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CHAPTER 1

INTRODUCTION

This thesis describes a beam dynamics experiment (E778) performed in the Fermi-
lab Tevatron. Experiment E778 was motivated by the desire to reduce uncertainties
in the design of the 40 TeV center-of-mass energy Superconducting Super Collider
(85C) [1].

Controlled nonlinear elements added in the Tevatron, created the nonlinear en-
vironment anticipated in the SSC. Observations were made which are applicable to
areas of physics much broader than accelerator physics, since they relate to the phase-
space description of nonlinear oscillations. Those features are described in this work.
The subject of this thesis, then, is the study, both experimental and theoretical, of a
Hamiltonian system and its Poincaré map, an object described later.

The new element of this study is the experimental demonstration of theoretically
predicted phase-space features, in particular the new state of the accelerator, with
particles captured on nonlinear resonance islands.

There have been two experimental runs to date, in May 1987 [2] and in Febru-
ary 1988 [3,4,5,6], and there are plans for continuing studies. The work described
here is the cumulative effort of many individuals. My contribution was restricted to
participating in the data acquisition and data analysis. One of the simulation codes

(ART) was written by me. I am also responsible for the theoretical discussion and
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derivations using the canonical Hamiltonian formalism.
In order to put the significance of this work into its historical and scientific con-
text, a brief overview of high energy physics accelerators is presented first. Next the
motivation for this study is discussed, and much of the terminology is introduced

when the structure of the thesis is explained.

History of High Energy Physics Accelerators

Some of the fundamental questions of high energy physics lead to the understand-
ing of the marvelous complexity of the physical world in basic terms. High energy
physics is both a theoretical and an experimental science, but its progress is largely
paced by the technology of its accelerator and detectors. Accelerators are instru-
ments for producing the reactions that reveal the basic material entities and their
interactions.

The history of accelerators is one of generations. Each generation corresponds
to the invention of a new device, which is subsequently replaced by another, more
powerful innovation. The electrostatic accelerators, typical example of which is the
Van de Graaff machine, were followed by the cyclotron which was based on the concept
of time varying accelerating fields. Next, the weak focusing notion as a mechanism
for beam confinement was introduced through the betatron, an accelerator based on
electromagnetic induction. The synchrocyclotron took the lead next and the concept
of longitudinal phase space stability was introduced.

In 1952 a new idea was advanced by Courant, Livingston and Snyder (suggested
two years earlier by Christofilos but not published): the alternating-gradient focusing,
or strong-focusing [11]. This technique allowed particles to circulate in the machine,
called synchrotron, for millions of orbits. The combination of the strong-focusing
concept and the phase stability led to controlled acceleration to high energies.

The storage ring is now the highest energy accelerator. The largest energy in
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the center of mass, 1.8 TeV, is currently achieved in the Tevatron, located at Fermi
National Accelerator Laboratory (Fermilab). The Tevatron, with its one-kilometer
radius, is a proton-antiproton collider, like CERN’s SppS collider. The proposed SSC
will be a proton-proton collider. Its design energy is 22 times larger than that of the

Tevatron and its circumference is 53 miles.

Motivation of Thesis

The bending magnets of the SSC, approximetely 8000, represent a significant
fraction of the total project cost. The magnet cost grows with the size of the aperture
provided for the beam. Hence a critical parameter in the optimization of the SSC
design is the ‘magnet aperture’ (7]. In order to optimize the SSC design, the aperture-
size must be chosen (a) to minimize the cost and (b) to provide a high confidence
level in achieving the design performance goal. If the chosen aperture is too large,
the design will not be cost effective. Too small an aperture will cause difficulties in
operation. The value chosen for the aperture in the SSC Conceptual Design Report [1]
is based on accelerator theory, past experience and extensive computer simulations.
Due to the great importance of this result, an experimental study of the aperture was
suggested in order to evaluate the design as well as to improve the criteria for the
determination of a magnet aperture. The Tevatron was chosen for this experimental
study for reasons that will soon be described.

In the SSC the effective aperture will be determined by nonlinearities in the mag-
netic field [1,7]. By intentionally adding nonlinear elements into the Tevatron, one
could “mock up” some nonlinear features anticipated for the SSC. Experiment E778
addressed the question of studying the particle motion under the influence of con-

trolled nonlinearities in the Tevatron.
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Structure of Thesis

The one-degree-of-freedom equation of motion of a particle in a storage ring, in

the presence of sextupole magnets, is given by

%%—K(s)X: —e(5)X?, (1.1)
where X (s) is the horizontal deviation of the particle from the closed orbit. Here s is
the longitudinal particle coordinate, which advances from 0 to C, the cdrcumference,
as the particle completes one revolution of the accelerator.

Particles execute ‘betatron’ oscillations about the closed orbit with Linear focusin
due to quadrupole fields of strength K(s) given by
_5

K(S) = EE

(1.2)

The product Bp is called the magnetic ngidity of the particle and it is proportional

to the particle’s momentum,
Bp=£, (1.3)
e

e being the charge of the electron and p the radius of curvature. (Bp) can be calculated

{from
10
Br= 55979

The quadrupole sirength K(s) alternates sign in an alternating-gradient accelerator

PGevyc  Tesla — meters. (1.4)

such as the Tevatron. The number of betatron oscillations in one turn is called the
tune, : about 19.4 for the Tevatron. {Occasionally the symbol @ will also be used
to denote the tune.)

The nonlinear term on the right hand side of (1.1) is due to sextupole fields of
strength €(s). It can sometimes be treated perturbatively. Both K(s) and €(s) are
perniodic functions of s with period C.

The concept of phase space is closely related, both theoretically and experimen-

tally, to the analysis of these oscillations. The coordinate X and the slope P = dX/ds
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form the phase space. An observer, stationed at a fixed point in the accelerator ob-
serving the horizontal motion of a particle can plot the phase space point X;, P, for
successive turns ¢, to obtain a Poincaré plot. After a simple transformation, these
points are given by

X; = A;cos @, {1.5)
and

.Pg = ‘—Ag sin @g, (1.6)

where A2/2, &, = 2xvt are the ‘action-angle’ variables. When the amplitude A, is
sufficiently small, it does not deviate from its average value A, and the phase space
point moves on a circle on the X, P plot. When nonlinearities become important, the
phase space point falls on a smooth, yet distorted, curve. From here on, the terms
phase space plot and Poincaré plot will be used interchangeably.

The expected phase space structure can be calculated by numerical tracking of
particles, This is illustrated in Fig. 1.1 where particles of various amplitudes have been
tracked through an accurate representation of the Tevatron. Most of the features have
been demonstrated and measured during E778. In order to link the various features
of the phase space to the specific experiments the E778 collaboration performed, the
qualitative phase space behavior at various amplitudes is considered next.

At sufficiently small amplitudes the motion is still linear to a good approximation
and the one-degree-of-freedom trajectories are circles. At larger amplitudes deviation
from circularity due to the nonlinearities becomes apparent. To quantify the magni-
tude of the distortion a parameter called ‘smear’ is defined as the root mean square
(rms) deviation from a circle. In experiment E778 the smear was measured for a
variety of accelerator conditions and compared with both numerical and analytical
calculations. These measurements constitute the Smear Experiment. Along with the
corresponding theoretical predictions, they form the subject of the Chapter IV,

The correlation between the smear and such accelerator performance measures as



10-—4m1/2

(az + 82')//B,
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2/VB,  107tmi

Figure 1.1: Poincaré plot generated by numerically tracking particles
of various amplitudes.
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injection efliciency and particle lifetime was also studied. This second experiment is
the Injection Experiment and it is described in Chapter V.

At intermediate amplitudes, one finds a very interesting feature of the nonlinear
motion, namely the five-beaded necklace, conventionally called the n=>5 resonance
island chain. Fundamental quantities associated with this structure are calculated
and compared with experimental results. This experiment will be referred to as the
Resonance Island Experiment and it is analyzed in Chapter VI.

Finally, at large amplitudes the regularity is lost and the motion becomes chaotic.
The largest regular contour is sometimes called the ‘dynamic aperture’ of the accel-
erator. It decreases with the increase of the magnitude of nonlinearities. In E778 the
dynamic aperture was measured for various conditions. These results are compared
with the prediction from short-term tracking calculations. These measurements com-
prise the Dynamic Aperture Experiment, the analysis of which is given in Chapter
VII.

Chapter I is devoted to a theoretical discussion of the concepts investigated ex-
perimentally in E778, while Chapter I1I contains general remarks on the experimental
aspect of this study. Most of the lengthy and tedious derivations have been put in the
Appendices. Thus, the general reader need not be distracted with their mathematical
details.

Before the end of this introduction, two more remarks are in order. First, nonlin-
earities were introduced into the Tevatron in the form of already installed sextupole
magnets. Second, the study described in this thesis is a purely one-degree-of-freedom
one: horizontal. Already existing plans for continuation of this experiment include

studies in both transverse planes.



CHAPTER II

SINGLE PARTICLE DYNAMICS IN THE PRESENCE
OF A SEXTUPOLE FIELD

Hamiltonian concepts are important in analysing phase space motion. The Hamil-

tonian leading to (1.1) is
Hi(X,P;s) = % [P* + K (8)x7] + ée(s)xa. (2.1)

In the case of E778 where the nonlinearities were introduced in the form of sextupole
magnets, €(s) is the normal sextupole strength

€(s) = By (2.2)
2(Bp)’ '

A canonical transformation is performed next to ‘normalized’ coordinates z, p, in

terms of which the linear part of the motion is reduced to a simple harmonic oscillator.

This is called a Floquet transformation. The new coordinates and momenta are given

in terms of the old ones through the relations

— 0

2= [P0x (2.3)
/B a (Bo

p= e %\ B X. (2.4)

Here 3 is the horizontal beta function at the point z. Also known as the ‘Courant-

and

Snyder amplitude function’, the beta function is usually a periodic function of s and
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its square root is proportional to the amplitude of the betatron oscillation. The beta

function at a reference point is denoted by By above. The parameter a is defined by

— 1

where prime denotes differentiation with respect to s. Together with # and a third

parameter v defined by
14 a?
ﬂ )

they form the so called lattice parameters. They are also referred to as Courant-

v = (2.6)

Snyder parameters collectively.

The new Hamiltonian becomes

R 1 RB" 3/2
H = T (ﬁop’ + %) + 'EE,% (%) 23, (2.7)

where the independent variable s has been changed to the more convenient § = s/R,
R being the average radius of the storage ring.

So the Hamiltonian now is that of a simple harmonic oscillator with the addition
of a small nonlinear term due to sextupoles. It is well known that action-angle

coordinates are very useful for studying this problem. Hence the action-angle variables

I, a are defined here by

z = /218, cos [¢(8) — v8 + a] (2.8)
and
Bop = —+/ 218, sin [4(6) — v8 + a], (2.9)
where
_ g (2.10)
ﬁup - d¢’ .
and it is denoted by z' below. The betatron tune is denoted by » and ¥(#) defined
by
wo) = [ 2 (2.11)

w B(s)
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1s the Floguet phase at the location @, or the betatron phase at §. The amphitude of
the motion will be denoted by A and is defined by

A =218, (2.12)

and the phase ¢ is defined by
¢ =(6) —vi+a. (2.13)
Then Eqs (2.8) and (2.9) take the form
z=Acosd (2.14)

and
¢’ = —Asing. {2.15)

The new Hamiltonian, in terms of action-angle variables, reads

RBH 3/2
Hy=vi+ 6(B;) (%) (218)** cos® (v — v + a). (2.16)

The final goal is to come up with a set of coordinates in terms of which the

Hamiltonian assumes the form
H(E,I)=V1]+V2]2+V3.[3+..., (217)

that is, H is a function of the action only, independent of angle. This can be accom-
plished via a series of canonical transformations [8]. The purpose of each of these
transformations is to defer the angular dependence to higher order. As expected the
coefficients 11, v, v, ... are of order 0, 2, 4, ... in the small perturbation parameter
which is proportional to the sextupole strength.

It 1s demonstrated in this chapter that applying these transformations to first
order results in the distortions of the beam shapes, which are relevant to the smear
experiment. Eventually these formulae will be used to derive expressions for the smear

which will be compared with experimental and tracking calculations.
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Furthermore, it is shown that a second order Moser transformation leads to the
expressions for the variation of tune with amplitude (the term ‘amplitude-dependent
tuneshift’ will also be used) due to nonlinearities. Comparison with experimental and
simulated results will also be given.

A third order Moser transformation of the Hamiltonian {2.16) will be demon-
strated next. This derivation will lead to an expression which describes a system
under the action of a nonlinear resonance. It serves as the theoretical model for the
description of the nonlinear resonance island region of the phase space. Expressions
of the ‘island width’ and the ‘island tune’ (to be defined below) will be derived and
compared with single particle tracking results.

It should be noted that several theoretical models [14,15,16,17,18] exist to describe
the resonance island part of the phase space. The Moser transformation approach
was chosen because it is a traditional and rather pedagogical one.

Finally at large amplitudes, near the boundary of stability, the phase space topol-
ogy can be described reasonably accurately by a model which assumes only the exis-
tence of the third integer resonance. The details of this description will be given in
the last section of this chapter.

In reality large amplitudes exhibit chaotic behavior. This is illustrated in Fig. 1.1
by the dots outside the dynamic aperture. Understanding of the chaotic region though

is beyond the scope of this thesis.

Beam Shape Distortions — Distortion Functions

Following tradition [15,16,17], the canonical Hamiltonian formalism is used to
derive the Jowest order beam shape distortions due to sextupoles in the horizontal
plane. The final formulae are expressed in terms of ‘distortion functions’, a term
introduced by Collins [20]. The idea of distortion functions is the following. As shown

above, a judicious transformation of the variables forced the formule describing the
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linear part of a betatron motion to be identical to that for simple harmonic motion.
The idea of distortion functions is to account approximately for extra perturbing
effects by allowing the amplitude A and the phase ¢ of (2.14) and (2.15), to be
‘distorted’ by the addition of small s-independent terms 6.4 and §¢. To first order in
the strength of the nonlinear perturbation (the sextupole strength here), the motion
is described by

z~ (A+ 8A)cos (¢ + &¢). (2.18)

In the accelerator physics context distortion functions have been derived indepen-
dently by various authors [20,9,10,15,22 8].

Only an outline of the derivations of beam shape distortions will be presented
here. More detailed discussion can be found in references [21,22,23].

In Eq. {2.16), note that the expression

RB; (B\" iy - vo)
= ( ﬁo) (2.29)

is a periodic function of #, hence it can be expanded into harmonics, to get

Hi{a,I)=vI+ (21)33 63/ > [3A1pm sin(a — mB) + Asy,sin(3a —m#8)),  (2.20)

where
=t i3 — v8 + mb) 5
Alm 241 zﬁ:ske ( 21)
and
As, = = Z akei(&/’ —3v6 + mﬂ)k. (2.22)
247 .

The summation above is over all the sextupoles in the ring, which are assumed to

have infinitesimal length £, and strengths

In principle one could now solve the equations of motion obtained from the Hamil-

tonian Ha to first order and calculate the beamn shape. However, I am going to
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proceed by making a Moser transformation from (a,I) to (b,J) so that the J’s be-
come constants of the motion up to first order in 8¢. The generating function of this

transformation is

Gale, 1:8) = a7 = (21116 T (T2 cos um + 2 conqan ), (224)

3m
-~ 3v
where ¢, = ¢ — m#f and ¢3,, = 3a — mf. By definition, the new Hamiltonian is

H4 =vJ -4 AHCI:ext, (225)

where A Hy|sxt does not contain any zeroth or first order terms in sx. The first order

changes in I and e are given by

8G,
I=I-J=——=-J 2.2
5a (2.26)
and
6a=a—b=a—?§. (2.27)
Explicitly they are
3/241/2 ( 3Asm . )
= (21)°/%4, z sm Qim + gy Sin Gsm (2.28)
and
Sa = 3(21) 1%“’2 ( COS q1m + Asm Cos qs,,.) . (2.29)
” —

These are related to the changes in amplitudes and phases through the relations

Po
A = (21) &1 (2.30)
and
§¢ = ba. (2.31)

Before the calculation of the changes in the amplitude and phase, notice that
when v or 3v equals an integer, in Eqs (2.28) and (2.29) the solutions diverge. These

are in fact the first-order resonances for the sextupoles. When the tune is close to
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a particular resonance, then the resonance term dominates in the sum and one can
safely disregard the rest of the terms. This is the way to handle the situation near a
resonance. [ shall return to this point soon.

For the time being, a situation far away from resonances is assumed and the

summations over m in (2.28) and (2.29) are performed. Using the formula

e T it + (8 —7)] <o <on

o i(mf + b) sun vy
—_— = (2.32)
—, M —vV
—x(cot wv)e‘b =0
one arrives at
A = A*(A;sin ¢ ~ By cos ¢) + (Aasin 3¢ — By cos 39)] (2.33)
and
8¢ = A[3( Ay cos ¢ + Bysing) + (A3 cos 3¢ + Basin 3¢)], (2.34)
where A;, B;, A; and B; are the Collins’ distortion functions defined by
1 8
_ il.J Y <[ — 1<
By (%) 2sin1ru‘§: 1 cos (| — Y| —mv) 0 <|tp — ¢ |< 27w
Ai(¥) = Bi(¢¥) O<|vn—v|< 2mr (2.35)
1 8
LT ... — |- < — pl< 2
Bs(3) = gongmy & g 3t =¥l -m) 0l i< 2

As(3¥) = By(3y) 0 <[ — ¥ |< 27w

The prime denotes differentiation with respect to the argument. The distortion func-
tions defined above are lattice functions due to the presence of sextupoles, much the
same way O and « are lattice functions due to the presence of normal quadrupoles.
They are periodic functions of the ring. Notice that at a sextupole of strength sz, A;

jumps by s3/4 while B, remains continuous but exhibits a cusp. Another property
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of the distortion functions is the following. If B, A are the distortion functions at

location 7, then the distortion functions at location ¢’ = 9 + a are given by

, 1
B = T cos (Y + a — 9 — ) (2.36)
and
A= ~5Ts sin (Y + a — ¥, — 7v), (2.37)

where it is assumed for simplicity that there is only one sextupole at location ¥,

with ¥, < 1¥,%’. From here one concludes that

B cos @ Ein « B
= , (2.38)
A —sina cos o A

which implies a rotation of the vector (B, A) by an angle .
Finally, taking into account an average dipole effect that sextupoles have on a

charged particle which leads to a distortion of the ideal closed orbit, one obtains
§A = A*[—(A;sin ¢ — B, cos @) + (Aasin 3¢ — Bs cos 3¢)] (2.39)

and

§¢ = A[(A1cos ¢ + Bysin¢) + (Ascos 3¢ + Basin 39)). (2.40)

The distorted beam shape in the horizontal phase space are given by

¢ =10bz+ (A+6A)cos(p + &) (2.41)
and
z' = bz' — (A + 6A)sin (¢ + 6¢), (2.42)
where
bz = —2A°B, (2.43)
and

bz' = ~2A%4,. (2.44)
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Second Order Tuneshifts

Nonlinearities cause variation of the frequency with amplitude. The first order
perturbation does not produce any such tuneshifts. The reason is that the first order
term in the perturbation Hamiltonian is of the form z°. Since cos® ¢ averages to zero,
there is no resultant shift in the tune to first order and hence one must seek higher
approximations. The lowest contribution to the tuneshift comes from the second
order.

From the generating function G3 of Eq. (2.24),

(2])3./2 = (2J)3/2 + 9(2J)?ﬂ3/2 Z ( Alm sin Gim + Ag,; sin q;;m) . (2.45)

m-—v m — oV

The second order terms in the Hamiltonian is

AH, l.exg= Z(3A1ml Bin @it + Agme 51D q3m-))<

m!

x9ﬁo(2J)’ Z (7:1'“ sin ¢1m + 3 y sin q3m) . (246)

m v -

Since the betatron tunes are defined per revolution, one must average over 8 to obtain

9 342 A2
AH, |yexi= —z—ﬂo(ZJ)’Z( im 4 T 3m ) (2.47)

w\m—v m-—3v

Summation over the harmonics leads to the following result

Al 1
m_o__ 2.48
; m—V T2n zk:(Bls)k ( )
and
A _ 1
2% T zk:(B‘*s)"' (2.49)

Here B, and B; are the distortion functions previously defined by (2.35). Recalling

that the tuneshift is given by

SAH!
Av= "7

(2.50)
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the second order tuneshift due to sextupoles is

1

Ay =
v 47

A’ > (3Bys + Bas)i. (2.51)
k

There are two remarks to be made on this expression. First the parabohc depen-
dence of tune on the amplitude is characteristic to sextupole-induced nonlineanties.
Second the effect of nonlinearity is to make the tune change with increasing amphi-
tude. It is demonstrated later that this behavior is followed by experimental data.
Finally these two properties of the tuneshift are first responsible for the phenomenon
of the ‘decoherence’ of the beam (to be described later) and second, they lead to the

formation of the nonlinear resonance islands, a concept I am introducing next.

One Dimensional Nonlinear Resonance

Sextupole-Generated 2/5 Resonance Islands

In this section attempt 1s made to understand intuitively the origin of the n=5
resonance island chain. Furthermore, a mathematical derivation is presented demon-
strating how a Hamiltonian describing the motion of a particle in the presence of 2
sextupole field can lead to a new Hamiltonian representing motion along the contours
of the 5 resonance islands.

The concept of resonance enters as follows. Suppose that the base tune (the
tune with the nonlinearities set equal to zero) is just above 1/5. (Since the number
of complete cycles, and hence the integer part of the tune, are undetectable, the
‘fractional tune’ will often replace the tune.) After 5 turns around the accelerator 2
particle will return close to where it started. It was shown above that the efiect of
the nonlinearity is to make the tune change with increasing amplitude, so there is

one amplitude, Ag, for which the tune is exactly 1/5 and the repetition is perfect.
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Furthermore there is a frequency entrainment effect causing all nearby amplitudes to
“lock-on” to exactly the same tune of 1/5. This accounts for the islands, illustrated
in Fig. 1.1. The centers of these islands are called stable fixed points since a particle
starting near one stays near forever. The topology of the structure also requires 5
unstable fixed points between the islands. The maximum separation (in amplitude)
of the curves forming the boundary of the island is sometimes called the island width.

The particle moves steadily along a regular oval curve, circulating around the fixed
point in much the same way that a small amplitude particle circulates around the
origin. An island tune @y is defined as the average number of revolutions around the
island per turn around the accelerator. In reality the particle jumps from the regular
curve of one island to the corresponding regular curve on the next island, returning
to a somewhat displaced position on its original curve after 5 turns. Tunes near 2/5
or 3/5 or 4/5 lead to much the same story. For example, with the tune near 2/5, the
case investigated experimentally in E778, the particle Jumps 2 islands at a time but
still returns to its original island after 5 turns.

The next goal is to derive a Hamiltonian representing motion at a tune 2/5, or
actually 97/5, if the integer part of the Tevatron tune (19) is included. The equation
of motion of a particle of tune 97/5 is expected (from Eq. (2.8)) to contain a term of
the form cos [ty — &8 + al, or, cos [5a — 978 + ), or cos [5a + .. .|, where &, is some
constant phase. From the Hamiltonian (2.16), such a term can only appear in third

order in the sextupole strength [25]: indeed first order terms are of the form
cos®a ~ cosa + cos 3a, (2.52)
second order terms come from cos®a x cos® @ and are of the form
cos 4a + cos 2a 4 constant (2.53)
and only third order terms can be of the form

cos?a X cos’a x cos’a ~ cos5a + ... (2.54)
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I shall follow up this argument and proceed by constructing a Hamiltonian which
is exact up to third order. However, the reader should be aware that the idea of
the term cos [5a + ...] appearing in third order in perturbation is not commonly ac-
cepted. The interesting notion of interference of resonances, introduced by Michelotti
[26,27], suggests that the 2/5 resonance is due to an interference between the 1/3 res-
onance appearing at first order in the perturbation expansion, and the 1/2 resonance,
which appears at second order. Plans exist for further investigation of this idea by
comparison with experimental and tracking data.

The generating function Gs of Eq. (2.24) was constructed so as the Hamiltonian
Hj; be exact up to second order in s,. Hence one more transformation is needed that
will give rise to a Hamiltonian Hy, which is exact up to third order.

The generating function G; from Eq. (2.24),

341m
Gi(a,J,8) = aJ — (2J)3/2ﬂ;/2§ (m _1 ~ COS urm + - _3 ~ €oS q3m) (2.55)
implies
_ 0Gs
I=—- (2.56)
_0G;
b=47 (2.57)
and
8G
Hs(b,J) = Ho(b,J) + —6-6—3. (2.58)
Explicitly,
I=J+(20)6Q(a), (2.59)
where
_ 3A1m . 3A3m . ]
Qa) = Zm: [m — s gim{a) + e gam(a) (2.60)

and gin(a) = ia — mé + oy, with i=1,3. From here one can calculate the term (27)%/2

by expanding (2.59) in powers of J

(2172 = (277 + 32IV8°Qa) + 5(20) 8@ @) + ... (261)



20

The new angle variable b can be calculated from Eq. (2.57)

b=a-3(2J)?8)°Q,(a) (2.62)
where
Qi(a) =Y [;A:': cos qi,(a) + mAj".‘;v cos qam(a)] . (2.63)

m

The next step is to solve Eq. (2.62) for a. This can be done recursively. To a first

approximation a is set equal to & in @, and hence a is given by
a = b+ 3(27)72832Q,(b). (2.64)
Hence the new Hamiltonian (2.58) becomes

Hs(b,J) = vJ+

3A1m . 3A3m .
3 ZJ)zﬂu ( 81N Q1m + sin 93m) X
( ; m-—v m — 3v

2(3341";! sin Giem! -+ A3m' sin Q3m|)

3 341 . 34 .

_,_5(2.])5/"‘;33/3 ; (a—_l—v S10 Q1 + _3m sin 93m) X

( 3A41m: . 3Asm . )
z §IN g1 + 81N @3pmt | X
o\m! —v m' — v
Z(3A1mu sin Qimr + A3mn sin q;;mu). (2.65)

Notice that in the above expression
8iN gim = 8in (ia — mé + o) 1=1,3. (2.66)

With the use of Eq. (2.64), Eq. (2.66) becomes — for i=1,

sin qim = sin [(6 — m0 + aam) — 3(27)Y?8372Q1(B)]
= sin (b — mb + aym) cos [3(27)28572Q1(b)]

— cos (b — m8 + ay,) sin [3(27)1/385/%Q, (b)) (2.67)
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Then using the first equality of Eq. (2.67)
Hy(b,J) = vJ+
341m .
320780 T {2 i in(8) + 3(20)/ 288/ Qu(8)
3A3m

7 sin [gsm(b) + 9(27)/265/ Q1 (b)]} x
2{3}11,,,: sin [gim(b) + 3(2J)112ﬂ1/2Q (5)]

+ Ay sin [gaeme () + 9(27 )" 282" Qa(B)]}
+3@n g e {2

207 sin gum(8) + 9(20) 45 Qu(8)] } x

5 { 22 s g (B) + 3(20)63Qu(0)

nff‘j"_,;’y sin [gam:(8) + 9(2J)/285"* @, (b)]} x

> {3 Asmn sin [q1mn(B) + 3(27)2/3837Q1 (b))

m'

+ Agmo $in [game + 9(27)/2857° Q1 (B)]},

" sin [qun(8) + 3(27)"/265°Qu (8)]

where

Gim(b) = ib — m8 + a;m i=1,3.

(2.68)

(2.69)

If only the first order terms in the sextupole strength, which enters in @,(5), are

kept and use of the second of the equalities of (2.67) is made, one arrives at

$in gum = sin (b — MmO + azm) — 3(2J)24Y3Q, (b).

(2.70)

The same expansion is valid for sin gs,,. Taking this into consideration, H; becomes

H;;(b, J) = VJ+
9(2J)°B0 Y { f:‘

Asm_ in gun(t) + f_%";—s(w)“*ﬂ;”@l(b) cos gsm(B) } x
Y {3A1m sin qu(b) + 3A1m.3(2J)1"2ﬁ1/2Q 1(B) 08 g1me ()

m'

sin gun(3) + 27 am (2063 Qu(b) cos qum()
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+ Agms S Qo (B) + A3mi8(2J)*28272Q1(b) cos gsmr(B)}

9 1\5/243/2 {3A1m . 345, . }
+2(2J) By ; mﬁysmqm(b)-{-m__ usmqam(b) X

Alm" . A3m' .
3 i o (8) + S in g8

Z {3A1mﬂ sin qlmn(b) + Aam" sin Q'3mn(b)} . (2.71)

mi

In the above, all terms contributing to powers of J higher than 5/2 have been ignored,
because only contributions to 5th order resonance (~ I°/?) are of interest.

Grouping the terms of equal powers of J together, one gets

H3(b,J) =vJ+

3AimArm . ) AimAzm . .
9(2J)*fo E {——1~u—~ 510 G1m 810 @1t + —-i;"—_—%— §iN @1y 51D g3

o L m =V
+ M 810 G3m BN G1m: + és—mf—s'—"' 81N g3 810 q3m}
m — v — v
+9(2J )s/: ﬁg/z m'mz"m" { E?T;A—lr:i:" :4‘1":') COS Gy COS ¢im’ BIN Q1pp
A1 m At A ]
(m — »)(m” — 3v) COS Gam# COS Q1m’ Bill G1pm
27A1mA3m'A1m“ .
(m = o)(m" — v) 81D g1m COS Q3m’ COS g1
41m Asm Az COS COS (3, S10
(m ~ v)(m" — 3v) Tams COS am! SN d1m
2TA;m At Agnn .
(m = 2)(m" ~ v) COB G1m SID §1mi COB @1y,
9A Ay Azmn .
(m — o) — 30) €OS Q1m STl §1,m! COS Qapnnt
9 A 1m Asm' A .
(m = v)(m" ~ ») COB Q1m 510 ¢3! COS G1m»
3A1mA3mtA3mu .
(m — »)(m" — 30) CO8 1 5iNl G3mt COB Gamy
27 Aam At Armn .
(m — 353(m" = v) BINl @3, COS Gimt COS Qi
9 A3m A1t Agm 8iN @3y COB Gim? COS Qam
(m — 3v)(m” — 3v) Qam COS Q1m Q3m
2T Az Az Ay

(m — 3v){(m" - v) 510 gam CO8 gam' COS Qumn
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9A3m Az Aame
(m — 3w)(m" — 3v)
BlAsm Armr Aynn
(m — 3v)(m" - v)
+ 27 A3m Aioms A COS @3, 51N Gy’ COS Gapmn
(m _ 3v)(m” _ 3:;) qam T1im 93m
27 Aam Aamr A1me
(m — 3v)(m” —v)
9 Aam Aam: Az

* o — su)(m — 3y 0% o I G 08 qam}

SiN @3y, COS G2’ COS oy

COB Qayq 511 G1ynt COS Grm

€08 {3y 1N G3m COB Gypmw

g 3/2 gAlmAlm'Alm" . . .
+={2J)%/? { 111 Q1yn S1N Gyt SII Grene
2( ) ﬁD m"nzr'mn (m — v)(m’ _ V) N a1 q1

3Arm A Agmir
(m = )(m' — )
9 Ay Azt Ay
(m —v)(m' — 3v)
3A1mA3m'A3m"
{(m —v)(m' - 3v)
9Azm Arnt Ayme
(m —3v)(m’ —v)
3AsmArm Az
(m - W) (m — )
gAamAam’Alm“
(m — 3v)(m' - 3v)
3Aam Azmi Az
(m — 3v){m’ — 3v)

SI1l G1rm SiN Qrem? SIN Qaemr

sin G, sin dam’ sin gim»

+

E1N Q1 sin G3m’ sin Qam»

S10 Gapn 51N 1yt SIN Gy

§iN Qap 510 @i 810 gamn

sin Gam sin G3m’ Bin Q1ms

sin G sin gam’ sin Q3mli} . (272)

With the use of the trigonometric identity

et

gsin Asin B = =[cos (4 + B) — cos (4 — B)], (2.73)

o)

the terms which are proportional to J? in (2.72) are rewritten, to give

Hi(b,J) = vJ+

3 mi3im! ) 3A mA m'
;(2J)’ﬁo rnz,n:l' {%& cos [—(m —m') + (a1 — @1mr)] — —i———_;—— cos 1
Aim Az Aapy 343 Ainr 3Asm Aim
4 I TIm 08 Qg — Aim Asm 08 Qs+~ I 08 Qq — o™ 10s Qs
m-—v m—v m— 3v m — v
A mA ! A m,A m'
-I—-;i-—_:%;- cos [—(m' -— m)ﬂ + (agm: - ﬂsm)] - --‘ri""_—-;;— cos Qs}
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BRI T (@IS Y () (2.74)

The terms proportional to J52 remain the same as in Eq. (2.72). The quantities Q,

to Q¢ are defined as follows

Q1 = 2b— (m 4+ m"0 + (a1m + a1mt), (2.75)

Q2 = 2b — (m' — m)8 + (3 — a1m), (2.76)

Qs = 4b — (m + m')8 + (a1m + c3mr), (2.77)

Qs =2b~ (m —m)8 + (azm — A1m?), (2.78)

Qs = 4b — (m + m)0 + (cam + camr), (2.79)
and

Qe = 6b — (m + m')8 + (aam + Q3m). (2.80)

The last Moser transformation is performed now, from (b,J) to (a,l) such that
the new Hamiltonian is exact up to 3rd order in the sextupole strength. To avoid
proliferation of the notation the new variables are called (a, ) again. The generating

function for this transformation is given by

Gy(b,1;0) = bI+

9 2 _ 3AlmA1m’ in

2% 2 { (m 9\ {(m + m) —25]
AlmA.'im' . AlmAsm' P

(m — v)[(m! —m) — 2v] sin Qs — (m — v)[(m' + m) — 4] sin @

3Azm At ] 3A3, Ay .

+ (m = 32)[(m — m’) — 2v] sin Qs (m = 3v)[(m + m') — 4v] nQs

A3mA3m' .
 (m = 3)[(m +m') — 6] sin Qs

sin [—(m — m")8 + (a1m — 1))

eI ¥

m,m’

{ 3A1mA1m‘

" —w)(m—m)

myEm/

_ AamA3m'
(m — 3v)(m’' - m)

sin —(m' — m)8 + (aam: ~ aam)]} . (2.81)
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From the above generating function the old action J is given by

0G,
=3 (2.82)

Since only terms of order J®/2 are of interest, the following approximations are true

(2J)% ~ (2I)?, (2.83)
(2J)5/% o~ (21)3/? (2.84)
and
a~b (2.85)
The new Hamiltonian is given by
8G,

Hi(a,]) = Hy(a,I) + (2.86)

a8
If one keeps only the terms which give rise to terms of the form sin (5¢ + ...), because

those are the ones contributing to the 5th order resonance, and if one writes explicitly

the expressions for the ¢;,’s, i=1,3 and collects all the similar terms together, one

arrives at
Hy(a,J) =vI+ - 21)2502 [3'42 A_g"g,,]
+Z(21)5/253/3 {117.5‘1 + —s, + 5185 - ﬁ&} (2.87)
where

AlmA-lm’A:!m"
S =
! b (m — v)(m" — 3v)

sin[5a — (m+ m' + m")8 + (aum + Q1 + A3 )],

AlmAam‘Alm" . . "
S:= Y sin{5a — (m + m' + m"} + (01m + @3 + Q1))
m,m!m" (m - u)(m" — .V)
A A 'A mf’
Sa - () (m :my):(i;" i 3 ) SIn[ (m + m - m)a + (a3m' + Qgyptr — alm)],
m,m',m
and

_ ASmAlm'A3m"
Se= 2. (m — 3v)(m" - 3v)

m,m’

sin [5a — (m — m' + m"}0 + (aam + Qamr — a1m’)].
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The next step is to perform the summations over the harmonics. First, the coef-

ficient of the term which is quadratic in the action 7,

342 Al
c=185, Y [m - >+ — =2 3v] (2.88)
can be expressed [21] as
c= _f—" Y (3B1s + Bss)g, (2.89)
™%

where B; and B; are the distortion functions previously defined in (2.35).

In fact, it can be easily shown [21] that this coeflicient ¢ is simply related to the
amplitude-dependent tuneshift due to the sextupoles. Indeed the tuneshift due to
sextupoles is given by

Ay = 2]e. (2.90)

Hence cI? is the detuning term due to sextupoles.
Next I am going to calculate the triple sums of 51, S, S3 and S5, and express the
Si’s in a closed form. The way to calculate Sy is demonstrated and the results for the

other three sums are given. First S; is written as

w (M~ v)(m" - 3v)

m,m’',m

5, = Im { >3 Arm Ayt Az gtsa — (m+m' + m"} + (a1m + @1me + a3mn)}}

or

(m —v)(m" — 3v)

m,m' m

S, = Im { Z (Alme"alm)(Alm:e"alm’)(Aamnetaa’“")ei[5a, —(m+m'+ m")ﬂ]} .

The expressions
A, et%im i=1,3
are given in Eqs (2.21) and (2.22). From the above sum, only the slowly varying terms
will be kept, that is, terms of the form ¢i(5a — 979), since the tune of the machine is
close to 19.40.
Hence the above triple sum - over m, m' and m” - is actually constrained by the

condition

m+m' +m" =97, (2.91)
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Then S; becomes

(m — v)(m" — 3v)

S = Im { > (Asme 1 )( As €08 ) Agmretom) 5, 979)} |

.
T ! 4o M =87

In the following m' is substituted for (97 — m — m"}), so $; becomes

mm" (m - V)(m” - 3”)

5, = Im { > (A1me @3 )( A (o7 € KT ) A5 et Bom”) 50 979)} :

Substituting Eqs (2.21) and (2.22) above leads to

. ] . )
Sl = Im { (_‘1—"’) E ‘5k13k23k3et(¢ - Va + 970)k2 ez(5a - 976) %

24w k1,k3,k3

et Pr1 — V0 + m(fr1 — O1a2)] > et [3%rs — 3v8ia + m"(brs — bi2)]

m m-—-v m!

m' — 3v

The two sums over m and m' above can be calculated using formula (2.32). The

result is
i el(5a—978)
S;=Im<{— i _
(24)3x sin 7v sin 37v
T snussasuseil(Pn e+ 3us) — 5604 — 4.,.“,]}
k1,%2,k3
where
97
§=v— =
or
1 1
Sy = —
' (24)%7 sin v sin 37w kl.%:.ka Sk13k25k3 X
cos [(5a — 976) + (Y1 + Yua + 3vbia) — 580k — 4mv].
Similarly
1 1
51= E Bk18438k3 X

- . x
(24)*~ (sinwv)? k1,53 k3

cos [(5a — 878) + (1 + YPus + 3vaa) — 5602 — 270/,

(2.92)

(2.93)

(2.94)

(2.95)
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1 1
5, =
* ™ (24)*~ sin 7w sin 37w n%ka Sh18k2343 X
cos ((5a — 978) + (Bthua — Yu1 + 3¢ka) — 586k — 27v], (2.96)
and
S¢ = 1 1 X D Sk18k28x3X
+- (24)3~ (sin 3wu)? i ks k1%k27%3
cos [(Ba — 976) + (3vr1 — Yaz -+ 3thus) — 566, — 6mv]. (2.97)

So the Hamiltonian now has the following form

Bol?

Hy(a,I)= vl ~ —2(3313 + Bas)
i 7
9 1 cos [(5a — 978) + &,
Z(ans/2g3 -11
+4( )" 8o (24)3« h1§k3 fh1 B2 ks 7 sin 7y sin 3Ty
69 cos [(5a — 978) + &) cos [(5a — 978) + &5]
e - + 51— -
2 (sinrw)? sin v sin 3Ty
27 cos [(5a — 976) + &4)
- . 98
2 (sin 3nv)? (2.98)
In short the above expression can be written as
H(a,I) = vI + cI® + I*?*[e; cos (5a — 976) + €3 5in (5a ~ 978)], (2.99)
where
c= _be ) (3Bys + Bys), (2.100)
AT <
9. 5/293/2 1
€ = =228y " —— 8318k28)k3 X
4 ¢ (24)3~ kl,%.':.ka
cos &1 69 cosé;
-l =
sinTrsin3ny 2 (sin7v)?
cos by 27 cosd, (2.101)
sinwysindry 2 (sin3ww)? ]’ '
and

9 5/273/3 1
€= —=2 ﬂ FPYLY Bk18k25ka X
4 ° (24)*x m.kzz,ka
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sin &, 69 sin 6,
-
sinxvsindrr 2 (sinwy)?
sin 63 27 sin 64
51— — e — 5, .
+ sinTysin3nr 2 (sin 31w)2} (2.102)
The various angles are defined as follows
81 = (Y1 + Yz + 3vas) — 56043 — 4w, (2.103)
62 = (a1 + s + iz} — 5684 — 27v, (2.104)
53 = (3¢k3 - 1}’],1 + 31,bk3) - 569},2 - 27!'.!}, (2.105)
54 = (3'!‘bk1 - ¢k: -+ 3'{1);,3) - 558],2 — bmy. (2.106)
The above Hamiltonian can be written as
Hy(a,I) = vI 4 cI* + €I*? cos [(5a — 976) + o) (2.107)
with
€ =/ €] + €2 ‘ (2.108)
and
$o = arctan (—-:3) . (2.109)
1

Hence, starting from the sextupole Hamiltonian, a new form has been derived
which describes a system under the action of the resonance 97/5. Eventually (in
Chapter VI) these expressions will be used to derive the island tune and the island
width.

It is already clear that the above model of the iselated nonlinear resonance, namely
the model which assumes a particle moving under the action of a single resonance,
is incomplete when used to describe the situation of the resonance island experiment
of E778. One can see from Fig. 1.1 that the phase space is heavily influenced by
the presence of the third integer resonance (to be discussed next). As a result of

this, the five islands are distributed along a triangular contour, characteristic of the
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third integer resonance. However, the above calculation is still useful in a twofold
way. First, it provides an insight of how sextupoles give rise to 2/5 resonance islands.

Second, it demonstrates the degree of accuracy of the model.

The Third Integer Resonance

In the same way as before, when the tune is very close to a third integer,

v = %—}-5, (2.110)
the Hamiltomian H;
Hy = vl + (21)*28;"* 3" (3Aymsin (e — m8) + Agm sin (3a — m8)] (2.111)
is dominated by the term
Asgesin (3a — 588). (2.112)

Hence the Hamiltonian describing motion near a sextupole-induced third integer res-

onance is

Hy = vl + (21)*?8Y/ A3 ga sin (3a — 586). (2.113)

Transformation to the rotating system in phase space, yields the new invariant Hamil-
tonian

Hr =8I, + (211)3“@}’2113,53 sin (3a,) = constant, (2.114)

where § is defined by Eq, (2.110).

For & nonzero the motion in phase space is shown in Fig. 2.1. The curves shown
correspond to four different values of the invariant Hr. At small amplitudes the
circles are distorted and are described well by the first order perturbation theory as
shown earlier in this Chapter.

For larger amplitudes the curves approach a triangular shape with three unstable

fixed points at the points of the triangle. The fixed points of the motion can be found
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by solving the equations

8Hy _ 0Hr
YT 0, Bay = 0 (2.115)
which lead to
T 3r S
ay = :—3-, ay = -'—3-", ay = ?, (2.116)
and
25 \’
= . 2.117
hr (3A3,5s) ( )

Here I g is the action from the origin to the fixed points. Finally, at sufficiently large

amplitude the motion is unbounded.
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Figure 2.1: Schematic representation of the phase space structure of
the third integer resonance.



CHAPTER III

GENERAL REMARKS ON THE EXPERIMENTS

For the experimental study of the Hamiltonian system desctibed above the Teva-
tron was chosen. The Tevatron, the world’s first superconducting proton synchrotron,
is approximately circular with a four-mile circumference which is mostly occupied by
dipole and quadrupole magnets. The ring is divided into six equally spaced intervals,
called sectors.

There are two reasons for choosing the Tevatron for E778. First it is a proton
accelerator with excellent linear behavior as was reaffirmed as part of this experiment.
{The linearity of the Tevatron was first demonstrated in 1983.) Second, a substantial
number of sextupole magnets were already installed in the Tevatron and could be
used as sources of nonlinearity. The position of the sextupoles (given below), the
kicker magnet (E17), the beam position monitors used in the first run (E24 and E26)
and the beam position monitors used in the second run (F42 and F44), are shown
in a layout of the Tevatron in Fig. 3.1. Also the 6 sectors are clearly marked. The

function of each of the above devices will be explained shortly.

Sextupoles Used in E778

Some initial studies of the perturbation of the motion by nonlinearities were made

in the Tevatron [28] in 1985. Then, eight superconducting sextupoles were used to

33
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excite the resonance at the betatron oscillation tune of 19 1/3. For E778, sixteen
additional sextupoles were commissioned. Together with the eight previously used
magnets, the total number of sextupoles is sixteen normal ones at stations 22, 24, 26,
28, 32, 34, 36, 38 in C and F sectors and eight skew sextupoles at stations 12, 14, 16,
18, 23, 27, 37, 43 in D sector (see Fig. 3.1). The skew sextupoles were not used in
the studies performed up to now.

The normal sextupoles are powered in pairs by 8 supplies, so one can have a variety
of configurations. For E778 it was elected to power them as shown in Fig. 3.2. This
particular (+ — + — ...) configuration produces a strong driving term for 3v, = 58 as
one can see from the vector diagram of Fig. 3.3. Fig. 3.3 is a graphical representation

of the contributing terms to the summations
2 .!;,ei(3¢ — 3vd + mﬂ)k’ (3.1)
k

where m = 58 for the Tevatron. The sum is over all sixteen sextupoles, Near the third

integer resonance 3v — 58 = 0, so the above sum is given to a good approximation by
iskeimd’)k. (3.2)
k=1

The phase advance between two adjacent E778 sextupoles is 68°. Fig. 3.3 illustrates

the sixteen vectors representing the individual terms of (3.2) as well as their resultant.

The integrated field of each sextupole is

—

jB - dl = 44.45 kG-inch at 1" and 50 amperes (3.3)

or

BJt
2" = 44.45 kG/in at 50 amperes. (3.4)

By varying the current through the sextupoles one could adjust the magnitude of

the nonlinearity. In most cases all sixteen sextupoles had the same strength.
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Figure 3.3: Vector diagram showing a strong driving term for the
resonance 3v, = 58 due to the 16 E778 sextupoles. R

denotes the resultant of the 16 vectors s; to s;6.
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Phase Space Measurements

The original beam position monitor (BPM) system in the Tevatron was capable
of recording the motion of the centroid of the beam for 1024 turns. (An upgrade for
this experiment [29] extended the capability to the million turn level.) Fig. 3.4(a) and
(c) are plots of turn-by-turn data from the Tevatron as recorded by two neighboring
position monitors (E24 and E26) in the horizontal plane. The Tevatron injection
kicker magnet, located at E17, has fired 50 turns after the beginning of the plot in-
ducing a coherent betatron oscillation. The fact that the amplitude does not decrease
significantly, is an indication of near linearity, as will be shown later. Fig. 3.4(b) and
(d) display the Fourier transforms of the two position signals and give the fractional
part of the betatron tune. These data were recorded during the 1985 studies.

The positions at two neighboring meonitors, together with a knowledge of the
intervening optics assumed linear, can be used to generate an experimental phase
space plot like the one shown on Fig. 3.5 {28]. This figure displays data similar to
Fig. 3.4 in normalized phase space coordinates: the horizontal axis is displacement
from the closed orbit, z, and the vertical axis is Sz’ + az, where z' is the angle with
respect to the unperturbed orbit, dz/ds, and 3, a are the conventional Courant-
Snyder parameters. In these coordinates the phase space plot is the familiar circle of
the simple harmonic motion. In the presence of nonlinearities arranged in such a way
as to excite the 1/3 resonance the circle is deformed into the triangle characteristic of
this resonance, Fig. 3.6 is the experimental verification of this case. It displays data
taken during the above mentioned studies of 1985, where only 8 sextupoles were used
and the small amplitude tune was very close to the third integer resonance (19.34).
The same kicker as above (injection kicker) produced an initial amplitude so that a

particle at the centroid would perform stable motion close to the separatrix.
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H

(b)

@ fmimm

Figure 3.4: (a) and (c) are the output of two neighboring BPMs for
1024 turns. The Fourier transforms are shown in (b) and
(d); the fractional part of the tune is .34.
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Preliminary Steps for the Experiments

There were several steps preliminary to the measurements. First, all the exper-
iments were carried out in the standard fixed-target optics lattice of the Tevatron.
Two different cycle modes were employed:

1. For the smear, a standard cyclic mode of operation was employed with the energy
held constant at 150 GeV.

2. The resonance island experiment was done under storage conditions in order to
see long-time effects.

After setting the appropriate cycle structure and basic optics proton beams of good
quality were established: the transverse emittance was smaller than 157 mm-mrad
and the longitudinal emittance was equal to .3 eV-sec. The definition of emittance

used throughout this work is the 95% normalized emittance and is given by

€= —6—1:-6{—2-7, (3.5)

where 3 is the beta function, v is the relativistic parameter and o is the rms beam
size.

Further emittance reduction was accomplished [30] with the use of the fixed tar-
get collimators at D17. The collimation is capable of reducing the emittance to
approximately 2r mm-mrad or less. Specifically, the collimators are first aligned and
positioned at about 20 mm from the center of the beam pipe. Then an orbit distor-
tion at D17 steers the beam at the collimators and as a result 90% of the beam is
removed. The function of the time bump is to steer the beam towards the collimators
and back to the center. The alternative, which would be to move the collimators
further in, would result in the undesirable aperture reduction. With sufficiently low
Booster intensity (1 x 10'?) a Tevatron intensity of about 2 x 10° was achieved after
collimation, which is approximately 10° particles per bunch (ppb). The resultant

emittances were eg ~ 2r mm-mrad, ey ~ 87 mm-mrad and o,/p ~ 1 x 107* where
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0p/p 1s the rms momentum spread of the beam. The initial values of the emittances
were approximately 10n mm-mrad in both planes and ¢, /p ~ 1.8 x 107*%. Notice that
there 1s no vertical collimation.

The main mode of operation was to inject up to 20 bunches with a single-bunch
intensity of 2 — 3 x 10°.

The following discussion concerns the smear introduced by linear coupling. 1t 1s
demonstrated in the Appendix that linear coupling introduces a smear in the hor-
zontal direction of order K?/{v, — 1), where K is the coupling constant and v,, v,

are the horizontal and vertical tunes respectively. That is,

K2
Sgp ™~ . (3.6)
(ve — 1)
On the other hand the smear in the vertical direction due to coupling, s, 18
K
Soy ™~ T—. (3.7)
Yo (- vy)

The asymmetry between s.. and s., onginates from the special choice of the initial
conditions. (See Appendix.)

Hence, as long as the analysis involves only the horizontal motion, the smear
due to coupling can be ignored to a good approximation, provided the coupling is
sufficiently small. However, in a two degree-of-freedom treatment the contribution 1o
the smear from coupling is an order of the expansion parameter larger than in the
one degree-of-freedom case and should be taken into account.

Since this smear is caused by Linear fields and not by nonlinearities, one wishes
to minimize it by controlling the coupling constant to K < .001 with the use of a
skew quadrupole circuit which is controlled through an application program written
specifically for E778 [33]. Moreover the tunes are separated by ~.06 by setting », =
46 and v, > 40 With the velues of K, v, and v, given here, the smear <., turns

out to be
. (.001)?
e (.06)2

= .02%: (3.8)
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indeed very small.
Chromaticity compensation was performed to better than 2 to 3 units. In or-
der to optimize the compensation process an “automatic” chromaticity measurement

method was implemented [34,35]. The principle of the method is given here. Start

from the definition of chromaticity ¢,

bp
by =£— 3.9
" (3.9)
and recall that
op 18 frr
= = o3 3.10
P n frr (3.10)

where fgrp is the RF frequency, and 7% is the so-called momentum dispersion function

defined by

1 1
1= — —. 3.11
% 9 (3.11)
By combining (3.9) and (3.10) one gets
bv
= - . 3.12
4 % - ( )
frr
In the high energy limit where 4 3 7, (3.12) becomes
)
f= -2 %Y (3.13)

RF
For the Tevatron, 4 = 351.

Thus by changing the RF frequency by a known amount and determining the
resulting tune change, one can calculate the chromaticity of the machine. In practice
the change in the RF frequency was produced by a waveform generator and had the
form of Fig. 3.7. The amplitude of the waveform was 1 Volt or 53.1 Hz. The position
of the centroid of the beam was recorded for every turn during the intervals AB and
CD of Fig. 3.7. From the Fourier analysis of this information, v = vap — vcp was

extracted and the chromaticity was calculated from (3.13).
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Waveform generator for chromaticity measurements

2 T
’.-'[ T 71 ] T 7 I_I_] T 1 71 l LR l LI l | T |
- A B -
1 —
2 ]
g
a r- -
o 0
) - -
©
ﬁ - -—
C - -
> -
-1 —
- C D -
_zbl {11 l L1 | | | | [ o | | La b | I | ]
0 20 40 60 80 100 120

Timme with respect to event 41 (secs)

Figure 3.7: Waveform generator for the chromaticity measurements.
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The closed orbit had to be adjusted at the nonlinearities in order to minimize the
tuneshifts and cther off-center effects. The tuneshift due to an off-centered orbit at

the E778 sextupoles can be calculated as follows [36]. The tuneshift due to a gradient

= ——,6 (B 'E) , (3.14)

where 8 is the beta function at the location of the error, namely the sextupole location

error is given by

in this case. From

1
B= EB"::’ = B'=B"z (3.15)

_ _g ( gﬁ) (3.16)

where 2 denotes the displacement of the closed orbit from the center of the sextupoles.

and

For the E778 sextupoles

B"£ 2
25, = 35/m" 8t 50 A (3.17)
or
%E =.007/m? per ampere. ' (3.18)
So

18

AI:/ —ﬂ [(B"f) /I] = (.000113/mm A) x 3 (&), (3.19)

=1

where 8 at the sextupoles is 100m and the sum extends over all E778 sextupoles. The
plus/minus sign takes care of the sextupole polarity. The deviation of the closed orbit
from the design orbit, expressed in mm, as a function of the longitudinal coordinate
s, is plotted in Fig. 3.8. The letters C, D, F,... on the horizontal axis mark the
beginning of the each of the 6 sectors. The table just above the plot, contains the raw
beam position data used to make the closed orbit plot, at each of the 18 quadrupole
locations (left column) in each sector (top raw). Recall that the E778 sextupoles
are located at positions 22, 24, 26, 28, 32, 34, 36, 38 of the C and F sectors. This
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information yields
16

Y (£)zi = +3.99mm. (3.20)
i=1

So, one should expect
Av/I = .0005/amp. (3.21)

In fact this result can be compared with measurements of tune versus sextupole
current, taken during the E778 run and plotted on Fig. 3.9. The slope of the curve
of Fig. 3.9 is .0007 / amp. Considering the uncertainties in the determination of the
tune as well as the errors in the beta functions at the sextupoles, this result is in
reasonable agreement with the above calculation.

Finally the coherent synchrotron oscillations at injection had to be minimized. At
the injection energy of 150 GeV, a phase locking mechanism ensures the matching of
the two buckets from the Main Ring and the Tevatron. Once the phase is locked, one

can adjust the energy so as to minimize the coherent synchrotron oscillations.

Experimental Procedures

All measurements were carried out at the Tevatron injection energy of 150 GeV.
A different experimental procedure was followed in each of the four experiments men-
tioned in the Introduction. The first type of experiment consisted of injecting a beam
of protons into the Tevatron, then ramping the sextupoles up to the desired setting
in 10 seconds. After a further 10 second delay, a coherent betatron oscillation was in-
duced by firing the kicker. The digplacement of the centroid of the beam and the beam
intensity were recorded by the Tevatron BPMs through the Tevatron’s two-minute
cycle. This is the technique employed during the smear experiment.

For the injection experiment, the sextupoles were powered when the beam was in-
jected into the Tevatron and measurements were performed with intentional injection

steering errors. The recorded data include: the BPM readings during the first turn,
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Measurement of Tune vs Sextupole Current
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Figure 3.9: Measurements of tune versus sextupole current.
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the closed orbit shortly after injection, turn-by-turn data at injection, beam profiles
at injection and 9 seconds later and beam intensity versus time.

The third variety of measurements was associated with the study of resonance
islands. The procedure was similar to the first one, but here the accelerator conditions
were adjusted in order to enhance the capture of particles on the islands.

In the last type of measurements, the emittance of the beam was slowly increased
by adding noise into the transverse dampers until particles were lost. Using the
Tevatron flying wires the beam size was measured as a function of the sextupole
excitation. The limiting beam size was taken to be a measure of the dynamic aperture

(when it was less than the physical aperture).



CHAPTER IV

THE SMEAR EXPERIMENT

The principal aim of the smear experiment was to determine if the smear is pre-
dictable from the nonlinear tracking calculations, which are important in projecting
the performance of existing and future accelerators. The reliability of single and
multi-particle tracking calculations in predicting other quantities, such as the deco-
herence time of the beam, the variation of tune with the amplitude and the fraction
of ‘surviving’ particles (to be defined later), was equally relevant.

This chapter is structured as follows. A theoretical discussion of the subject is pre-
sented first, followed by the experimental aspect of it. The chapter is concluded with
the presentation of the results of this study. In particular, I start with a derivation
of the smear and the variation of the tune with the amplitude using the formalism
developed in Chapter II. A discussion on the tracking codes used to simulate the
experimental conditions follows. The details of the experimental procedure are given
next. Then, the code used for the analysis of both the experimental and the simulated
data is described in detail. Finally, the results of the analysis of the data are presented
and compared with the theoretical predictions from both tracking and perturbation

calculations.
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The Perturbative Approach

The formalism developed in Chapter II is used to derive expressions for the hor-
izontal smear and the nonlinear tuneshift due to a distribution of normal sextupoles

in the ring.
Smear

Consider the situation where the only nonlinearities in the ring are due to normal
sextupoles. Let also this derivation be confined to the horizontal plane. Then, to first

order in perturbation, the distortion of the horizontal amplitude A at phase advance,

¥ is given by
§A(Y) = A*{[—Ai(¥) sin ¢ + B1(3) cos ¢] + [Aa(¥)sin3¢ — Ba(y) cos3¢]} (4.1)

as shown in Chapter II, Eq. (2.39). Here ¢ is the betatron phase and A, By, A3, B;
are the Collins distortion functions defined by Eqgs (2.35).
The single particle smear can be written by definition as

o Vi — (A (4.2)

(A)

or

- (@_’)’ | (43)

where () denotes the average over many turns or equivalently over the betatron phase

¢. From Eq. (4.1) one gets

1

a'(¥) = A AL(¥) + Bi(¥) + A1(¥) + Bi(¥)}- (4.4)

H the distortion functions are put into arrays

1 Bs
= |29 my= | P (45)

Ay(%) As(v)
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then the smear is related to the norms of these vectors by
1
8 (¥) = EA’{IRll’ + [ Rsl*} (4.6)

Recall from Eq. (2.38) that the vectors Ry(1 + Av) and Rs(v + Avy) are given by the
vectors R;(+) and R3(1) rotated through angles Ay and 3Ay respectively if there is

no sextupole between the two points, ¥ and ¥ + A%,

B cos pA sin pA B
» _ pAY pAY 4 (a7)
A, —sin pAyY  cospAy Ay

P+Ayp ¢

with p being 1 or 3. In passing through a thin sextupole of length £, — 0 and strength
3y, defined by (2.23), the B,’s are continuous, while the A,’s jump by s:/4. Thus the
smear is & constant between two sextupoles but will have & jump when a sextupole
is crossed. Indeed Fig. 4.1 is the picture one obtains by plotting the smear as given
by (4.6) as a function of the phase advance around the machine. Sixteen sextupoles
clustered in two groups of eight located at phase advances in the neighborhood of
4.5 x 2w and 14.5 x 27 cause these jumps in the smear.

Further insight can be obtained if one writes explicitly the definition of the dis-
tortion functions at any point i between 0 and 27v, where v is the horizontal tune:

1 8k

B = g D oY -m),

AW = g L g,

B®) = gmgm g oY),

B0 = g LRy ) (4.8)

The summations above are over each sextupole at phase advance 1} which is related

to the Floquet phase 1, by

Yr if Y29,
¥ = (49)
Yy + 27y if ¥, <y,
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Figure 4.1: Smear versus phase advance, around the machine, as pre-
dicted from perturbation calculation.
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Then
BI) + A1) = ey 3 owow s~ Vi) (4.10)
or
B = g S e Wi (8.11)
Similarly,
B = gramgeay [0 e (4.12)

From (4.6) and (4.11), (4.12) one can conclude that to first order in the sextupole
strength s, the smear is proportional to the amplitude of the particle A. Fig. 4.2
and 4.3 display the smear as a function of the amplitude and the sextupole strength
respectively. In both cases the smear has been calculated using (4.6), (4.11) and
(4.12) for the 16-sextupole configuration used during E778. The results of the above
calculation of the smear, for the experimental conditions at which data were taken
will be displayed at the end of this chapter. Then these results will be compared with
the values of smear extracted from the data and from tracking calculations.

Finally a generalized expression for the horizontal smear due to all multipoles can
be found in reference [37]. In the same reference a two degree of freedom calculation

yields the smear due to sextupoles.
Tune versus Amplitude

In Chapter IT an expression was derived for the single particle amplitude dependent

tuneshift due to sextupoles. This is
Av = _I}A* S (3B1s + By, (4.13)
k

where B, and B; are given by Eqgs (2.35).
In Chapter IV it will be demonstrated that tuneshifts calculated from (4.13) agree

remarkably well with the single particle tracking predictions [38]. However it is of
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Smear versus Amplitude
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Figure 4.2: Smear versus amplitude, from perturbation calculation.
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Smear vs Sextupole Excitation
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Figure 4.3: Smear versus sextupole strength, from perturbation.
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interest to examine the effect of the single particle tuneshift on the motion of the
centroid of the whole beam. Particles of a finite-sized beam are at different amplitudes
and hence, in the presence of nonlinearities, oscillate at different frequencies. So even
though the amplitude of the centroid of the beam is large right after the beam is
kicked, it eventually becomes smaller as the various particles occupy more area in
the phase space, until it vanishes completely. Assuming first that the beam size is
significantly smaller than the kick amplitude, secondly a parabolic dependence of the
tune on the amplitude and thirdly a gaussian distribution of particles in the beam,

the expression for the amplitude at turn N is given by [40]
A(N) ~ e~(@aN)*/2) (4.14)

where @, = 4wAv, Av being the single particle tuneshift. A proof is given in the
Appendix. In this model, the decoherence time R, of the beam, expressed in number

of turns, is defined by
1
R = .
4T Av

The decoherence time as derived from these perturbative considerations, is compared

(4.15)

to that from tracking and experimental data in the last section of this chapter.

Tracking Calculations

Another way of predicting the values of the smear and the decoherence time of the
beam in the presence of nonlinearities is by numerically simulating the environment
of the beam and then tracking its motion for a nuinber of turns. Then an algorithm
must be developed for the extraction of the relevant quantities out of the motion of
the particles in the beam. In this section the various simulation codes used in E778
are described. The discussion of the algorithm is presented in the ‘Analysis’ section.

Three different simulation codes were used initially for tracking calculations:

TEAPOT [41], ART [42] and EVOL [43]. They have been used both as single and
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multi-particle codes depending on the type of calculation needed. They all simulated
more or less exactly the motion of a number of particles in the Tevatron, for the same
set of parameters the experimental data were taken. The results of the calculations
were analyzed the same way the experimental data were. All three codes generated
almost identical data, so only one of them, EVOL, was chosen for copious production
of simulated smear-data.

A description of the main characteristics of the three programs is now in order.
The realistic Tevatron lattice—including magnet field errors and the chromaticity
correction sextupoles in the Tevatron—served as TEAPOT’s input; it was then trans-
lated into a similar lattice containing only thin elements. Tracking into that lattice
is exact. TEAPOT’s output included the position and the slope of the centroid of
the beam at several locations in the ring, for every turn. These calculations were
repeated for 512 turns.

Both ART and EVOL, as opposed to TEAPOT, assumed a lattice which is other-
wise linear except for the sixteen special sextupoles used to control the nonlinearities
in the Tevatron, This assumption was justified on the basis of the relative magnitude
of the sextupole strengths and the harmonic content of the chromaticity-correction
sextupoles: The current needed for chromaticity corrections in the Tevatron is of
the order of 1 ampere while the current passing through the E778 sextupoles was
an order of magnitude higher—from 10 to 50 amperes. Moreover the transfer con-
stant, defined as the field strength per ampere, of the chromaticity sextupoles is 50%
lower than that of the E778 sextupoles. Finally, the chromaticity sextupoles have
been arranged in a way that does not excite any resonances, as opposed to the E778
sextupoles. For these reasons the sixteen special sextupoles dominate, and neglecting
the chromaticity-correction sextupoles is a successful approximation.

The main difference between ART and EVOL lies on the way the initial dis-

tribution of particles is defined. ART starts with a randomly generated gaussian
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distribution of particles in a linear environment. The horizontal emittance of the
beam, as measured experimentally, is used to calculate the rms beam size. Hence the
rms of ART’s gaussian distribution is given by the o as calculated from the emit-
tance. As the sextupole strengths change adiabatically from zero towards their final
settings, the particles find themselves moving in the slowly varying nonlinear envi-
ronment. As a result, the shape of the distribution changes. Thus, tracking begins
with a deformed-gaussian distribution of particles. This model simulates the process
of injecting the beam in a linear machine and subsequently ramping the sextupole
magnets to their final settings while the beam particles circulate in the machine.

In EVOL on the other hand, the initial distribution of particles is two-dimensional:
a distribution in amplitude and in phase. A number of particles are uniformly dis-
tributed within a range of values of the amplitude, however there is a different weight
associated with each particle. Similar is the phase assignment to each particle.

Both ART and EVOL typically use approximately 600 particles and track their
motion for up to 500 turns. The position and the slope of the centroid of the distri-
bution are recorded at the end of each turn, at the locations of the two beam position
monitors and the location of the kicker.

Results from extensive EVOL tracking calculations as compared to the experimen-
tal data will be shown in the last section of this chapter. Now though, I would like
to display some examples of the kind of calculations one can perform with tracking
codes. First in Fig. 4.4 the smear is plotted as a function of the sextupole excitation
for a tune of 19.42.

In Fig. 4.5 smear versus amplitude particle is displayed for a tune of 19.42 and 30
amperes in the sextupoles. Single particle EVOL tracking has generated the data for
these calculations.

Also in Fig. 4.6 the tune, as calculated from single particle EVOL tracking, is

displayed as a function of the particle amplitude for a variety of conditions. Notice
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Smear vs Sextupole Excitation
Single Particle EVOL tracking
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Figure 4.4: Smear versus sextupole excitation for » = 19.42, as pre-

dicted from EVOL tracking.
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Smear vs Amplitude
Single Particle EVOL tracking
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Figure 4.5: Smear versus amplitude for » = 19.42 and 30 amperes,
as predicted from EVOL tracking.
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the characteristic parabolic (at least for small amplitudes) shape of the curves as

predicted from analytical considerations.

The Experiment

The real test of the validity of the above predictions comes from their agreement
with the experimental observations. A description of the experiment is given first.

The experimental sequence started with the injection of a low emittance proton
beam into the Tevatron. In the next ten seconds the sextupoles were ramped up to
their final setting. Ten seconds later the kicker fired and the centroid beam position
was recorded for up to half a million turns in each of the two adjacent BPMs located
at stations F42 and F44. For the majority of the data the recording was restricted to
64,000 turns, corresponding to more than one second of real time.

Measurements were made at various values of four different parameters: the sex-
tupole excitation, the horizontal tune, the kicker strength and the beam emittance.
The sextupole excitations varied from 0 to 50 amperes in steps of 5 amperes. An-
other, perhaps more general way to determine the sextupole strength, is to specify
the ‘resonance width’ of the third-order resonance, i.e., the width of that range of
the tune v over which the motion is unstable. For a beam of physical (as opposed
to normalized, which is multiplied by the relativistic parameter 4) emittance ¢, the
resonance width can be defined by equating the beam emittance to the stable area,

and is given by [12,13] )
1/2
y= A (B ) (4.16)
27 \3/3

Here 3 is the beta function at the reference point and A is a measure of the strength

of the sextupole configuration and is given by

A=Y s cos(3uody), (4.17)
k
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where ¢, is defined by
p_ 1 g ds’
b= v Jo B(s')

and vy = 19 1/3 in the case of Tevatron. When the current through the E778 sex-

(4.18)

tupoles is 50 amperes, A is

A~346 m™. (4.19)

In this computation, I have used the proximity of v to 5. At a reference point with
beta function of 100 m, and & beam of normalized emittance equal to 100 mm-mrad,

the width of the third-order resonance is
Resonance width Ar =.107, for 50 amperes. (4.20)

The second parameter varied during the smear measurements was the horizontal
tune which assumed 5 different values from 19.38 to 19.42 in steps of .01 while the
vertical tune was set to 19.46. The kicker strength was 5, 8 or 10 kilovolts. At the

HF42 BPM, the maximum horizontal displacement, z; in meters, is related to the

kicker strength D in kV, by

z = 0.48 x 1078 D+/B15%, (4.21)

where f3; is the beta function in meters at the location of HF42 and 3 is the beta

function at the location of the kicker E17, so

z = 0.48 x 10~°D+/100.2 x 82.8. (4.22)

Measured at the kicker, the maximum angle, p; in radians, maximum displacement

z, in meters and initial kick strength, D in kV, are ideally related by
=048 x 107°D = —., (4.23)

Hence the corresponding oscillation amplitudes at the bare Tevatron were 2.19, 3.50

and 4.37 mm.
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Measurements were taken at two different ranges of the horizontal emittance. At
the low range the emittance varied from 1.57 to 3.7x while at the high range it was
between 7.8w and 10.9w. Table 4.1 summarizes the conditions at which low emittance
data were taken during the smear experiment. The degree to which the value of smear
as predicted from multiparticle EVOL simulation and from the experimental data, is
shown on the same table. Three asterisks imply agreement better than 20%. Two
asterisks imply agreement between 20% and 30%, while agreement worse than 30%
is denoted by one asterisk. The question mark is used for situations where one could
not extract a value for the smear. The same notation has been employed for Table
4.2, which summarizes the conditions at which high emittance data were taken. In
both tables, the second column displays the kicker voltage in kV while the top raw
displays the sextupole excitation in amperes.

Two sets of front end electronics were used for the data recording. The first,
the standard Tevatron BPM front end, gave direct horizontal, vertical and intensity
signals. The second is a peak-sensing circuit which gives signals from the separate
plates of two horizontal and one vertical pickup. A more detailed description of the
instrumentation including diagrams of the hardware configuration is given in reference
[29).

Fig. 4.7 displays the four channels of information as recorded by the standard
BPM front end. The top plot on the left is the centroid of the beam recorded by the
HF42 position monitor, while the one right below it, is the signal recorded by the
HF44 monitor. The top right plot displays the signal from the VF43 monitor and
the one below it displays the beam intensity recorded by the I_45 intensity monitor.
Fig. 4.8 shows the same dataset recorded by the peak-sensitive circuit. The top left
plot displays the signal from one of the plates of the HF42 BPM, while the top right
displays the signal from one of the plates of the HF44 BPM. The bottom left plot
shows the signal from the left plate of the VF45 BPM while the signal from the right
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LOW EMITTANCE DATA

v, | kV/I,|0]5) 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50
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39 5 * " ? TTEEITHELYL

40 5 ¥k & *k ok k% ?

41 5 P RER [ EEE [ HAE | AEE | RRE | kke ? %
42 5 *% | Wk | wkk | %% *k¥ | HEX
3R 8 AR | KAk | KRk | kk | KX

3g 8 * hk | K¥E | kkk | REkAk | k¥

40 ] T EEITEEIT LY

41 8 k¥ % * ok k & ¥ * ?

49 ] TTRELLEEITREXE ?

38 10 FXF | FAE | Ak

.39 10 * % * L L * %k * %%

40 10 TEEITEEITERELIL

41 10 A B ?

40 10 TTREITREIT 7

Table 4.1: Summary of the accelerator conditions at which low emit-

tance data were taken, in the smear experiment.
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HIGH EMITTANCE DATA
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39 5 * '? Nk * %k ok 7

40 5 AR

41| 5 Ly *eE ? |7

472 5 ? * kg T "TT 'RELL
.38 8 * k% L2 S *

39 8 'L XY 'TL

40 ] * %% Y T

41| 8 ? Far ?

42 S ? ¥ ¥ * k¥ ?

38 10 "k k T Y *

39 10 [T 'TE *x

40 10 T 'Y T

41 10 X ? K

42 10 LT LY 7

Table 4.2: Summary of the conditions at which high emittance data

were taken in the smear experiment.
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plate of VF45 is plotied on the bottom right plot. All these signals are plotted as
functions of turn number.

Finally, only the data recorded by the standard Tevatron BPMs have been an-
alyzed. The question of calibration of the signals from the Tevatron beam position

and intensity monitors has been previously [44] addressed.

Analysis

This section is devoted to the detailed description of TEVEX, the code originally
written by Peggs [39], and used almost exclusively for the analysis of both the exper-
imental and the simulated data. The underlying principle of TEVEX is given first,
followed by the flow diagram and a general explanation of it. A detailed derivation

of the formule used in this section is given in the Appendix.

The Principle of TEVEX

The program TEVEX has been developed to analyze both experimental and sim-
ulated data of transverse nonlinear phenomena. The basic input for TEVEX is z;
and z3, the positions of the centroid of the beam at two different locations of the ac-
celerator, for a number of machine turns. For the experimental data this information
is provided by the recordings of the two BPMs. TEVEX output includes the values
of quantities which characterize the nonlinear motion, such as the smear, the tune of
the machine and the decoherence rate. The program displays these quantities as a
function of the number of turns used for their calculation.

Several definitions are now in order. The smear is defined, as before, as the
fractional rms deviation of the amplitude. The amplitude in TEVEX is defined as
the geometric mean of the amplitudes at the locations of the two BPMs. The tune in

TEVEX is defined as the number of phase-space oscillations divided by the number
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of revolutions.

A choice of the level of sophistication of the analysis is available, which determines
the procedure followed for the analysis of the data. Thus, at the zeroth level the raw
data together with the design values of the beta functions and the phase advances are
combined to give an expression for the amplitude from which the smear is calculated.
Similarly, from the same information one can derive an expression for the phase
advance and hence the tune of the machine.

The next level 1 calculates the average closed orbit offsets at the two BPMs and
then subtracts them from the BPM recordings. The analysis otherwise remains the
same as before.

The beta functions and the phase advance are not really precisely known. The
principle of TEVEX is that they should also be extracted from the data. This is done
at the second level of the analysis. The equation of an ellipse in the z,, z2 space
can be written in terms of the following four parameters: the two closed orbit offsets,
the ratio of the beta functions at the two BPMs and the phase advance between the
BPMs. The data are fitted to this ellipse so as to minimize the rms deviation of the
amplitude—the smear. The four parameters above are determined as a result of the
fit. They are subsequently used for the calculation of the smear, the tune, etc.

At the last level 3 the multi-particle aspect of the analysis is addressed. The
presence of a finite-sized beam in a nonlinear environment gives rise to an apparent
amplitude damping due to the decoherence of the particle motion. TEVEX assumes
a gaussian mode)] [40] for the decoherence. The standard deviation of the gaussian
curve, which is defined in TEVEX to be the decoherence time, is the fifth parameter
to be determined by a minimization fit. Now the data are fitted to the ellipse as
before, but there is also a gaussian factor multiplying the equation for the ellipse.
The fit determines the five parameters which are then used again to process the data.

At the end a2 summary of the results is reported and graphical outputs are avail-
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able.

In the following the discussion will be restricted to the horizontal plane only, even

though TEVEX provides a limited two-degree of freedom analysis.

Program Organization

The flow diagram of TEVEX is given in Fig. 4.9. I shall follow this diagram
and explain the physical meaning of each structure. TEVEX first obtains the ‘global
control parameters’ supplied by the user. These parameters control the format of
the input data, the filtering of input and output data, the persistent signal analysis,
the discrete Fourier transform analysis, the resonance analysis, the fitting procedure
and the graphical output. The design lattice parameters are also included. The file
which contains this information is called TEVEX.CMD. The exact file is shown in
Fig. 4.10 with typical values of the various parameters. The comments included in
the file explain briefly the meaning of each parameter.

Next, TEVEX reads the phase space information which consists of the positions
of the centroid of the beam at two locations (BPMs for the experimental data) for a
number of turns. TEVEX has the capability of analyzing data coming from a variety
of sources. Specifically, it analyzes experimental data taken during the 1987 E778 run
and stored in the form of ASCII files, data stored in the shared memory, simulated
data from EVOL and simulated data from TEAPOT. Finally there is a version of
TEVEX which runs only with shared memory on UNIX V on the SUN Workstations.

A filtering of undesirable frequencies, for example the self-induced synchrotron
frequency, from the raw position and intensity data can be done next. The user
specifies the region of tune values to be filtered. Fig. 4.11 shows the effect of filtering
the synchrotron frequency from raw position data.

At this point the user chooses the level of the analysis. Once the analysis level has

been chosen, the range of data to be analyzed is determined either antomatically or
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DODFT = TRUE turns on the DFT (turn off if speed is important)
FTL, FTR are the Left A Right margins for the DFT plots
FTMIN is the lowar bound of the DFT plots (log IF ftmin > 0.9)
FTMAX is the upper verticasl bound of the DFT plot
MAXHAR is the maximum harmonic erder plotted
191, IQ2 specifiss which horz{vert} tune to uvse for Q1{Q2), in

harmonic analysis

= @ (# of phase space turns) / (# of mechine turns)
i highest peak in the sppropriste DFT
4 second highest peak in the DFT
SENHAR is the threshold OFT response to signify a harmonic peask
LL T ] "D' ph.‘. plF'lﬂ.t.l‘. (AL Z LT LRI ER AR LR TRET TSR 1Y)
NSTROB plot only every NSTROB'th turn on soma graphs - lock on?

NUMER, MNORDER the slow phase is measured as Fi - Qrese(Turn number)
whera the resonsce tune is Qres = MMWER / NORDER

DFITOL tolerance for BFM glitches/phase discontinuitiss (twepi)

L] ideslised lsttice parsmeters L L e R P P Y T Y TS YT T

BETA{XY,Y1,X2,Y2) sre the design betss »t the monitors

FICELL is the phase advsnce per cell, in degrees

ALFA{X1,Y1,X2,Y2) sre the design alphas at the monitors

e test data parameters LI LR L e TR PR I Y e T

BITS1Z is the assumed bit size of the BFMs (millimetras)

NPSTRT,NPFIN are the start and finish particlas whase coordinates ars
summed

sen fitting Conbirol sesstttsrsstosansssenssenssssssntssstvbbsstrrinnsn

MAN = B(1) turns off(on) some manual control of the optimisation

ITMX is the maximum number of HYDRA steps before quitting

ITw is the numbar of HYDRA steps per write

PFIN multiplies single coordinates of the initial matrix

PFAC is the multipiier ysad when shaking up the solution

FTOL is the goa! tolersnce

LR grephical output control sevecnssvetecvusnitvostevinsssdussriiuse

X1vT =T if X1 BPM dets is plotted versus turn T (usmes NSKIP)

AXvyT =T if smplitude AX is plotted versus turn number

AXVFIX =T if amplitude AX is plotted versus phase FIX

SvT =T if Smear is plotted versus last turn number fitted

qQxvT =T if tune QX is plotted versus last turn number fitted

FIT~T =T to plat FIT parsmeters versus last turn number fitted

Figure 4.10: Typical example of TEVEX.CMD, the file which contains
the values of the control parameters.
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by the user. Let n; denote the turn number on which data start, and n; denote the
turn number on which data finish. Suppose that the analysis starts at turn number
n,, which is usually the kick time, with n, > n;. Also let n, and n.; denote the
first and last turn number at which the quantities of interest, e.g. smear, may be
calculated. Notice that n; must be greater than n, + 5 because at least five data
points are needed to determine the five parameters from the fit described above.
At this point the ranges of the tracking data, the analysis and the calculation are
determined. These various ranges of data are shown in Fig. 4.12. The displacement
of the centroid of the beam as a function of turn number for 200 turns is plotted in
Fig. 4.13(a). Exactly below is Fig. 4.13(b) which displays the smear corresponding
to the same data as a function of the number of turns used for its calculation. So,
for example, the value of the smear at the n-th turn is obtained by processing data
from turn number n, to n. Similarly the value of the smear at the (n + 1)-th turn is
obtained from data between n, and (n + 1) turns.

The average values of the digitized data as well as their limits are calculated next
in the range between the first turn used for the analysis n., and the last turn used
for the calculations, n.s.

The final step before the calculations start is to prepare the vector with the fitting
parameters for each one of the four levels of the analysis.

From now on I shall concentrate on one level of analysis at a time since the

calculational techniques can be quite different for different levels.

Level 0

The purpose is to calculate the smear and the horizontal tune of the machine for
every turn, from the recordings of the two BPMs.

Again as before, suppose that tracking data start on turn n; and finish on turn



Analysis starts here (Usually kick time)

Calculation of parameters ends here

Calculation of parameters i.c. smear, starts here

{ Data start here |

Data finish

n;

P

Ny ny
Turn number

Figure 4.12: Ranges of data that are relevant to the analysis by

TEVEX.

8.
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ny, and the analysis starts at the kick time which occurs on turn n,. The goal is to
calculate the smear and the tune at turn n, starting from turn number n,; and ending

at turn number n.s. By definition
(a2} — (a.)?
(a)

where the average is calculated over the range (n4,n). The amplitude a is defined

smear(n) = (4.24)

in TEVEX to be the geometric mean of the amplitudes at the two BPMs. That is
a2 = az1a.3, (4.25)

and is given by the expression

az(n) = \/cu:c}(n) + enpzr(n)za(n) + caazi(n), (4.26)

where the various coeflicients are defined by

- ! Ber
= G ($een) \/;’ (4.27)
LR [

€2 = m Bz2’ (4.28)
_ €06 (Peen )
Ciz = “2m. (4.29)

Here ; and §,; are the design horizontal beta functions at the locations of the two
BPMs. ¢ is the design phase advance between the two BPMs. Notice that the
two BPMs used in E778 were one cell apart, hence the subscript of ¢. The proof of
(4.26)-(4.29) is given in the Appendix. At this level the values of the beta functions
and the phase advance are the design values.

The next goal is to calculate the tune at turn n. In TEVEX the tune @, is defined
to be

n) — ¢(n;

Qun) = 5- S0,

where ¢(n) is the phase advance in the middle of the two BPMs, at turn n. ¢(n) is

(4.30)

computed in TEVEX from the formula

(281 + ®g3)/ cos (Pean /2)
(zg2 — zg1)/ sin (pear/2)’

¢(n) = arctan (4.31)
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where zg, and g3 are given by

T4

vB=i

and z;,z3 are the recordings of the two BPMs. A proof of (4.31) is given in the

Tgi = 1=1,2 (4.32)

Appendix. Recall that at this level the design values of the beta functions and the
phase advance are used.

At the end of the calculation TEVEX reports a summary of the results. A separate
line for each turn of the analysis is written out containing the following information:
the turn number n, the amplitude a.(n), the smear s(n), the tune Q.(n), the average
closed orbit offset at the first BPM 2.4, the average closed orbit offset at the second
BPM z3.5, the value of the beta function at the first BPM f3,;, the value of the beta
function at the second BPM f.., the phase advance between the two BPMs ¢ and
the decoherence rate R(n) which has no value at this level and becomes different from
zero at the third level. The closed orbit offsets are also zero at this level while the
values of the two beta functions and the value of the phase advance are equal to the
design values and hence constant for every turn n.

A typical TEVEX output of the analysis of experimental data is presented in
Fig. 4.14. The analysis was performed at level 0. The global control parameters
assumed the values shown in Fig. 4.10. The corresponding graphical output is given

later.

Level 1

The analysis at level 1 is very similar to the analysis at level 0, the only differ-

ence being that now the average closed orbit offsets are subtracted from z; and =z;.
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33> THE FOLLOWING PARAMETERS ARE SET IN tevex.cmd {{<{

===- Input file format parameters =-=----c-—ccmmmmw———

format, jhesders, initial noise = 912 0.20000

--—~ Fast pass defsult values ---cc-e--o-—vmccmo——

BATCH FAST lavel nt(st,fs,ff,fi) next = FF 3 [} 48 42 1 &
infilg : SkviSa.files

wame  Input and output filters ---cc-e-wcommeccou

FILTER, qmin, qmax = T 9.00050 ©O.00580

--—- Parsistent signal snalysis -—----=-r——scamo—oa——

PERSIGC npsmin npsmax = F 200 509

~==- Discrete Fourier Transform parameters ---———---

DODFT, dftl,, dftR, dFtMIN, dfcMAX = F 9.36080 ©.45800 0.200280 1.10000
Max harmenic, Q172 choice, thresheld = 3 1 I 9.19000
weea Slow Phazse Parameters -c-c-cocummmmmm—-——.

Nstrob, Numer, Morder, DfiTol = 1 2 & @.10000

-=«vr ldealised Isttice parsmeters --—=rr-c-c—erm———o-

beta(xl,y1l,x2,y2), phase per ceil = 99.64 28.36 94 .83 29 .54 67.94
alpha(xl,yl,x2,y2) =z =-1.980 a4.530 -1.9@2 2.53@
—==e Tast dats psrameters ------ccmemrecacmman————a

BFM LSB, 1st A last particles = 0.80000 1 189

---= Fitting contro! parameters ~=-r——-c-cc-emeea———

manusl ctrl, max iters, iters/writes = 1 2000 -2800

initia! & shake factors, tolerance = 1.60090@ ©.99000 &.200-11

=-~- Graphical output control ————wssemmomooaoo—vae

X1vT, AXeT, AXvFIX, SvT, QXvT, FIT¥T =T T T T T T

Horizontal file:[e778.msy11]5kv15a390q.28h I YT
FILE 29 BKV 15A .39 .46 DATA B5/11/87 2142

Detector 1 = T:HPEZ4 Data Timing: 29,9990
Detactor 2 = T:HPE28 Data Timing: 289.99%9
T:HPE24  T:HPE28

13616 12591 12d51 14138 8224 12594 12852
13686 22091 12878 156683 8224
13182 8249 13358 8248 167a8
16724 B224 8224 8224 8224

29.99908 29.99960
-2.95198 -1.T7913%9
2 [}

First data line : 1 =3.21024 -2.08000 2.00202 ¢ .28908
Rea| data starts: 49 -3.84008 -4.02008 0. ee00d 2.9a002

LEVEL = B st st s s 00 asn sttt dtdtdiandNsRERInY

Tracking dats appesrs to start on turn 49 and finish on turn 1024

atstrt, ntfini, ntfint, ntfini= 49 1 140 1
NTFIN Ax mm. SMEAR Qx Xoff(1,2) mm, Betax(l,2) m. FiX d. Rdec
66 4.5714 £.3303 0.35484 0.0200 p.0SNY 90.84 94.83 687.840 0.0020+00
8 1.3501 0.4188 2.42277 &.8800 O, 0000 59.84 04.83 67.940 0.000D+02
67 6.2601 0.23997 @.37943 O0.2000 P.PEOD $9.84 S54.8B3 67.848 0.000D+0Q
S8 2.9776 0.3924 @.35205 2.9800 P 00060 98.84 94,83 6&7.B42 P 0000+00
59 3.2874 9.3752 @.395688 Q.0008 O.0000 §9.64 9§94 .83 67.848 0. .0000+00
43 4.9782 0.3622 0.37296 Q.0034 O .20000 99.84 94,83 67.842 0.0000+20
61 1.1358 0.4194 £.42171 0.3880 0.0020 95.84 94 .83 &7.848 a.0000-22
82 4.8994 0.4047 9.48260 0.0040 O.0038 §95.684 94,83 67.040 0.0000.22
63 3.7412 ©.3893 £ .43877 O.%%08 O.PO0C G9.64 94.83 67.540 9.9080.00
B4 12,4843 9.3923 9.46256 0.2000 0.9000 99.64 94.83 47.0949 2.0000.00
65 5.1494 O .3B4E @.44223 9.0000 O.0000 99.84 94.83 &7.840 0.0000+00
86 1.8771 Q.406E ©.42048 90.200¢ O.0000 99.84 B54.83 87.840 0.9000-00
47 4.3868 9.3939 @.44393 9.2000 B.0000 99.684 94.83 87.849 2.2000+00
68 4.2762 0.3821 0.42850 0.0000 P.0020 §9.64 94.83 87.540 &.0000+00
69 1.7821 ©.3983 0.44741 0.0008 P.0020 §9.84 ©94.83 67.840 9.0000.00
78 6.2534 0.3935 9.43099 0.0000 D.OPPS 99.84 BH4.83 B7.840 ©.0020-00
.
4
.
137 4,3557 &._3698 0.42125 02,3005 2. 9000 99.84 94.83 67.840 0.0080.00
138 2.5290 ©.3895 0,41727 ©.9000 2.0038 99.64 94.83 67.048 0.9900.00
139 3,1304 2.3679 0.42219 &.0000 P _POOP 95.84 94.83 67.049 9.0000D.00
140 3.9708 $.3656 2.41B72 ©0.0000 9B.908F0 G9.64 94.83 67.6408 J.0000+80

Min(X1,X2), max(X1,X2), <X1}, <X2> (mn; = -5.2300 ©.080@ -3.0462 -1.8267
X Amplitude: min, max (mm = 2.eece §.3534

a8 WARNING ¢+ Phase advances out of tolerance (£.1028) 7?7 GLITCHY DATA ?7
Turn Amp(mm) Old fi(2pi) Mew fi(2pi) Old<(zlowfi) Newislowfi> Dsfi(adjusted)
8921 9.7917 8.7168

81 1.138 #.0430 a. -B.8137

71 2.902 #.9268 9.6982 B.7988 9.8Q49 -0.1898
93 4.702 @.7869 0.78862 P.8p7s 1.4113 9.7792
116 1.387 #.09382 9.8218 1.3948 Z.2804 8.7951
124 4.367 8. 118 0.7787 7.2083 2.9114 -8.2128
128 2.787 #.8870 0.7245 2.2041 2.0087 -0.1996
128 1.812 0.8338 #.8358 2.1988 2.8330 -8,2028

EXIT with only summary graphics  «eesscensenssns
Figure 4.14: Typical TEVEX.OUT file; the analysis has been per-
formed at level 0.
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Specifically at this level the amplitude o, defined by (4.25) is given by the expression

a.(n) = \/011(31('“) — Z1off)? + cr2(Z1(n) — Trox}(22(n) — T30m) + C22(72(n) — Z308)?.
(4.33)
Here z;,q4 and x3.4 are the average values of z; and z, in the range between the first
turn used in the analysis, n,, and the last turn used for the calculations, n.s. The
coefficients ¢;;, i,j=1,2, are defined in (4.27), (4.28) and (4.29) and again the beta
functions as well as the phase advance assume their design values.
The calculation of the horizontal tune at turn n involves the phase advance ¢(n)
which has been defined in (4.31) in terms of x5, and zg2. As expected zg, and zg,

are now given by the expressions
i=1,2. (4.34)

Otherwise the tune calculation remains unchanged.
Finally the values of the average closed orbit offsets are reported in the final
summary of the results. At this level their values remain constant throughout the

range where the calculations are performed.

Level 2

At this leve] the calculation of smear and tune is substantially different from the
calculations of the previous two levels. Since neither the beta functions at the two
BPMs nor the phase advance between them are known, an attempt is made to extract
this important information from the data. This is realized in the TEVEX analysis
performed at a level greater than 1.

At level 2 the amplitude as defined by (4.33), and hence the smear, can be viewed
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as a function of the components of the following 4-dimensional vector

( )

L1off
T30
Vi = ° : (4.35)
¢cell/2

\ ‘V ﬂcl/ﬂz? }

The parameters z;.54 and x3.q4 are defined as in level 1 analysis, while ¢, 521 and

Bz are initialized to their design values.

A new vector vou,

( )

zloﬂ'lf

Taoff
Vout = wols (4.36)

¢cd1/2|.f

\ \/ﬂal/ﬁaﬂ'} )

is computed such that the smear expressed in terms of these new components is a

minimum. This multidimensional minimization is accomplished by the downhill sim-
plez method [45] of Nelder and Mead. The |; denotes that these are fitted parameters.
The above procedure is repeated for every single turn of the data and hence a new
fitting vector v,y is calculated for every turn. The new coefficients are now used
to process the data, that is to compute the smear and tune for every turn. Thus,
the calculation of the smear is straightforward since it involves precisely the 4 new
coefficients which minimize it.

In order to calculate the phase advance - and hence the tune - one needs to know
the value of each beta function separately. However only the value of the ratio of the
two betas is known. To circumvent this problem the product of the two variable betas
is constrained to be equal to the design product of the two betas and thus each beta is
calculated separately. It has been demonstrated, by experience, that this hypothesis
is reasonably accurate. Note also that the phase advance between the two BPMs

and the closed orbit offsets entering the tune calculation are given by the appropriate
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components of vyy:.
The final summary reports the values of the same physical quantities as before
but now the fitting parameters have taken the place of the design values. Only the

decoherence rate, rdec{n), continues to be 0 for every turn =n.

Level 3

Multi-particle considerations have not yet been taken into account. In the previ-
ous three levels of analysis the measured amplitude has been considered as a constant
in time. This is clearly not true. It was shown earlier that nonlinearities give rise
to amplitude-dependent tuneshifts, which in turn cause an apparent damping of the
amplitude. It is shown in the Appendix that, under certain assumptions, the expres-
sion for the amplitude at turn n contains a decoherence factor of gaussian form and
is given by

nT R

az(n) = e-TR \/cuz'f(n) + ezt (n)zh(n) + eqaz(n), (4.37)

where

zi(n) = zi(n) — zia(n) 1=1,2. (4.38)

Also recall that equation (4.37) defines the decoherence rate R in units of inverse
turn number. So now the amplitude and hence the smear, can be considered as

functions of the components of a 5-dimensional vector, v,

( )

T1off

T30

va=| deasz |- (4.39)

V ﬁcl /ﬁw!

\ E2
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As in level 2, one tries to determine & set of new coefficients, vy, such that the smear
is a minimum. Using these new coefficients the smear can be computed as well as the
tune and also the decoherence rate. Fig. 4.15 displays the TEVEX output of data
analysis performed at the 3rd level. Same data as before (Fig. 4.14) are analyzed and
the same TEVEX.CMD file is used (Fig. 4.10). The corresponding graphical output
will be given at the end of the next section.

Finally, there are cases where the variation of amplitude with time does not follow

a gaussian behavior. This is the circumstance of the persistent signals, for example,

to which I shall come back.

Analysis after the ‘Final Turn Do-Loop’

At this stage, the major part of the analysis has been completed. Information
of statistical nature on the beam intensity, the amplitude, the ‘slow phase’ and the
Fourier spectrum is calculated and reported next.

The beam intensity was recorded by the Tevatron intensity monitors (I.45) for a
number of turns. Fig. 4.16 shows raw beam intensity data for 4000 turns. However
synchrotron oscillations significantly affected the signal and any reliable intensity
measurement requires filtering of the synchrotron motion. Hence the calculation
of the beam intensity before the kick occurs is done in TEVEX by averaging over
one synchrotron period before the kick. Similarly the beam intensity after the kick is
calculated as the average over one synchrotron period, 100 turns after the kick. Finally
TEVEX quotes the maximum and minimum intensity values for a given dataset.

Next is a report on the amplitude statistics. The average, maximum and minimum
- values of the two BPM signals as well as the minimum and maximum values of the

amplitude are reported.
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>»> THE FOLLOWING PARAMETERS ARE SET IN tevex.cmd <<(

==== Input file formst parameters --—-—c---cmo———m—-
format, fheaders, initial noise = @ 12 @&.20000
==== Fast pass default values —-----------comeonoonn
BATCH FAST level nt(st, fs, ff,fi) naxt = F F 3 [ 49 48 1 @&

infils : SkviSa.files

-==- Input and cutput filters ~---ecemer-—cumnmmaene——
FILTER, gmin, qmax =T @.90085¢ 0.24850Q
~~-~ Parsistent signa! snalysis s-c-mmomemmmmo——nemo

PERSIGC npamin npsmax 5@e

=== Discrote Fourier Trasnsform parsmeters -=--=-==--

DODFT, dftlL, dftR, dFEMIN, dftMAX P.35008 P.45009 0.00000 1,10000
Max harmonic, Q1/2 choice, threshold 3 1 1 @.12008
—=== Slow Phase Paramaters ----—--cueummmmrmrr——ca——

L}

m
t
-3
-

Nstrob, Numer, Nordar, DfiTel = 1 2 5 8.10900
. ———- Idealised lattica parameters --c-s-cmmcmmeecee—"
bota(xl, y1,%2,y2), phasze por cel| = 99.84 28.36 94.83 29.94 87 .84

alpha(xl,yl,x2,y2) ~1.900 @.53@ ~-1.90@ 2.638
~==s Tast data parameters —-—-weemmmmerer—r-r—————co-o

BPM LSB, 1st & last particles = 0._Poase 1 180

--—- Fitting control psrameters —cevemccmccem~mene—-—

manual ctrl, max iters, iters/write = 2008 2080
initisl & shake factors, tolerance = 1.50000 @,9900€ 9.28D-11

-=——= Graphicel output contrel -~—wec-cccmcm—cce———o

X1vT, AXvT, AXvFIX, SvT, @XvT, FIT¢T =TT TTTT

Horizontal file:[e778.may11]5kv152392q.25h esesenanan

FILE 29 BKY 16A .39 .48 DATA #5/11/87 2142
Detector 1 = T:HPE24 Data Timing: 29.9990

Detector 2 T:HPE28 Dats Timing: 29,9990
T:HPE24 T:HPE26&
13818 12891 12881 14138 az24 12594 12852
135800 22091 12578 16693 8224
13102 B249 1335B 8248 18708
14724 8224 8224 8224 8224

29.9930@ 29.999¢8
-2.9519¢ -1.7913%9
a &

First data line : 1 -3.21800 -2.906000 @.00000 ?.9000d
Real datas starts: 49 -3.84000 -4.02200 ©.000028 P.0POVD

LEVEL = 3 RN G RARANSARARSERAARENASSRRARRNAR

Tracking data appesrs to start on turn 49 and finish on turn 1224

ntatrt, ntfini, ntfinf, ntfini= 49 1 149 1
NTFIN Ax mm. SMEAR Qx Xoff (1,2} mm. BetaX{1,2) m. FiX d. Rdac

56 1.9652 @.8065 £.38875 -3.1498 ~1.9187 108.43 B7.,14 71,997 ©.813D-81
68 Z.04999 ©.0290 €.38617 -3.9976 -1.90685 111.39 64.82 78.374 ©,.5580-91
B 2.17587 @.€357 &.385682 -3.132]1 -1.9391 1@#9.71 B8.13 89.287 H.297D-61
E8 2.1544 2.0348 ©.385628 -3.1269 -1.92983 189.45 A7.13 49.459 £.1830-01
B8 2.0427 £.0342 ©.38688 -3.1287 -1.9877 188.48 B7.12 868.541 0.292D-¢1
80 1.9831 @.0341 @.38735 -3.1114 -1,.9065 187.11 88,21 88.358 #.349D0-Q1
81 2.49852 @.9228 £.38741 -3.1101 -1.9847 187.13 86.20 88.300 &.345D-21
82 2.1129 0.0354 ©.38697 -3.1212 -1.9218 185.58 B9.51 68.122 &.271D0-01
83 2.1444 0 9377 0.36691 -3.1239 -1.9996 184.58 9@.35 68.898 &.1970-€1
84 2.0720 0.0386 ©.38649 -3.1212 -1,9108 1€4.74 99,21 6B.992 &.188D0-21
86 11,9689 ©.0367 9.38676 -2.1982 -1.9086 103.98 90.95 69.258 @.2190-¢1
86 1.9896 2.03568 9.39679 -3.1005 -1.99079 143.96 90.89 69.339 @.2220-¢1
87 2.9375 @.98353 9.38714 -3.1107 -1.9143 183.41 91.38 69,472 @.204D-€1
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Figure 4.15: Typical TEVEX.OUT for analysis performed at level 3.
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The slow phase is a parameter defined by

mf
¢u(n) = ¢(n) — —n, (4.40)
where m'/n’ is the nearest resonance. Similarly the ‘slow tune’ is defined as

_ 45.1(11. + 'ﬂ.') - ¢.1(n) )

nl’

ga(n)

(4.41)

It has already been mentioned that in most of the analysis performed m'/n’ = 2/5.
TEVEX calculates the slow phase as a function of turn number. It also computes
the average of the slow phase and the slow tune over n’ turns and the change in the
average slow phase from turn to turn is recorded.

This last piece of information is used for a search of discontinuities in the slow
phase. Any phase jumps greater than a pre-specified tolerance level — 0.1 — is
reported in the output file as a warning for non-reliable data. The biggest phase
jump is always reported independently of its magnitude.

At this point TEVEX proceeds with the analysis of the persistent signals. These
new computational techniques though will be developed in the resonance island chap-
ter.

The last calculation TEVEX performs is a discrete Fourier transform of the BPM
signals. This is followed by a report on the strengths of the two harmonics on either
side of the peak.

The analysis of a given dataset has been completed here and the user is given four
options: to quit the analysis by obtaining a summary graphical output, to quit the
analysis and obtain detailed graphical outputs, to return for new analysis of the same
dataset or to return for analysis of a new dataset.

If the first option is chosen and if the analysis was performed at the zeroth level,
then the graphical output looks like Fig. 4.17. In fact this is the graphical output
corresponding to the text output of Fig. 4.14. The graphical output which corresponds
to the text of Fig. 4.15, where the analysis level was 3, is shown in Fig. 4.18. The
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first plot of these 6-plot graphs displays the first horizontal BPM recordings, z, as a
function of the turn number. The amplitude as a function of turn number is plotted
on the second graph. The amplitude as a function of the phase advance (expressed in
units of 2x) is next on the third plot. It is essentially an action-angle representation
of the data. The lower left and middle plots display the smear and tune respectively
as functions of the number of turns used for their calculations. Finally the fitting
parameters, Tioff; Z20f; P15 P1, dcen and decoherence rate R, are plotted against turn
number on the sixth graph.

If the second option was chosen, then a number of different graphs are created.
For the same data used above, analyzed at the third level, the following graphical
output option is presented: Beam current versus time, horizontal discrete Fourier
transform, horizontal phase versus turn number, horizontal slow phase versus turn
number, horizontal displacement from the second BPM, z;, versus turn number, and
z, versus 3. It was mentioned before that TEVEX is a two-degree-of-freedom code;
as such, capability exists for graphical representation of the same quantities as above

but on the vertical plane.
Results

The results of the three-fold study described above—experiment, tracking calcu-
lations and analytical calculations—are presented here.

In Fig. 4.19 smear is plotted against the sexiupole excitation expressed in am-
peres, for five different tune values (19.38 to 19.42). The three curves in each of the
five plots correspond to the three different kicker strengths. The dashed lines rep-
resent prediction from tracking calculations while the solid lines correspond to the
experimental data. All these data were taken with a low emittance beam {emittance
ranged from 1.5 to 3.77). The agreement between experimental and tracking results

is very good.



Low Emittance (1.5 — 3.7m)

Qx = .38
m_l’ITillllllllllllllllllll_
- 8kV ]
20 [~ —]
C ? ]
v [ 3
P 10 k¥ =
: p ]
§‘°t_ / sV _]
3 ,b i
L .
_lllllIIIllljlllllllIlllL_‘
0 10 20 30 40 50

8

Il!lll[]l'l][ll‘lflllllll

RMS3 SMEAR in X
=3 a

Sextupole current in Amps

Qx = 41
l]TiIIIIIlI|IFiI|II|III

=

Illilklllllllllllll!]lll

llll‘llllllllllllll
10 20 30 40 50

1l

(-]

Sextupole current in Amps

RMS SMEAR in 7%

RMS SMEAR in %

Qx = 38
25tT_IT_I"[TTI'l]IIII IIIIIIII!:
C 10 kV 3
20:"‘ [+ —_—
- y ]
wre paKV T3
10 [— —
- 5kV .
&— —
02, l!’llllllllllllllllll]ll_
0 10 20 30 40 50
Sextupole current in Amps
Qx = 42
25_[1”[1”!lllllliilllllli_
20 [— —
18— —
10— lOkVBkVSkF
- ]
- ~
o —
o"llll]llll|IIII|IIII‘IIII-
i ] 10 20 a0 40 50

Sextupole current {n Amps

Qx = .40
_llIrIH‘Illllllllllll|:|1_
- 10k 3
— 2 gkv —
- kv -
:llll Illllllllllllllllll:
O 10 20 30 40 50

Sextupole current in Amps

¢ simulation
+ experiment

Figure 4.19: Smear versus sextupole excitation, for low emittance

data.

£6



94

Fig. 4.20 illustrates the same quantities as before, the only difference being the
beam emittance which ranged from 7.87 to 10.97 here. The agreement between
experimental and simulated data is still good, but somewhat worse than for the low
emittance beam data. This is due to the fact that higher emittance beam decoheres
faster because of the wider spread of amplitudes in phase space. The smear, on the
other hand, is extracted before the beam decoheres. Hence for a higher emittance
beam the smear has to be extracted from a fewer number of turns which is frequently
not adequate for an accurate determination of its value.

A comparison between the predictions of perturbation theory —the smear has
been calculated using the previously derived formule (4.6) and (4.11), (4.12)— and
experimental data for a low emittance beam is in Fig. 4.21. Again the three different
curves in each of the five plots correspond to 5, 8 and 10 kV of the kicker strength.
Notice that even though the agreement is very good for low current - low kicker
amplitude data points, the agreement deteriorates as one moves to higher currents
and kick amplitudes. Obviously perturbation theory does not faithfully describe the
situation in these regime of the data. The nonlinearities are too strong to be handled
perturbatively. On the other hand, one could argue that the disagreement is due
to the fact that the perturbative calculations stopped at first order in the sextupole
strength. Perhaps the agreement would be better had they been continued to second
order. Similar remarks can be made for Fig. 4.22 which compares perturbation and
tracking calculations. Also notice that in the perturbative calculations, the smear
varies linearly with the sextupole strength as expected from Eqs (4.6) and (4.10).

The smear as a function of the kicker strength expressed in kV, is plotted for
various conditions and for low and high emittance beam in Fig. 4.23 and Fig. 4.24
respectively.  The previous comments can presumably explain any disagreement
between simulated and experimental data. The most noticeable feature of these plots

is the linearity of the smear as a function of the kick amplitude, in agreement with
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Low Emittance (1.5m — 3.7m)
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High Emittance (7.8m — 10.9m)
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the analytical formula.

Results on the ability to predict the decoherence time are presented next. Fig. 4.25
and Fig. 4.26 illustrate the decoherence time as function of the sextupole excitation
for experimental (data points) and simulated (solid curves) data, for various values
of the tune, kicker strength of 5 kV, and low and high emittance respectively. The
decoherence time is measured in number of turns. Figs 4.27 and 4.28 display the same
guantities but at 8 kV kicker strength and finally Figs 4.29 and 4.30 are the 10 kV
analogues.  There are two major points of observation in these three sets of data.
The first is that the disagreement between tracking calculations and experimental data
1s bigger for the low kick amplitude than for the 8 and 10 kV cases. The second point
is related to the consistently observed disagreement between tracking calculations
and observation at low sextupole excitation (10 amperes). The conjecture is that
both points can be explained as follows. There exist residual nonlinearities in the
Tevatron (chromaticity-correction sextupoles) which have not been taken into account
in the simulation. These nonlinearities have a relatively stronger effect when they are
superimposed on relatively weak controlied nonlinearities (low current). The effect 1s
negligible when compared to a highly nonlinear situation. Moreover the decoherence
time extracied from the experimental data is shorter than that from simulation as
expected according to this argument.

Table 4.3 displays the tuneshift as calculated using Eq. (4.13) and as exiracted
from the curves of Fig. 4.6 for a 5 kV kick. The agreement is remarkably good.
The dependence of the tune on the amplitude is checked for the experimental data,
in Fig. 4.31. The tune offset is plotted against the strength of the kicker magnet,
expressed in kV. The smooth curve, an extrapolation into the origin assuming the
thenretically predicted curvature, agrees with the differently measured zero amyplitude
value, whose error bar 1s an estimaie of the relative uncertainty of the two methods.

A strong deflection of the beam, in the presence of sirong nonlinearities, can place
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Low Emittance (1.5m — 3.7m) — 8 kV
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tune offset vs. kick voltage
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Figure 4.31: Experimental data illustrating the dependence of tune on

the amplitude. The smooth curve is a fit to the data.
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Sext Strength (Amps) Av

Perturbation | Single particle tracking

10 5.098 x 10~ 00050
20 2.039 x 103 .0020
30 4.588 x 1073 .0050

Table 4.3: Amplitude-dependent tuneshift as calculated from per-
turbation theory and from single particle tracking. The
agreement between the two methods of calculation is re-
markably good.

the beam outside the stable region limited by the ‘separatrix’. Hence, even though
most of the beam is kicked inside the dynamic aperture when the sextupole excitation
is 30 amperes at a tune of 19.39 and a kick of 5 kV, the opposite is true for the same
conditions but a kick of 10 kV as Fig. 4.32 illustrates. It is shown later (Chapter
VII) that the stable area decreases with the increase of the magnitude of nonlinear-
ities. Particles kicked outside the separatrix will eventually get lost. Furthermore,
the fraction of the beam which survives for each set of accelerator conditions is of
importance, especially in explaining certain discrepancies between calculations and
observations. Hence it is of interest to calculate the fraction of surviving beam after
the kick, for a variety of conditions and compare it with the recordings of the Teva-
tron intensity monitor I.45. The results are displayed in Fig. 4.33. The two different
symbols employed for the experimental data distinguish between more and less reli-
able measurements. The source of this uncertainty is related to the calibration of the
intensity monitor signals [44]. General agreement between simulation and observation
has been established.

Before this chapter is concluded, I would like to siress the success of tracking
calculations in predicting the values of the smear and the tune in the near-linear

region of the phase space. This conclusion enhances the confidence in nonlinear
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Figure 4.32: Simulation of two experimental conditions in phase space
at kicker location immediately after beamn deflection. The
dotted line represents the limit of stability. The dots
represent the particle distribution.
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tracking calculations in predicting the performance of future accelerators. It is also
important to notice that one can rely on perturbation theory to describe the motion
in this particular region (for small amplitudes); a technique which saves computing

time and allows for more generality.



CHAPTER V

THE INJECTION EXPERIMENT

The Experiment

This experiment addresses the question of correlating the smear with routine accel-
erator performance such as injection efficiency and particle lifetime. The experimental
technique used involved setting up the Tevatron with the sixteen strong sextupoles
powered to excitations of 0, 15, 30, 40, 45 and 50 amperes. Beam was then injected
both onto the closed orbit and off the closed orbit by 1.5 mm. The injection of the
beam with a steering error was produced by a deflection kicker. The magnitude of the
kick was 4 kV. Fig. 5.1(a) displays first-turn data at a horizontal tune of 19.42 and 0
sextupole excitation, while the beam was matched onto the closed orbit. Fig. 5.1(b)
shows again first-turn data taken under the same accelerator conditions, except that
a steering error was introduced. In Fig. 5.1(c) the difference of these two orbits is
displayed, which is an oscillation with amplitude of 1.5 mm.

At each sextupole setting the orbit was smoothed and the tune adjusted to the de-
sired value, The experiment was performed at tunes of 19.38 and 19.42. The recorded
data include
1. First-turn position monitor data

2. Closed orbit data recorded 50 msec after injection

112
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difference.
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3. Turn-by-turn data at injection recorded by two BPM’s at HE24 and HE26
4. Flying wire data at injection at HC48, HA17 and VC48
5. Flying wire data at the same locations as above, but 9 seconds after injection

6. Beam intensity versus time.

Results

Typical datasets, results of the analysis and their interpretation are presented for
each of the six sets of data recorded during the injection experiment.

First-turn position monitor data are studied first. Fig. 5.2 displays the difference
between first-turn data taken by injecting the beam on the closed orbit and off of the
closed orbit. The sextupole excitation was 45 amperes and the tune 19.42. In order
to determine the effect of a strongly nonlinear environment on the first turn after
injection, Fig. 5.1(c) and Fig. 5.2 are overlayed. The result is Fig. 5.3. Obviously
the first turn orbit changed by less than a millimeter between sextupole strengths of
0 and 45 amperes. The same result holds true for tune of 19.38 and for the other
sextupole settings.

Closed orbit data (also called display frame data in the Fermilab jargon) recorded
50 msecs after injection onto the closed orbit are shown in Fig. 5.4(a). The tune here
was 19.42 and the strong sextupoles were turned off. Fig. 5.4(b) displays closed orbit
data taken under the same conditions, but now the beam is injected with a steering
error. The difference of the two orbits is plotted in Fig. 5.4(c). It is worth noticing
that there is no sign of the steering error at injection on the display frame. The
closed orbit is taken late enough (a few hundred turns after injection) for the beam
to decohere and average very close to zero.

Fig. 5.4(d) displays a difference of two closed orbits—injected with and without

a steering error— in the presence of sextupoles excited at 45 amperes. The tune is
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again 19.42. There is practically no difference between Fig. 5.4(c) and Fig. 5.4(d).

Turn-by-turn data at injection were recorded for 1024 turns by two horizontal
BPM’s at HE24 and HE26. No significant deterioration was observed as the sextupole
excitations advanced from 0 to 50 amperes.

Hence the conclusion that can be drawn from the above three items is that in-
jection diagnosis and correction functioned satisfactorily up to the largest sextupole
settings for a typical injection offset of 1.5 mm.

The Tevatron flying wires were flown at HC48, VC48 and HA17, .25 seconds after
injection and 9 seconds later. All three wire profiles revealed significant beam losses
at high sextupole current. An interesting pattern shown in Fig. 5.5 occurred at HC48
and VC48 but not at HA17, namely the ‘tails’ of the beam profiles. This pattern is
present only at the profiles taken at 5.35 seconds and only at high sextupole currents.
It is due to DC beam losses occurring at the C48 location. By the time of the second
fly—14.35 seconds——the particles outside the RF buckets have been spread completely
around the machine leaving no trace on the new profiles.

The last quantity recorded in the injection experiment was the beam intensity as a
function of time. Fig. 5.6 is a summary of the observations. The fractional beam loss
in the first five seconds after injection is plotted as a function of sextupole excitation.
The four curves represent injection onto the closed orbit and injection 1.5 mm off of
the closed orbit at two different values of the horizontal tune. In each case, there
was apparently a threshold sextupole current above which loss was found. Much of
the loss was slow as shown in Fig. 5.7, which is a typical plot of the beam intensity
in the Main Ring and Tevatron. Here the sextupole excitation was 45 amperes and
the machine tune was 19.42. The transfer of the beam from the Main Ring to the
Tevatron took place at 5.1 seconds.

In an attempt to understand this slow loss of particles it was found that the time

structure of the early loss, as seen on the scintillation counters associated with the
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Figure 5.5: Flying wire data from the Tevatron at C48. The sex-
tupole excitation was 45 amps and the tune 19.38. In
(a) there was no steering error; in (b} there was a steer-
ing error of 4 kV. Profiles (1) were taken .25 secs after
injection, and profiles (2) were taken 9 secs later.
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Bearn Intensity vs. Time for 45 Amps, tune = 19.42
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Figure 5.7: Beam intensity in the Main Ring and Tevatron as a func-
tion of time for a sextupole excitation of 45 amps and a
tune of 19.42.
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flying wires, contains a component at the synchrotron frequency: the difference in
time, between the two major peaks of Fig. 5.8 is approximately 15 msecs, which
corresponds to about 70 Hz. This was a hint that the longitudinal motion may play
a role. The slow loss issue was investigated further with the RF cavities turned
off this time. Further detuning of the cavities was accomplished by turning off the
water heaters. The heaters are used to adjust the physical dimensions of the cavities
and thus their resonant frequency. Fig. 5.9 summarizes the new results: a dramatic
reduction of the losses was achieved by turning the RF off; cooling the cavities effected
further reduction of the losses. However much more effort is needed in order to
understand the underlying mechanism causing these phenomena.

It was demonstrated experimentally—in one degree of freedom—that short time
scale accelerator performance like injection efficiency and particle lifetime, are not
influenced significantly by the presence of strong nonlinearities in the machine, hence

allowing a safe diagnosis and correction of injection problems.
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CHAPTER VI

RESONANCE ISLANDS

In the resonance island experiment the existence of stable nonlinear resonance
islands was demonstrated by directly observing particles captured into them. The
‘capture efficiency’ was measured as well as other characteristics of the islands such as
their amplitudes and phases, which determine their location in phase space. Although
particle trapping was observed on the 3/8 and 5/13 resonance islands, systematic data
taking was restricted to the 2/5 resonance.

This chapter is structured as follows. First, the results obtained in Chapter II are
used to derive expressions for the island width and the island tune. In the following
section tracking calculations will be employed to first demonstrate the existence of
the 2/5 islands and then estimate the various quantities of interest. The experimental
observations will be layed out next, followed by a description of the analysis techniques
employed to extract information out of the data. The results of the calculations and

the analysis of the experimental data conclude this chapter.

Island Width and Island Tune

The calculation of Chapter Il led to the following expression for the 2/5 resonance
Hamiltonian,

Hy(a,I) = v+ cI* 4 €I%? cos [(5a — 976) + ¢o) (6.1)
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with
w=Ved+d (6.2)

and
¢ = arctan (-—Z—:) . (6.3)

€; and e; were defined by Eqs (2.101) and (2.102).
To derive the expressions for the island width and the island tune, I follow the
traditional technique [17,16]. A canonical transformation to a rotating system in

phase space with the generating function:

F= (a. - %Za + %) I (6.4)
leads to

T = é(?)a — 976 + o), (6.5)
I=1 (6.6)

and
Hs(¥,1;) = 61, + cI? + eoI%'? cos (5¥), (6.7)

with
f=v-=. (6.8)

The Hamiltonian has been put in a form explicitly independent of the “time” variable
#; thus it is a constant of the motion.
The fixed points of the motion, where the trajectories are stationary, can be

obtained by the conditions:

8Hy OJH;
e 2= 6.9
o6 ov (6.9)
which imply
sin 5%y = 0 (6.10)
and

5+ 2clo + ge.,fgf’ cos (5%o) = 0. (6.11)
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For sin 5%, cos 5%, = +1 and for different signs of cos 5%, the characteristics of the
fixed points are different. It can be shown [19] that those angles corresponding to
cos 5¥, = 1 are stable fixed points (SFP) while those with cos 5%, = —1 are unstable
fixed points (UFP). Both stable and unstable fixed points are shown in Fig. 6.1.
The boundaries of the stable islands are formed by curves joining the unstable
fixed points. They are called separatrices and their equation can be easily found by
the fact that the Hamiltonian is a constant on the curve. Setting the constant value

of the Hamiltonian equal to its value at the unstable fixed point, I,,, one gets,
8I, + el + EoIf“ cos 58 = §I, + cI? — egI:/z. (6.12)
The action I,,, of the unstable fixed points satisfies the equation
S ran
) + 2CIu - EEQIH = 0, (613)

as can be easily seen from Eq. (6.11). Hence given €, ¢ and §, I, can be computed
and the constant value of the Hamiltonian can be found. Then one can draw the
separatrices given by Eq. (6.12). This is illustrated in Fig. 6.1. In this particular case,
the various coefficients are calculated as follows. The parameter c of the detuning term
eI, is calculated with the use of Eq. (2.100). For the E778 sextupole configuration

with sextupole excitation of 25 amperes and a tune of 19.415, c is calculated to be
¢ = —47.21 mm™. (6.14)

The calculation of ¢ is relatively straightforward with the warning that formula
(2.32) holds true only for 0 < # < 2x. For the above experimental conditions, €
turns out to be

€ = 18.30 mm~¥2 (6.15)

Finally one can calculate J,, which satisfies the equation (6.13). This is a cubic

equation in J1/2 so it can be easily solved. For the above values of ¢ and €, the
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Figure 6.1: Contours of the Hamiltonian describing motion under the
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tion is 25 amperes and the initial tune 19.415.



129

physically acceptable solution is
I, = 1.6 x107™* mm. (6.16)
Then the amplitude of the unstable fixed points is calculated to be
A, = 566 mm. (6.17)

From Fig. 6.1 one can extract the island width being the maximum separation in

amplitude of the two separatrices. It turns out to be
Ay |fgure = .57 mm. (6.18)

However one can actually derive an expression for the island width {15,17]. This
calculation is demonstrated next.

If I, is the resonance action defined by
v+ 2, = %—7, (6.19)

then Eq. (6.12) can be written in the form
cl? —2¢L1, + eoIf“ cos 5T = eI — 2cI,1, - 60]5/2. (6.20)

Expanding for I; close to I, gives the difference of the amplitude between I; and 7,

26013/2(1 — cos 59)

L - 1)~ 6.21
(-1 = (6.21)
From here the maximum separation or the island half width is
5/2
A =2y o8 (6.22)
2c

Using the values of €, ¢ and I, given by Eqs (6.15), (6.14) and (6.16) respectively,
one finds that the island width as calculated from Eq. (6.22) is

Adyltormus = .56 mm, (6.23)
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in remarkable agreement with Eq. (6.18). The conclusion from this agreement is that
the approximation used in the derivation of Eq. (6.22) is very accurate.
The island tune @ can also be expressed in terms of the coefficients ¢y and ¢ and
the resonance action I,. In order to derive an expression for @ [17], I need to see the
Hamiltonian in the vicinity of I,, that is, around the center of the island. For this,

the Hamiltonian (6.7) is expressed in terms of p, where
L=p+1I, | (6.24)

and

H = cp® + €oI?/% cos 57, (6.25)

where constant terms have been dropped.

The equations of motion in (¥, p) coordinates are

. O8H
= —— 2cp 6.26
e (6.26)
and
p= —%g = 5¢oI*/?sin 50, (6.27)
Combination of the two equations gives
T — 10€0cI??sin 5% =0 (6.28)
or
¥ + 10eo|c|I%/?5in 5¥ = 0. (6.29)

This is the familiar equation of motion for a pendulum. When the amplitude is
small, the small amplitude oscillation frequency @y can be obtained from (6.29) by
approximating

sin 5¥ ~ 50, (6.30)

This yields the island tune,
QF = 5*(2]cl)e /. (6.31)
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Substituting ¢ and ¢ from Eqs (6.14) and (6.15), and solving (6.19) for I,, one finds
that

Qr = 4.9 x 1075 45/2, (6.32)

where A, is the resonance amplitude, measured from the origin of the phase space.

The coefficient 4.9 x 107% is expressed in mm~5/2,

Simulation

Single and multi-particle tracking calculations were performed to study the reso-
nance island region of the nonlinear phase space, using mainly EVOL and occasionally
TEAPOT and ART.

Single particle tracking provides a clear picture of the location, size and configura-
tion of the 5 islands, an action-angle representation of which is displayed in Fig. 6.2.
To obtain this particular figure, the base tune was set equal to 19.415, the sextupole
excitation being 25 amperes. In principal the transformations derived in Chapter II
can be used to map the actual shape of the islands of Fig. 6.2. The kick amplitude
was 5.25 mm.

From Fig. 6.2 one can see that the average resonance amplitude A, is approxi-
mately

A ~ 595 mm (6.33)

in reasonable agreement with the calculation above (Eq. (6.17)). In order to compare
the island widths as derived from the two methods, one must first define the island
width from tracking calculation, in Fig. 6.2. If the island width is defined as the

average island width over the five islands then
Aayl,y ~ 41 mm. (6.34)

The discrepancy between the two approaches in the determination of the island width

is not very surprising. The Hamiltonian used to derive the island width does not de-
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Figure 6.2: Action-angle represeniation of single particle tracking us-
ing EVOL. The sextupole excitation is 25 amperes, the
kick amplitude is 5.25 mm and the initial tune 19.413.
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scribe the experimental situation accurately. In E778 a strong third integer resonance
driving term distorts the phase space to a triangular shape on which the five islands
are superimposed. To account for this fact, the correct Hamiltonian must include an
extra term of the form

cos (3a — 584). (6.35)
However it is not clear how to calculate the island width in the presence of two
resonances. So instead, the single resonance approximation was used, which places
the five islands on a circle in phase space around the origin.

When the beam is kicked to an appropriate amplitude, some of the protons are
captured on the stable islands, provided that the sextupoles are turned on to give
resonant islands. Fig. 6.3 illustrates the relative position of the beam right after the
kick with respect to the 5 stable islands. Fig. 6.4 is a magnified view of the previous
plot to observe how the beam size is distributed through the area of the island. This
particular beam has an emittance of 37 mm-mrad and hence its & is .56 mm.

The next logical step is to perform multi-particle simulation in order to create the
link between the above description and the actual observation. For the simulation, a
37 mm-mrad beam was used and for each of 4 values of the kick amplitude - 8, 9, 10,
11 kV - a scan in tune was performed to maximize the fraction of particles captured
in stable islands. Table 6.1 contains all cases simulated with EVOL. The simulated
data were analyzed and quantities such as the capture efficiency and the phases of
the 5 islands were extracted. The results of this analysis are presented in the last
section of this chapter. Before this though, the experimental aspect of this study will

be discussed next.

The Experiment

The first aim of the resonance island experiment was to demonstrate the existence

of the stable nonlinear resonance islands. Capture of particles into stable islands
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Figure 6.3: Relative position of the kicked beam with respect to the
five stable islands.
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Figure 6.4: A magnified view of the previous plot.
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8kV (3.6 mm) | 9kV (4.05mm) | 10 kV (4.5 mm) | 11 kV (4.95 mm)

Qo Capt Ef | Qo Capt Ef | Qo | Capt Ef | Q, | Capt Eff
19.404 0137 19.408 0215 19.409 0561 19.412 .0956

19.405 0231 19.407 .0400 19.410 0815 19.413 .1203

19.406 0405 19.408 0623 19.411 1048 19.414 1434

19.407 0554 19.409 .0826 19.412 .1198 19.415 1517

19.408 .0648 19.410 .0920 19.413 1203 19.416 .1465

19.409 0650 19.411 .0912 19.414 1084 19.417 1323

19.410 .0557 19.412 0779 19.415 0899 19.418 1107

19.411 .0388 19.413 .0569 19.416 0682 19.419 0855

19.412 0265 19.414 .0386 19.417 0472 19.420 0597

Table 6.1: A summary of multiparticle EVOL simulation performed
for the study of the resonance islands.

manifests itself by the absence of deccoherence. Recall that the average fractional
part of the tunes of the particles captured into the islands locks onto 2/5. Hence the
decoherence is defeated and the signal from the centroid of the beam is observable
over many seconds, in Fig. 6.5 for example. Such signals have been observed to persist
for about a minute (corresponding to a million turns).

Fourier analysis of the signal yields a value of
v = .400010 £+ .000005, (6.36)

consistent with 2/5. Fig. 6.6 is a raw data plot of z; versus z; for approximately 4000
turns starting right before the kicker fired. The uncaptured part of the beam deccheres
within the first few turns while the captured part forms the 5 stable islands. Fig. 6.7
displays the same dataset for some thousands of turns taken after some seconds and

the 5 islands are clearly visible. At last, if one joins the successive points of the above
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A2

%1

Figure 6.6: Experimental phase space plot, for 4000 turns, starting
right before the kick.
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Figure 6.7: Experimental phase space plot of the same data as in
Fig. 6.6, taken some seconds later.
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plot by straight lines one obtains the plot of Fig. 6.8. Notice that the point lands on
every second island, confirming the 2/5 identification.

The second aim of this experiment was to quantify the observations and compare
them with prediction. For this, the capture efficiency was defined as the fraction of
the non-decohering charge surviving 500 turns, well after the decoherence of uncap-
tured particles and before appreciable decay has occurred. In Fig. 6.5 the capture
efficiency is given by the ratio of the amplitude (2) over the amplitude (1). The
capture efficiency depends on the relation between the beam size and the island size,
as well as on the angular orientation of the islands in phase space. In order to study
the capture efficiency experimentally the kick amplitude was kept fixed and the base
tune was varied. It is shown in the last section, that the capture efficiency becomes
appreciable when the kick amplitude is approximately equal to the resonance ampli-
tude. Measurements were taken at different values of the kick amplitude and Table
6.2 summarizes the different conditions at which data were recorded. After a brief
description of the analysis tools in the next section, I shall conclude this chapter with

the presentation of the results.
Analysis

If persistent signal analysis has been requested by the user in TEVEX.CMD,
then in addition to the analysis described in Chapter IV, the following aspects are
examined and information is reported.

The user specifies the range of data, after decoherence, over which the persis-
tent signal analysis takes place. First TEVEX calculates the average value of the
amplitude of the persistent signal and finds the minimum and maximum values of
the amplitude in this region. Furthermore, TEVEX calculates the persistent fraction
which is defined as the ratio of the average of the persistent amplitude over the kick

amplitude. This quantity was called capture efliciency earlier. The persistent frac-
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Figure 6.8: A diflerent representation of the data of the previous plot
where successive points are now joined by straight lines.
This plot confirms the 2/5 identification.




KV [ Quo [ PerF | Ainis [ (SD)g [ (SDjamp | #1 [Amp, [ é2 [Amps | &3 [Amp; | ¢4 | Amp, [ és | Amp,
8 | 458 | 066 | 3.32 | .062 040 | .078 | .207 | 224 | 256 | .943 | .177 | 670 | .138 | .918 | .ia2
8 | 4% | .103 | 8.31 | .030 062 | 027 | 368 | .227 | .431 | 381 | .330 | .684 | .327 | .869 | .260
8 | .43 | .106 | 3.28 | .038 084 | .023 | 322 | .24 | .309 | .400 | .34 | .588 | .368 | .B40 | .312
B | 434 | 001 | 3.32 | 044 082 | .024 | .204 | .224 | .342 | .983 | .326 | .583 | .203 | .835 | .250
B | 440 | .029 | 3.42 | .078 027 | .080 | .113 |.216 | .156 | 314 | .106 | 480 | .064 | 064 | .06l
8 | 430 | .045 | 3.32 | .088 032 | .063 | 194 |.198 | 222 | .293 | .139 | .562 | .068 | .920 | .130
3 | 437 | .079 | 3.03 | 078 071 | 020 | .266 | .180 | .248 | .422 | .146 | .631 | .284 | .829 | .252
§ |.495 | 134 | 3.24 | 024 050 | .017 | .466 | .216 | .490 | .398 | .308 | .601 | .430 | .A58 | .380
8 | 435 | .108 | 3.23 | 021 102 | .010 | .858 | .237 | .351 | 423 | .003 | .608 | .369 | .863 | .301
® | 437 | 074 | 3.33 | 053 080 | .025 | .231 | .238 | .317 | .376 | .250 | 562 | .232 | .849 | .183
B | 436 | .094 | 3.30 | .060 092 | 004 | .293 | .239 | 364 | .383 | .205 | .607 | .332 | .856 | .260
0 | 436 | 223 | 8.7 | o011 068 | .003 | .840 |.234 | 035 | .400 | .B11 | .595 | 888 | .863 | .732
9 |.438 | 204 | .67 | .021 087 | .003 | 782 | .216 | .850 | .387 | .652 | .0600 | .792 | .Bb4 | .662
9 | .434 | 110 | 3.68 | 036 087 | 010 | 414 |.205 | 421 | .985 | .355 | .610 | .386 | .830 | 400
9 | 435 | .88 | 3.66 | .020 677 | .018 | .696 | .31 | .697 | .411| .635 | .611 | .733 | .832 | .688
9 | 437 | 220 | 3.65 | 044 306 | .026 | .725 | .240 | .020 | .405 | .818 | 686 | .961 | .B11 | .508
9 | 437 | .184 | 3.66 | .010 060 | 003 | .684 | .219 | 742 | .403 | .687 | .600 | .760 | .B45 | .605
9 | 439 | 124 | 3.62 | .013 034 | .001| 429 | .229 | .515 | .395 | .4I8 | 594 | .508 | .64z | .379
§ | 440 | 113 | 3.80 | 015 044 | 018 | 418 | .230 | .543 | .873 | .416 | .570 | .454 | .860 | 313
10 | .440 | .269 | 4.13 | .008 048 | 003 | 1.165 | .217 | 1.354 | .360 | 1.021 | .585 | 1.114 | .856 | .892
10 | .440 | .263 | 4.10 | .006 046 | .007 | 1.076 | .221 | 1.256 | .382 | 1.005 | .684 | 1.176 | .842 | .875
10 | 438 | 228 | 4.08 | 009 061 | .002 | .8768 | .228 | 1.106 | .383 | .924 | .679 | 1.044 | .832 | 707
10 | 436 | .108 | 3.97 | 023 106 | .020 | .704 | .239 | .866 | .400 | .725 | .612 | .B75 | 821 | .761
10 | 442 | .146 | 4.11 | .010 040 | .001 | .686 | .219 | .74 | .359 | .590 | 569 | .622 | .B44 | 440
11 | 440 | .357 | 4.33 | .007 000 | .023 | 1.404 | .223 | 1.646 | .307 | 1.399 | .608 | 1.791 | .829 | 1.390
11 | 440 | 401 | 4.10 | 007 071 | 007 | 1.714 | .200 | 1.807 | .386 | 1.347 | 696 | 1.895 | 833 | 1.453
11 | 4368 | .143 | 410 | 081 350 | .040 | 636 | .171 | .671 | 408 | .332 | .645 | .708 | .818 | .676
11 | 436 | .197 | 4.36 | .043 206 | .010 | 818 | .211 | .069 | .895 | .702 | .616 { 1.020 | .821 | .790
11 | 436 ) .102 | 4.20 | .085 160 | 026 | .378 | .238 | 478 | .400 | 370 | .Bi3 | 507 | .824 | .406
11 | .438 | 261 | 4.22 | .014 003 | .035 | 1.005 | .232 | 1.211 | .390 ] .984 | 608 | 1.217 | .821 | 1.089

Table 6.2: A summary of the experimental conditions at which data
were taken for the study of the nonlinear resonance is-

lands.

(44
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tion, the kick amplitude, the average amplitude of the persistent signal, the minimum
and maximum amplitudes in this region, are then recorded in the output.

Next TEVEX finds the average values of the phase advance and the amplitude of
each of the 5 islands, as well as their standard deviations. The output includes the
phase advance, amplitude, standard deviation of the phase and standard deviation
of the amplitude for each of the 5 islands, ordered in ascending phase. Fig. 6.9 is a
typical TEVEX output including results of persistent signal analysis. Fig. 6.10 is the

corresponding graphical output of TEVEX.
Results

The results of the analysis of the simulated and the experimental data are pre-
sented here. First a plot that was done - using EVOL - for reference purposes is
presented. For each value of the kick amplitude Ak, a scan was done through the
various tune values until the capture efficiency was maximized. In Fig. 6.11 the kick
amplitude as a function of the base tune which maximizes the captured fraction is
plotted. This scan was done for a single particle (which in a sense is equivalent to O
emittance beam) and for a beam of emittance 3= mm-mrad.

Fig. 6.12 came from single particle EVOL tracking [46]. It illustrates the island
tune @7 as a function of the resonance amplitude \A,. Tracking shows that the relation

between these two fundamental quantities of the resonance island structure is

Qr = 3.8 x 1075452, (6.37)
Recall that perturbation calculation predicts that

Qr = 4.9 x 107545/ (6.38)

in very good agreement with the tracking results.
Next, in Fig. 6.13, EVOL’s prediction on the phases of the 5 islands is presented for

various horizontal tunes. The various symbols correspond to different kick amplitudes.
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3> THE FOLLOWING PARAMETERS ARE SET IN tevex.cmd (((
wawm= Input file format parameters
format, fheaders, initisl noise

~=== Fast pass default values ---

BATCH FAST lavel nt(st,fs, ff fi) next = F F 3 48 43 1 8
infils : Skvl5a.files

---= Input and output filters ~------me-ewr-—varo—ae-

FILTER, qmin, amax = F 02.80050 ©.8p500

--—= PFPersistent signal snalysis ----cecemmormamunn.

PERSIG npsmin npsmax =T 309 500

-==-- Discrete Fourier Transform parameters —~——--——--

DODFT, dftlL, dftR, dftMIN, dfeMAX F 9.35000 ©.45000 0.00000 1.10000

na

Max harmenic, Q1/2 choice, threshoid 3 1 1 9.1ge00
~===x S|low Phase Paramebers —--rere—coecocmcmccce—o
Nstrob, Numer, Norder, OfiTot = 1 2 5 @.12000

--~- Jcdealised |attice parameters «—e-cee-comacoccana
beta(xl,yl,x2,y2), phase per cell 99.84 28.38 94,83 29.54 B7.B84

alpha{xl,yl,x2,y2) = =~1.900 @8.5386 -1.9902 8.532
=e=» Tost data parameters ---ccce-ccmcccccrcmcanao

BPN LSB, iat & last particies = 0.03000 1 100

~e==  Fitting contro! parameters —=re-soo—cc—ccccooa-

manual ctrl, max iters, iters/write = 1 200 -2e09
initiasl & shake factors, tolerance = 1.59000 ©.99000 &.200-11

~=== Graphical output controt —-—-----oooco——o——e -
X1vT, AXvT, AXWFIX, SvT, QXvT, FITWT =TT TTTT

Horizontal file:[e778.3prl17]10kv323a.28h Iy
FILE 98 18KV,38 AMPS, CX = «18, NUXUP @4/17/87 1652

Detactor 1 = T:HPE24 OData Timing: 29,9980
Detector 2 = T:HPE28 Oata Timing: 29.9980
T:HPE24  T:HPE28
13369 12591 12087 14136 8224 13873 12853
12578 19248 11362 12339 18672
20557 11347 17184 8289 8283
12687 11312 20000 22613 20568

29.99800 29.99809
-1.93981 -1.33278
] L]

First dats lina : 1 =-2.24000 -1.83203 0 .¢0008 9.00002
Real data starts: 97 -3.88200 -5.990009 2. o0 2.2000¢

LEVEL = 2 (AR TS T R AR TRttt Rl YRRl ]l

Tracking data appears to start on turn 87 and finish on turn 18524

ntstrt, ntfini, ntfinf, ntfini= o7 1 150 1

NTFIN Ax mm., SMEAR e Xoff(1,2) mm. BetaX(1,2) m. FiX d. Rdec
193 3.7967 0.8564 2.41994 -2.P993 -1,4919% 1&@.91 S4.48 87.239 @.9770-21
104 3.9271 ©.0543 £.42285 -2.11688 ~-1.5478 96.53 96.99 69.7090 0.8230-01
195 4.2861 9.0861 &,42341 -2.1782 -1.4883 88.82 9%5.81 73.957 @.5210-01
196 4.1281 ¢.9823 £.41993 -2,1696 -1.4982 99.68 94 .B7 74.242 @.443D-p1
187 23.7871 2.0CE04 9.42291 -2.1194 -1 _ 4884 98.14 96.28 74.877 9.508D-81
188 3.9144 2 05827 9.42294 -2 . Q867 -1.4729 98.280 96.22 74.934 0. 4780-91
199 41896 @.2602 9.42240 -2.1232 -1.51582 968.83 97.78 73.441 ©,388D0-41
145 1.8175 0.06@2 ©.42477 -2.8627 ~1.4731 97.71 96.70 7TZ.847 P.2920-01
146 1.5488 0.0602 0,42449 -2 BERE -1.4773 97.9@ 96.52 73.8#85 @.2910-21
147 1.5822 0.0620 @.425601 -2.87716 -1.4780 98.82 95.61 73.262 9.2880-91
148 1.8389 0.9687 9.424T72 -2.0484 -1.4615 99.70 94.79 72.631 ©,284D-91
149 1.4135 D.PESE3 D.42486 -2.9523 -1.4674 99.67 94.8¢ 72.481 &.284D-01
150 1.4121 0.9667 9.42492 -2.0452 -1_4544 99.15 95.3@ 72.2682 ©.z820-021
Min{X1,X2), man({X1,X2), <Xi>, <X2> (mm) = -5.92092 2.6800 -2.8737 -1.4911
X Amplitude: min, max (ren) = @.9138 4.7947

The |largest non-noisy phase discontinuity was
Turn Amp(mm) Old fi(2pi} New fi(2pi) Old<slowfi)> New(slowfi> Dsfi(adjusted)
104 3.980 a.1742 3.8184 9.9332 1.0581 2.0181

PERSISTENCE: AmpFrac Akick Apersist Ampsmin Ampsmax
#.06811 4.0524 8.3288 0.98138 2.8829

Veasured island locations. Typical SDs, (Fi,A): #.248 @&.153
Island ID: 4 2 [ 3 1

CFin» : 9.307 0.317 ©.360 ©.368 0,373

CAx> [mm]: ©.338 0.334 ©.320 ©0.320 9.332

SD of Fix: @.244 ©.222 @.264 0.249 0.281

SD of Ax : @0.1B3 ©.157 9,149 @.151 P.155

EXIT with only summary graphics LLIT L Y PE Ty T Y

Figure 6.9: Typical TEVEX output including the persistent signal
analysis.
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Ay vs Qq, evollda

19.43 I T 1 ] , T T T L ' T ] 1 1 l 3 T T T
X single particle i
+ 37m emittance beam
o
o 19.42
]
o
s
B
-
(8] 19.41
()
£
—1
19.40

Kick Amplitude, A, (mm)

Figure 6.11: Kick amplitude versus base tune, corresponding to max-
imum capture efficiency. Data have been obtained from

EVOL simulations.
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Q; vs A, evol, 25 Amp
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Figure 6.12: Island tune versus resonance amplitude, from single par-
ticle EVOL tracking,.
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2/5 Resonance Island (EVOL)
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Figure 6.13: Phases of the five islands versus tune as predicted from

EVOL.



149

This plot is to be compared with Fig. 6.14 which displays the same information as
derived from the analysis of the experimental data. Notice here that the 5 islands are
not symmetrically distributed around the center of the phase space. Furthermore,
the phase difference of an island between experiment and simulation is not the same
for all 5 islands.

At last, one of the most important measurable quantities associated with the
resonance islands, namely the capture efficiency is plotted. Fig. 6.15 illustrates the
capture efficiency as a function of the horizontal tune for various kick amplitudes — 8,
9, 10 and 11 kV. These are multi-particle tracking results. As expected, one observes
the classical resonance response when the kick amplitude as approximately equal to
the resonance amplitude. The experimental data, for a kick of 9 kV or an amplitude
of 4.05 mm, are displayed in Fig. 6.16. The curve through the experimental points is
a guide to the eye, The different symbols differentiate a course scan and a fine scan.

The maximum persistent response is plotted against the kick voltage in Fig. 6.17
for both experimental and tracking data. The dashed line is a theoretical fit to the
data. There is obviously a factor of 2 difference between prediction and reality. This
discrepancy is due to the sensitivity of the calculation to the lattice function errors,
particularly phase and beta function errors. To demonstrate the effect of an error on
the relative location of the kicked beam with respect to the island, five plots similar
to Fig. 6.4 are given. All these plots illustrate part of the five islands (phase advance
between .4x 2% and .8x21r) corresponding to sextupole strength of 25 amperes and a
tune of 19.415. Furthermore, two kicked beams superimposed on one of the islands
are also shown. One of the beams has been kicked with no known errors, while the
second one has been kicked in the presence of some error. Specifically, the error in
Fig. 6.18 originates from the fact that the sextupole SF22 was turned off when the
second (left) beam was kicked. In Fig. 6.19, sextupole SF26 was turned off, leading

to a somewhat different relative displacement of the two beams, and in Fig. 6.20
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2/5 Resonance Island Data
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Figure 6.14: Phases of the five islands from experimental data.
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Capture efficiency vs tune

0.25 1 I ] i ] 1 T | 1 [] T 1 I 1 1 1 I 1 I

-+ 11 kV .

[ x 10 kv i

0.20 — © 9KV ]

' L. D B kV .

.o _ i

&) - -

& N i

Q

S 0.15 [— —

:: i —

[+)] - -
o -
L‘ oo

3

2, 0.10 — —

o - -

(& b .

.05 —

000 —_1 1 I i | 1 1 I 1 1 1 1 I | 1 1 [ l 1 1-

0.39 0.4 0.41 0.42

Horizontal tune

Figure 6.15: Capture eficiency versus tune using EV'OL, for 4 different
kick amplitudes.



152

0.25 R ] { L L 1 L] [fl 1 T l—[ 1 + T _l T |

> C N
[8] a —
p 0.20 F— ]
2 - ]
o X R
- 0.5 — ]
Q 3 <
© § 5 ]
o Q10 — -
< - ]
0.05 — x\ —

[ —X ]

0.00 r-l ] , i [ 1 1 } d 1 1 1 l ] 1 1 1 i A l-

.30 Q.4 0.41 0.42

horizontal tune, vy

Figure 6.16: Resonant response of the capture fraction as a funclion
of the tune. The curve only guides the eye. The different
symbols differentiate a course and a fine scan.



153

Response vs kick voltage

0.4 WﬁllllIlI]Tll[llIIl'[lllITlllf
Q = 4
n i X/
= ;]
O 5 -
% I S
=~ 08T ;o
b
o - A .
) - / 4
17 - x/ :
02 / —
E L / 4
R / .
V4
g - , X + =
0.1 — y; + ]
f— / -t
L / + -
| // X N
// =1
11_1.1—-|- I'"|||||1|1|111|'11||||1||
0.0
0 2 4 6 8 10 12

kick voltage, kV

Figure 6.17: Maximum persistent response versus kick amplitude. for
the experimental data (crosses) and from simulated data
(rhombs). The dashed line is a theoretical fit to the data.



154

225mmeda415q.evol

[T T T T l ] T T T ' T T T | T F 1 L

~  8|— Sextupole SF22 is off ]
E I )
£ i ]
N e . =1
% 7 — Iz ) ]
3 i ‘ - . "" v‘ T
-a 61— L y ;,‘. A ]
E B g‘ 7
: ‘,g‘\l‘ f.:./’ j

© 5 f— = F“\‘::z% —
5 N \ssszzﬁ ]
SN - :
o i ]
N - ]
. S |
O 4 - -
M L -
L 4

3 )_ 1 | | I I 1 | ! | ' 1 i 1 | l 1 1 1 | ]

0.4 0.5 0.6 0.7 0.8

betatron phase (2m)

Figure 6.18: The beam on the left has been kicked while sextupole
SF22 was turned off.



155

sextupole SF28 was turned off. In Fig. 6.21 a phase error has been introduced. The
relative phase advance between sextupoles SF38 and SC22 is different from the design
phase advance by .04 x2nx. Notice that the relative displacement of the two beams is,
as expected, quite considerable. Finally, a phase error half as big as before, that is
.02x 27, combined with one of the sextupoles turned off (see Fig. 6.22) can lead to an

effect of the same magnitude as that of Fig. 6.21.
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CHAPTER VII

THE DYNAMIC APERTURE EXPERIMENT

In the presence of nonlinearities the motion of a large-amplitude particle loses its
regularity and becomes chaotic. Typical phase space trajectories close to the dynamic
aperture are shown in Fig. 7.1. This plot was generated by computer simulation using
TEAPOT.

Predictions on the size of the dynamic aperture for a given lattice configuration
can be obtained from short-term-—of the order of 500 turns— tracking of particles.
The purpose of this experiment was to measure the dynamic aperture of the Tevatron
in the presence of the sixteen strong sextupoles, for various sextupole excitations, and

compare the experimental results with the short-term tracking calculations.

The Experiment

The basic experimental procedure consisted of intentionally increasing the hori-
zontal emittance of the 150 GeV injected beam in the Tevatron until particles were
lost. The beam ‘heating’ was done by introducing noise into the transverse damper
system of the Tevatron. The beam size was then observed with the flying wires. Fly-
ing wire scans were usually made four times per cycle, at 32, 62, 82 and 102 seconds

after injection. The beam intensity as a function of time is shown in Fig. 7.2. The

160
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Figure 7.1: Phase space trajectories close to the dynamic aperture.
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arrows indicate the times of the flying wire scans. In this case the sextupole strength
was 30 amperes,

The horizontal tune of the fixed-target lattice was set at 19.3715 and the vertical
tune was set at 19.46. In order to avoid confusion from longitudinal multi-bunch
instability, the RF voltage was turned off and the RF cavities detuned. The energy
spread, og/FE, was measured to be approximately 1.5 x 10~*, hence the 20-bunch
beam was observed to debunch and spread around the ring. By 32 seconds after
injection, the beam distribution was fairly uniform as seen from the flying wire scans.

The noise-modulated damper-magnet was turned on at 32 seconds after injection.
With no sextupole excitation, beam loss became apparent about 1 minute after turn-
ing on the dampers. With 30 amperes in the sextupoles however, beam loss began

almost immediately, as shown in Fig. 7.2.

Analysis

Three flying wires were used—two in the horizontal and one in the vertical direc-
tion. The two horizontal wires were located at HA17 and HC48 while the vertical was
located at VC48. The points of the two horizontel wires have quite different horizon-
tal dispersion; HA17 has a dispersion of 5.04 meters, while HC48 has a dispersion of
1.9 meters. Fig. 7.3 displays a typical set of horizontal beam profiles from the flying
wire HC48. The four different curves correspond to the four times the wires were
flown within the cycle. Notice that the initially symmetric beam distribution devel-
ops eventually a left-right asymmetry. This is understood in the sense that computer
simulations were capable of reproducing the asymmetry, as shown in Fig. 7.1. The
pronounced triangularity of the same plot, which is actually present in all sextupole
excitations, illustrates the dominance of the third-integer resonance.

The vertical-wire profiles revealed no qualitative or quantitative changes, indicat-

ing that the horizontal-vertical coupling was not appreciable in this experiment.
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The full-width at the base of the profile was used to measure the dynamic aperture.

Two different codes were employed to predict the dynamic aperture from tracking
calculations. The first one, ART, used a simplified lattice which was perfectly linear
except for the sixteen special sextupoles. A gaussian distribution of particles in en-
ergy with standard deviation & = 1.5 x 10~* was tracked and the dynamic aperture of
the distribution was calculated after 500 turns. The second code, TEAPOT, used the
complete fixed-target Tevatron lattice and included the effects of the chromaticity-
correction sextupoles. It was found that both codes agreed very well in their predic-
tions, so one can conclude that the chromaticity-correction sextupoles had a negligible
effect on the aperture. The calculations were repeated for seven different values of
the sextupole excitations: 0, 10, 15, 20, 25, 30 and 40 amperes. Further TEAPOT
tracking calculations, done at 15 and 40 amperes in the 16 sextupoles, deemed un-
likely that the sextupole component in the superconducting Tevatron dipoles had an

effect on the dynamic aperture.

Results

The measured and the calculated dynamic apertures at the positions of the flying
wires HC48 and HA17 are shown in Fig. 7.4 and Fig. 7.5 respectively. The agreement
at high sextupole excitations is satisfactory. Two effects complicate the comparison
between the data points and the curve. First, the calculations were limited to a few
hundred turns whereas the data points were extracted after millions of turns. Hence
the curve is really an upper bound. Second, an uncertainty in the closed orbit at the
sixteen sextupoles affects the machine tune and thus the calculations of the dynamic
aperture. A shift in the average closed orbit at the sixteen sextupoles of 0.25 mm will
change the computed dynamic aperture by about 3.5 mm at each sextupole setting.
This is roughly the deviation between the curve and the data at large sextupole

currents.
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Finally the deviation at low sextupole excitations is presumably due to a physical

aperture, such as a septum magnet.



CHAPTER VIII

CONCLUDING REMARKS

A nonlinear dynamics experiment has been performed in the Tevatron. The vari-
ous regions of the phase space have been studied an a three-fold way: experimentally,
numerically and analytically.

The first purpose of this experiment was to confront the tracking calculations with
experimental observations, in order to test their reliability. After confirming that the
Tevatron was essentially linear, smear measurements were performed. From these
data, the phase space motion of the centroid of the beam was tracked and quantities
such as the smear and the tuneshift were extracted. Multi-particle nonlinear track-
ing calculations provided predictions of the same quantities. The agreement between
experimental results and tracking calculations is excellent, over a wide range of condi-
tions. One can conclude that tracking calculations, which are important in projecting
the performance of future accelerators, are reliable.

Furthermore, perturbation theory, in the form of successive Moser transforma-
tions, was used to describe analytically this particular region of the phase space.
The agreement between analytical predictions and observations is very good for the
low current—low kicker amplitude data points, while it deteriorates as one moves to
higher currents and kick amplitudes. As expected, nonlinearities of sufficiently low

strength can be handled perturbatively.
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The second purpose of E778 was to correlate phenomenological accelerator perfor-
mance with the value of the smear. The first conclusion to be drawn from the injection
experiment is that injection diagnosis and correction functioned satisfactorily up to
the largest sextupole settings, for a typical injection offset of 1.5 mm. Recordings
of the beam intensity as a function of time revealed significant slow losses above a
threshold sextupole current. Turning the RF off reduced the losses significantly, while
a further reduction was achieved by cooling the cavities.

In the resonance island experiment, E778 demonstrated the existence of stable
nonlinear resonance islands by directly observing particles captured into them. Sys-
tematic data taking was restricted to the 2/5 resonance. The capture efficiency was
measured and compared with simulated results. The factor of two discrepancy be-
tween calculation and observations can be explained in terms of the sensitivity of the
measurements to phase errors primarily and beta functions errors.

Successive Moser transformations up to third order in the sextupole strength gave
rise to the Hamiltonian describing a system under the influence of the 2/5 isolated res-
onance. An expression was then derived for the island width, which yielded a number
reasonably close to single particle tracking prediction. The discrepancy is due to the
assumption of an isolated resonance. The island tune, however, as predicted from the
analytical calculation agrees very well with the single particle tracking calculation.

The agreement that has been established between calculation and observation,
in the resonance island experiment, is8 worse than in the smear experiment. While
in the smear experiment, quantities that vary linearly with the sextupole strength
were studied, it is observables proportional to s° that were measured in the resonance
island experiment. The latter measurements are much more sensitive to errors than
the former ones, which explains the diflerent degree of agreement.

In the dynamic aperture experiment, measurements of the dynamic aperture were

compared with short-term tracking predictions and the agreement is satisfactory. The
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conclusion is that it is generally hard to predict the dynamic aperture; calculations
are mostly limited to a few hundred turns whereas data points are usually extracted
after millions of turns.

Future plans on the continuation of E778 include the study of the following sub-
jects. In one degree of freedom, a further study of the resonance islands will be
attempted, both statically — observation of particle trapping and measurements of
island width and island tune — and dynamically — exploration of the stability of the
islands under tune modulation [47].

Furthermore the smear measurements will be repeated with different sextupole
configurations and hence different values of the smear and the tuneshift.

With the one-degree-of-freedom study more or less completed, the next step is to
proceed to the more realistic, and hence more relevant question of nonlinear behavior
in two degrees of freedom. An attempt will be made to repeat the smear and the
injection experiment, however extraction of the smear and tuneshift parameters from
the data can not be as straightforward as in the one-degree-of-freedom case. Coupling
between the two planes complicate the situation resulting in a non gaussian decoher-
ence. Recall that the assumption of a gaussian decoherence was a critical element
for the extraction of smear and tuneshift from the one-degree-of-freedom data. In
two degrees of freedom, extraction of the same information may require a completely
different approach, such as working with the Fourier spectra of the signals. A sub-
stantial offline effort will have to be put into this subject, before any conclusions can

be drawn.
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APPENDIX A

Smear due to horizontal-vertical coupling

It is demonstrated that linear coupling introduces a smear of order K2/(v, —,)?,
where K is the coupling constant and v,, v, are the horizontal and vertical tunes
respectively. The derivation follows that of Teng in reference [31]. Notice that this
entire derivation is valid in the weak coupling approximation [32]: the whole treatment
breaks down near the v, = , resonance.

The approximate coupled equations of motion are

2"+ vlz = Ky (A.1)
and
¥+ u:y =Kz, (A.2)
or
X" = MX (A.3)
where
- K
M= . (A.4)
K 13

b

Here z, y denote the horizontal and vertical displacement of the particle from the

closed orbit. The prime denotes differentiation with respect to # and

K = g;: (‘98%) . (A.5)
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These equations can be decoupled by diagonalizing M. The eigenvalues of M can be

found easily,

vi=vl+aK (A.8)
and
v =) — oK, (A.7)
where
a= 148 ¢ (A.8)
and
vi—3
= =t A9
¢ 2K (A-9)
The normal coordinates u and v are given by
=2z —ay (A.10)
and
v=ar+y (A.11)
and obey the decoupled equations
v+ viu=0 (A.12)
and
" +viv = 0. (A.13)

Consider now the special solution that corresponds to the case with z-motion only,

ie.z=12"=0,y=y" =0at § =0. This is

1
=1 (cos v + a® cos V.,G) (A.14)
y=7 -:a.z (cos 1,8 — cos v, 8) . (A.15)

Define # and g such that

Yy

(A.16)

il

|

+
w R



175

and
Vo= — iz‘-; (A.17)
that is,
p= it (A.18)
2
and
H= v, — U, (A.19)
Then (A.14) and (A.15) become
z = (cos &8) cos b — 1-—d sin %0 ) sin 58 (A.20
B 2 14+a? 2 20)
and
= ( 2a si Eﬁ) sin &6 (A.21
YC\1re ™2 ' 1)

Hence z and y are amplitude-modulated oscillations. The amplitudes of the z and y

oscillations, A, and A, are given by

Al = ﬁﬁ;(l + a* + 2% cos ué) (A.22)
and
2 2a?
Ay = m(l — COS ,u.ﬂ). (A23)

Then the smear in the horizontal direction due to coupling, s.., is given by

Ay — 2
8cz = ( ”({42)('4'), (A.24)

where A, is given by Eq. (A.22).
The calculation of the smear s, will be done in the weak coupling approximation,
i.e., to lowest nonvanishing order in K/(v, — ¢).

Notice that

ez l4e—t~ 2 (A.25)

vz — 1y
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in the weak coupling approximation. So A, can be expanded in powers of a. The

result is
A, =1-4d%(1 -cospﬂ)%—?;—‘(l —cospf)+.... (A.26)
From here one gets
(A,):l—a’+—54£+..., (A.27)
(A.,)’=1-2a’+1:‘:+... (A.28)
and
(A% =1—-2e+4a* +.... (A.29)
So,
Bep ~ a7 ~ K* (A.30)

(Ve — ”y)z .
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APPENDIX B

Derivation of the expression for the amplitude

Let a;y1 and a;; be the amplitudes of the betatron oscillations at the location of
the two BPMs. Also let §;1, 8.2 and (¢ — 6), (¢ + ) denote the beta functions and
the phases at the two BPMs. The phase ¢ is defined as the phase advance in the
middle of the two BPMs while § = @en/2. If a. is defined to be the geometric mean

of a,; and @, then one can prove that
2 __ 2 2 B 1
a, = eny + 1123 + €223, (B.1)

where ¢;1, ¢12 and cg; are defined by

1 ﬁzﬂ
€11 m\( Bea (B.2)
C2z = m %; (B-3)
cos {@cen)
C12 “2m. (B.4)

The displacements of the centroid of the beam from the closed orbit at the two BPMs,
z, and z; are given by

T, = gy cos (@ — &) (B.5)
and

z3 = azzcos (@ + 8). (B.6)

Since a2 = a 18,3, 621,82 can be expressed in terms of ¢, as follows
T H )

8:vB=i .
Az; = W 1= 1,2- (BT)
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Hence

a,\/ﬂ_

zy Bl cos (¢ — 8), (B.8)
z; = (ﬂ“:ﬁ;ﬂ cos (¢ + §); (B.9)

from these two equations the above expression for the amplitude e, will be derived.

First ¢ is eliminated from the expressions for £, and z,. Eqs (B.8) and (B.9) give

3

VP \/ﬁ_ (ﬁuﬂ:z)‘f :

[cos (¢ — &) — cos (¢ + &) (B.10)

or

\;;; - % (ﬁa1ﬁ=2)1/42 sin ¢ sin §. (B.11)

Solving for sin ¢, one gets

. _ (ﬂnlﬁzz)lﬂ 1 z3
e eesind | VAa VBl (B.12)
Substituting sin ¢ from (B.12) into (B.8) and then solving for cos ¢ leads to,
(ﬂzlﬂnz “
cos ¢ = %a. cos § (B.13)

By squaring (B.12) and (B.13) and summing one gets the desired expression for the

amplitude

2 1 ﬂz2 cos (¢cell) ﬁzl 2

“ S i ) B i o) T i o)V B B
or

d: = 0113: + ciz%123 + ng-"“.:. (B.15)
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APPENDIX C

Derivation of the expression for the phase advance

The displacements from the closed orbit at the two BPMs are

z) = % sin (¢ — 6) (C.1)
and
T, = %sin(cﬁ-}— 5). (C.2)
Let z;, z; be defined as
%= \;E_ i=1,2. (C.3)
Then
22 = (ﬂﬂ;w sin (6 + 6) (C.4)
and
(21+ 22)/cos§  [sin(¢p—8) +sin(P+ 6)]siné tan (C.5)
(20 — 21)/siné  [sin(p+ &8) —sin(p — 6)]cos & ) )
Hence
_ (214 22)/ cos &
¢ = arctan ((zg .y 6) . (C.8)
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APPENDIX D

Derivation of decoherence due to nonlinearity

Let @ and ¢ be the amplitude and phase of the betatron oscillation at a given point
in the accelerator. The amplitude a is defined as /fB¢/c,, where € is the Courant-

Snyder invariant and o, is the rms beam size. Then the displacement z is
z = a0, cos (2mun + @),

where n is the turn number. ¢ is the phase advance at n = 0.

The transverse distribution of particles in the beam, expressed in terms of z and

z' is
B Z5[x* + (az + Bz")

e ol
2rol

2
p(z,z")dzedz' = ]da:da.:’

and in amplitude-angle coordinates

dzdz' = %ao‘idadd),

thus
1 &
pla,p)dadd = ——ae 'z dadd.
2T
Suppose now that at n = 0 the beam is kicked by an angle Az’. This kick corre-

sponds to a shift in amplitude of magnitude ¢y = BAz’/0,, and the new distribution

function becomes

1 - & —dgp)?
p(a, ¢) = "2";“8
1 (a? + al — 2aagcos @)
= —ae 2

2T
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Assuming a quadratic tune dependence on amplitude
v =v— pa’
one finds that the phase shift A¢(a,n) of a particle of amplitude a is
A¢(a,n) = 2rAvn = —2mpa’n.
The centroid of the beam after n turns, Z(n), is

2(n) = [ 2(a,4,n)p(a, $)dads

2 2
& d + a ix
= 51;03-/; daa’e” 2 A d cos [2mvon + Ad(a,n) + ¢]e?d0 €OS ¢

o oo _@-‘2—_@ ir
= 2—; /0 daa’e A dd{cos (2mvon + Ad)cos ¢
— 8in (27von + Ag) sin ¢]e@%0 €08 ¢
* a2 el i
= ;—; f daa’e” 2 cos(2mvon — 2-;ma2n)f d¢ cos pe®B0 €08 ¢
‘ 0
2 2
m ¢ re 2%
___g.’.’_/ daa’e” 2 sin(2myon — Zﬂ”azn)/ dp sin peP%o €08 ¢
x Jo A
With the use of the identity

eTCOS(fJ: f: eim¢Im(T)

the above formula becomes
o oo _a'2 + ﬂ-g ix .
3(n) = 2—' daa’e 2 cos(2nvon — 2wpa’n) Z Im(aau)/ d¢ cos ¢e"m¢
w Jo po—y 0
o0 a®+ a? ar .
~Z2 [ dga’e” T sin (2rvon — 2mpa’n) Y In(aag) f dsin pei™9,
27 Jo py 0
But
2x -
ZIm(a.a.o)fo dq&e"m"b cos ¢ = w[I;(aao) + I_1(aao)] = 2w Ii(aao)

and

> In(aag) /Oh dpe*™? sin ¢ = ilJy(aao) — I_s(aag)] = 0.

m



182

Hence
- a’ + a2
E(n) = a',,j dac’e” 2 cos (2rven — 27 pa’n)li{aao)
—o.e —_QQRe{ 1,21rvonj daale-(1/2 +i21rpn)11(aao)}
= orze“2QRe {eiz‘n-voﬂ j“" daate~2(1/2 + izw‘un)(—i)-h(iaao)} ;
0
where the relation between I,, and J,, has been used

In(2) = i Ta(iz).

Now one can evaluate the last integral above with the use of formula 6.631.4 from

Gradshteyn and Rhyzik

oo 2 Jiie 2
vilg—a2® 5 de — -0 /4
./0 z¥tle (Bz)dz = @ )v+1
In this case v = 1, @ = 1/2 + 12wpun and B = ia, and so,
2
_ Gy . a ('la )2
= — o 12N 0 . 0
#(n) = oue 2 Re {e (1 + t4wun)? xP [ 2+ i81r,u,n]

2
— —92“ t2rvgn 90 aj
se ZReqe (1+:0)7F [2(1+48)) [’
where # is defined as follows

6 = 4mwpn.

So
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where the decoherence factor A(n) is given by

1 2 9
A(n) = N T [——29- ]

and the amplitude of the centroid a(n} is
é(n) = apA(n).

Hence the decoherence factor A(n) is

1

Aln) = 1+ {4run)?

1
- —_(4 2
T (@rpnyr P |~z 4mhnsa)

For small kicks, ap < 1,
1

1+ (4mun)?’
while for a kick much greater than the beam size, ¢ > 1

A(n) ~

A(n) ~ ¢~ 3(4munao)’
Hence the decoherence rate R, defined by (4.37) is given by

R =4rpa,.

(D.1)
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APPENDIX E

TEVEX Subroutines

A. RDCMD

1. Subroutine RDCMD first opens the output file TEVEX.OUT (unit 7) which
will develop to a record of the data analysis.

2. Next it opens the input file TEVEX.CMD and reads the following information.

2a. Input control parameters

al. ifmt specifies the input format to be read. Six different formats have been
considered. For E778 ASCII files, ifmt=0. For E778 shared memory data, ifmt=1.
For EVOL data, ifmt=2. For TPOT-TeVbpm data, ifmt=3. For TEAPOT data,
ifmt=4 and for camac 5 (resonant BPM) data, ifmt=5.
a2. thead is the number of header lines stripped off the input files. Thead=8 or 12 for
E778 ASCII files, ihead=16 for EVOL data, ihead=7 for TEAPOT data, and ihead
could be anything for the remaining cases.
a3. bnoise, expressed in mm, determines the lowest bound for the real data to start,

e.g., bnoise=0.2.

2b. Fast pass default values
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bl. batch, logical variable. If it is true the input filenames are read from INFILS.
b2. fast, logical variable. If it is true, it invokes the default values in the array,

b3. ifast(1-6), instead of prompting the user. All the above are to be used for a fast
pass through the data.
b4. infils contains the BATCH input filenames.

2¢. Filtering input and output data

cl. filtre, logical variable. If it is true, it filters tune values from ¢gmin to gmaz
from both horizontal position raw data and from the intensity data.
¢2. gmin is the lower limit of the filtered range.

c3. gmaz is the upper limit of the filtered range.

2d. Persistent signal analysis

d1. persig, logical variable. If it is true, it turns the persistent signal analysis on.
d2. npsmin is the lower limit of a post-decoherence range where the persistent signal
analysis will be done.

d3. npsmaz is the upper limit of the range for persistent signal analysis.

2e. Discrete Fourier transform parameters

el. dodft, logical variable. If it is true, it turns the discrete Fourier transform
(DFT) analysis on.
e2. ftl/fir are the left and right margins for the DFT plots.
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€3. ftmin is the lower bound for the DFT plots. If FTMIN > 0.0 a logarithmic scale
is used.

e4. fimaz is the upper vertical bound of the DFT piot.

e5. mazpar is the maximum harmonic order plotted.

eb. igl/iq2 specify which of the following three ways to define the horizontal/vertical
tunes to use for Q/Q3, in the harmonic analysis. Hence, if [Q1/1Q2 = 0, the ratio
of the number of phase space turns over the number of machine turns is used. If
I1Q1/1Q2 = 1 the highest peak in the DFT is used, and if IQ1/IQ2 = 2 the second
highest peak in the DFT is employed.

e7. senhar denotes the threshold DFT response to signify a harmonic peak.

2f. Slow phase parameters

1. nstrob. On some graphs only every NSTROB’th turn is plotted.
2. numer/norder. The resonance tune is @, = NUMER/NORDER.
f3. dfitol denotes the tolerance for the BPM glitches and /or phase discontinuities and

it is expressed in units of 27,

2g. Idealised lattice parameters

gl. deta(z,, y1, Za1, ¥a) are the design values of the horizontal and vertical beta
functions at the position of the two BPMs, HF42 and HF44.
g2. ficell is the phase advance per cell in degrees.

g3. alfa(zi, y1, Z1, y2) are the design alphas at the position of the monitors.
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2h. Test data parameters

h1. bitsiz is the assumed bit size of the BPMs.

h2. npstri/npfin are the start and finish particles whose coordinates are summed.

2i. Fitting control

il. man. This parameter assumes only two values, 0 or 1. If it is 0(1) it turns off
(on) some manual control of the optimization.
12, #tme is the maximum number of HYDRA steps before quitting.
i3, #fw is the number of HYDRA steps per write.
i4. pfin multiplies single coordinates of the initial matrix.
i5. pfac is the multiplier used when shaking up the solution.

i6. ftolis the goal tolerance.

2j. Graphical output control

j1. z1vt is true if data from the first BPM are plotted versus turn number (uses
NSKIP).
j2. azvt is true if the amplitude is plotted versus turn number.
J3. azvfiz is true if amplitude is plotted versus phase.
j4. svt is true if smear is plotted versus last turn number fitted.
35. qzvt is true if tune is plotted versus last turn number fitted.
j6. fitvt is true if the fitted parameters are plotted versus last turn number fitted.
3. The next function of RDCMD is to do logic initialization. In particular, it
opens the file INFILS if BATCH is true, it initializes the logarithmic scale if FTMIN
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< 0.0 and it initializes the shared memory if IFMT = 1.
4. Finally it writes on the screen and in TEVEX.OUT the values of all the pa-
rameters contained in TEVEX.CMD.

B. FORMO0

Subroutine FORMO reads the data from the 1987 E778 ASCII files.
1. FORMO prompts the user for input filename with “Enter horizontal turn-by-turn
filename for input” and “Enter vertical input filename”. The input file with the hor-
izontal data is unit 8 while the vertical data are in unit 9.
2. Next, the first IHEAD lines from the files are discarded and FORMO reads the
recordings of the two horizontal and two vertical BPMs, z,, z; and ¥, y; for NTMX
turns. The parameter NTMX belongs to the parameter list file of TEVEX, TEVEX-
PAR.H, and has been set equal to 4096. If there are no vertical data, which is the
case through out this whole work, y; and y, are set equal to zero.
3. The first turn of significant data is determined next, as the turn number with coz-
responding position larger than BNOISE. If such a turn does not exist error messages
and instructions follow.
4. Finally the first line of data together with the line where real data start (z >
BNOISE) are recorded in TEVEX.OUT as well as on the screen.

C. FORM1

FORMI1 reads data from the shared memory.
1. First FORMI1 warns the user that a batch job cannot be submitted with shared
memory data.
2. A second warning is that there is no capability of analyzing vertical data at this
point. A future upgrade will remove this problem.

3. The answer to the question “Enter data input name” provides FORM1 with the
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horizontal data filename, e.g. TAPE3.43.

4. The search for the first turn of significant data, MINNT, is done using the BNOISE
criterion.

5. FORM1 also finds the last turn of significant data, MAXNT.

6. The first and the last turn of significant data are recorded on TEVEX.OUT and

on the screen.

D. FORM2

FORM2 reads simulated data from EVOL.
1. FORM2 first gets the input filename from the user.
2. The first IHEAD lines are discarded.
3. The current and the horizontal and vertical positions at the location of the two
monitors are read for every turn. The units of the above quantities are mm.
4. The first and the last turn of data are recorded in TEVEX.OUT and are displayed

on the screen.

F. FORM4

FORMA4 reads simulated data from TEAPOT.
1. The input filename is supplied by the user.
2. The first IHEAD lines are stripped off.
3. The horizontal position z, and the angle of deflection z', as well as the vertical
position y, and the angle ¥, are read for every turn.
4. The above information is translated into horizontal and vertical positions at the
location of the two monitors.

5. The first line of data is recorded in TEVEX.OUT and on the screen.
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G. FORMS5

FORMS5 reads data recorded by camac 5, the resonant Tevatron BPMs. This

format can only be used on the SUN Workstations.

H. NOLOW

Subroutine NOLOW filters the tune values from QMIN to QMAX from the raw
position and intensity data.
1. Key constants are set-up first.

2. Filter BPM data, find and measure “synchrotron” tunes and amplitudes with the
use of FILTER and PKPWR.

I. PARAMS

The function of this subroutine is to get the fitting level and the fitting do-loop
parameters.
1. At this point TEVEX presents four options to the user:
“Level controls the raw BPM data conversion
Level = 0 use raw data
Level =1 only subtract average closed orbit offsets
Level = 2 fit BPM betas, phases and closed orbit offsets
Level = 3 as 2 and fit for gaussian decoherence
Enter the level chosen (eg 3): ”
2. Once the choice has been made, the chosen level is recorded on TEVEX.OQUT.
3. The first turn number for the range of interest is specified next as follows: TEVEX
informs the user of the range of significant data. If the chosen level is the third one,
then the analysis has to start from the first turn of significant data. If the chosen level

is other than 3 and FAST is true, then the starting value has already been specified
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in TEVEX.CMD. A third possibility is to supply the value by hand, by answering
the appropriate question. The starting turn number must be between the first turn
of significant data and the last turn minus 10.

4. The do-loop variables for the last turn number in the range of interest are specified
here. If FAST is true, the range values have been chosen in TEVEX.CMD. Otherwise
the user supplies the numbers by hand by answering the appropriate questions.

5. Finally, a check of the last turn do-loop range values concludes the function of
PARAMS. The criteria for correct values are that the starting turn number of the
final do-loop must be greater or equal to the starting turn of the analysis plus 5, and
it must also be less than the last turn of the analysis. Also the increment must be
positive. At last, the difference between the final do-loop turn number and the initial

one, must be greater than the increment for the do-loop to start.

J. STATS

STATS finds the averages and the limits of the digitized data in the range be-
tween the first turn for the analysis and the starting value for the last turn do-loop.

Specifically it calculates {z1), (2}, (1), {y2) and Tminy Tmex; VYiminy Ymax-

K. PREPRO

This subroutine prepares the fitting vectors, PSOLX and PSOLY.

1. If the chosen level is 0 then the components of the fitting vector PSOLX are:

psolx(1) = 0
psolx(2) = 0

_ ¢ce]l
psolx(3) = >

_ ﬁzl
psolx(4) = for

psolx(5) = 0
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and
ndimx = 0.
Similar equations hold true for the vertical direction. Recall that ¢ is the design
value of the phase advance per cell, and 3;,, B.; are the design values of the horizontal

beta functions at the two monitors.

2. If the analysis level is 1 then PSOLX becomes:

psolx(1l) = {(z,)

psolx(2) = (za)

psolx(3) = Geel

2
psolx{4) = 1/%
psolx(5) = 0
and
ndimx = 0

Again similar equations can be written for the vertical direction.

3. If the level is equal to 2 then:

prolx(1) = (z1)
psolx(2) = (z,)

psolx(3) = ki

360
psolx(4) = / %
psolx(5) = 0

and

ndimx = 4
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and the same for 3.

4. Finally if the level equals 3 then PSOLX is:

psolx(1) = (z1)

psolx(2) = {za1)

rpsolx(3) = %’J—]—
psolx(4) = ‘/—%
psolx(5) = _(M_O;ITT)H
and
ndimx = 5,

where n s is the final turn of the calculations and n; is the turn number where data

start.
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APPENDIX F

E778 Hardware

The second run of E778 required more and higher precision data than the first
run, and the limited machine time available implied highly efficient data taking,
monitoring and logging. Hence a many-turn beam data acquisition and analysis
system was constructed [29].

From the Tevatron beam position pickups, the signals were directed to two front
end electronics. The first, the standard Fermilab BPM front end, gave direct hori-
zontal (HF42 and HF44), vertical (VF43 and VF45) and intensity (I.45) signals. The
second was a peak-sensing circuit which gave less noisy signals.

The signals were digitized with two LeCroy 6810 5-Mhz, 12-bit transient digitisers,
each with .5 Megasamples of onboard memory. The camac-based LeCroy modules
were controlled by a Sun 3/140 workstation via the Sun’s VME backplane and a2 CES
CBD/8210 camac branch driver. Fig. F.1 illustrates the cabling from the BPMs —
located at the service building ¥4 — to the Sun 3/140 (Fig), also located at F4.

Control and data flow to the main control room (MCR) workstation (Myrtle) were
through the Suns’ ethernet links. (See Figs F.2 and F.3. In FO0, the cable from the
Schottky rack to cables 13 and 14 is RG58.)

Information such as kicker voltages, tune settings, sextupoles currents etc, was fed
to the system from the Tevatron control system through a serial link. Data context

information and comments were logged to a disk fifo buffer and to cartridge tape for
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long term storage. More details on the hardware of this structure, as well as the

software — almost entirely written in C — can be found in reference [29].



BIBLIOGRAPHY

199



200

BIBLIOGRAPHY

[1} SSC Central Design Group, Conceptual Design of the Superconducting Super
Collider, SSC-SR-2020, March 1986.

(2] A.W. Chao et al., A Progress Report on Fermilab Experiment E778. An Experi-
mental Study of the SSC Magnet Aperture Criterion, FN-471, SSC-156, January
1988.

[3] A. W. Chao et al., Experimental Investigation of Nonlinear Dynamics in the
Fermilab Tevatron, Physical Review Letters, pg. 2752, December 12, 1988.

[4] N. Merminga et al., An Experimental Study of the SSC Magnet Aperture Cri-
terion, Fermilab-Conf-88/94-E, presented at the EPAC, Rome, June 7-11, 1988.

[5] J. M. Peterson et al., Dynamic Aperture Measurements at the Tevatron, pre-
sented at the EPAC, Rome, June 7-11, 1988,

[6] D. A. Edwards and M. J. Syphers, An Overview of Experiment E778, submitted
to the Proceedings of the ICFA Workshop on ‘Aperture-Related Limitations of
the Performance and Beam Lifetime in Storage Rings,” Lugano, Switzerland,
April 1988.

[7] A. W, Chao et al., An Experimental Study of the SSC Magnet Aperture Crite-
rion, original proposal submitted on October 17,1986.

(8] Frank T. Cole, Nonlinear Transformations in Action-Angle Variables, Fermilab
Report, TM-179, June 13, 1969.

[9] R. Talman, Nonlinear Perturbation of a Cyclic Accelerator Lattice; Exact and
Approximate Solutions, Cornell LNS Report, Ithaca, (1976).

[10] A. Dragt, Phys. Pub. 85-004, University of Maryland, (1984).

[11] E. D. Courant and H. S. Snyder, Theory of the Alternating-Gradient Syn-
chrotron, Annals of Physics:3, 1-48 (1958).

[12] D. A. Edwards, An Introduction to Circular Accelerators (BNL/SUNY Summer
School, 1983), AIP Conference Proceedings No. 127 (1985).

[13] D. A. Edwards and M. J. Syphers, An Introduction to the Physics of Particle
Accelerators, AIP Conference Proceedings No. 184 (1988).



201

[14] S. G. Peggs, Hamiltonian Theory of the E778 Nonlinear Dynamics Experiment,
SSC-175, April 1988.

[15] Leo Michelotti, Introduction to the Nonlinear Dynamics Arising from Magnetic
Multipoles, (Fermilab Summer School, 1984), AIP Conference Proceedings 153
(1987).

[16] R. D. Ruth, Single-Particle Dynamics in Circular Accelerators, (SLAC Summer
School, 1985), AIP Conference Proceedings 153 (1987).

[17] E. D. Courant, R. D. Ruth, W. T. Weng, Stability in Dynamical Systems
I, (BNL/SUNY Summer School, 1983), AIP Conference Proceedings No.127
(1985).

[18] E. J. N. Wilson, Nonlinear Resonances, CERN Accelerator School Proceedings,
CERN 87-03, 21 April 1987

[19] N. Merminga and K.-Y. Ng, 2/5 Resonance Islands Generated by Sextupoles,
Fermilab Report, FN-506, February 1989.

[20] T. L. Collins, Distortion Functions, Fermilab Internal Report 84/114, October
23, 1984.

[21] N. Merminga, K.-Y. Ng, Hamiltonian Approach to Distortion Functions, Fermi-
lab Report FN-493, August 1988.

[22] K.-Y.Ng, Derivation of Collins’ Formulee for Beam-Shape Distortion due to Sex-
tupoles Using Hamiltonian Method, Fermilab Report TM-1281, October 1984,

[23) K.-Y. Ng, Distortion Functions, Lecture given in KEK Oho ’87 High Energy
Accelerator Seminars, August 1987.

[24] J. Moser, Nach. Akad. Wiss. Gottingen, ITA, NO. 6, 87 (1955).

[25] Leo Michelotti, Deprit’s Algorithm, Green’s Functions, and Multipole Perturba-
tion Theory, Particle Accelerators, Vol. 19, pp. 205-210 (1986).

[26] Leo Michelotti, private communication.

[27] Leo Michelotti, The Physics of Phase Space, Y. S. Kim and W. W. Zachary,
Springer-Verlag, 1987.

[28] D. Edwards, R. Johnson and F. Willeke, Tests of Orbital Dynamics using the
Tevatron, Particle Accelerators, Vol. 17 (1985)

[29] S. Peggs, C. Saltmarsh and R. Talman, Million Revolution Accelerator Beam
Instrument for Logging and Evaluation, SSC-169, March 1988.

[30] E778 Logbook, page 106, February 1988.



202

[31] Lee C. Teng, Skew-Quadrupole Field and Horizontal-Vertical Coupling in the
Main Ring, Fermilab Report, TM-382, July 21, 1972.

[32] Leo Michelotti, private communication.

[33] Application Program of Fermilab’s Controls System, (page T130)
[34] E778 Logbook, page 96, February 1988.

[35] E778 Logbook, page 142, February 1988.

[36] E778 Logbook, page 136, February 1988.

[37] N. Merminga and K. Y. Ng, Analytical Expressions for the Smear due to Non-
linear Multipoles, Fermilab Report, FN-505, February 1989.

[38] S. R. Mane, N. Merminga and D. A. Edwards, Decokerence of Kicked Particle
Beams Using Different Formalisms, submitted to the 1989 Particle Accelerator
Conference, Chicago, March 20-23, 1989.

[39] Meodifications of TEVEX has been done by Tong Chen and Merminga.
[40] R. E. Meller et al., Decoherence of Kicked Beams, SSC-N-360, May 1987.

[41] L. Schachinger and R. Talman, TEAPOT: A Thin Element Accelerator Program
for Optics and Tracking, Particle Accelerators 22, 35 (1987).

[42] ART, a code written by N. Merminga.

[43] S. Peggs, Hadron Collider Behavior in the Nonlinear Numerical Model EVOL,
Particle Accelerators, Vol. 17, pp. 11-50, (1985).

[44] Lia Merminga, Rod Gerig and Steve Peggs, On the Calibration of Tevatron
Beam Position and Intensity Monitors Used in E778, Fermilab Report TM-1532,
SSC-N-510, May 1988.

[45] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical
Recipes, page 292.

[46] This plot was made with simulated data generated by Tong Chen.

[47] S. G. Peggs and R. M. Talman, Nonlinear Problems in Accelerator Physics,
Annual Reviews of Nuclear Science 1986. 36:287-325 or SSC-61, February 1986.



