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I. INTRODUCTION 

Coupled bunch instabilities can occur in a storage ring filled with many bunches 
rotating in the same direction. Then, is it possible for coherent coupled-bunch insta
bilities to develop for counter-rotating bunches? In this note, we find that it is not 
possible for counter-rotating bunches to couple (except for the effects of bunch-bunch 
collision which we are not going to discuss here). The reason is that the driving force 
of the coupling depends on the distance between the bunches and so is the coherent 
coupled frequency. For bunches rotating in opposite directjons, the distance between 
the bunches changes rapidly and the driving force therefore averages to zero. In the 
following, we will prove it mathematically. 

II. THE MATHEMATICS 

Consider two bunches revolving in opposite directions with velocity c. They carry 
positive and negative charges respectively. Assume that their respective synchronized 
particles move like 

{ 

s =ct 

s =-ct 

positively-charged , 
(1) 

negatively-charged , 

where s is the distance measured along the storage ring from the point these two 
particles meet. Let the arrival times of the positively-charged and negatively-charged 
bunches be T± respectively relative to their synchronized particles. Thus, T+ evolves as 
s becomes more positive while T_ evolves as s becomes more negative. 

At position s, the positively-charged bunch is affected by the wake fields of itself 
at the previous positions which are roughly -cT0 , -2cT0 , -3cT0 , etc. where T0 is the 
revolution period of the synchronized particle. It is also affected by the wake fields of 
the negatively-charged bunch at roughly the positions -s, -s + cT0 , -s + 2cT0 , etc. 
The equation of longitudinal motion is 

d 2 r a.N e2
c { 

00 

d(s/~2 + W~T+ = E k~oo Wo[kTo + r+(s/c - kT0 ) - r+(s/c)] 

-.%;~ W0[kT0 + 2s/c + T_(-s/c + kT0) - T+(s/c)J} , (2) 

where w 11 is the synchrotron frequency, a the momentum compaction factor, N the 
number of particle in each bunch, E the particle energy, and W0 the longitudinal wake 
function. ·Here, the summation over k has been extended to negative infinity because 
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the wake function vanishes for negative time. Similarly, the equation of motion for T _ 

can be written as 

d 2 r_ 2 o.N e2 c { oc 
d(s/c) 2 + w. L = E. 1ef

00 

Wo[kTo + r_(-s/c + kT0 ) - r_(-s/c)] 

-.f:ro Wo[kTo + 2s/c + r+(s/c + kT0 ) - r_(-s/c)]} , (3) 

Note that the Eq. (3) can be obtained from Eq. (2) by 

{ 
r+(s/c) -+ r_(-s/c) , 
r_(-s/c)-+ T+(s/c) . 

{4) 

The wake functions in Eqs. (2) and(3) are expanded in Taylor's series keeping only the 
lowest-order terms (the potential distortion terms are neglected): 

d
2

T o.Ne
2
c{ 

00 

d(s/~ 2 + w:r+ = E k~oo [r+(s/c - kT0 ) - r+(s/c)]W~(kT0) 

- kf:ro [r-(-s/c + kTo) -r+(s/c)]W~(kT0 + 2s/c)} , (5) 

dt:;:i, + w!r+ = "~'c {.t;ro [r-(-s/c + kTo) - r_(-s/c)]W~(kT0 ) 

- ,f:,ro[r+(s/c- kTo) - r-(-s/c)]W~(kT0 + 2s/c)} (6) 

We are looking at a coherent growth like 

(7) 

so that when Imn > O, both r+(s/c) and r~(s/c) are growing. The longitudinal 
impedance Z11 is related to the wake function by 

Z11(w) = {oo dsWo(s/c)eiws/c , 
C J_oc (8) 

where C is the circumference of the storage ring. Substituting Eqs. (7) and (8) in 
Eqs. (5) and (6), we get 

(9) 



(-0 2 + w~)f_ = -ie(af _ - bf+) ' 

where w0 is the revolution frequency, 

and 

aNe2 

e = ET.2 , 
0 

b = f [vPZ11(vpwo)e-i2vpwos/c J 
p=-oo 

Eqs. (9) and (10) can now be written in the matrix form, 

where the eigenvalue is 

The solution is simple: 

).± =a± b 
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(10) 

(11) 

(12) 

(13) 

(14) 

Thus, it appears that the two bunches are coupled. However, when the eigenvalues are 
written out explicitly, 

).± = L {vPZ11(vpwo) [1 ± e-i2vpwos/c] - pZ11(pwo) [1 + e-i2pwos/c]} ' (15) 
p 

we see that they contain terms with fast oscillating phases. Take, for example, the 
term exp(-i2vpw0 s/c); it oscillates 2vP times in one revolution around the storage ring. 
Coupled-bunch effects are usually driven by sharp resonances with frequency at least 
of the order of the rf frequency. Thus, Vp is a big number and the exponential will go 
to zero after averaging over one turn. As a result, the eigenvalues become 

(16) 
p 

and are degenerate. This implies that the two bunches are not coupled at all. Similar 
argument and derivation can be made for the transverse motion and also for situation 
with many bunches. 
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