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ABSTRACT 

The distortion functions as introduced by Collins are derived using the canonical Hamil­

tonian formalism. Beam shape distortions in the horizontal and vertical phase spaces due to 

skew quadrupoles, normal and skew sextupoles and normal and skew o.ctupoles are in turn 
calculated in terms of these distortion functions. The lowest nonvanishing contributions to 

the tuneshifts introduced by the above multipoles are also computed analytically. Finally 

applications demonstrate the degree to which the above calculations agree with experimental 
data. 
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1 Introduction 

No machine is perfectly linear. There are systematic sextupole components in dipole 

fields from steel saturation, remanent fields, persistent currents, eddy currents, and random 

sextupole components due to field errors. Of course, there are also sextupoles placed around 

the ring on purpose to counteract the above and to modify chromaticity. Higher multipoles 
are also possible; for example, the octupole components from beam-beam collision. The 

theory therefore becomes nonlinear. This does not mean though that we lose all our pre­

diction of the beam shape by the beta functions. For a large size storage ring, the need for 

sophisticated diagnosis of minor faults demands a rational beam behavior. Such rational 

behavior is also required for a beam pipe of small bore so that the magnet size and conse­

quently the cost can be reduced. All these imply a machine that is as linear as possible. As 
a result, perturbation theory can be used away from resonances. Collins1 has proposed a 

set of distortion functions for each order of the perturbation. These distortion functions are 

closed, i.e., periodic. They are independent of the beam amplitude and are very similar to 

the beta functions and alpha functions of the linear theory. Of course, the beam profile is 
not so simple now, because horizontal and vertical motions are coupled together. So it no 

longer manifests itself as an ellipse in each transverse phase space. Instead, it becomes a 

four dimensional hyper-egg and we can only talk about its projections onto the transverse 
phase planes. However, these distortion functions can give us the exact projections. They 
can also give us two important numbers: the transverse betatron tuneshifts uv:z: and ~lly. 

In sections 2, 3, 4, 5 and 6 we shall derive the beam-shape distortion and the tuneshifts 
due to skew quadrupoles, sextupoles, skew sextupoles, octupoles and skew octupoles, using 

the Hamiltonian approach. In the derivation we follow exactly the same ideas used by Ng2 

for the case of sextupoles. So this note is a continuation of Ng's note2•
3

• Lastly, in section 7 
some applications are discussed followed by general remarks. 

We start from the Hamiltonian describing the motion of a single beam particle, 

H = ![P2 +K (s)X 21 + ![P2 +K (s)Y 2
] - B~ XY 1 2 :z: :z: 1 2 Y y Bp 

B" B" 
+-Y-(X3 -3XY2

)- z (3X 2Y-Y3
) 

6(Bp) 6(Bp) 

( 1.1) 

where P:e and Py are the canonical momenta conjugate to the horizontal and vertical displace­

ments X and Y, K:r(s) and Ky( s) are proportional to the restoring forces due to the ring's cur­

vature and the field gradients of the normal quadrupoles. The term -(B~/ Bp)XY gives only 
the skew quadrupole potential with Bp denoting the m·agnetic rigidity of the particle. The 

term [B:f6(Bp)](X 3 -3XY2
) gives the normal sextupole potential, [B:/6(Bp)](3X 2Y-Y3

) 

gives the skew sextupole .. potential, [B;'/24(Bp)](X4 -6X2i 2+Y4
) gives the normal octupole 

potential and [B:'/6(Bp)](X 3Y -XY3
) gives the skew octupole potential. 

2 



FN-493 

We next perform a canonical transformation into the Floquet space using the generating 

function 

( 1.2) 

The new Hamiltonian becomes 

R 2 x 2 y z /Jz/Jy 
( 2) R ( 2) B' (a a ) 1/2 

H2 = 2f3:r f3oP:i: + f3o + 2(3y f3oPy + f3o - R Bp (3
5 

xy 

RB: [(f3:r)3/2 3 _ (f3:1:f3;)1/2 2] - RB: [ ((3;(3y)1/2 2 _ ((3y)3/2 3] 

+ 6(Bp) f3o x 3 (3g xy 6(Bp) 3 (3J x y f3o y 

RB~' [ (f3:r) 
2 

4 _ 6f3:rf3y 2 2 ((3y) 
2 

4] - RB:' [ ((3;(3y) 
112 

3 _ (f3zf3i) 
112 

3] + 24(Bp) f3o x f35 x y + (3
0 

y 6(Bp) (3~ x y (3~ xy 

( 1.3) 

In the above, the independent variables has been changed to the more convenient () = s/ R, 
where R is the average radius of the storage ring. 

This Hamiltonian is now solved exactly to zeroth order in multipole strength by canonical 

transformation to the action-angle variables I:i:, a:i: and ly, ay. The generating function 

is used to obtain the transformation 

U = (2luf3o) 112 
COS [Qu((J) +au] , 

f3oPu = -(2l,.f3o)1
/

2 sin [Q,.{(J) +au] , 

( 1.4) 

( 1.5) 

( 1.6) 

where Qu((J) = 1/J,.((J) - vu(), f3oPu = du/d'l/J,. and is denoted by u' below. In the above, llu is 

the betatron tune and 

f a ds' 
1/Ju(s)= Pu(s') 

is the Floquet phase at the location s. After the transformation, the new Hamiltonian 

becomes 

H3 = v:i:I:i: +.vyly + multipole terms 

From here on, we treat each multipole term separately. 

3 

( 1. 7) 
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2 The Skew Quadrupole Term 

2.1 Beam Shape Distortions due to Skew Quadrupoles 

The skew quadrupole term in the Hamiltonian H 3 is 

-RB~ (/3z/3y)112 
Bp /35 xy. 

Transformation to the action-angle variables Iu and au yields 

with Q± = Qz ± Qy, a± = a;z: ± ay. We note that the expressions 

are periodic functions of fJ, so they can be expanded into harmonics. And so we get 

~H3lsq= -(2I:r) 112(2Iy)1
/

2 L[A+mCOsq+ + A_mcosq_], (2.2) 
m 

(2.3) 

The summations in Eq. (2.2) are over all integers m from -oo to +oo. The summations in 

Eq. (2.3) are over all skew quadrupoles at position (Jk along the ring. Here we treat the skew 
quadrupoles as elements of infinitesimal length lk, at position (Jk and with strengths 

~ (/3 /3 ) 1/2 ( B~l)k 
Qk - z y k Bp · (2.4) 

In Eq. (2.3), the harmonic amplitudes A+m' A_m and the phases a+m, a_m are real numbers. 
For the first-order beam shape, we can solve the equations of motion obtained from the 

Hamiltonian H 3 to the first order. However, because we are interested in the second-order 

tuneshifts also, it will be advantageous for us to make another canonical transformation from 

(au,lu) to (bu,lu) so that the lu's become constants of motion up to first order in qk. This 

is called a Moser transformation with generating function 

( )1/2( )1/2 '°" ( A+m . A_m . ) - 2J:r 2Jy ~ m-v+ SlilQ+m + m-v_ SlilQ-m , (2.5) 

where ll± = llz ± lly. By definition the new Hamiltonian is 

(2.6) 

4 
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where D..H4 lsq does not contain any zero-order or first-order terms qk. The first-order changes 

in lu and au are therefore given by 

(2. 7) 

(2.8) 

Explicitly they are 

c ( I )1f2( I )1/2"' ( A+m A_m ) olz = - 2 z 2 y L..J COS q+m + COS q_m , 
m m-ll+ m-v_ 

c - ( I )1/2( )1/2"' ( A+m A_m ) oly - - 2 :i: 2Jy L..J COS q+m - COS q_m , 
m m-V+ m-ll_ 

c (Jy) 1
/

2
"' ( A+m . A_m . ) oaz = -I .L..J Slil q+m + sm q_m ' 

z m m-ll+ m-v_ 

Day = (
1

1
z) 

112

L (-A_+_m_ sin q+m + A_m sin q-m) . 
y m m-ll+ m-v_ 

(2.9) 

These are related to the changes in amplitudes and phases. Recalling from Eqs. (1.5) and 
(1.6) that 

where 

we have changes in amplitudes 

U =A., COS [Qu(iJ) +au] , 

u' = -A., sin [Qu{O) +au] , 

( 
/30 ) 1/2 

·cAu = 21u clu . 

As for the angle variable au, if we solve the Hamiltonian H3 , we get 

dau 8H3 
d() = Blu = llu + quadrupole terms . 

Thus, for the unperturbed part, 

au(9) = vuO + constant . 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Here, the constant should be chosen as ef>u -1/Ju, where ef>u( 8) is the instantaneous betatron 

phase and 'I/Ju.( 9) is the Floquet phase designating the location at the point (J. Although 

5 
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both of them depend on 8, their difference is fl-independent. Such a choice of the constant 
is necessary, because substitution of 

au = Vu(} -1/Ju +</Ju = </Ju - Qu (2.15) 

into Eqs. (2.10) gives 

U = Au COS </Ju , and 1L
1 = -Au sin <Pu • (2.16) 

Therefore, the change in the angle variable au is just the change in the instantaneous phase, 
or 

(2.17) 

But before we calculate the changes in amplitudes and phases, let us simplify Eqs. (2.9) by 
performing the summation over m. This can be accomplished easily using the formula 

(2.18) 

This leads us to• 

A e'tQ-m ·</> L -m = ei - ( B_ + iA_) , 
m m-v_ 

(2.19) 

where ¢± = <P~ :::::: </>y, and B+, A+ and B_ ,A_ are two sets of distortion functions defined by 

Collins 

(2.20) 

(2.21) 
..Puk + 27l"Zlu o,. - 8 > 271" u = x or y ' 

and the prime on B± denotes differentiation with respect to the argument. Instead of 1/J~, 

we can also write the argument of the cosine in Eq. (2.20) as 

(2.22) 

The way that it was written in Refs. 2, 3, and 4 is incorrect. The distortion functions 

defined above are in fac~, as explained in Refs. 2 and 4, lattice functions due to the presence 

•For an illustration of how this can be done see Refs. 2 and 4 

6 
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of skew quadrupoles, just as the {3 and a are lattice functions due to the presence of normal 
quadrupoles. They are periodic functions of the ring and closed after one revolution. The 

vector ( B+, A+) rotates around the ring according to the angle equal to the phase advanced. 
At a skew quadrupole of strength qk, A+ jumps by qh/2 while B..;.. remains continuous but 

exhibits a cusp. 
We are now in a position to calculate the distortion of the beam shape projections. 

Substituting Eq. (2.19) into Eqs. (2.9) and using Eqs. (2.12) and (2.17) we arrive at 

SA.i, = Ay[(A+ sin¢+ -B+ cos¢+)+ (A_ sin 4>- - B_ cos 4>-)J , 

SA.y = ~[(A+ sin¢+ - B+ cos¢+) - (A_ sin</>- - B_ cos 4>-)J , 

bcP:r = ~[(A+ cos</>++ B+ sin¢+)+ (A_ cos cP- + B_ sin c/J-)J , 

bc/Jy = ~[(A+ cos¢++ B+ sin¢+)+ (A_ cos c/J- + B_ sin</>-)] . 

Thus the distorted beam shape in phase space can be written as 

x' 

y 

y' 

.( A.r + hA.i,) cos( </>:r + t5 </>:z:) , 

-( A.r + hA.i,) sin( </>z + hc/J:z:) , 

(Ay+hAy) cos(</>y+h</Jy) , 

-( Ay + hAy) sin( </Jy+ b</>y) , 

(2.23) 

{2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

where 6A.i,, 6Ay, h</>x, 6</>y are given by Eqs. {2.23) to (2.26). These distortion formulre are 
exactly those given by Collins. 

Finally at this point we would like to remark that the term distortion functions used here 
is not very successful since we are dealing with a linear problem. The term error functions 
would be a more appropriate one. 

2.2 Second-order Tuneshifts 

. The first-order tuneshift due to skew quadrupoles vanishes. This is because the first 

order-term in the perturbation Hamiltonian has the form xy. But since cos </>:r cos </>y has a 
zero average ther·e is no shift in the tune to first order. The lowest nonvanishing contribution 

to the tuneshift comes from the second order. To obtain the second-order tuneshifts, we 

need to evaluate the second-order skew quadrupole terms in the Hamiltonian H4 • From the 

generating function G3 of Eq. (2.5), we get 

(2J:r)l/2 = (2J:r)l/2 [1 - (2Jy)1/2 L ( .4+m COS q+ + A_m COS q-)] 
(2Jz)1/ 2 m m-ll+ m-v_ . 

( 2 .31) 

and similar expression for (21y) 112
. Then the second-order terms in the Hamiltonian is 

7 
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+ {2Jz) L ( A+m COS q+ - A_m co~ q-)] . 
m m-v+ . m-11_ 

(2.32) 

Since betatron tunes are defined per revolution, we average over 8. This leads to 

(2.33) 

Now we need to sum over the harmonics using again Eq. (2.18). Written in terms of the 

distortion functions, we have 

The tuneshifts are given by 

A 2 1 
L -m = -L(qB_)k • 
m m-v_ 47r k 

and ~11 = 8~H~ 
y aJ y 

Using Eqs. (2.33), (2.34), and (2.35) we obtain the tuneshifts 

1 
~Vz = - L(B+q - B_q)k , 

47r k 

1 
~Vy= -L:(B+q + B_q)k . 

47r k 

As expected the tuneshifts are independent of the amplitude. 

3 The Normal Sextupole Term 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Even though the formulre for the beam shape distortions and the second-order tuneshifts 

due to normal sextupoles have been derived extensively before, in Refs. 2, 3 and 4, we shall 
include the derivation here, for completeness. 

3.1 Beam Shape Distortions due to Normal Sextupoles 

Let us start from the sextupole term in the Hamiltonian (1.3) 

. y •Y x 2 II! 3 RB" [ (323 )1

1
2 ({3 )3

/2 l 
~H3 Ins= - 6(Bp) 3 ;3{ xy - f3o X (3.1) 

8 
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and expand it into harmonics to get 

m 

m 

with qlm = Otm -m9+a:r:, q3m = O'.Jm -m8+3a:r:, Ptm = f31m-m8+a:r:, P±m = f3±m -m9+a±, 

a±= 2ay±a:r:, and 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where Q± 

strengths 

2Qy ± Qx. The sextupoles are assumed to have infinitesimal length lk with 

( /3~/3x) 112(B:l)k. 
/30 k 2(Bp) 

(3.7) 

At this point, because of our interest in the second-order tuneshifts, we shall proceed by 

making a Moser transformation from (au,lu) to (bu,lu), u = x,y, using the generating 
function 

where V± = 2vy ± v:r:. By definition, the new Hamiltonian is 

(3.9) 

where i:!..H4 Ins does not contain any zeroth or first-order terms in Sk or Sk. The first-order 

changes in lu and au which are given by Eqs. (2.1) and (2.8) are 

( )3/2 1/2""' ( 3A1m . 3A3m . ) hlx = 21:r: /30 L.,, sm qim + -·-- - sm q3m 
m m-V:r: m-3v,. 

( I )1/2( )/31/2""' ( 2B1m . B_m . B_m . ) - 2 :r: 2fy er L.,, SIIlPtm - -- -- sm P+m - sm P-m ' 
m m-v:r: m- v~ m-v_ 

9 
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( 1/2( ) 1/2 ~ ( 2B+m . 2B-m . ) fily = - 2Jz) 2Jy /30 L.., SlilP+m + smp_m , 
m m-v+ m-v_ 

L ( J )1/2(.Jl/2 ~ ( Aim A3m ) uaz = 3 2 z fJO L.., -- COS qlm + COS q3m 
m-v m-3v m z z 

1/2 I/2 ~ ( 2B1m B+m B_m ) -(2/zt (2Jy)/3o L... COS Pim+ COSP+m + COSP-m , 
m m-~ m-~ m-~ 

- ( )1/2 1/2 ~ ( 2B1m B+'m . B_m ) Oay--22/:z: f3o L.... COSP1m+ COSP+m-+- COSP-m . 
m m-~ m-~ m-~ 

(3.10) 

We shall relate these changes to changes in amplitudes and phases. But first we are going 

to simplify (3.10) by doing the summation over m. We use again formula (2.18) to arrive at 

L Ai'"' eiq1m 
m m-v;z; 

L A3m eiq3m 
'"' m - 3v:z: 

L B1m eiP1m 
m m-Vz 

L B+m eiP+m 
m m - V+ 

L B_m eiP-m 
m m-v_ 

~ ei<f>:z:( -iB1 + Ai) , 

1 3 ·,.1,. 
-e i'+':z:(-iB3 + .4.3) , 
3 

ei<f>:z:(-i!J +A) , 

ei<f>+ (-iB + A ) a . a ' 

where </>± = 2</Jy ± </Jz and the distortion functions are defined by 

10 

(3.11) 
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(3.12} 

with '¢-x = 21/;y ~ '¢:i: and ¢~ and '¢~ defined in Eq. (2.21 ). From Eqs. (2.12} and (2.17} we 
recall that the distortion of the amplitudes Au and phases <Pu are given by 

( ) 

1/2 

8Au = :;u Hu (3.13} 

and 
(3.14} 

Using Eqs. (3.10) to (3.14} we obtain 

8Ar = A![(A1 sin <Pa:-B1 cos <Pa:)+ (A3 sin 3</>:i:-BJ cos 3¢z)] 

- A~'.2{ A sin </>:i:-ll cos </>:i:) + (A. sin</>+ -B. cos</>+) - (Ad sin <P- - Bd cos</>-)] , (3.15) 

8Ay = -2ArAy[(A.sin¢+-B.cos¢+) + (.4dsinif>--Bdcos¢-)], (3.16} 

b</>:i: = Ar[3( Ai cos i/>:i: + B1 sin c/>:i:) + ( A3 cos 3c/>:i: + B3 sin 3</>:i: )] 
A2 - -

- ~ [2(A cos c/>z+ B sin¢,.,)+ (A. sin c/>+ + B. cos¢>+)+ (Ad cos <P- + Bd sin</>-}] , 

(3.17} 

D</>y = -2Ar[2( A cos c/>z+ lJ sin¢>,.,)+ (A. cos if>++ B. sin</>+)+ (Ad cos</>-+ Bd sin c/>-)] . (3.18} 

The sextupoles have an average dipole effect on a charged particle which leads to a distortion 
of the ideal closed orbit. This can be obtained by separating out from Eqs. (3.15) and (3.17), 

oA':i: = 2A;(A1 sinc,b,.,-B1 cosc,b,.,)- 2A!(Asin¢,.,-.Bcos¢a:), (3.19) 

Aro¢>~= 2A!(B1 sinc/>z+A1 cos¢,.,)-2A!(.Bsinc/>:i:+Acosc/>a:), (3.20) 

which correspond to a closed orbit distortion of 

8x = 2(A!B-A!B1) , 

8x' = 2(A!A-A!Ai) . 

Thus the distorted beam shape in phase space can be written as 

x = ox+ (Ar+6Ar)cos(¢,.,+8c,b,.,), 

x' = 6x' - (Ar+8Ar)sin(¢,,+oc,b,.,), 

y = (Ay+6Ay)cos(</>y+o</>y), 

y' = -(Ay+8Ay)sin(</>y+o</>y), 

11 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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where t5Ay and t5¢y are given by Eqs. (3.16) and (3.18),· t5x and lix' by (3.21) and (3.22) and 

t5A.,,, and ti¢,,, by the differences of Eqs. (3.15), (3.17) and (3.19), {3.20), or 

t5Az: = A![-(A1sin¢,,,-B1cos</J:r) + (A3sin3</J:r-B3 cos3</J:r)] 

-A![(A,sin<P+-B .. cos</J+)-(Adsin</>--Bdcos¢>_)J, 

t5</J:r: = Az: [ (Ai cos c/>:r + B1 sin </Jz) + ( A3 cos 3</J:r + B3 sin 3</J:r)] 
A2 

- ~[(A,cosc/>~+B .. sin</J+) + (Adcos</J_+Bdsin<P-)]. 

3.2 Second-order Tuneshifts 

(3.27) 

(3.28) 

The first-order perturbation produces no tuneshifts. The reason, as in the case of skew 

quadrupoles, is that the first-order term in the perturbation Hamiltonian is of the form 

x 3- 3xy2
• But since cos3 </Jz - 3 cos c/>:r cos2 </Jy averages to zero, there is no resultant shift in 

the tune to first order and we must seek higher approximations. The lowest contribution to 

the tuneshift comes from the second order. From the generating function G3 of Eq. (3.8), 

we get 

and a similar expression for (2I:r:) 112(21y)· Then the second-order terms in the Hamiltonian 

IS 

m' 

[ f3 ( J )2 ""' ( Aim . A3m . ) 
X 9 o 2 z ~ SID qi m + Slil q3m 

m m-v,, m-3v:r: 

( J )( J )/3 ""' ( 2B1m . B+m . B_m . )] 
-3 2 :r 2 Y o~ m-v:r SIIlPtm + m-v+ SlilP+m + m-v_ smp_m 

+... . (3.30) 

If we now consider only the 8-independent terms we obtain 

12 
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Summation over the harmonics leads to the following result 

~ AimBlm ( 1 ~ _ L.., --- COS 0:1m - /31m) = -- L..,(B1s)1c . 
m m-11:1: 247r. k 

(3.32) 

So the tuneshifts given by (2.37) are 

(3.33) 

(3.34) 

4 The Skew Sextupole Term 

4.1 Beam Shape Distortions due to Skew Sextupoles 

\Ve start from the skew sextupole term in the Hamiltonian ( 1.3) 

( 4.1) 

and expand it into harmonics to get 

m 

-(2Jy) 1 1 2 (2J:r)f3~/2 L(2B~m COS 9Im +B~m COS q+m +B~m COS q_m) , (4.2) 
m 

with Pim= a~m -m8+ay, p3m = a;m -m8+3ay, qim = ,B~m -m8+ay, 9±m = {3~m -m8+a±, 

a±= 2a:r±ay, and 

( 4.3) 

13 
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. I 

A' e'L0'.3m 
3m 

_1_ Ls' ei(3Qy+mfl)i. 
247r k k ' 

(4.4) 

'(3' __!_Ls' ei(Qy+mlJ)i. B' ei lm ( 4.5) lm 8 k ' '71" k 

'{3' 2_ :Ls' ei(Q±+mB)i. B~met ±m ( 4.6) 8 k ' 
7r k 

where Q= = 2Q:r: ± Qy. The skew sextupoles are assumed to have infinitesimal length lk 

with strengths 

(
{J;{Jy) 1/2( B;l)i. 

f3o k 2(Bp) . 
(4.7) 

Again here. because we are also interested in the second-order tuneshifts, we shall proceed 

by making a Moser transformation from (au,lu) to (bu, Ju), u = x, y, using the generating 

function 

G ( J J LI) J J (2J )3/2131/2'""' ( JA;m . A;m . ) 3 a:r:, ;i;, ay, y; u = a:i: :i: + ay y + y 0 L sin Pim + sm P3m 
m m-vy m-3vy 

( J )1/2(2J )/Jl/2'""' ( 2B~m . B~m . B~m . ) { ) - 2 y :c 0 L SID qim + SID q+m + sm q_m ' 4.8 
m - Vy m - v+ m - v_ 

where v± = 2v:i: ±Vy. By definition, the new Hamiltonian is 

( 4.9) 

where .:iH4 l •• does not contain any zeroth or first-order terms in s~ or s~. The first-order 

changes in lu and au are given by Eqs. (2. 7) and (2.8). Explicitly they are 

_ { )1/2( ) 1/2'""' ( 2B~m 2B~m ) 51,,--2/y 2I:cf3o ~ m-v .... cosq+m+m-v_cosq_m, 

3/2 1/2 '""' ( 3A~m 3A;m ) Dly = (2/y) /Jo L COS Pim + COS P3m 
m m-vy m-3vy 

( I )1/2( I ){31/2'""' ( 2B~m B~m B~m ) - 2 y 2 :r: 0 L cosq1m + cosq+m - cosq_m , 
m m-Vy m-V+ m-v_ 

c: 2(2/ )1/2/Jl/2'""' ( 2B~m . B:m . B~m . ) oa,, = y 0 L _ srnq1m + _ SlilQ+m + _ smq_m , 
m m Vy m V-r m v_ 

( ( I )1/2131/2 '""' ( 3A~m . A;m . ) vay = -3 2 y 0 L sm Pim + SlllP3m 
m m-vy m-3vy 

( I ) l/2{ )/Jl/2'""' ( 2B~m . B:m · B~m • ) ( lO) + 2 y - 21:i: ~o L . srn qlm + sm q+m - sm q_m . 4. 
m m-vy m-v_,_ m-v_ 
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We shall relate these changes to changes in amplitudes and phases. But first we need to 

simplify ( 4.10) by doing the summation over m. We use again formula (2.18) to arrive at 

-~ei<f>Y(B1 +iA1) , 

-~e3i</>y(B3+iA3), 

-ei<f>Y(B+iA) , 

-ei<f>+(B,+iA,), 

(4.11) 

where <P± = 2¢"' ± c/Jy and the distortion functions are defined by 

( ) 1 '""" S~ ( I ) Bd tP- = . L.- - cos 'lj;_k-t/J- -1f'V_ ' 
2 Slil 7rV_ k 4 

(4.12) 

15 
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where 1/7± = 21/7;r ± 1/1y and 1/7~ and 1/7~ are defined in Eq. (2.21). From Eqs. {2.12) and (2.17), 

we recall that the distortion of the amplitudes A,, and phases <Pu are given by 

( 4.13) 

and 

( 4.14) 

t'sing Eqs. (4.10) to (4.14), we obtain 

6.A,.. = -2.A,..Ay[(A.sinc/>+-B.cos</>+) + (Adsincf>--Bdcos¢i_)J, (4.15) 

6Ay = A~[( Ai sin </>y - B1 cos c/>y) + ( A3 sin 3</>y- B3 cos 3</>y )] 

-A![2(Asinq)y-Bcos</>y) + (A.sin</>+-B1 cos</>+)-(Adsinc/>--Bdcos¢i_)], (4.16) 

6</>r = -2Ay[2(.4 cos </Jy+B sin ¢y) +(A. cos <P++B. sin <P+) +(Ad cos cf>_+Bd sin</>-)] , ( 4.17) 

5</>y = Ay[3( Ai cos <PY+ B1 sin ¢y) + ( A3 cos 3</Jy + B3 sin 3c/>y )] 

- ~ [2(A cos <PY+ B sin </Jy) +(A. cos <P+ +B. sin <P+) +(Ad cos <t>- +Ed sin</>-)] . 

( 4.18) 

The skew sextupoles have an average dipole effect on a charged particle which leads to a 

distortion of the ideal closed orbit. This can be obtained by separating out from Eqs. ( 4.16) 

and ( 4.18), 

6A' y = 2A!( A1 sin </>y - B1 cos </Jy) - 2A!(,4 sin </>y - B cos c/>y) , ( 4.19) 

Ay6<P~ = 2A!( Bi sin c/>y + A1 cos </Jy) - 2A!( B sin c/>y +A cos c/>y) , ( 4.20) 

which correspond to a closed orbit distortion of 

( 
2 - 2 6y = 2 A;r:B - AYBi) ' 

6y' = 2(A;A. - AzA1 ) • 

Thus the distorted beam shape in phase space can be written as 

x = (A,..+5.A,..)cos(</>r+b"</>~), 

x' = -(A..+6.A,..)sin(</>r+o<Pr), 

y = oy + (Ay+8Ay)cos(c/>y-r-6c/>y)' 

y' = 8y' -(Ay+8Ay)sin(c/>y-t-6<Py), 

( 4.21) 

{4.22) 

( 4.23) 

( 4.24) 

(4.25) 

( 4.26) 

where oA;r and 6<f>x are given by Eqs. (4.15) and {4.17), oy and 6y' by Eqs. (4.21) and (4.22) 

and 8Ay and 8</>y by the differences of Eqs. (4.16), (4.18) and (4.19), (4.20), or 

6Ay = A~[;--(A 1 sin c/>y-B1 cos </>y) + (A.3 sin 3¢y-B3 cos 3¢>y)] 

-A![(A,sin</>+-B,cos<f>+)-(,4dsincb_-Bdcos<f>_)], 

16 

( 4.27) 



8 </>y = Ay [ (Ai cos </>y + B1 sin </>y) + ( A3 cos 3</>y + B3 sin 3</>y)] 

- ~ [{ A 11 cos</>++ B 11 sin</>+) + (Ad cos</>-+ Bd sin q'>_ )] • 

4.2 Second-order Tuneshifts 

FN-493 

(4.28) 

As expected from the symmetry between the equations for the normal sextupoles and 

the ones for the skew sextupoles {if one interchanges x and y in the equations for normal sex­

tupoles, one gets the equations for skew sextupoles and vice versa), the first-order tuneshift 

due to skew sextupoles also vanishes. To obtain the second-order tuneshifts, we need to eval­

uate the second-order sextupole terms in the Hamiltonian H4 • From the generating function 
G3 of Eq. ( 4.8), we get 

(2fy) 312 = (2ly) 312 + 9(2ly) 2 ,B~ 12 L lm COSP1m + Jm COSPJm (
A' A' ) 

m m-lly m-3lly 

( )( ) al/2'""' ( 2B~m B~m B' m ) ( ) -3 213! 2ly /Jo L. COS Qlm + COS Q+m - - COS Q-m 4.29 
m m-lly m-ll+ m-ll_ 

and similar expressions for (21y) 112(213!). Then the second-order terms in the Hamiltonian is 

m' 

[ 
a ( l )2 ~ ( A~m A;m ) X 9/JO 2 y L. COS Pim + COS P3m 

m m-lly m-3lly 

( J )( )a ~ ( 2B~m B~m B' m )] -3 2 y 213! /JO L. COS Qlm + COS q+m - - COS Q-m 
m m-lly m-ll+ m-ll_ 

+... . (4.30) 

If we now consider only the fl-independent terms we obtain 

Summation over the harmonics leads to the following result 

L A~~ 
m m-lly 

A '2 2: 3m 

m m-3lly 

--
1
- L(B1s')k , 

727r k 

--
1
- L(Bas')k , 

727r k 

17 
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B '2 L Im 
,.,. m-Vy 

B '2 L +m 
m m-V+ 

B'2 I: -m 

m m-v_ 

'°' A~mB~m ( / (3' ) 1 ""( _1) L --- cos a 1m - tm = -- L B1.s i.. 
m m-vy 247r le 

(4.32) 

So the tuneshifts given by Eq. (2.37) are 

( 4.33) 

and 

( 4.34) 

5 The Octupole Term 

5.1 . Beam Shape Distortions due to Normal Octupoles 

The normal octupole term in the Hamiltonian ( 1.3) is 

6-H! = RB:' [(f3z) 2

x4- 6f3:1:f3yx2 2 + ((Jy)
2 

4] 3 
oct 24(Bp) f3o f3J y f3o y ( 5.1) 

If we expand this into harmonics, we get 

m 

-(2fz)(2fy)(Jo L(2B!:i COS Porn -2Bzm COS P:rm 
m 

+2Bym cos Pym+ B+m cos P~m ~ B_m cos P-m) 

+(2fy)2 f3o L(3A~ COS rm+ -1.~zm COS T2m + A4m COS T4m) , ( 5.2) 
m 

where qom = g!!i - mfJ, q2m = g 2,.,. - mO + 2a;r, q4m = g 4m - mfJ + 4a:r, Pam fJ! - mO, 
Pa:m = f3rm-m8+2a:i:, Pym= (3ym-m8+2ay, P--,m "- 3~m-m8+2a+, P-m = f3-m-m8+2a_, 

Tom= a!!i-mO, T2m = n2m-m8+2ay, T4m = 04m-m8+4ay, a±= az±ay, and 

18 
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A e'l.Q:4m 
-4m 

_1_ L m ei( 4Q:i:+m9)11: 
647!" k - le 

'(10 3 . (J Bo ez m -L:m ezm le m 327!" k le ' 

B:i:meif3zm _3_ L m ei(2Q:i:+mfJ)1e 
327!" le le ' 

B eif3ym 
ym 

_3_ L m ei(2Qy+mlJ)1e 
327!" k le ' 

B±meif3±m _3_ L m ei(2Q± +mfJ)1e 
327!" le le ' 

·-0 1 . (J Ao eiam -l:mkeim le' m 
647i k 

A eia2m 2m _1_ L iii ei(2Qy+m9)1c 
647!" k k ' 

A eia4m = _1_ L m1cei( 4Qy+m9)1c ' ( 5.3) 4m 
647i k 

with Q± = Q:i: ± Qy. The normal octupoles are assumed to have infinitesimal length lk with 

strengths 

m = ((3;)(B;1
t)1c 

- k f3o 6( B p) ' 
( 5.4) 

For the first-order beam shape, we shall solve the equations of motion obtained from the 

Hamiltonian H3 to first order, instead of performing a Moser transformation. This is because, 

unlike the previously analyzed rnultipoles, normal octupole has a first-order tuneshift which 

can and will be calculated directly from the Hamiltonian H3 • 

The equations of motion are given by 

~; = - ~~: = (2I:i:)
2

f3o ~?8~2m sin q2m +4~4m sin q4m) 

-(21:r)(2fy)f3o L(4B:rm sinP:i:m +2B+m sin P~m -2B_m sinP-m) , 
m 

dly = - aaH3 = -(21:i:)(21y)f3o L(4Bym sinpym -2B_m sinP+m 
d(J ay m 

-2B_m sin P-m) + (2!y) 2f3o L(BA2m sin r2rr.. - -L~4m sin T4m) , 
m 

( 5.5) 

( 5.6) 

-2(2fy)f3oL)2B~ COS Pom +2B:rm COSP:z:m -2Bym COS Pym +B+m COS P+m +B-m COS P-m) , 
m 

( 5. 7) 

~y a~ ~ o - = -- = Vy - 2(2/":r)f3o L-(2Bm COS Porn - 2B:rm COS P:rm + 2Bym COS Pym+ B+m COS P+m 
dfJ Bly m 

19 
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+B-m COS P-m) + 4(2Jy)/3o 2:(3.A~ COS qom +4A2m COS 7'2m + A4m COS7'4m) . (5.8) 
m 

The solution of Eqs. (5; 7) and (5.8) gives, in the absence of octupoles, au = vufJ+ constant. 

Again, we choose 

(5.9) 

where 1/Ju is the Floquet phase at position(} and <Pu is the instantaneous phase of the betatron 

oscillation. Since we are interested in solutions accurate up to lowest order in I!11o, m1o and m1o 

only, on the right hand sideofEqs. (5.5) to (5.8), I"' and ly can be considered as 8-independent 

and Eq. ( 5.9) can be substituted for au. Then we can integrate all four differential equations 
easily. Denoting by c the deviation from the situation where the octupoles are absent, we 
obta.in 

C:J ( J )2 a ' ( 8~2m 4~4m ) o "' = 2 a: /JO L.. COS q2m + COS q4m 
m m-2v"' m-4vr 

( )( ) '( 4Bzm 2B+m 2B_m ) { ) - 2/z 2/y /3oL..... COSPzni+ COSP+m+ COSP-m , 5.10 
m m-2v"' m-211+ m-2v_ 

( ) ' ( 4Bym 2B+m 2B_m . ) Cly= - 2/"')(2/y f3o L.. COS Pym+ COSP+m - COSP-m 
m m-2lly m-211+ m-211_ 

( )2 ' ( 8A2m 4A4m ) + 2/y /30 L.. COS 7'2m + COS 7'4m 
m m-21.ly m-4vy 

(5.11) 

c: ( J )(3 ' ( 3~! · 4~2m • ~4m · ) o az = -4 2 "' o L.. -- sm qoni + . sm q2m + sm q4m 
m m m-2v"' m-411"' 

( I )/3 ' (2B! . 2Bzm . +2 2 y o L.. -- SlilPom + smpzm 
m m m-2v"' 

2Bym . B+m . B_m . ) + smpym + SlilP+m + SlilP-m ' 
m-2vy m-211+ m-211_ 

(5.12) 

c: ( I )(3 , (2B! . 2Bzm . uay = 2 2 "' 0 L.. -- smpom + SlilP:rm 
m m m-2llz 

2Bym . B+m . B_m . ) + smpym + SlilP+m + SlilP-m 
m-2vy m-211+ m-211_ 

( )(3 ' (3A~ . 4A2m . A4m . . ) -4 2fy O L.. -- SID Tom + Slil 7'2m + Slil 7'4m , 
m m m-2vy m-41.ly 

(5.13) 

where II± = Vz ± Vy· Finally we are going to perform the summation over m, using for­

mula (2.18). This yields the following results 

e2i</Jz 
--

4
-(B2 + iA2), 

. e 4i</>z 
--

4
-(B1 + iA1) , 
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B . 3e2i¢z L :r:m e"'P:r:m 
2 

(Bs + iAs) , 
m m - 2v:r: 

L B+m eiP+m 
3e2i¢+ 

-
2 

( B3 + iA3) , 
m m - 2v+ 

L B_m ip 3e2ief>_ 
e -m 

2 
(B4 + iA4) , 

m m - 2v_ 

B . 3e2ir/>y L ym eipym 
2 

(Bs + iAs) , 
m m - 2vy 

L A2m eZT2m 
e2ir/>y 

--
4
-(Bs + iAs) , 

m m - 2vy 

L A4m eir4m 
e4ir/>y 

(5.14) ---(B1 + iA1), 
m m - 4vy 4 

where 4>± = <P:r: ± </Jy and the various sets of distortion functions are defined as follows 

A1{4t/Jz) = B~(4t/Jz), 

B2(2t/Jz) = . l L J!l.1e cos2(t/J~1e-t/Jz-7l'llz) , 
2 sm 71'2Vz k 8 

A2(2t/Jz) = B;(2t/Jz) , 

B3 (21/J+) = . 
1 L m1e cos2(1/J~1e-t/J+-11"v+), 

2 sm 71'2v+ k 8 

A3(21/J+) = B~(21/J+) , 

B4(2t/J_)= . 
1 I:m"'cos2(t/J~1e-t/J--7l'V_), 

2 sm 71'2v_ k 8 

A4(2t/J_) = B~(2t/J_) , 

Bs(2t/J:1:) = . 
1 L m1e cos2(t/J~1e-t/Jz-7l'll:z:) , 

2 sm 71'2Vz k 8 · 

As(2t/Jz) = B~(2t/Jz) , 

Bs(2,Py) = . 
1 L m1e cos2(t/J~1e-t/Jy-11'V11 ), 2 sm 71'2v11 k 8 

A6(2t/Jy) = B~(2t/Jy) , 

Br( 41/Jy) = . 
1 L m1e cos 4( t/J~1e - ,,Py- 1rvy) , 

2 sm 71'4v11 k 8 
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(5.15) 

Here, again ,,P~ and ,,P~ are defined by Eq. (2.21). 

We recall that the distortion of the amplitudes Au and phases <Pu are given by o.A,, = 

8(2Iuf3o) 2 and O</>u =Dau. Then using Eqs. (5.10) to (5.13) and (5.14) we arrive at 

oA., = A;[(A1 sin4¢.,-B1 cos4</>.,) + 2(A2 sin2</>.,-B2 cos2¢.,)] 

-3ArA~[2(As sin 2</>., - B 5 cos 2¢.,) + (A3 sin 2¢>+ -B3 cos 2</>+) + (A4 sin 2</>- -B4 cos 2</>-)], 

(5.16) 

o Ay = -3A;Ay [2( A 6 sin 2</>y - B 6 cos 2</>y) _.;._ ( .43 sin 2</>+ - B3 cos 2</>+) 

-(A4 sin 2</>- -B4 cos 2</>-)] + A~[2(.48 sin 2</>y-Bs cos 2</>y) + (A1sin4¢y-B1cos4¢y)] , 

(5.17) 

0¢., = A;[(B1 sin4</>.,+A1 cos4</>.,) + 4{B2 sin2</>.,+A2 cos 2¢.,)] 

-3A~ [2( Bs sin 2</>:r + A5 cos 2</>.,) + 2( B6 sin 2</>y + A6 cos 2¢y) 

+(BJ sin 2</>+ + A3 cos 2¢+) + ( B4 sin 2¢_ 7 .44 cos 2¢_)] , 

o</>y = -3A;[2(B5 sin 2</>.,+A5 cos 2</>.,)-+- 2(B6 sin2</>y+A6 cos 2</>y) 

+ ( B3 sin 2</>+ + A3 cos 2</>+) + ( B4 sin 2¢_ ...._ A.1 cos 2¢_)] 

+A~[4(A8 cos 2</>y + B8 sin 2</>y) + (A 7 cos 4</>y +B1 sin4</>y)] . 

(5.18) 

(5.19) 

Here we would like to comment on those terms of Da-:r: and Day in Eqs. (5.12) and (5.13), 

whose denominator is m. Even though they seem to diverge when m = 0, this should not 

be the case because they really come from the Hamiltonian (5.1) which is a finite quantity. 

In fact, there is a missing term in Eqs. (5.12) and (5.13) corresponding to the lower limit, 

00 , of integration over the angle 8. So in reality these "divergent-like" terms are of the form 

Lm(eimO -eim80 )/m which does not diverge form= 0. This lower limit of integration 80 , 

determines the position around the ring where the initial conditions are considered. So, in 

general, there will be one more term contributing to the expression for 6¢., and o</>y which 

will be some complicated function of 8. 
In the particular case of integration of the equations of motion over exactly one turn 

around the ring, one obtains an interesting, though expected, result. Recall that the origin 

of the "divergent-like" terms is the part of the Hamiltonian which is independent of the 

angle variable, a. If one writes the equations of motion for a., and ay for this part of the 

Hamiltonian and integrates them over one turn, one gets 

(5.20) 

and 
I 3 2L . 3A2L -oa =--A mk -r - mk . 
y 4 "' 8 y 

k k 

(5.21) 
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As we shall see in the next section these expressions are just the first-order tuneshifts (in 
units of 27r ). This particular ca.se represents the experimental reality more closely. Indeed, 

one usually chooses a point around the ring as the observation point and then one follows 

the behavior of the beam at this same point for every turn. In this case the expressions for 

the phase distortions are simply given by the sum of Eqs. (5.18) and (5.20) for the horizontal 

plane and the sum of Eqs. ( 5.19) and ( 5.21) for the vertical plane. 

5.2 First-order Tuneshifts 

In the case of a normal octupole, there exist first-order terms in the Hamiltonian ~H3 loct 

which are 8-independent and yield a first-order tuneshift. The 8-independent part of ~H3 loct 

lS 

If we recall Eqs. (5.3) we find that 

So ~H~ loct becomes 

And the tuneshifts are 

A 0 cos o:0 
-0 -0 

A0 cos a0 
0 0 

B 0 cos ao o JJo 

(5.22) 

(5.23) 

( 5.24) 

( 5.25) 

Recalling that the amplitudes Ar and Ay are Ar = (21:1:{30 )
112 and A.y = (2ly/30)1l2, we arrive 

at 

( 5.26) 

and 
( 5.27) 
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6 The Skew Octupole Term 

6.1 Beam Shape Distortions due to Skew Octupoles 

We recall that the skew octupole term in the Hamiltonian (1.3) is 

- - RB~' [(f3;/3y) 1/2 3 - (/3z/3;) 1/2 3] 
LlH3 /so- 6(Bp) /3~ X Y /3~ xy (6.1) 

If we expand this into harmonics we get 

m 

+AJ+m COS qJ+m + A3-m COS q3-m) 

+(2ly)312 (2J:z:) 112 j3o ~]3BI+m COS PI+m + 3B1-m COS Pl-m 
m 

+ BJ+m COS P3+m + B3-m COS P3-m) 1 (6.2) 

where ql+m = 0:1+m -m8+a+, q1-m = 01-m -m8+a_, q3+m = a3+m -m8+3a:z: + ay, 'q3 _m = 
0'.3-m-m8+3a:z:-ay, PI+m = /31+m-m8+a+, P1-m = /31-m-mO+a_, P3+m = f3J+m-mfJ+a:z:+3ay, 
P3-m = ,83-m -mfJ+a:z: - 3ay, a± = a:z: ± ay, and 

A eia1+m 
l+m 

_l_Lm ei(Q++mO)k 
1611" k k ' 

A eia1-m 
1-m 

_l_Lm ei(Q-+m8)k 
1611" k k ' 

A eia3+m 
3+m 

_l_ L m ei(3Q:z:+Qy+mO)k 
1611" k k ' 

A eia3_m 
3-m 

_1_ L m ei(3Q:z:-Qy+mfJ)k 
1611" k k ' 

B1+mfi/31+m _l_ Lm ei(Q++mO)k 
1611" k k ' 

B ei/31-m 1-m 
_l_ L m ei(Q-+mO)k 
1611" k k ' 

BJ+mfi/33+m _1_ L mkei(Q:z:+3Qy+mO)k ' 
1611" k 

B eif33-m _1 __ L mkei(Q:z:-3Qy+mO)k . (6.3) 3-m 
1611" k 

where Q=. = Q:z::::: Qy. Again here we assume skew octupoles with infinitesimal length fk 

and strengths 

(
/3:z:/3;) 

112
( B~'l)1t 

(3J 6(Bp) . (6.4) 
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Skew octupoles induce a second-order tuneshift, which we would like eventually to calculate. 

So instead of solving the equations of motion obtained from H 3 , we proceed by making a 

Moser transformation from (au,lu) to (bu, Ju), u = x,y, using the generating function 

( 6.5) 

where II± = 11"' ± lly· So the new Hamiltonian H4 is 

(6.6) 

where Cl.H4 lso does not contain any zeroth or first-order terms in mk and mk. The first-order 
changes in lu and au which are given by Eqs. (2.7) and (2.8) are explicitly the following 

c- _ { )3/2( J )1/2{3 """" [ JA1+m 3.41-m ~ 3A3+m COS q3+m ol,, - - 2Jz 2 y o L.., COS Qi+m + COS Q1-m ( ) 
m m-v+ m-v_ m- 3vz+vy 

3A3-m ] , ( )3/2( )1/2{3 """" [3Bl+m + ( ) COS q3-m T 2fy 21"' o L.., COS Pt+m 
m-3~-~ mm-~ 

3B1_m B3+m B3-m ] 
+ COS Pl-m + ( ) COS P3+m + ( ) COS P3-m , 

m-v_ m- Vz+311y m- Vz-3Vy 
(6.7) 

'°] _ (2/ )3/2( 2J )1/2{3 """" [ JAl+m , 3A1-m A3+m COS Q3+m 
o y - "' y o L.., - COS Q1+m I COS Q1-m - ( ) 

m m-~ m-~ m-3~+~ 

, A3-m ] ( )3/2( )1/2{3 """" [ JBl+m I ( ) COS Q3-m - 2fy 2l;r; O L.., - COS Pt+m 
m-3~-~ m m-~ 

3B1_m 3B3+m 3B3-m ] 
+ COS P1-m - ( ) COS P3+m + ( ) COS P3+m , 

m-v_ m- Vz+3vy m- Vz-3Vy 
(6.8) 

c- ( I )1/2( I )1f2(3 """" [3A1+m . , 3A1-m . A3+m sin Q3+m 
oa,,=32"' 2y OL.., SlilQi+mT S1IlQ1-m+ ( ) 

mm-~ m-~ m-3~+~ 

A3-m . l ( I )-1/2( I )3/2a """" [3Bl+m . + ( ) sm q3-m - 2 "' 2 y /JO L.., sm Pt+m 
m-3~-~ mm-~ 

3Bi-m . B3+m . B3-m · ] + sm P1-m + ( ) sm P3+m + ( ) sm P3-m , m-v_ m- 11,,+3vy m- 11"'-311y 
( 6.9) 

_112 3; 2 """" [3At+m . 3.41-m . A3+m sin QJ+m 
8ay = (21y) (2Jz) f3o L.., sm ql+m + sm ql-m + (J ) 

m m-~ m-~ m- ~+~ 

A3-m. . l ( I )1/2( I )t/2(3 """" [3Bi+m . + ) sm Q3-m - 3 2 "' 2 y 0 L.., - SlilPt+m 
m-(3vz-lly m m II+ 
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3Bt-m . B3+m . B3-m • ] ( ) 
+ SlilPt-m+ ( )SinPJ+m+ ( )SinPJ-m . 6.10 m-v_ m- v:i:+3vy m- Vz-3Vy 

These changes will yield the changes in amplitudes and phases. But let us first simplify 

Eqs. (6.7) to (6.10) by performing the summation over the harmonics with the aid of for­
mula (2.18). The result of the summation is 

L Al+m eiql+m 
m m-v+ 

L Ai-m eiq1-m 
m m-11_ 

L A3+m eiq3+m 
m m-(3v:i:+vy) 

L A3-m eiqa-m 
m m-(3v:i:-vy) 

L Bl+m eiPI+m 
m m-V+ 

L B1-m eiP1-m 
m m-v_ 

L Ba+m eiPa+m 
m m-(v:i:+3vy) 

where cP± = cPz ± cPy· The various sets of distortion functions are 

Ai,2(31/i:i:±'l/i11) = B~. 2 (31/i:i:±'l/iy), 

B3( 1/i+) = -
2 

. 
1 L ms,. cos( ¥i~1c-l/J+-n-v+) , 

Slil 7l"V+ le 

.Aa( iP+) = B;( 1/i+) , 

B4 (1/i-) = - . 
1 L m1c cos('l/i~1c-7/J- -n-v_), 

2 sm n-v_ k 8 

As,s( 1/i±) = B~,6 ( 1/J±) , 

(6.11) 

B1,8 (1/J:i:±3'¢y) = - ·. ( 1 
) L m1c cos[('l/i~1c±31b~k)-(.,P.,::::3'¢y)-7r(v.,±3vy)] , 

2 sm 11" Vz ± 3vy . k 8 
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(6.12) 
where W± = 1/J:z: ± 1/;y and 1/J'x and 1/J~ are defined in Eq. (2.21). 

Recalling that the distortion of the amplitudes and phases are given by Eqs. (2.12) and 

(2.17) and using Eqs. (6.7) to (6.11), we arrive at 

oA:,, = 3A!Ay{( A3 sin</>+ - B3 cos</>+) + ( A4 sin cf>- - B4 cos</>-) 

-: A1 sin (3</>:z: + </>y )- B1 cos (3</>:z: + </>y )] + [A2 sin (3</>:z: - </>y )- B2 cos ( 3</>z - </>y)]} 

-A~ {3( As sin cf>+ - B5 cos cf>+) + 3( As sin cf>_ - B6 cos <1>-) 

-:--[A 1 sin ( </>z + 3</>y) - B1 cos ( ef>,., + 3ef>y)] + [As sin ( ef>,., - 3</>y) - Bs cos ( ef>z - 3</>y)]} , 

oAy = A!{3(A3sin</>+-B3cos</>+)-3(A4 sinef>_-B4 cos<f>_) 

~ [ A1 sin (3</>z + c/>y )- B1 cos (3¢z + c/>y)] - [A2 sin (3</>z - c/>y )- B2 cos (3</>z -</>y)]} 

-3A..,A!{(As sin</>+ -Bs cos</>+) - (As sin 4>- -B6 cos <I>-) 

~[A1 sin ( ef>,.,+3c/>y)-B1 cos ( ef>,.,+3</>y)] - [As sin ( ef>z-3</>y)-Bs cos ( c/>z-3<l>y}]} , 

6</>"' = 3A:,,Ay{3(.43 cos cf>++ B3 sin</>+)+ 3(A4 cos</>-+ B4 sin</>-) 

-:-[ .41 cos (3</>z + </>y) + B1 sin (3</>z + c/>y)] + [A2 cos (3¢,., - </>y) + B2 sin (3</>z - </Jy)]} 
A3 

- ~ { 3( A5 cos cf>++ B5 sin cf>+) + 3( A6 cos cf>- + B6 sin <P-) 

-[ A1 cos ( ¢z + 3</>y)+ B1 sin ( </>,.,+ 3</>y )] + [As cos ( </>,., -3</>y) + Bs sin ( </>z -3</Jy)]} , 

o </>y = ~ { 3( A3 cos </>+ + B3 sin </>+) + 3( A4 cos </>- + B4 sin </>-) 

-:-[A 1 cos ( 3</>z + </>y) + B1 sin ( 3</>z + </>y)] + [ A2 cos ( 3</>,., - </>y) + B2 sin ( 3</>z - </>y)]} 

-3Az.Ay{3(As cos</>++ Bs sin</>+)+ 3(As cos ef>_ +Bs sin <I>-) 

- [A 1 cos ( </>,., + 3</>y) + B1 sin ( </>,., + 3</>y)] [As cos ( </>z - 3c/>y) + Bs sin ( ¢,., - 3</>y) j} . 

(6.13) 

6.2 Second-order Tuneshifts 

Skew octupoles do not produce any first-order tuneshifts. The first-order perturbation 
Hamiltonian which has the form x 3y-xy3 or cos3 ef>z cos </>y ~cos </>z cos3 </>y averages to zero, 
therefore the first-order tuneshift vanishes. In order to obtain the second-order tuneshifts 
we need to evaluate the second-order terms in the Hamiltonian H4 • From the generating 
function G3 of Eq. (6.5), we get 

(2Jz)3/2(2/y)l/2 = (2Jz)3f2(2Jy)l/2[1 - 3,Bo{2Jz)lf2(2Jy)l/2 X 

~( 3Al+m 3A1-m 
X L..J COS ql+m + COS qi-m + ... 

m m-v+ m-v_ 
(6.14) 

and similarly for (2Iy)312(2Iz)112. Then we can write the second-order terms in the Hamil­
tonian and from them keep only the IJ-independent terms which are 

!:::.H~ lso= (2J:z:)2(2Jy),B;L {~ [9Ai+m + 9ALm + 3A;+m + 3ALm l 
m 2 m-v+ m-v_ m-(3v:z:+vy) m-(3vz-vy) 
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If we sum over the harmonics we obtain 

~ AI+mBI+m ( 1 ~( _) Li ----COS f31+m -O:i.,.m) = - L,, B3m k , 
m m-V+ l67r k 

~ Ai-mB1-m ( 1 ~( _ ) 
Li---- COS /31-m - 0:1 -m) -= - L,, B4m k • 
m m-v_ l67r k 

(6.16) 

Now we are in a position to calculate the tuneshifts 

28 



FN-493 

( 6.17) 

and 

7 Applications 

Here, we present some examples in order to, first illustrate how these formulre can be 

used and second to show the degree to which canonical Hamiltonian formalism provides a 
faithful description of the nonlinear effects on the motion of the beam in the machine. In 

the first example, the above formulation will be used to display the beam shape distortions 

due to sextupoles which will be compared with experimental data. In the second example, 

we show how one can have control over the amplitude dependence of tune using a set of 

octupoles. 

7 .1 Beam Shape Distortions 

In 1985 some studies of the perturbation of the motion by nonlinearities were made in 

the Fermilab Tevatron. 5•6 •7 In particular, 8 normal sextupoles at stations 32, 34, 36, 38 in C 

and F sectors were powered in pairs so as to excite the resonance at the betatron oscillation 

tune of 19 1/3. The Tevatron injection kicker produced a horizontal betatron oscillation 

with an initial amplitude such that a particle at the centroid would perform a stable motion 

close to the separatrix. Figure 1 is the phase space plot of the motion described above with 

small-amplitude tune 19.34 in dots. The horizontal axis is displacement x from the central 

orbit in mm. The vertical axis is x' normalized to mm. 

There was no oscillation induced in the vertical plane, hence the vertical motion was much 

smaller than the horizontal. Also, there was practically no linear coupling in the machine. 

Within these bounds (the absence of both vertical motion and coupling), the problem can be 

simplified to the study of only one plane instead of 4-dimensional phase space. Even though 

it may seem as a digression, we will proceed with the justification of our assumption on the 

absence of linear coupling. 
In a machine, where the only nonlinearities are introduced by normal sextupoles, and 

where the vertical motion is negligible compared to the horizontal, linear coupling is intro­

duced through skew quadrupoles only. Indeed, let us start from the Hamiltonian 

1 B' B" 
H1 = ~[P2 +K (s}.X 2] + -[P2 +K (s)Y 21 - ___ :: .\}' ~ _Y_(X 3 -3.,\'T2

). (7.1) 
2 x z: 2 Y Y · Bp 6(Bp) 
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. .. "' 

Figure 1: Phase space plot from experimental data (dots) and the predictions of perturbation 

theory (solid), in the presence of sextupoles. 
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The equations of motion for X and Y are 

(7.2) 

B' B" y + K (s)Y = _:_x + 2XY. 
Y Bp Bp (7.3) 

From Eq. (7.3) we see that even though we may start from Y = O, a Y-motion can develop 

due to its X-dependence through the skew quadrupole term (B~/ Bp)X. The traditional 

way to minimize the coupling is to adjust the skew quadrupole strength so as to minimize 

the separation of the two observed tune lines (v1 , v2 ) and hence the coupling:5 A measure of 

the linear skew field in the Tevatron is the parameter 

(7.4) 

which can be measured easily from the relation 

(7.5) 

·In this experiment the optimum value of the current through the skew quadrupoles was 

found to be -6.53 A at 400 GeV. The corresponding value of the linear coupling parameter 

was 

lkl ~ .014 (7.6) 

In the presence of a small but not vanishing lkl, resonances of the form V:i: ±Vy= m, m being 

an integer, could be excited (see the skew quadrupole term analysis we did in Sec. 2). In 

order to reduce such a possibility, the tunes were split as far apart as possible so that their 

separation was 

D.v = 0.1014 (7. 7) 

So the Hamiltonian which describes the above experimental situation where both vertical 

motion and x-y coupling are absent is 

1 B" 
H = 2[P;+K:i:(s)X

2
] + B(Bp)X

3
. (7.8) 

This expression comes from the general Hamiltonian ( 1.1) where the only nonlinear contri­

bution comes from the normal sextupole term. 

The equations describing this 'distorted' one dimensional motion are 

x = 6x + (A.r+6A.r) cos(<P:i:+D</J:i:), 

x' = 6x' - (A:.:+cA:.,)sin(</>:r+c<f>:i:), 

(7.9) 

(7.10) 

where cA:., and D</>:r are the distortions of the amplitude A., and phase <P:i: due to normal 

sextupoles and they are given by the one degree of freedom version of Eqs. (3.27) and (3.28) 

correspondingly, namely, 

(7.11) 
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The closed orbit distortions ox and ox' are given by4 

6x' = -2A!A1 . 
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(7.12) 

(7.13) 

(7.14) 

The experimental situation under consideration, with 8 normal sextupoles of 15 amperes 

excitation, corresponds to A.,B1 = 7.09 x 10-4, A.,B3 = -.1064, A.,A1 = -1.88 x 10-3 , 

A.i:A3 = -.1137 at the location of the horizontal beam position monitor HE24. If we use 

these numbers to plot Eqs. (7.~) and (7.10), we obtain the solid curve in Fig. 1 which clearly 
follows the real motion very closely. 

7.2 Tuneshifts 

Let us consider the problem of devising a set of octupoles to control the amplitude 

dependence of tune in both degrees of freedom in Tevatron, without driving any resonances.8 

Octupoles give rise to amplitude dependent tuneshifts which, according to Eqs. (5.26) 
and (5.27), are given by 

(7.15) 

and 

(7.16) 

Let us call 

(7.17) 

since it is a measure of the current through the k-th octupole. So the expressions for the 

t uneshifts take the form 

(7.18) 

and 

27l'~Vy = ~A~ ~)f3;J)k - ~A! I)f3:z:f3y/)k . 
8 k 4 " 

(7.19) 

In one degree of freedom, these expressions are reduced to 

(7.20) 

and so, it is clear that the amplitude dependence of the tune can be controlled by adjusting 

the current h through the octupoles. The next question is to find the octupole configurations 

which do not excite any resonances. Normal octupoles can excite half-integer resonances, 
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2vu = m, u = x, y, or 2{vz ± v11 ) = m, where mis an integer, and quarter-integer resonances, 

4vu = m, u = x, y or 4(v., ± vy) = m [this can be seen easily from Eqs. (5.14)]. However, if 

one chooses the location of the octupoles carefully the resonant driving terms, more or less, 

cancel each other, so the octupole configuration as a whole does not excite any resonances. 

In this particular case, if we power 4 octupoles Oi, 0 2 , 0 3 , 0 4 of the same polarity in series, 

the phase advance between 2 adjacent octupoles being 136°, the contribution to the above 

mentioned resonances is small. A clear way to see this, is by representing graphically the 

contributing terms to the summations of (5.3), 

and 

L l!lkei(2Q:r+m8)k , 
k 

L :rp.kei( 4Q:r+m8)k . 
k 

If we substitute 1/J:r(9)-v:r(J for Q:r, the above sums become 

and 

Ll!lkei[21/J:r+(m-2vz)9]k, 
k 

"m ei[41/J:r+ (m-4v:r)O]k 
L...J - k 

k 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

The summation is over the 4 octupoles. Near the resonances, m - 2v:r :::::: 0 and m - 4v:r:::::: 0, 
so the two sums become really 

(7.25) 

and 
L: l!lkei(41/J:r)k , (7.26) 

k 

which turn out to be small quantities as one can see from Fig. 2. Fig. 2(a) represents 

the contribution to the first sum from each octupole separately as well as the resultant 

contribution, which is indeed small. The horizontal tune is 37 /2 = 19.5. Fig. 2(b) is the 

corresponding vector diagram for the quarter-integer resonance. Here the tune is 77 / 4 

19.25. 
In two degrees of freedom, we would like to control the following 4 quantities 

which are given by the expressions 

h'(27r~v:r) 

h'(A;) 

h'(27r~ll:r) 

6(A~) 
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.'1 
~_,_....., 
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~~---:::::::~---=;;._~~--c:>j01 

(a) (b) 

Figure 2: Vector diagrams showing the driving terms for the resonances (a) 2vi: = 37 and 

(b) 4v:i: = 77. (Recall that the integer part of the Tevatron tune is 19). 

<5'(21r~lly) 

h(A!) 

t5(21rilvy) 

h(A~) 

(7.30) 

(7 .31) 

We see immediately that only 3 out of the 4 quantities above are independent and so it is 

clear that we need to power the octupoles in 3 circuits with currents, say, / 1 , / 2 , /3. Each 

circuit will consist of 4 octupoles, according to the one degree of freedom analysis, so that no 

resonances will be excited. This results in the multiplicative factor 4 in the above expressions. 

Keeping this in mind, the problem takes the following matrix form 

3 (32) 3 2) 3( 2 
t5(21r ~v:i:) 

2 . :t 1 2(/3:i: 2 2 /3;rh 11 
h(A;) 

-3(8;r8y)i -3(/3x/3yh -3(/3:i:/3yh /2 
6(21rilv:i:) 

h(A~) 
(7.32) 

3 . 2 3 2 3 2 f 3 6(27rilvy) 2(,BY)i 2(/3y h 2(/3yh 
h(A~) 

or 
Ml=V. (7.33) 

34 



FN-493 

That is, once we know the matrix M, and we are given 'D, we can solve for the appropriate 
octupole strengths, denoted by the column vector I above. 

So the question now is what the matrix M is, or equivalently, what the positions of the 

3 circuits should be around the ring. 

From Eqs. (7.33), we see that if we want to be able to solve for J, M has to be invertible, 

hence detM ::f: 0. This imposes a constraint on the beta functions at the positions of the 3 

circuits. Specifically 

detM # O {::> 

2
4
7 

{ (,B:rh{,By}i[(,8;)2(,B!h - (,8;)3(,B~hl + 

(,B:r )a(,By h [ (,B; h (,a; h - (,a; )t (,B;hJ + 

(,B:rh{,By)3[(,B~)i(,B;h - (,8;)2(,B;hl} =I 0 . 

The following is a set of sufficient conditions for the above relation to be true, 

or 

or 

( 7 .34) 

(7.35) 

(7.36) 

(7.37) 

This means the ratios of the horizontal to the vertical beta function in any two circuits should 

be different from each other. The solutions given above are in consistency with the situation 

at the Tevatron where 2 of the octupole circuits are placed at (,B:rh = lOOm, (,By) 1 = 28m 

and (,B:rh = 28m, (,Byh = lOOm. 

Finally we would like to add one more comment. From the matrix form Eq. (7.32), we 

observe that the optimum situation is when each element of Vis controlled fully by just one 

of the 3 circuits and not by a linear combination of all 3 of them. This translates into M 
being a diagonal matrix. Since it is impossible for M to be exactly diagonal, we can search 

for solutions where the diagonal elements of M are considerably larger than the off-diagonal 

ones. In fact, all we need is that the (1,1) element qf M be much larger than the (1,2) 

and (1,3) elements. Similarly the (2,2) element be much larger than the (2,1) and (2,3) and 

the (3,3) element be much larger than the (3,1) and (3,2). Unfortunately a quick inspection 

shows that such a solution is impossible. So, one can not have an independent control over 

the tune variations with amplitude in the two degree of freedom case. 

However, one can think of a situation where the (1,1) element is larger than the (1,2) 

and (1,3), so it controls most effectively the first element of V, while (1,2) and (1,3) provide 

the "fine tuning." Hence in the Tevatron, for example, one could place the first octupole 

circuit at a (,B:r)i of approximately lOOm (in the neighborhood of focusing quadrupoles) and 

(,By)i::::: 30m, while the ~econd circuit could be at,(,B:rh :::::70m, (,By)2 :::::70m, and the third at 

(.B:rh :::::30m (in the neighborhood of defocusing quadrupoles) and (/3yh :::::lOOm. 
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Remarks 

1. Usually the strength of a normal multipole is much bigger than that of the corre­

sponding skew multipole. Therefore, the tuneshifts due to skew multipoles are much smaller 

and can be neglected in most cases. Furthermore, the tuneshifts due to normal octupole are 

of first order while those due to a skew octupole are of second order. Thus the latter can be 

neglected. 
2. There is no closed orbit distortion due to skew quadrupoles, octupoles and skew 

octupoles. In all these cases the jumps that x' and y' undergo when the particle crosses the 
multipole, are such that they average to zero. 

3. A derivation of the generating function G3 is given in the appendix of Ref. 4. 

4. A more straightforward derivation of the distortion functions is given implicitly in 
Ref. 9. Starting from the Hamiltonian expressed in terms of action-angle variables, one 
integrates the equations of motion directly to get the distortion of the amplitudes and phases. 

From these expressions the distortion functions can be read out readily. Even though it may 

seem that the derivation we followed throughout this paper is unnecessarily elaborate, there 
is an advantage to the method: By expanding the multipole terms into harmonics and then 

summing them up, one can understand and treat the resonance cases much easier. All is 
needed is to keep the resonance term and neglect the rest of the harmonics. 
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