
remain, even after inclusion of the above refinement. (The calculated points 
of Fig. 4 7 are based on 10s incident particles.) There is a marked tendency 
(outside of the r = 0 results, where they are normalized) to underestimate 
the data at low z while agreeing much better deeper into the target. This is 
also observable in [6] and could be related to incomplete knowledge of the 
incident beam. For instance, to check the importance of the tail, energy 
densities are calculated (in parallel with those for the full distribution) for 
the Gaussian component only. These energy densities are suppressed by 
~ 10 - 20% not only at radii corresponding to the tail but also at larger r. 
One could imagine larger differences if, e.g., the particles in the tail are lower 
energy hadrons or have a large angular divergence, or if allowance were made 
for the presence of neutrons and/or photons. It should also be noted that 
the energy density at large radii is substantially intermediated by low energy 
neutrons which are admittedly treated rather cursorily in CASIM. Since, at 
large r, energy densities at low z are much smaller than at large depths, 
even small changes in the magnitude or range of this diffuse component 
could dramatically improve the low z comparison, yet leave agreement intact 
at large z. The fits of the on-axis PE are excellent at low z-up to the 
peak. Thereafter the Monte Carlo tends to increasingly overestimate the 
experiment. Empirically, the comparison at low z benefits more from the 
normalization at z = 0 so the better agreement there is not surprising. The 
discrepancy at large z could be interpreted as a manifestation of the 'leading 
particle surplus' quoted earlier [13], though it is then somewhat surprising 
that Ref. [6] has much the same problems. It should be pointed out in this 
respect that the more accurate treatment of 6-rays, implemented recently 
into CASIM (Sec 2.2), noticeably improves the comparisons at r = 0, which 
is especially important if one is to succeed in predicting P'E"z. Note also 
that, since the beam energy of 300 Gel' is less than the 600 GeV cut-off, 
only 'old' CASIM enters in this comparison. 

Fig. 48 compares results of present calculations with those of MARSlO 
[6] on the energy density along the beam axis in various targets produced by 
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20TeV proton beams of u = 0.05cm and u = 0.2cm, respectively. Agreement 
is quite good, with the predicted P';,"z almost identical in all cases. The 
comparison is quite limited in extent but covers the most interesting region 
from the viewpoint of beam dumping, targetry, etc., and the agreement 
brings a measure of credibility to both calculations with regards to these 
applications. 
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Figure 2: Contours of equal energy density for u~ =Uy= 0.15cm Gaussian bea111of1 Tell protons incident along 
axis of solid Carbon cylinder. Value and location of maximum energy density is indicated. 
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Figure 3: Contours of equal energy density for ua:: = ay = 2 crn Gaussian beam of 1 Tell protons incident along 
axis of solid Carbon cylinder. Value and location of maximum energy density is indicated. 
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Figure 40: Contours of equal energy density at y = 0 in solid Aluminwn target for a, = ay ~- 0.15 cm Gaussian 
beam of 20 Te\7 protons incident at 1 mrad angle. 
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Figure 47: Comparison of 300 Gel' data of Muraki et al- (Q, D) with CA SIM ( +, x ). (left )-iron, (right )-lead. 
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Figure 18: Comparison of predictions at 20Tel' of MARS IO (point symbols) and CASIM (histograms) for on-axis 
energy density in various rr1alerials. 


