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I. INTRODUCTION 

When an amount of energy is deposited on a superconducting cable, the first 
reaction is a local rise in temperature and a drop in critical current density. The 
superconductor may not be able to carry all the operating current and part of it sees 
a resistivity and sets up a potential along the cable. Further heat will be generated 
with a further increase in temperature. This cascade can eventually lead to a quench, 
unless this heat can be conducted away rapidly or sufficient cooling is provided. Thus, 
a cable made up of purely superconducting material is highly unstable. A practical 
superconducting cable contains many strands, each of which consists of a matrix of 
superconducting filaments embedded in copper. Having a much lower resistivity than 
superconductor in the normal phase, the copper will carry most of the excess current 
and set up a much lower potential along the cable. As a result, the heat generation 
will be very much reduced. Also, having a much higher thermal conductivity than 
the superconducting material, the excess heat can be conducted away more efficiently 
along the cable and to the surface of the cable to be cooled by the surrounding helium 
bath. If the amount of energy deposited on the cable is small, the disturbance will 
subside. On the other hand, if the amount of energy deposited is big, the disturbance 
will grow along the cable and we have a quench. 

There are two types of disturbances. A_point disturbance is an amount of heat 
deposited on a very short length of the cable. The quenching of the cable is caused 
by the spreading of the disturbance. On the other hand, a distributed disturbance is 
referred to as heat added rather uniformly on a big length of the cable. The effects 
of the latter are generally well understood and should not cause any serious problems 
if they are fully taken into account at the design stage. Here, we are dealing with 
point disturbances only. We hope to compute the minimum amount of heat in a 
point disturbance that will start a quench. Obviously, the amount of heat required to 
quench a strand will depend on the copper-to-superconductor ratio in the strand, the 
copper resistivity, the copper thermal conductivity, and the heat transfer coefficient 
at the strand's surface. A knowledge of these dependencies will definitely be beneficial 
to the design of a superconducting cable. 

The above problem involves the solution of a time-dependent heat flow equation. 
The result will depend critically on the initial condition or how the amount of heat is 
deposited onto the cable, for example, the time duration of the heat deposition and 
its distribution along the cable. The steady-state solution is much simpler. But it is 
of not much help. This is because heat is constantly generated in the cable strand 
and it takes a long time for an equilibrium steady state to establish. As a result, 
the energy contained in the steady-state solution may be very much larger than the 
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energy in the original point disturbance and therefore does not reflect the minimum 
energy required to start a quench at all. In the absence of surface cooling, nontrivial 
steady-state solution does not even exist for an infinitely long one dimensional cable. 

We have studied the time evolution of a concentrated disturbance. If the initial 
energy of the disturbance is small, the disturbance temperature profile spreads out, 
approaches a critical temperature profile slowly, and subsides eventually as shown in 
Fig. l(a). If the energy in the disturbance is big enough, the disturbance also spreads 
out until it reaches a critical profile. After that, however, the temperature rises 
everywhere resulting in a quench as shown in Fig l(b ). In both cases, no nontrivial 
steady state has been reached. These results inspire us to study propagating solutions 
instead. They are heated zones whose temperature grows at all points along the 
cable. The propagating solution which contains the least energy is called the minimum 
propagating zone (MPZ). 1 In Section III, these propagating zones are approximated 
using the steady-state heat flow equation. We find that the energy in the approximate 
MPZ gives the correct order-of-magnitude estimate to the minimum energy required 
to cause a quench. 

In Section II, we list and define all the input information required in the heat 
flow equation. The results of the computation are discussed in Section IV. Finally, in 
Section V, some remarks and conclusions are given. 

II. INPUT INFORMATION 

This computation was performed specially for the superconducting cable of the 
Superconducting Super Collider (SSC) dipoles (the C358A Cross Section), although 
it can be applied to other cable as well. 2 Some preliminary results have been reported 
in Ref. 3. 

11.1 Maximum magnetic field seen by cable 

A strand of the C358A Cross Section cable has 

radius a 0.404 mm 
number of superconductor filaments N "" 11000 

copper-to-superconductor ratio r 1.3 . 

For the inner coil of the dipole, there are S = 23 strands in the cable which carry a 
total operating current of lop 2'! 6.5 kA at bath temperature 80 "" 4.2 K. The magnetic 
flux density B0 at the center of the beam pipe is given by 

(2.1) 
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The maximum magnetic field Bmax seen by the cable is usually in the inner part of 
the extreme bottom or top turn of the coil. It is related to Bo by 

(2.2) 

In above, the transfer function f(Iop) and the maximum flux ratio m(I0 p) depend, for 
a magnet design, on the geometry of the coils, collars, and yoke, and the magnetic 
properties of the materials. For C358A, they are supplied by Wanderer:4 

I _ 1.1372 - 0.01861! 
J( ) - 1+0.045exp(-0.00235J4) ' 

m(I) = 1.0490 + 0.00107(!- 5.5) [1- e-1.56(! - 5.5)] , 

where the current I is in kA. 

11.2 Thermodynamic surface for NbTi material 

The maximum current that can flow in a superconducting cable of the C358A 
Cross Section at temperature e with transverse magnetic flux density B in the super
conducting phase has been measured by Morgan5 and is given by 

Ic(B, 0) = Ic(SP) (1 + P2u + P3u2 + P4u3) ( 1 + P5v ) , (2.3) 
1 + Psv 1 + P1v + Psv2 

where u = 0- 4.2 in K, v = B - 5.0 in teslas, P2 , •• • , P8 = -0.35424, -0.023346, 
0.0061392, -0.15335, -0.2108, 0.0065461, -0.016687, respectively, I,(SP) = 13.39 kA 
is the critical current in the cable consisting of S = 23 strands at 4.2 Kand 5.0 teslas. 

The performance of superconducting wires usually falls short of what might have 
been expected from the results on short samples of the material. This effect is known 
as "coil degradation." In Morgan's measurement, the degradation was D ~ 0.05. 
There, the critical current density of NbTi is 

. ( ) I,(B,O) 
J, B,e = >.SA(l - D) ' 

where A = Ka2 is the cross sectional area of a strand, and 

,\ = _1_ 
l+r 

(2.4) 

(2.5) 

is the fraction of superconductor in the strand. Equation (2.4) is called the thermo
dynamic surface of the NbTi material in the cable; it separates the superconducting 
phase from the normal phase. 
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In operation, of course, all the current will flow in the superconductor filaments 
only. The current density in the filaments j 0 p is therefore given by 

lop= .\.SAjop • (2.6) 

As an example, at operation current l 0 p = 6.5 kA and copper-to-superconductor 
ratio r = 1.3, j 0 P = 1.27 x 109 A/m2

. The magnetic flux density at the center of the 
beam pipe is, from Eq. (2.1), B = 6.6015 T. Then, the maximum magnetic flux density 
seen by the cable is, from Eq. (2.2), Bmax = 6.9305 T. The thermodynamic curve, given 
by Eq. (2.3) at Bmax. separating the superconducting phase and the normal phase is 
shown in Fig. 2. There, we have also plotted the point of operation at B0 = 4.2 K. 
The critical current density at B = 4.2 K is found to be ic = 1.71x109(1-D) A/m2

, 

where D is the coil degradation. 

II.3 Heat generation 

Below, we shall deal with the superconducting cable at maximum magnetic flux 
density Bmax. because the critical current density is smallest there. When the tem
perature is raised to B > B9 (Fig. 2), the critical current density 1AB) = jc(Bmax, B) or 
the maximum current density that can be carried by the NbTi in the superconducting 
phase is less than jop· The leftover current .\.A[j0 p - ic(B)] (for a strand) has to flow 
either in the copper or the NbTi filaments in the normal state. However, since NbTi 
in the normal state has a resistivity of Psc ~ 6.5 X 10-7 f!m at ~7 T and 4.2 K, which 
is very much bigger than that of copper Pcu ~ 3 X 10-10 f!m, nearly all of this leftover 
will flow in the copper setting up along the strand an electric field 

E = l ~ ,\Pcu[jop - jc(B)] . (2.7) 

Of course, a tiny amount of the leftover current will flow in the NbTi filaments so 
that the potential drop along the NbTi filaments will be the same as that along the 
copper. The total current will now see a potential and heat will be generated. The 
generation per unit volume is 

(2.8) 

where the factor .\. comes in because the total current is designed to flow in the 
NbTi filaments only [see Eq. (2.5)]. Note that the heat generation is equal to the 
total current but not just the leftover multiplied by the potential drop, because the 
potential is experienced by the total current. 

We now make the assumption that the thermodynamic curve separating the two 
phases of NbTi in Fig. 2 is a straight line intercepting the temperature axis at Be, 
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which is the temperature above whicb NbTi becomes completely normal no matter 
how small the current is. Then, the critical current density jc( 0) can be expressed in 
terms of the operation current density j 0 p by 

. (0) (), - () . 
)c = ()c _ ()

9
)op' (2.9) 

and, from Eqs. (2.7) and (2.8), the generation per unit volume becomes 

G(O) = ;.,2pcuj~P () - ()o 

1 - ), (), - ()g 
when (}, > (} > (}9 • (2.10) 

Obviously, Eq. (2.10) will apply only when 09 < () < (},. Above (}0 NbTi is completely 
in the normal phase and practically all the current will flow in the copper. The 
generation will reach the maximum 

when () > ec, (2.11) 

and will not increase further at higher temperatures except for the temperature de
pendence of Pcu on (}, The generation curve is plotted in Fig. 3. 

11.4 Surface cooling 

The heat on the superconducting strand will be transferred across the surface of 
the strand to adjacent strands or helium with a bath temperature of 00 . The rate at 
which heat is transferred per unit length is given by PH(()), where Pis the perimetric 
circumference of the strand. For a single strand, P = 27l'a, where a is the radius of 
the strand. 

We assume that the cooling is proportional to the temperature difference between 
the cable and the surrounding bath, or 

H(()) = h(B - e0 ) , (2.12) 

where h is called the heat transfer coefficient and is assumed to be time and temper
ature independent. For cooling by nucleate pool boiling of He, h ~ 5 x 104 wm-2K-1 . 

Usually, there is only about 5% of helium inside a composite cable, and this helium 
does not flow very freely between the strands. In the situation of a disturbance in a 
strand, the excess heat is mostly conducted to the adjacent strands rather than cooled 
by the stagnant helium. The cable is wrapped around with a layer of insulation which 
has a typical thickness of w ~ 50 to 250 µm and a typical thermal conductivity of 
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k ~ 5 x 10-2wm-1K-1 . This gives a surface heat transfer coefficient of h = k/w = 200 
to 1000 wm- 2K-1 . Experimental measurement gives a value of h~1500 wm-2K-1 • 

As a result, it may not be suitable to talk about the surface cooling of one strand 
alone. We may take the cable as a whole, which contains S = 32 strands arranged 
in two rows. Area of cable is A ~ S7ra2 , whereas the perimetric circumference is 
P ~ 4a(S/2 + 2). Therefore, roughly P/A ~ 2/7ra. Each turn of the cable is piled 
with the broad side one upon the other so that only the narrow sides, total length 
8a, are in contact with liquid helium. Then, P /A ~ 8/ S7ra. We are not so sure 
which value of P/A should be used. In the computation below, however, we shall use 
P/A = 2/a. Results for other values of P/A can be obtained by scaling h. 

11.5 Electric resistivity of copper 

The resistivity of copper is a function of temperature B and magnetic flux density 
B. It also depends on the purity of copper. An experimental measurement gives for 
bulk copper below ~ 10 K, 

( 
1 ) -8 Pcu(B, B) = 0.0032B + RRR x 1.7 x 10 flm, (2.13) 

where B is in tesla. The first term is called the magneto-resistivity and the residual 
resistivity ratio (RRR) in the second term is a measure of copper purity. We note 
that when Bmax ~ 7 T, magneto-resistivity will dominate when RRR ;2'; 45. 

11.6 Thermal conductivity of copper 

The thermal conductivity is related to its resistivity. For a fair approximation, it 
obeys the Wiedemann-Franz law6 

kpcu = LoB , (2.14) 

where the Lorentz number L 0 = 7r 2k1/3e2 = 2.45 x 10-s wnK-2 with k8 the Boltz
mann's constant and e the electronic charge. Thus, the thermal conductivity is af
fected by magnetic flux as well as purity. At low temperature, it is linear in e. 
However, in our computation below, we shall consider k as a constant for the sake of 
simplicity and take k ~ 350 w/mK. This assumption is not so bad because, as shown 
in Section IV.2 below, the temperature variation in the MPZ is ~ 2 K only. 

The thermal conductivity of NbTi at cryogenic temperatures in a magnetic flux 
density of 6 Tis 0.1 w/mK, which is negligible compared with that of copper. There
fore, in a strand, the heat generated in some portions of the superconducting filaments 
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is first transferred to the surrounding copper and then conducted away through the 
copper. With copper content of (1-.\) in the strand, the effective thermal conductiv
ity longitudinally along the strand should be (1-.\)k. This fact has not been taken 
into account in Ref. 2. 

II. 7 Specific heats of copper and NbTi 

In computing the heat required to set up a heated zone, we take at Or = 4.2 K 

volume specific heat of Cu Ccu - 1.6 x 103 j/m3 K 
volume specific heat of NbTi C,c - 6.8 x 103 j/m3 K 

and assume that they vary according to 03 at cryogenic temperatures. For the copper
NbTi complex, we can therefore define an effective specific heat 

(2.15) 

III. DERIVATION OF PROPAGATING ZONES 

III.1 The heat flow equation 

We assume that the strand is narrow enough so that uniform thermal distribution 
can be established easily across the strand. Thus, we need to study the temperature 
profile along the strand in the z-direction only. The latter is determined by the 
one-dimension heat flow equation 

ae a [ ae] Cerr(O)Aat = Bz k(l-.\)Aaz +AG(O)-PH(O), (3.1) 

where A and P are the cross sectional area and perimetric circumference of the strand, 
and G(O) and H(B) are the heat generation and surface cooling given by Eqs. (2.10) 
to (2.12). The factor (1-.\) on the right side reminds us that only the copper portion 
of the strand will conduct heat with a thermal conductivity k. 

In general, the heated temperature profile consists of three zones bounded by 
z = zc, z9 , z0 where the temperatures are at 11 = ()" B9 , 00 respectively. Or 

region 1: B > B, 
region 2: Be > B > B9 

region 3: B9 > B > Bo 

constant generation Eq. (2.11) +surface cooling 
linear generation Eq. (2.10) +surface cooling 
only surface cooling 
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We now discuss the transience. For simplicity, the surface cooling term PH( 0) is 
dropped. When a concentrated disturbance occurs at z ~ 0, the first term on the right 
of Eq. (3.1), i.e., the second derivative with respect to z, dominates as a result of the 
concentration, and is negative at the center and positive at the edge. Therefore the 
temperature at the center drops and that at the edges rises resulting in a spreading 
out of the disturbance. As the spread progresses, the second derivative with respect 
to space becomes smaller and the heating effect of the second term AG( 0) becomes 
more significant. Except near a steady state, equilibrium will be reached in regions 1 
and 2 roughly in time of the order 

4Ceffz; 
Tc= 11"2(1 - >.)k ' (3.2) 

where z9 is the half width of the generation region (or z = z9 when 0 = 09 ). The deriva
tion is given in Section III.2 below. For lop = 6.5 kA and copper-to-superconductor 
ratio 1.3, z9 ~ 1.59 mm, or Tc ~ 30 µs. By equilibrium, we mean that heat genera
tion is balanced by heat conduction at all points inside the regions with generation. 
There are many equilibrium solutions just for regions 1 and 2. Which one the dis
turbance will arrive at depends on the size of the initial disturbance. At this point, 
the temperature profile continue to adjust itself so as to reach a steady-state solution 
for all the three regions. If the energy in this temperature profile is small, it will 
continue to flatten out and collapse· eventually as shown in Fig. 1( a). If the energy 
is too big, it will propagate outward with temperature rise at all points and diverge 
as shown in Fig. l(b ). If the energy is just right, the temperature profile will reach 
a nontrivial steady state, provided that such a steady state exists. In this case, the 
the time to reach the steady-state profile will be infinite. The evolutions of the peak 
temperature corresponding, respectively, to Fig. l(a) and Fig. l(b) are plotted in 
Fig. 4( a) and Fig. 4(b ). Alongside, the evolutions of the energy stored in the profiles 
are also plotted. Here, in either Figs. 4( a) or 4(b ), the time to reach the intermediate 
equilibrium state is rather long. This is because this equilibrium state is very near 
to the steady-state solution for the whole composite strand, which exists even with
out surface cooling since a finite length of the strand (20 cm) has been used in the 
numerical computation. Even if the intermediate temperature profile is not near a 
steady state, a lot of the evolution time is spent in approaching it. For this reason, 
this intermediate temperature profile is a critical temperature profile. 

Does the critical temperature profile depend on the shape and width of the original 
disturbance? The answer is yes, but not much if the original disturbance is sufficiently 
concentrated. The reason is that the time taken to approach the critical temperature 
profile is very much longer than the time taken by the disturbance to spread out, 
as depicted in Figs. 4( a) and (b ). In fact, assuming a narrow gaussian disturbance, 
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the rate at which the peak temperature drops is d()Pjdt <X -{};. Therefore, if the 
disturbance is made more concentrated, the amount of heat generated during this 
additional spread-out time will be extremely small. For example, we have reduced 
the widths of the disturbances in Figs. 1( a) and (b) from 0.2 mm by 10 times and 
100 times but keeping the energy constant. The changes in energies of the correspond
ing critical temperature files are extremely small. We have also changed the shape of 
the disturbance from a gaussian to the shape of a cosine. But essentially the same 
critical temperature profile is reached. This leads us to believe that if we trace each 
critical temperature profile backward in time, the energy of the disturbance should 
tend to a limit when the width of the disturbance goes to zero. 

Thus, for a point deposition of a certain energy, there exists a unique critical 
temperature profile which is in equilibrium in the regions with generation. This 
critical temperature profile determines whether the future evolution will diverge or 
subside. In the case of future divergence, this critical temperature profile is called a 
critical propagating temperature profile or zone. A family of such critical propagating 
temperature profiles are therefore generated by varying the initial energy deposition. 
Each critical propagating temperature profile contains a certain amount of energy. 
If we start from a point disturbance of a high energy, the energy in the resulting 
propagating profile will definitely be large. On the other hand, the energy of the 
propagating profile is also large if we start from a point disturbance with a relatively 
low energy. This is because this critical prpagating profile becomes very near to 
the steady-state solution. It takes a long time for the disturbance to approach the 
profile, and a lot of heat will be generated in the process. Thus, in between there 
should be a critical propagating profile which contains the least amount of energy, 
and this critical propagating profile is defined as the minimum propagating zone 
(MPZ) corresponding to an initial point deposition. The time evolutions of the peak 
temperature and energy of the point deposition corresponding to the MPZ are shown 
in Fig. 5. The temperature profile of the MPZ is shown in Fig. 7 in dashes. 

We would like to point out that our definition of MPZ is quite different from the 
usual one. 1 Usually, one defines the MPZ as the steady-state solution and the energy 
is taken as the energy stored in the generation region only, i.e., for z < lz9 1, but not 
the total energy in the solution, because the latter may go to infinity for a cable of 
infinite length. A MPZ defined in this way will depend critically on the amount of 
surface cooling.' It will be shown in Section IV.5 below that heat removal through 
surface cooling is very much slower than through copper conduction. But without 
cooling, there will not be any nontrivial steady state for a one-dimensional strand of 
infinite length, and a MPZ cannot be defined. Therefore, we think our definition of 
the MPZ is much better. 
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III.2 Propagating solutions 

The exact analytic solution of the time dependent heat flow equation appears to 
be out of the question, because the equation is not linear. Thus, we need to follow the 
time evolution numerically to see whether a certain energy of point deposition will 
cause a quench. This has to be done many times until the minimum energy required to 
start a quench can be determined. This process is undoubtedly very time consuming. 
Another way is to derive the MPZ mentioned above. The energy it contains will give 
roughly the minimum energy to start a quench. This is because the evolution time 
~Tc from the initial point deposition to the MPZ is not too big and the heat generated 
during the evolution will not be too big also. Unfortunately, exact analytic solutions 
for the above mentioned propagating zones also appear impossible. Instead, we try 
to look for simple analytic solutions that can approximate these propagating zones. 
These approximate solution must grow at all points along the cable strand as time 
evolves, or it must propagate outward and diverge. From the previous subsection, 
we know that the exact propagating profiles are in equilibrium in regions 1 and 2. 
Therefore the approximate solutions that we are looking for can be constructed from 
solving the steady-state heat flow equation with the temperature gradient continuous 
everywhere except at the point B = B0 , or the very edge of the zone. One of these 
solutions is shown in Fig. 6. Since this solution satisfies the steady-state heat flow 
equation everywhere except at the end points, temperature will rise only at these 
points. As time evolves, the temperature rise at the end points will spread out and 
there will be a gradual temperature rise at all points. This is demonstrated in Fig. 6 
by the dashed curves. Therefore, this solution constitutes a propagating zone. 

Let us solve for such a solution analytically under the simple situation that the 
temperature does not exceed Be and there is no surface cooling. Then, there are only 
regions 2 and 3. The solution in region 2 is 

B- Bu= (B" -B.)cosaz, 

where BP is the peak temperature, 

and from Eq. (2.10), 

The boundary of region 2, 

G' 2 

°' = (1 - ,\)k ' 

\ 2 ·2 
G' = -"- Pculop 

l-,\Bc-Bu 

7r 
Zg= - ' 2a 
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can be obtained easily from Eq. (3.3). Taking only the conduction term in Eq. (3.1) 
and using the temperature profile of Eq. (3.3), the equilibrium time Tc of Eq. (3.2) 
can be derived readily. 

Matching Band dB/dz at z = z9 , the solution in region 3 is found to be 

The edge of region 3 or the end of the zone is therefore given by 

09 - Oo 
zo = Zg + a(Bp - Og) 

(3.7) 

(3.8) 

We note that there is a free parameter (}P in our solution. This is because the con
tinuity of the temperature gradient has not been enforced at z = z0 . As a result, there 
are infinitely many propagating zones. When the peak temperature exceeds Oc, there 
are three regions in the propagating zone and therefore 6 constants of integration. 
By matching the temperature and temperature gradients at (} = (}, and 09 and also 
demanding that the temperature gradient should vanish at the center of the heated 
zone where z = 0 (but not at z = z0 ), only 5 of the constants can be determined. 
Thus, there are also infinitely many solutions. We try to pick out the solution that 
contains the minimum energy and define it as the MPZ in our approximation. Fig
ure 7 compares the exact MPZ obtained numerically with the approximate one given 
by Eqs. (3.3) and (3.7) when lop= 6.5 kA. We see that the two temperature profiles 
agree very well in the generation region (B > 89 ). Because they differ when B < 09 , 

the energy contained in our approximate MPZ is actually smaller. 

III.3 Conditions for no solution 

In order to obtain the solution for the MPZ, there is a free parameter to vary. 
It will be nice to know when the solution does not exist so that a possible range of 
search can be assigned to the parameter. 

If the operating current lop is too big so that the NbTi filaments will not be able 
to carry all the current at bath temperature, or 09 < 00 , heat generation will occur 
everywhere along the cable. Obviously no stable solution involving finite energy will 
exist. In fact, no such operation should be designed. 

On the other hand, if surface cooling is big enough, no stable heated zone can 
be established either, because any heat deposited onto the strand will be absorbed 
completely by the bath at the surface of the strand. Of course, here we imply that the 
rate at which energy is added should be sufficiently slow so that a steady state can be 
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reached at any moment and also that the bath temperature 00 is always maintained. 
This criterion can be established mathematically. 

We recall that a heated zone with temperature decaying exponentially to the 
bath temperature in the z-direction requires a maximum amount of energy to set 
up. Therefore, the strand has zero temperature gradient at the zo = oo end. The 
temperature gradient at z = 0 is also zero. Thus, the equal-area theorem6 applies 
(see Appendix for a derivation). The theorem says that this particular stable solution, 
which corresponds to the maximum energy, exists when the two shaded areas in Fig. 8 
are equal. If surface cooling is further increased, no stable solution will exist. In our 
computation, where the surface cooling of Eq. (2.12) and heat generation of Eqs. (2.10) 
and (2.11) are assumed, this occurs exactly when 

(3.9) 

where BP is the peak temperature of the heated zone at z = 0, which is determined by 
the intersection between the cooling and generation curves. Therefore, Eq. (3.2) can 
be considered as the criterion for safe operation, usually known as cryogenic stability, 
because no heated zone can be established provided that transient effects can be 
neglected. However, it should not be mistaken as an operation criterion because a 
MPZ exists even if the peak temperature BP is higher than that given by Eq. (3.2). 
In fact, a MPZ exists even if there is no surface cooling. 

III.4 Method of solution 

The steady-state heat flow equation is first solved by assuming that there are only 
two regions in the heated propagating zone: the region with linear generation when 
e > 09 and the region with no generation when 09 > e > 00 • By assuming that the 
thermal conductivity of copper is temperature independent, this temperature profile 
along the cable can be found easily. The energy stored in this heated zone is next 
computed according to 

J
oo {8(z) 

£ = _
00 

dz lo, dB AC elf( B) (3.10) 

and then minimized. In Eq. (3.10), Ceff is the effective volume specific heat of the 
strand given by Eq. (2.15), A is the cross-sectional area of the strand, and O(z) is 
the temperature profile of the MPZ. The maximum temperature OP is calculated and 
compared with the critical temperature Oc. If Op < Oc, the solution constitutes the 
MPZ. On the other hand, if Bp > Oc, the computation has not been correct, because 
the generation should not increase further after Oc. The computation is then redone by 
taking into account three regions: e > Oc, Be > 0 > 09 , and 09 > 0 > 00 • Throughout 
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the computation, a coil degradation of D = 5% has been assumed. This implies 
that the temperature B9 is derived by equating the critical current density jc( B9 ) to 
jop/(1-D). 

IV. RESULTS OF COMPUTATION 

IV.1 Energy stored in MPZ 

The energy required to set up a MPZ for C358A at bath temperature B0 = 4.2 K is 
shown in Fig. 9( a) as a function of fraction of superconductor in the strand >.. Here, 
no surface cooling has been assumed and a RRR = 100 for the copper conductivity 
has been taken. The energy for each operating current exhibits a maximum at some 
>.. This is expected. The energy required to quench the cable will go to zero when 
,\ -t 1, because there is not enough the spill-over current and to conduct the heat. 
It will also go to zero at some small ,\ corresponding to the critical temperature B9 , 

where there will not be enough superconductor to carry the current. For a higher 
operating current, the temperature B9 is reached at a higher ,\. The energy curve is 
therefore pushed towards the higher-A side for larger current. The maximum will be 
shifted to larger >.. This is evident in Fig. 9(a). For lop = 7.5 kA, the maximum 
energy is 2.79 µJ at ,\ = 0.76. If lop is reduced to 5 kA, the maximum energy shoots 
up to 38.2 µJ at ,\ = 0.50, because the point of operation is now much farther away 
from the thermodynamic surface and more energy will be needed to quench the cable. 
At l 0 P = 6.5 kA, the maximum is 10.41 µJ corresponding to ,\ = 0.63. Figure 10 plots 
the maximum of the energy curve and the ,\ position for different operating currents. 
Figure 9(b) shows the same computation as is done in Fig. 9(a) but at B0 = 4.3 K. 
The energy curves are roughly the same, but their values are smaller. 

IV.2 Temperature excursion 

The temperature excursions, Bp -Bo, of the MPZ's for bath temperatures Bo = 4.2 
and 4.3 K are shown respectively in Figs. ll(a) and ll(b). Again, RRR= 100 has 
been assumed and no surface cooling has been included. The peak temperature rises 
as ,\ increases. This is due to the fact that there is less copper to carry the spill-over 
current so that a higher electric field is set up along the cable resulting in more heat 
generation. Also, heat conduction along the one-dimension cable is less efficient with 
less copper. The temperature excursion is less than 2.5 K even at ,\ = 1. 

We see that there is a kink in the 5.0 kA curve, the 5.5 kA curve, and the 6.0 kA 
curve. The low->.. side of the kink represents MPZ's with only two regions or Bp < Be. 
The high-,\ side represents MPZ's with three regions or BP > Be. For the 6.5 kA, 
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7.0 kA, and 7.5 kA curves, there are no kinks and they correspond to MPZ's with 
two regions only. We notice that for the three-region MPZ's, the peak temperature 
l!p is nearly ipdependent of .A. In fact, the peak temperature l!P of a MPZ just barely 
exceeds the critical temperature I!, in the central region where NbTi is completely 
normal. 

IV .3 Length of MPZ 

The half lengths of the MPZ's are plotted in Figs. 12( a) and 12(b) respectively 
for 1!0 = 4.2 and 4.3 K as a function of .A. Again, RRR = 100 has been assumed and 
no surface cooling has been included. The MPZ is set up by the balance between 
heat generation in the superconductor and heat conduction in the copper. With more 
copper, therefore, a longer MPZ can be established. As is shown in Fig. 12, the half 
length of the MPZ is linear with (1-.A), the fraction of copper in the strand, and go to 
zero when there is no copper. The half length is smaller when the bath temperature 
changes from 4.2 to 4.3 K, but not by very much. However, it does change by very 
much with the operating current. This is because at lower I 0 p, the point of operation 
is farther away from the thermodynamic surface and more energy can be stored in the 
MPZ. As a result, the MPZ can spread out over a bigger region resulting in a longer 
half length. The kinks that separate the two-region MPZ's from the three-region 
MPZ's are visible for the 5.0 kA, 5.5 kA, and 6.0 kA curves. 

The energy of the MPZ per unit length is plotted in Fig. 13. This plot is meaningful 
because in some cases the MPZ is rather long and of the order of a few mm. 

IV .4 Effect of RRR 

As is evident from Eqs. (2.10) and (2.11), heat generation is linearly proportional 
to the resistivity of copper in the cable complex. However, the resistivity of copper 
arises from two contributions at cryogenic temperatures. As is shown in Eq. (2.13), 
there is the magneto-resistivity proportional to the magnetic flux density B and the 
resistivity due to impurities. Although the latter can be reduced by improving copper 
purity (having a higher RRR), when Bmax ~ 7.0 T the impurity corresponding to 
RRR = 45 gives roughly the same contribution as the magneto-resistivity. Increasing 
copper purity, for example to RRR = 100 will decrease copper resistivity by a factor of 
~ 0.725. As given by Eq. (3.6), the length of the heated region is inversely proportional 
to a or p-:i,2

• Thus, the heat content of the MPZ is roughly proportional to P~L2 and is 
therefore increased by a factor of~ 1.20. Here, we have assumed that the temperature 
of the heated zone is not much higher than 1!9 and is roughly independent of Pcu· 
Note that even if the copper is 100% pure so that RRR= oo, the heat content of the 
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MPZ will be increased by only ,,/2 compared with RRR= 45 according to our rough 
estimation. 

The energy contained in the MPZ's at operating current lop = 6.5 kA and bath 
temperature 00 = 4.2 K without surface cooling is shown in Fig. 14 as a function of 
fraction of superconductor A for various values of RRR. Clearly the energy increases 
with RRR or copper purity, but the increase becomes much slower and the energy 
tends to a limit when RRR ;::; 50 as predicted. The dependence on A is not affected 
by the value of RRR. 

IV .5 Effect of thermal conductivity 

As was discussed in the previous section, thermal conductivity of copper k is the 
main ingredient counteracting heat generation so that a MPZ can be established. 
The larger k is, the faster an equilibrium can be reached. With a higher efficiency 
of heat removal, the MPZ can therefore contain more energy. This dependence on 
k is illustrated in Fig. 15 We see that the fraction of superconductor correspond
ing to maximum energy remains at A ~ 0.63 and does not change with the copper 
conductivity. 

IV.6 Surface cooling 

Surface cooling is next introduced and the effect is shown in Fig. 16 at bath 
temperature 00 = 4.2 K, operating current l 0 P = 6.5 kA, and RRR= 100. The 
perimeter-to-area ratio has been taken as P /A = 2/ a, where a is the radius of one 
strand. The heat transfer coefficient has been varied from h = 0 to 50000 wm-2K-1 . 

We see that the effect of surface cooling is hardly visible when h is less than ~ 
1000 wm-2K-1 • Even when h rises to 1 x 104 wm-2K-1 , the increase in energy 
contained in the MPZ is still rather small. As was stated in Section II.4, the surface 
cooling coefficient for one strand in the cable is not known. However, the cable itself 
is wrapped by a layer of insulation and is not directly in contact with liquid helium. 
The effective surface heat transfer coefficient is h = 200 to 1000 wm-2K-1 • Also the 
ratio P/A is not known. If we take P/A = 2/rra instead, the h = 1000 wm-2K-1 

curve in Fig. 16 corresponds, in fact, to h = 3142 wm-2K-1
. Thus, for this cable, 

surface cooling is not an essential effect in determining the minimum energy required 
to cause a quench, nor in determining the optimized copper-to-superconductor ratio. 

The insensitivity of surface cooling can be understood by comparing the cooling 
effect with heat conduction along the cable making use of the the time-dependent 
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heat flow equation (3.1). A characteristic surface cooling time of 

Th = C.11A "" C.11a 
hP 2h 

(4.1) 

can be defined, where a is the radius of the strand, A = 7ra2 is the cross sectional 
area, and P ~ 27ra is the perimetric circumference. 

We can also define a heat conduction characteristic time for the generation region 
of the propagating zone, which is just Tc defined in Eq. (3.2). Taking z9 = 1.6 mm 
(see Table I), a= 0.404 mm, r = 1.3 (.\ = 0.435), and k = 350 w/mK, the ratio of 
the two characteristic times 

(4.2) 
8hz2 

g 

is found to be 39, 7. 7, and 3.9 when h = 1000, 5000, and 10000 wm-2K-1 • Thus, 
for h < 1000 wm- 2K-1

, it takes at least ~ 39 times longer for heat in the generation 
region to be transferred through surface cooling than by heat conduction along the 
cable through the copper when the propagating zone starts propagating. 

We notice from Fig. 16 that when h is big enough, the energy curve diverges as 
.\ decreases. This is expected. Decreasing .\ implies the introduction of more copper. 
The smaller fraction of superconductor will increase the operating current density and 
therefore lower 09 • The slope of the generation also becomes less steep. Eventually 
the equal-area criterion of Eq. (3.9) will be met and no stable solution exists. Further 
decrease in .\ will result in the generation slope less than the surface-cooling slope. 
Therefore, when h is large enough, no solution will exist on the low-.\ side. This is 
just the area discussed in Section III.3 where no solution exists. 

V. CONCLUSIONS AND DISCUSSIONS 

V.1 Choice of best parameters for cable construction 

From our computation results, we can draw some conclusions on the choice of 
parameters for cable construction. 

In order to have a higher energy for the MPZ, we should choose the copper with 
the lowest electric resistivity Pcu and the highest thermal conductivity k. However, 
the lowest Pcu is dominated by the magneto-resistivity Pmag which increases linearly 
with the magnetic flux density B in which the cable is immersed. Economically, it is 
unwise to choose copper so pure that the RRR is very much larger than 1/ Pmag· The 
thermal conductivity is inversely proportional to Pcu according to Eq. (2.14), and is 
therefore bounded by the contribution of Pmag· 
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The superconducting strand will be much more stable for a high surface heat 
transfer coefficient h. However, for a cable with the conductor not in direct contact 
with liquid helium, h is usually assumed small and the cooling effect is not noticeable. 
However, this does not imply that the liquid helium is not important and we can do 
away with it. Although we find out that the heat in a disturbance or a propagating 
zone is conducted away along the copper much faster than removed at the surface, the 
heat conducted away along the copper has to be cooled eventually by the surrounding 
helium. Also, a surrounding heat bath of a fixed temperature has been assumed 
throughout the computation. Without the helium circulating at a certain speed, such 
a bath will not be possible. 

The best choice for copper-to-superconductor ratio r is where the energy contained 
in the MPZ is largest. We see from above that this value of r is not sensitive to 
variations in the electric resistivity and thermal conductivity of copper. It also does 
not rely very much on the surface heat transfer coefficient h when h is comparably 
small. It is also not sensitive to variation of the degradation from 0% to 10%. It 
only depends on the choice of the operating current f 0 P at a fixed bath temperature. 
Thus, at fop = 6.5 kA, the best choice for copper-to-superconductor ratio appears 
to be r = 0.59 corresponding to >. = 0.63. Unfortunately, this ratio is far from the 
1.3 employed in the C358A Cross Section. However, this is just the average ratio. 
If we examine the cross section of a strand, we find that the NbTi filaments are not 
distributed uniformly. Instead, we find a copper core of radius ~ 0.085 mm, then 
an annular band extending out to radius ~ 0.325 mm containing a matrix of NbTi 
and copper, and finally a copper jacket up a radius 0.404 mm. Inside the annular 
band, the superconductor filaments are very closely packed. The filaments have a 
diameter of ~ 5 µm but the spacing between filaments is only ~ 0.5 µm. There 
is some argument that, the mean-free-path of electrons at cryogenic temperatures is 
bigger than 0.5 µm, so that the copper in between the filaments may not contribute to 
thermal conductivity and electrical conductivity. Counting only the interior core and 
the exterior jacket, the copper-to-superconductor ratio reduces to only 0.91. On the 
other hand, if we count only the copper in the annular band, the ratio becomes 0.39. 
Also, there may be some technical reasons that restrict the choice of this ratio. For 
example, it is impossible to maintain a uniform cross section in fabricating a strand 
composite with r < l. If the effective copper-to-superconductor ratio of C358A is 
indeed less than 1.3, the thermodynamic phase curve of Eq. (2.4) assumed in our 
computation will be altered. This will change the critical current density at each 
temperature and therefore also the temperature (}9 above which power generation 
begins. It is possible that a different optimum copper content will result. 
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V.2 Energy of point disturbance required to quench the cable 

Our MPZ has a typical half width of. z0 ~ 3.3 mm. If the point disturbance 
has a half width of ~ 3.3 mm, the energy of the MPZ will be the minimum energy 
of the disturbance required to generate a quench. However, in many cases a point 
disturbance can have a half width that is very much smaller than ~ 3.3 mm. It will 
take a finite amount of time, of the order of Tc, for the disturbance to spread out to the 
critical temperature profile corresponding to our MPZ. Heat will be generated during 
this time interval. Therefore, the energy of our MPZ will only be an upper bound of 
the energy of the original disturbance. We would like to estimate the amount of this 
heat generated. 

Again, let us neglect surface cooling and assume that e < e,. Integrating the heat 
fl.ow equation (3.1) along the cable strand, we get for the rate of change of energy£, 

d£ jz' -d = G'A dz[B(z) - 89 ] • 
t -Zg 

(5.1) 

Here, no assumption about the profile in the non-generating region is necessary. As 
a narrow disturbance spreads to the critical temperature profile, the initial rate of 
drop of the peak temperature BP is very fast as is evident from Figs. 5 and 7. For 
a gaussian initial disturbance, initially dBP/ dt ex -B~. Most of the time is actually 
spent in approaching the critical temperature profile. Therefore, Eq. (5.1) can be 
approximated using Eq. (3.3) as the temperature profile, and we obtain 

The time spent in approaching the critical profile is of the order 

4C.ffz; 
r, = 7r2(1 - >.)k 

(5.2) 

(5.3) 

Therefore, the amount of heat generated in spreading out to the critical temperature 
profile is of the order 

(5.4) 

where the relation 
G' 

°'2 = ~-~-
(1 ->.)k 

(5.5) 

has been used. For lop = 6.5 kA and copper-to-superconductor ratio 1.3, we get from 
Table I Bp = 4.889 K, B, = 6.107 K, and 89 = 4.630 K. We evaluate C.ff at BP. The 
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final result is ~E ~ 1.6 µJ. The computed MPZ has an energy of 6.23 µJ. An actual 
simulation of the time evolution results in 4.1 µJ for the minimum energy of a narrow 
disturbance required to start a quench, which is not much different from the difference 
between 6.23 µJ and 1.6 µJ. But this agreement should not be taken too seriously 
because our estimation of ~E has been crude. For comparison, we note from Fig. 7 
that the exact MPZ computed numerically has an energy content of 7.57 µJ, and from 
Fig. 5 that it takes ~ 50 µs for the point disturbance to approach the MPZ. In any 
case, we can conclude that the energy of our approximate MPZ does give the right 
order of magnitude for the minimum point energy required to start a quench. 

V.3 Contribution of flux jumping 

NbTi, being a type II superconductor, can admit magnetic flux. However, the 
flux penetration is limited by the screening currents which flow with critical current 
density jc. As the temperature rises, ic decreases and more magnetic flux penetrates, 
thus the energy stored in the superconductor is increased. This effect is known as flux 
jumping. In this subsection, we are going to show that compared with the minimum 
energy to start a quench, the energy contribution due to flux jumping is of the same 
order of magnitude. 

For convenience, let us approximate the cylindrical superconductor filament by 
one having a rectangular cross section 2w x h. A coordinate system is set up with 
the filament running in the y-direction and the side of width 2w in the x-direction 
as shown in Fig. 17. The external magnetic flux density Bext is perpendicular to the 
filament and is in the z-direction. We assume the critical-state model, which states 
that all regions of the superconductor are carrying either currents at jc or no current 
at all. Thus, there is current of density ic flowing in the positive y-direction from 
x = -w to -wf3 and current of density ic flowing in the negative y-direction from 
-w f3 to w, so that the net effect is a current of average density 

iop = (3j, (5.6) 

flowing in the negative y-direction. The magnetic flux distribution inside the filament 
is given by Ampere's law 

d~BL,R(x) = ~µoic, (5.7) 

where L and R denote left and right of the point x = -w(3, and µ0 = 47r X 

10-7 henry /m 1s the magnetic susceptibility of free space. Integrating Eq. (5.7), 
we get 

Bext + µoj,(x - w + wf3) , 

Bext - µoj,(x + w + wf3) . 
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The constants of integration have been so chosen that 

{ 

BR(-w)+BL(w)=2B •• ,, 

BR(-w(3) = BL(-w(3) . 

The energy of the magnetic flux for a length £ of the filament at operation is 

hf, [1-~ lw ] Cop= -
2 

Bi(x)dx + B"fi(x)dx . 
µo -w -w(3 

(5.9) 

(5.10) 

When the superconductor becomes normal, we assume that all the current is displaced 
to the copper and the external magnetic flux penetrates completely. The magnetic 
energy becomes 

hf,[ 2] fuorm = -
2 

2wBext . 
µo 

(5.11) 

The increase in energy due to flux jumping is therefore 

f'::.c = Cnorm - Cop • (5.12) 

With the help of Eqs. (5.8) to (5.11), we get 

f'::.c = h£jcW2 
[Bext(l - /3 2

) - ~µojcw] , (5.13) 

where the second term in the square brackets is small and can be neglected. At 
Bext = 6.6 T, ic = 1.62x109 A/m2 with 53 degradation. With j 0 P = 1.27x109 A/m2

, 

(3 = 0. 78. We also assume w = 2.5 µm, the radius of the filament. This leads 
to f'::.c = 0.026hC J. For a whole strand composite, we multiply by >-.A/2wh, where 
>-. = 1/2.3 is the fraction of superconductor and A = 5.13 x 10-7 m2 is the cross 
sectional area of the strand. Then, the energy contribution of flux jumping becomes 
f'::.c = 1.2 µJ /mm. Thus, the effect of flux jumping is of the same order as the heat 
content of the MPZ. This effect should be included in a more complete analysis. 

V.4 Linearity of heat generation 

The heat generation per unit volume given by Eq. (2.10) is linear with the tem
perature B. In this section, we would like to investigate the validity of this expression. 

Three assumptions have been made in deriving Eq. (2.10). First, we assume that 
the temperature distribution in the strand is uniform transversely. This is true for 
the copper but not the NbTi filaments, because NbTi is a poor thermal conductor. If 
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the temperature does not change too rapidly during a heat generation, we can write 
a steady-state local heat balance equation8 

(5.14) 

where r is the radial distance from the center of a NbTi filament, ksc is the conductivity 
of NbTi, Bn is the temperature of the surrounding copper, E is the electric field set 
up by the spill-over current and is given by Eq. (2. 7) with jc replaced by jcav, the 
average current density across the filament. The radial temperature profile can be 
easily found to be 

[ 
I 0(ar/ro)] 

B(r) = Bn +(Be - On) 1- Io( a) , (5.15) 

where r 0 the radius of the NbTi filament and 

(5.16) 

The mean current density over the filament can then be computed, 

. . (O )2J1(a) 
)cav =Jc n a Io(°') , (5.17) 

where 10 and11 are modified Bessel functions of the first kind. Using Eqs. (2.8), (2.9), 
and (5.17), the power generation of Eq. (2.10) is now modified to 

(5.18) 

Since a depends on On, the generation in Eq. (5.18) is no longer linear. Next we wish 
to solve for a and determine the nonlinearity. We define a characteristic length 

d2 = k,c(l - .\)(Oc - 09 ) 

.\ '2 , 
Pcu) 0 p 

(5.19) 

in terms of which, a in Eq. (5.16) can be rewritten as 

(5.20) 

Now the generation can be obtained from Eqs. (5.18) and (5.20) by eliminating a. The 
result is shown in Fig. 18 for various values of ( r 0 / d)2

• For the C358A cable, there are 
N = 11000 filaments in a strand corresponding to a filament radius of r 0 ~ 0.25 µm. 
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If we take k,, = 0.1 w/mK, Pcu = 3 x 10-10 !1m, copper-to-superconductor ratio= 
1.3, and operating current lop = 6.5 kA, we get 

r2 
0 

d2 (5.21) 

or 0.017 with 0, - 09 = 1.48 K from our computation. Thus, according to Fig. 18, 
the effect of nonuniform transverse temperature across the NbTi filaments to the 
nonlinearity of the generation curve is minimal. 

Second, the thermodynamic curve that separates the superconducting phase and 
normal phase of NbTi at a fixed magnetic flux density has been assumed to be a 
straight line. We can see from Fig. 2 that this thermodynamic curve is almost but 
not exactly straight. In our computation, we draw a tangent to the thermodynamic 
curve at the point (j0 p, 09 ) and call 0, the point of intersection between the tangent 
and the 0-axis. Our general results in Table I show that there is only a small variation 
in 0, for different copper-to-superconductor ratios for each fixed operating current l 0 P 

or fixed maximum magnetic flux density B=x- The strrught line assumption of the 
thermodynamic curve appears to be quite good. 

Third, the resistivity of cable as a whole is assumed to follow (j0 p/j,r with n = oo 
when j 0 P > j,. In fact, experimental measurement reveals that n ~ 20 to 30. The 
absence of a sharp critical current density is believed due to the nonuniformity of the 
superconductor filaments inside the cable. In other words, each filament may have 
a slightly different critical current density at a given temperature and magnetic flux 
density. As a result, the generation curve will start to rise from Og with a high-power 
dependence on temperature. Effectively, this phenomenon increases j" 09 , and O" if 
we continue to assume an approximate linear generation curve. The minimum energy 
to start a quench can be increased9 by~ 50%. The optimum copper-to-superconductor 
ratio may also be affected. 
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APPENDIX 

The one-dimension heat flow equation, Eq. (3.1) with the time-dependent term 
deleted, can be solved exactly if we transform it into 

dS2 = 2k(B) [PH(B) - G(B)] 
dB A 

(A.l) 

by defining 

S(B)=k(B)~~, (A.2) 

so that 

= 
1 dS 2 

---
2k dB . (A.3) 

dS dS dB 
dz dB dz 

Consider a one dimension rod with temperature 80 at one end and temperature Bp at 
the other end. If the temperature gradients are zero at both ends, then the integration 
of Eq. ( A.1) gives 

(A.4) 

implying equal area under the cooling and heat generation curves when multiplied by 
k(B). Note that if &o is the bath temperature, usually PH = GA there because PH 
and GA vanish separately. However, PH need not equal GA at the high-temperature 
end, because, in general, the divergence of the temperature gradient does not vanish 
there, when surface cooling is present. Therefore, (IP need not be the intersection of 
the heating and cooling curves, and the equal-area theorem can imply something like 
Fig. 19. The equal-area theorem fails when the zone is of finite length. This is because 
the temperature gradient at the end of the zone will not vanish and is balanced by 
heat conduction instead. Thus, the equal-area theorem, although simple, does not 
really provide us with a stability criterion for the SSC dipole cable. 
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VOLUME HEAT CAPACITY OF cu l.6QQE+Q3 J;M-3.K 
VOLUME HEAT CAPACITY OF SC 6.8QQE+Q3 J;M-3.K 
HEAT CONDUCTIVITY OF SC - 35Q.Q W;M.K 
HEAT TRANSFER COEFF l.QQQE-Q2 W;M -2.K 
AREA OF 1 STRAND OF CABLE 5.128E-Q7 M-2 

BATH TEMPERATURE 4.2Q K 
DEGRADATION - 95. Q % 

T_G IS TEMP ON CRITICAL THERMODYNAMIC SURFACE CORR TO OPERATING CURRENT 
I OP AND CU TO SUPER COND RATIO R. THE RESULTING CENTRAL MAGNETIC FIELD IS B. 
Z-Q IS HALF-WIDTH OF MPZ AND Z G IS HALF WIDTH OF THE PART WITH GENERATION. 
AN * AT THE RIGHT INDICATES THAT THE PEAK TEMP T_P OF MPZ EXCEEDS THE CRITICAL 
LIMITING TEMP T_C; THE ENERGY E TO START A QUENCH IS THEN AN OVERESTIMATE. 

I_OP B R T_G T_C T p z_Q Z_G z_c E 

(KA) ( T) CU/SC (K) (K) ( K) (MM) (MM) (MM) (MICRO J) 

6.5QQ 6.6Ql5 Q.5Q 5.1352 6.Q71Q 5.6251 1.6557 Q.7474 Q.QQQQ l.0264D+Ql 
6.5QO 6.6Ql5 Q.6Q 5.0727 6.Q731 5.537Q 1.9098 Q.8694 Q.QOOQ 1. Q4Q5D+Ol 
6.5QQ 6.6Ql5 Q.7Q 5.QlQl 6.Q758 5.4480 2.1458 Q.9853 Q.QOQQ l.Q255D+Ol 
6.5QQ 6.6Ql5 0.8Q 4. 94 74 6.Q79Q 5.358Q 2.3657 1. Q959 Q.OOQQ 9.8858D+OQ 
6. SQQ. 6.6Ql5 0.9Q 4.8844 6.Q83Q 5. 2669 2. 5713 l.2Q21 Q.OQQO 9.3505D+OQ 
6.50Q 6.6Ql5 l.QQ 4.8212 6. 0877 5.1746 2.7639 1. 3Q43 Q.QQQO 8. 6896D+QO 
6.SQQ 6.6Ql5 l. lQ 4. 7577 6.Q932 5.Q809 2.9446 l.4Q31 0.0000 7.934QD+OO 
6.500 6.6Ql5 1. 2Q 4.694Q 6.Q995 4.9858 3 .1144 1.4989 O.QQOO 7 .1Q77D+OO 
6.500 6.6Ql5 l.3Q 4.63QQ 6 .1Q69 4.8891 3.2741 1.5922 Q.QQOO 6.2295D+QO 
6.SOQ 6.6Ql5 l.4Q 4.5656 6 .1154 4.79Q6 3.4245 1.6833 Q.QQQO 5. 3144D+QQ 
6.SOQ 6.6Ql5 1. SQ 4.5QQ8 6.1250 4.69QQ 3.566Q 1. 7724 Q.QQQO 4. 3742D+OQ 
6.SOQ 6.6Ql5 1. 6Q 4.4356 6 .1359 4.5873 3.699Q 1. 860Q 0.0000 3.4186D+QO 
6.50Q 6.6Ql5 1. 7Q 4.370Q 6.1482 4.4822 3. 8241 1. 9462 0.0000 2.4553D+QO 
6.SOQ 6.6Ql5 1. 8Q 4.3Q39 6.1621 4.3742 3. 9413 2 .0313 Q.QOOO l.49Q7D+QO 

RESISTIVITY OF CU - 5.291E-1Q OHM.M, RRR - 100.0 

5.000 5.1675 0.50 6.0197 6.6809 6.68Q9 2.4344 0. 884 5 0.QQ15 3.3208D+Ol * 
5.000 5.1675 Q.60 5.9757 6.6793 6.6793 2.6758 1. Q266 0.0016 3.51850+01 * 
5.000 5.1675 0.70 5.9318 6.6778 6. 6778 2.8759 1.1607 0. OQ17 3.6568D+Ql * 
5.QOO 5.1675 0.80 5.8879 6.6764 6.6451 3.1158 1. 2879 O.OQOO 3.75Q3D+Ql 
5.QOO 5.1675 0.90 5.8442 6.675Q 6.5874 3.3934 1.4091 O.OQOO 3. 8013D+Ql 
5.000 5.1675 1.00 5.8005 6.6737 6.5297 3.6553 1. 5249 0.0000 3.8175D+Ql 
5.000 5.1675 1.10 5.7568 6.6726 6.4719 3.9031 1. 6358 0.0000 3.8057D+Ol 
5.000 5.1675 1. 20 5. 7132 6.6715 6. 4140 4 .1381 1. 7425 0.0000 3. 7713D+Ol 
5.000 5.1675 1.30 5.6697 6.6706 6.3560 4.3614 1.8454 0.0000 3.7187D+Ol 
5.000 5.1675 1.40 5.6262 6.6698 6.2978 4.5741 1. 944 8 0.0000 3. 6513D+Ol 
5.00Q 5.1675 1. SQ 5.5827 6.6692 6.2394 4. 7769 2.Q41Q Q.QOQQ 3.5717D+Ql 
5.00Q 5.1675 1. 6Q 5.5393 6.6688 6.1809 4.97Q6 2 .1344 Q.QQQQ 3. 4824D+Ql 
5.QQQ 5.1675 1. 7Q 5.4959 6.6685 6.1222 5.1559 2.2252 Q.OQQO 3.385QD+Ql 
5.0QQ 5.1675 1. 8Q 5.4524 6.6685 6.Q633 5.3334 2. 3136 Q.QQQQ 3. 2811D+Ql 

RESISTIVITY OF CU - 4.SllE-10 OHM.M, RRR - lQQ.Q 

Table I 
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Fig. 1. Time evolution of a gaussian point disturbance. The disturbance 
spreads out initially and then approaches a critical temperature profile 
slowly. After that (a) the critical temperature profile subsides if the initial 
energy deposition is small. (b) The critical temperature profile diverges if 
the initial energy deposition is big. 
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Fig. 2. Thermodynamic curve separating the superconducting phase from 
the normal phase. No degradation is assumed. 
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Fig. 9. Energy stored in MPZ with bath temperature (a) 4.2 K and 
(b) 4.3 K. A 5% degradation has been assumed. 
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Fig. 13. Energy stored in the MPZ per unit length. A 5% degradation 
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Fig. 14. Variation of MPZ's energy with RRR of copper. A 5% degrada
tion has been assumed. 
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A 5% degradation has been assumed. 
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Fig. 16. The effect of surface cooling with a 5% degradation assumed. 
The perimeter-to-area ratio has been taken as that for a cylinder, or 
P/A = 2/a, where a is the radius of one strand. The curves for different 
values of P/A can be obtained by scaling h. It is possible that P/A ~ 2/tra 
if the whole cable is considered. If only the narrow edges of the cable are 
cooled, P/A ~ 8/ Stra, where S = 23 is the number of strands in the cable. 
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