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I. INTRODUCTION 

This lecture talks about the analytic computation of the distortions of beam shapes 
in the horizontal and vertical phase spaces due to the introduction of nonlinear mul
tipoles. 

When we say that the lattice of a storage ring is perfectly linear, we mean that 
there are only perfect dipoles and normal quadrupoles. The equations of motion 
in the horizontal and vertical planes are then linear and decoupled. The lattice is 
described completely by the beta-functions f3x( s) and (3y( s) which are periodic around 
the ring and s is measured along the ideal closed orbit. One can also introduce the 
other parameters Oiz( s) and Oiy( s) and the Floquet phases ..Px( s) and 1/Jy( s) which are 
related to the (3's by 

a:u(s) = -~(3~(s), (1.1) 

and 

!' ds' 
..Pu(s) = f3u(s')' ( 1.2) 

where u can be x or y. After one complete revolution around the ring, the change in 
..Pu is 21l'Vu, where Vx and Vy are called the horizontal and vertical betatron tunes. In 
one of the transverse planes, the displacement U and the displacement angle U' are 
described by 

(
(3 ) 1/2 

U( s) = Au (3: cos( ..Pu +<Po) , 

U'(s) = -Au(f3of3u)- 112 [0iu cos(..Pu + ¢0) + sin(..Pu + ¢0)], ( 1.3) 

where ¢0 is some initial phase. We have deliberately put in some reference (30 so that 
Au retains the dimension of some initial amplitude. If we record the positions of the 
particle at one particular point along the ring for many turns, we find that they lie 
on an ellipse in the transverse phase space as in Fig. 1. In fact, the equation of the 
ellipse can be obtained from Eq. (1.3) by eliminating ..Pu, 

The area of the ellipse is 

A~ _ U2 + (auU + f3uU') 2 

f3o f3u 

7!'A2 
u 

fu = -- , 
f3o 

(1.4) 

(1.5) 

whicli is called the emittance of the beam in the u-directional phase space and is 
obviously an invariant of motion. Thus, knowing f3u( s) along the ring, one knows 
exactly the shapes of the beam ellipses in both transverse phase spaces anywhere 
along the ring and no tracking is required. 

From Eq. (1.3), the (3's have their physical meanings of oscillation amplitudes. 
For example, in the bunch-bunch collision region, we want small bunch sizes in both 
transverse directions and we think of a design with small (3's at that location. In 
short, we understand the patterns of focussing which generate the /3's. Therefore, 



u'' .~ ·rv,s1rr ---i 
' 

2 

Figure 1: Beam shape in a transverse 
phase plane. The lattice is perfectly 

linear, the emittance is f, 

and/ = (1 + a 2 )/3. 

the /3's are in fact qualified as a design tool rather than a computational device for 
avoiding tracking. 

Unfortunately, no machine is perfectly linear. There are systematic sextupole 
components in dipole fields from steel saturation, remanant fields, persistent currents, 
eddy currents, and random sextupole components due to field errors. Of course, there 
are also sextupoles placed around the ring on purpose to counteract the above and to 
modify chromaticity. Higher multipoles are also possible; for example, the octupole 
components from beam-beam collision. The theory therefore becomes nonlinear. Does 
this mean that we shall lose all our prediction of the beam shape by the beta-functions? 
The answer is no. For a large-size storage ring, the need for sophisticated diagnosis 
of minor faults demands a rational beam behavior. Such rational behavior is also 
required for a beam pipe of small bore so that the magnet size and consequently the 
cost can be reduced. All these imply a machine that is as linear as possible. As a 
result, perturbation theory can be used away from resonances. Collins1 has proposed 
a set of distortion functions for each order of the perturbation. These distortion 
functions are closed, i.e., periodic. They are independent of the beam amplitude and 
are very similar to the beta-functions and alpha-functions of the linear theory. Of 
course, the beam profile is not so simple now, because horizontal and vertical motions 
are coupled together. So it no longer manifests itself as an ellipse in each transverse 
phase space. Instead, it becomes a four dimensional hyper-egg and we can only talk 
about its projections onto the transverse phase planes. However, these distortion 
functions can give us the exact projections. They can also give us two important 
numbers: the transverse betatron tuneshifts ~!Ix and i).vy. 

In the Section II, we shall first preview these distortion functions, the formulae for 
their computation, and how they can be used in computing the phase-space projections 
of the beam and the tuneshifts. In Section III, we shall derive all the formulae in 
Section II from a Hamiltonian theory. Lastly, in Section IV, some applications are 
discussed. 
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II. DISTORTION FUNCTIONS 

If we use the Floquet phase .Pu as the independent variable instead of s, the motion 
of a particle in the transverse phase space, Eq. (1.3), becomes 

u'( .Pu) = -Au sin( <Pu) , (2.1) 

where the prime is now derivative with respect to .Pu, which is contained in the 
instantaneous betatron phase <Pu = .Pu + ¢ 0 , and 

( 
f3o) i/2 

U = f3u U, u' - auu = (f3of3u)i 12U' . (2.2) 

In this way, the ellipses become circles. 
With the introduction of some weak sextupoles, the circles are distorted into 

U =Su+ (Au+ Mu) cos(¢u + S¢u) , 

u' =Su' - (Au+ Mu) sin( <Pu+ S¢u) . 

The change in closed orbit is 

Sy= 0 , 

The changes in phase-space circles are 

Sx' = 2(A~A - A!A1 ) , 

Sy' = O . 

Mx = A!(G3 - G1) - A~(G+ - G_), 

S<Px = Ax(F3 +Fi)- (A~/Ax)(F+ + F_)' 

M" = -2AxAy(G+ + G_) , 

S,Py = -2Ax(2F + F+ + F_) . 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

In above, the functions Fi, Gi, F3, G3 , F, F+, G+, F_, and G_ are given in terms 
of the distortion functions Bi, Ai, B3, A3, fJ, A, B+, A+, B_, and A_ in Table 1. 
We note that the F and Gare just like a rotation of the vector (Ba, Aa) by a generic 
angle °'· By generic, we mean, for example, the substitution of °' = 2,Py + <Px in F+ 
and G+· The strengths of the sextupoles ma are defined as 

where 

(
(33)i/2 

s= ....:.. S 
f3o 

[ 
B"f ] 

s = ~~ 2(Bp) · 

(2.7) 

(2.8) 
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nanie angle strength tune 
Ba Aa a ma Zia F(a) G(a) 

B1 <f>x s/4 llx F1 = A1 cos a+ B 1 sin a 
A1 G1 = A1 sin a - B1 cos a 

B3 3</>x s/4 3llx F3 = A3 cos a + B3 sin a 
A3 G3 = A3sina - B3cosa 

.B .4 <f>x s/4 llx F = A cos a + B sin a 

B+ 2</>y + ifix s/4 2lly + llx F+ =A+ cos a+ B+ sin a 
A+ G+ =A+ sin a - B+ cos a 

B_ 2</>y - ifix s/4 2lly - llx F_ =A_ cos a+ B_ sin a 
A_ G_ =A_ sin a -B_ cos a 

Table I: Distortion functions for first order sextupoles 

Here, B~x is the local gradient of sextupole field,€ its length, and (Bp) the magnetic 
rigidity of the particle. 

Each pair of distortion functions can be computed using the following criteria. In 
the region between two sextupoles, (Ba, Aa) rotates like a vector by the angle a. On 
passing a sextupole, B is continuous while A jumps by an amount ma which may 
be s / 4 or s / 4. Finally, (Ba, Aa) have to close after one revolution of the ring. The 
explicit formulae for the set (Be., Ac.) at location 1/J" are 

(2.9) 

where the summation is over the location of each sextupole k. 
The first-order perturbation produces no tuneshifts. The lowest contribution 

comes from the second order: 

A2 -
211"6.lly =-A; 2:(B+s + B_s - 2B1s)k - -f 2:(B+s - B_s + 4Bs)k . 

k k 

(2.10) 

Similar expressions can be written for skew quadrupoles, skew sextupoles, normal 
octupoles, skew octupoles, etc. 
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III. HAMILTONIAN DERIVATION 

Collins1 has given a derivation of all the formulae in Section II. However, his 
derivation includes an a priori assumption of the closure (periodicity) for the distor
tion functions. An alternative derivation is the Hamiltonian method. 2•3 

111.1 Floquet Transformation and Action-angle variables 

We start from the Hamiltonian describing the motion of a single beam particle, 

where Px and Py are the canonical momenta conjugate to the horizontal and vertical 
displacements X and Y, Kx(s) and Ky(s) are proportional to the restoring forces due 
to the ring's curvature and the field gradients of the quadrupoles. The last term gives 
only the normal-sextupole potential. Other terms, such as skew quadrupole, skew 
sextupole, and higher multipoles have also been considered4 but will not be included 
here. 

Without the sextupole term, the Hamiltonian (3.1) describes two ellipses in the 
transverse phase spaces as given by Eq. (1.3). We next perform a canonical transfor
mation into the Floquet space so that the ellipses become circles as given by Eq. (2.1). 
The generating function is 

[ ( 
/3 ) 1/2 /3' ] 

G1(x,Px,y,Py;s) = ~ - /3u Puu + 
4
B u 2 

u-x,y 0 , 0 
(3.2) 

The new Hamiltonian becomes 

RB~ [(/3x)3/2 3 _ (/3x/3;)1/2 2] 
+ 6(Bp) /30 x 3 (3g xy (3.3) 

In above, the independent variable s has been changed to the more convenient (} = 

s / R, where R is the average radius of the storage ring. Use has also been made of 
the relation 

~ /3 /3" _ ~/312 + K /32 = 1 
2 uu 4 u Uu' (3.4) 

which defines the beta-functions in terms of the restoring forces Kx and Ky. This 
Hamiltonian is now solved exactly to zero order in sextupole strength by canonical 
transformation to the action-angle variables Ix, ax and ly, ay. The generating function 

G2(ax,Px, ay,py; B) = L ~ /3oP! cot[Q.(B) +au] 
u=x,y 

(3.5) 

is used to obtain the transformation 

u = (21./30 )
112 cos[Q.(B) +a.] , 
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/3oPu = -(2Iu/3o)1/2 sin[Q.(li) +au] , (3.6) 

where Qu(li) = !/;.(Ii) - vuli, /3oPu = du/di/Ju and is denoted by u1 in below. The 
definition of the Floquet phase tPu is given by Eq. (1.2). After the transformation, 
the new Hamiltonian becomes 

Ha = Vxlx + vyly + sextupole terms . (3.7) 

III.2 Expansion into Harmonics 

We note that Qu( Ii) is periodic. Thus, treating I. and au as Ii-independent, the 
sextupole terms 

3/2 RB~ 
llH3J,.. = (2lx/3x) 

24
(B p) [cos 3( Qx +ax) + 3 cos( Q,, +a,,)] 

1/2 RB~ 
-(2Ix/3x) (2ly/3y)S(Bp)[2cos(Q,, +ax) 

+ cos(2Qy + Qx + 2ay +ax)+ cos(2Qy - Qx + 2ay - ax)] (3.8) 

can be expanded into harmonics. Take for example the cos(Qx +ax) term, which can 
be written as 

(21/3)3/2 Y e•(Qx+ax)+e-i(Qx+a,) = R~ [ . . ] 
x x 48(Bp) 

(2Ix)a1213~12 f: (eme-imli +e;;,e-im8) , (3.9) 
m::=-oo 

where the harmonic amplitude is 

em=-fde y 2.. ei(Qx+ax)+imli. 1 2~ RB" (/33)112 
4811' Jo 2( B p) /30 

For a thin sextupole of length R at location k, the strength is defined as 

Then we get 

or Sk = !Jm y __ Y _ . [ B" £ ( /3x/32) 1/2] 
t-o 2(Bp) /30 

em = _l_ I: Ske i( Qx + mli)k . 
4811' k 

Doing this for every term, we get 

llH3J,ex = (2Ix)312 /3~12 :l:)A3m sin q3m + 3A1m sin qlm) 
m 

k 

(3.10) 

(3.11) 

(3.12) 

- (2lx) 1 12 (2Iy)/3~/2 I;(2B1m sinp1m + B+m sinp+m + B-m sinP-m) , (3.13) 
m 



where 

and 

qim = ax +°'Im - mO , 

q3m = 3ax + °'3m - mO , 

Pim = ax + f3Im - mO , 

P±m = (2ay ±ax)+ f3±m - m(J , 

A ei°'Im=-'-"'s ei(Qx+m(J)k 
Im 247!" ~ k ' 

A ei°'3m = -'-"'s ei(3Qx+m0)k 
3m 24ir ~ k ' 

Bimeif3Im =Si LSkei(Qx+mO)k' 
7r k 

B±me i/3±m = -' L Ske i(2Qy ± Qx + mO)k 
87r k 

7 

(3.14) 

( 3.15) 

In above, the harmonic amplitudes Aim, A 3m, Bim, B±m' and the phases °'Im, 

ll'.3m, /31m, /3±m are real numbers. 

III.3 Moser Transformation 

For the first-order beam shape, we can solve the equations of motion obtained 
from the Hamiltonian H3 to the first order. However, because we are interested in the 
second-order tunesh.ifts also, it will be advantageous for us to make another canonical 
transformation from (au, Iu) to (b., J0 ) so that the J0 's become constants of motion 
up to first order in sk or Sk. This is called a Moser transformation with generating 
function (derived in the Appendix) 

( 3/2{3I/2"" ( A3m 3Aim ) - 2Jx) o L., COS q3m + COS qim 
m m-3Vx m - Vx 

I/2 ) I/2"" ( 2Bim B+m B_m ) +(2Jx) (2Jyf3o L., COSPim+ COSP+m+ COSP-m , 
m m - Vx m - V+ m - v_ 

(3.16) 
where V± = 2vy ± Vx· By definition, the new Hamiltonian is 

where t>.H4 Jsex does not contain any zero-order or first-order terms sk or Sk· The 
first-order changes in Iu and a. are therefore given by 
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( 3.18) 

Explicitly, they are 

'l - (21 )3f2;Jl/2"'"' ( 3A3m . + 3A1m . ) u x - x 0 L..i 
3 

sin q3m sin q1m 
m m - Vx m - Vx 

(21 )l/2(?l ) r:il/2"'"' ( 2B1m . B+m . B_m . ) - x - y /JO ~ SlllPim + SlllP+m - SlllP-m , 
m m - Vx m - V+ m - z;_ 

bly = -2(2lx)1 12 (2ly);3~12 L ( B+m sinp+m + B-m sinp_m) , 
m m-V+ m- V_ 

( l )-1/2( l );3'/2"'"' ( 2B,m B+m B_m ) - 2 x 2 y o ~ COSP1m + COSP+m + COSP-m , 
m m - llx m - V+ m - z;_ 

bay = -2(2lx/3o)112 L ( 2
Bim COS Plm + B+m COS P+m + B_m COS P-m) 

m m - Vx m - V+ ffi - z;_ 

(3.19) 
These are related to the changes in amplitudes and phases. Recalling from Eq. (3.6) 
that 

where 

U =Au cos[Qu(B) +au] , 

u' =-Au sin[Qu(B) +au] , 

we have changes in amplitudes 

- (/30)'/2 8Au = 21u blu · 

A bar has been put on top of 8Au because it is defined by 

U = (Au+ 8Au) cos( 4'u + 8¢u) , 

u' =-(Au+ 8Au) sin( 4'u + 8¢u) , 

(3.20) 

(3.21) 

(3.22) 

( 3.23) 

which is different from the Mu defined in Eq. (2.3) where the closed-orbit distortion 
terms have been included. As for the angle variable au, if we solve the Hamiltonian 
H 3 , we get 

dau 8H3 
dB = olu = Vu + sextupole terms . (3.24) 

Thus, for the unperturbed part, 

(3.25) 



9 

Here, the constant should be chosen as <Pu - 1/Ju, where <Pu(B) is the instantaneous 
betatron phase and 1/Ju(B) is the Floquet phase designating the location at the point 
B. Although both of them depend on B, their difference is B-independent. Such a 
choice of the constant is necessary, because substitution of 

into Eq. (3.20) gives 
U = Au COS <Pu , 

u' = -Au sin <Pu , 

(3.26) 

(3.27) 

exactly the same as Eq. (2.1), where <Pu really denotes the instantaneous betatron 
phase. Therefore, the change in the angle variable au is just the change in the instan
taneous phase aside from closed-orbit distortion; or 

(3.28) 

III.4 Summation of Harmonics and Distortion Functions 

The solution (3.19) involves summations over the harmonics m. It is obvious that 
when Vx, 3vx, or V± is equal to an integer, the solution blows up. In fact, these are the 
first-order resonances of the sextupoles. When we are close to a particular resonance, 
we just take the term with an m that is closest to that v0 and forget the rest. This 
is the way to look at the situation near a resonance. In the actual operation of the 

storage ring, however, we are always far away from all resonances except possibly 
during extraction. Then, all the harmonics are necessary. It is nice that, except right 
at a resonance, the summations over m can actually be performed using the formula 

00 ei(mB+b) 1-1!'CSC1!'Vei[b+v(B-1r)] 

L: = m-v ·b 
m=-oo -1!' cot 1l'V e i 

0 < B < 21!' , 
(3.29) 

B = 0. 

Let us try one term in Eq. (3.19): 

i ei(Qxk+mBk-mB+ax) 
=-L:skL:-------

241!' k m m - Vx 

We get 
-I Ls e i( ax - VxB + iPxk - 1l'Vx) 

24 sin 1l'Vx k k 
0 < Bk - B < 21r , 

-i L 8 e i( ax - vxB + 1/Jxk + 1l'Vx) 0 < B _Bk < 21!' , 
24 sin 1l'Vx k k 

-i LSkCOS1l'V ei(ax-VxB+i/Jxk) B =Bk. 
24 sin 1l'Vx k x 

All these can be grouped together as 

( 3.30) 
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where the Eq. (3.26) has been used for au and the set of distortion functions is 

( 3.31) 

Nate that the restriction 0 S:: l.Pxk - .Px I S:: 211"Vx demands the summation over k for 
one complete revolution of the ring only. Therefore, at the same location but after 
one revolution, .Px becomes .Px + 211"Vx and all the !/Jxk 's have to increase by 211"Vx also 
in order to satisfy the restriction. Thus, the distortion functions have exactly the 
same values after one revolution. In other words, they are closed or periodic. 

Similarly, the other sums lead to 

= .!.( -iB3 + A3)e i3<Px , 
3 

B e 'P1m ·,1, L Im = ( -itJ + A)e l<px ' 
m m-Vx 

(3.32) 

where rP± = 2</Jy ± rPx· The distortion functions introduced in Eq. (3.32) are given by 

1 ~ sk 
B3(3.Px) = 

2 
. 

3 
L., -

4 
COS 3(1.Pxk - !/Jxl - 1rllx) 

Slil 1rVx k 

0 < l!/Jxk - !/Jx I < 211"Vx , 

0 S:: l!/Jxk - !/Jxl S:: 211"Vx , 
- 1 ~ sk 
B(,Px) = 

2 
. L., -

4 
COS (l.Pxk - ,P,,1- 11"V,,) 

sin 11"llx k 

A(,P,,) = fJ'(.Px) 0 < l\l'xk - .Pxl < 211"Vx , 

(3.33) 

where !/J± = 2,Py ± .Px and the prime denotes differentiation with respect to the 
argument. We see that Eqs. (3.31) and (3.33) conform with the definition of the 
generic distortion functions of Eq. (2.9). It is obvious that all the A's jump by 
an amount m" = sk/4 or sk/4 across a thin sextupole at location k due to the 
differentiation of the variable inside the absolute-value delimiters while the B's are 
continuous but exhibit a cusp. Knowing B" and A 0 at location !/J0 , their values at 
another location ,P~ = ,P" +a are given by 

1 
B~ = . cos( !/J" +a - .Pok - 7rvo) , 

2 sm 11"Vo 
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A l = - 1 . ( ) 
0 SIU </Jo +a - </Jak - 1rlla , 

2 sin 1rlla 
(3.34) 

where we have assumed for simplicity that there is only one sextupole at location Wak 

which is less than both .Pa and ,P~, (the situation of many sextupoles can be dealt 
with similarily). Also, the prime in Eqs. (3.34) and and (3.35) below does not imply 
differentiation. Expanding the sine and cosine, one easily gets 

( B~) = ( co~ a sin a) (B") 
A~ - sm a cos a A 0 ' 

(3.35) 

implying just a rotation of the vector (E0 , A0 ) by the angle a. Thus, a set of distortion 
functions obeys the three criteria set out in Section 2, which provide an easier and 
more physical way for its derivation. 

IIl.5 Closed-orbit Distortion 

The sextupole has an average dipole effect on a charged particle, thus distorting 
the ideal closed orbit. After Floquet transformation, one of the equations of motion 
derived from the Hamiltonian H3 is 

ff Y x 2 Y xy Z 
B,, ((33)1/2 B,, ((3 (32)1/2 

x + x = - 2(Bp) f3o f3xx + 2(Bp) To f3xY ' (3.36) 

where x 11 is second derivative with respect to the Floquet phase .Px· Therefore, across 
a thin sextupole of strength s or s, x is continuous but x' jumps by an amount 

!:::..x' = -sx2 + sy2 
• (3.37) 

Substituting Eq. (2.1) for x 
and r/>y, we obtain 

and y and averaging over the instantaneous phases rf>x 

Al lA2 l_A2 
L..>X = - 2 S x + 2 S y • (3.38) 

Since the vector (x, x') rotates by the angle ¢x according to Eq. (3.36) in the region 
without any sextupole, the distortion, which depends on the amplitudes, obeys exactly 
the same three criteria as a set of distortion functions. The closed-orbit distortions 
can be computed in exactly the same way yielding 

6x(1/Jx) = -2A;B1(1/Jx) + 2A;B(1/Jz), 

6x'(1/Jx):; -2A;A1(1/Jx) + 2A;A(1/Jx). (3.39) 

There is no distortion of y or y' for the closed orbit because the right side of the 
equation for y, similar to Eq. (3.36), is proportional to xy which averages to zero. 
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III.6 Beam Shape in the Transverse Phase Planes 

We are now in a position to compute the distortion of the beam-shape projections. 
Comparing Eqs. (2.3) and (3.23), we get 

Mu = (-Ou cos </>u + 6u' sin </>u) + 6Au , 

A.6</>u = ( ou sin <l>u + ou' cos </>u) + o¢u . (3.40) 

Substituting Eqs. (3.19), (3.22), (3.28), (3.30), and (3.32) into Eq. (3.40), we finally 
arrive at 

Mx = A;[(A3sin 3</>x -B3cos 3¢>x)-(A1sin</>x - B1 cos<f>x)] 

-A;[(A+sin</>+ -B+cos</>+)-(A_ sin¢_ -B_ cos¢_)], 

6¢>x = Ax[(A3cos 3</>x + B3sin 3¢>x) + (A1 cos</>x + B1 sin</>x)] 

-(A;/Ax)[(A+ cos¢++ B+ sin¢+)+ (A_ cos<f>_ + B_ sin¢_)] , 

My= -2AxAy[(A+sin¢>+ - B+cos</>+) + (A_sin<f>_ - B_ cos¢_)], 

O</>y = -2Ax[2(A cos <f>x + B sin </>x) +(A+ cos</>++ B+ sin¢+) 

+(A_ cos</>-+ B_ sin¢_)]. ( 3.41) 

The above distortions are exactly those given by Eq. (2.6). 

III.7 Second-order Tuneshifts 

To obtain the second-order tuneshifts, we need to evaluate the second-order sex
tupole terms in the Hamiltonian H 4 • From the generating function G3 of Eq. (3.16), 
we get 

3(2J )( J )(31/2 "°' ( 2B1m . B+m . B_m . ) 
- x 2 y o ~ S1IlP1m + S1IlP+m + SlilP-m , 

m m - llx m - V+ m - l!_ 

and similar expression for (2Ix)112(2ly). Then, the second-order terms in the Hamil
tonian is 

LiH4lsex = L(A3m' sin q3m' + 3A1m' sin q1m•) X 
m' 

[ ( J )2(3 "°' ( A3m . Aim . ) X 9 2 x o ~ 
3 

sm q3m + sm q1m 
m m - llx m - llx 

( )( )(3 "°' ( 2B1m . B+m . B_m . )] -3 2Jx 2Jy o ~ S1IlPtm + S1IlP+m + smp_m 
m m - llx m - V+ m - lJ_ 

+··· 



13 

Betatron tunes are defined per revolution. We therefore average over () or take only 
the B-independent terms. This leads to 

6.H~loex = ~(2Jx)2.BoL ( A~m + 3Aim ) 
. 2 m m - 3vx m - llx 

+ ~(2Jy)2.Bo L ( 4Bim + Bim + s:m ) 
2 m m - llx m - V+ m - v_ 

2( J )( J ) a """ ( B!m B
2 

m 6A1mB1m ( )) + 2 x 2 Y /JO~ m - V+ - m _:.: v_ - m - llx cos °'Im - .B1m (3.42) 

Now we need to sum over the harmonics using again Eq. (3.28). A particular term 
lS 

L Aim = 
m m-vx 

(3.43) 

Written in terms of the distortion functions, we have 

L AimB1m cos( °'Im - .B1m) = _ .Bo L(Bs )k . 
m m-~ Urr k 

(3.44) 

The tuneshifts are given by 

A - 86.H~ 
w.llx - 8Jx and A - 86.H~ 

L>lly - f}J 
y 

(3.45) 

Using Eqs. (3.42), (3.43), and (3.44), we obtain exactly the tuneshifts given by 
Eq. (2.10). 

IV. APPLICATIONS 

Here, we repeat two examples introduced by Collins1 illustrating beam-shape dis
tortions and betatron tuneshifts. 

IV .1 Beam-shape Distortions 
-

We try to look at the beam shape at a location along the storage ring where 
all the distortion functions A's are zero. Then we have from Eq. (3.39) closed-orbit 
distortions 

6x' = 0 , 
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8y = 0, 8y' = 0. ( 4.1) 

The distortions in the amplitudes obtained from Eq. (3.41) reduce to 

aAy = 2AxAy[B+ cos(2,Py + rPx) + B_ cos(2,Py - rPx)] . ( 4.2) 

The projections of the beam shape in the x-x' plane and y-y' plane are plotted in 
Fig. 2. It is drawn with AxB3 = 0.1, AxB1 = -0.05, A.B+ = 0.1, AyB- = 0.05, and 
AJ3 = 0.1. We see that the two circles in the linear theory have been distorted into 
a triangular shape and a rhombic shape. The center of the figure in the x-x'-plot is 
shifted. Also the thin-line circles become bands. The thickness of the bands is called 
'smear', which is a measure of the nonlinearity of the lattice. In this example, the 
smears can actually be computed. For example, in the x-x' plot, at instantaneous 
phase rPx = 0, 

Mx = -A!(B3 - B1) + A;(B+ - B_)cos2,Py. 

Thus, the smear there is 

At phase angle rPx = 7r /2, 

giving a smear of 

Mxlmax - Mxlmin = 2Az1B+ + B_j. 

Similarly, for the y-y' plot, 

IV.2 Tuneshifts 

at ,Py = 0 , 

71" 
at ,Py= "4 . 

Consider a mock design of the Superconducting Super Collider (SSC). Within 
each half cell of 40°, there are five superconducting dipoles which have a systematic 
sextupole at low field. We would like it to be corrected by the chromaticity adjustment 
of sextupoles at the quads. Is this good enough? In Table II, the beta-functions, the 
Floquet phases, and the sextupoles at the quads SF/2 and Sn/2 are calculated by the 
usual thin lens formulae. The distortion functions are calculated using Eqs. (3.31) 
and (3.33) taking the A's at the quads to be zero for closure. Here, (30 is taken as the 
maximum (3 and(} is the bend angle of a half cell. 

We have for a full cell, 

l:::C B 3 s )k = -0.0164 (,B0 b28)2 
, 

k 

L:CB+sh = -0.0205 ((30 b28)2 
, 

k 
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Figure 2: Beam shape projections onto the horizontal and 
vertical phase planes with the addition of sextupoles. 
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2:)B1sh = -0.0052(f3ob28)2
, L;(B_s)k = 0.0018(f3ob28)2 , 

k k 

L;(B1s)k = -0.0024 (f3ob2 B) 2 
, 

k 

I:;( Bs)k = -0.0101 (f3ob20) 2 
• 

k 

The tuneshifts are systematic. For N cells, using Eq. (2.10), they are 

f>.v, = (0.0025A; + 0.0022A;)N(f30 b20) 2 
, 

f3x 
/3y 
</>x 
</>y 

s 
s 
s 

Ba 
Bi 
B+ 
B_ 
fJ 

6.vy = (0.0022A! + 0.0050AZ)N(f3ob28)2 
• 

quad dipole position quad 
F .18 .34 .50 .66 .82 D 

1.00 .785 .621 .483 .371 .284 .217 
.217 .284 .371 .483 .621 .785 1.00 

0 3.48 7.43 12.45 18.96 27.46 40 
0 12.54 21.04 27.55 32.57 36.51 40 

-.325 .200 .200 .200 .200 .200 -.537 
-.325 .139 .098 .067 .045 .034 -.054 
-.071 .050 .058 .067 .076 .084 -.250 

.0293 .0141 .0034 -.0039 -.0074 -.0057 .0032 

.0089 .0035 .0003 -.0017 -.0023 -.0014 .0015 
-.0045 -.0124 -.0119 -.0056 .0054 .0219 .0447 
.0105 .0033 .0014 .0023 .0037 .0033 -.0028 

-.0011 -.0022 -.0025 -.0017 .0014 .0081 .0222 

Table II: Lattice values including distortion functions 
for a half-cell of a mock design of the SSC. 

unit 

/30 
/30 

degrees 
degrees 

b1IJ 
(f3ob21J) 
(/3ob2!J) 

(/3ob21J) 
(/3ob2IJ) 
(/3ob21J) 
(/3ob2IJ) 
(f3ob2!J) 
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( 4.3) 

In a normal proton ring f30 (i ~ 3 meters. For the Tevatron ring, N = 100 and 
b2 ~ 1.3/m2 • Then, at Ax = Ay = 1 cm, f>.vy = 0.0012 which is indeed a small 
number. For the SSC, however, N = 400 and b2 ~ 33/m2

• Again at Ax= Ay = 1 cm, 
6.vy > 2 units, showing that the design is no good. Collins points out that all these 
can be computed using a hand-held calculator and tracking will add nothing more. 

APPENDIX 

We take only one part of the Hamiltonian H 3 , 

H3( a,I) = v I+ (21)312 I:; A3m sin q3,.,, ( 5.1) 
m 

and try to find the generating function G3(a, J;8) so that the new Hamiltonian 

( 5.2) 
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is a constant independent of a and 0 when second order in A3m is neglected. In above, 

qam = 3a - mO + °'3m , (5.3) 

and we have left out the subscripts x or y for clarity. Since this is a perturbative 
canonical transformation, the generating function must be of the form 

Ga( a, J; 0) = aJ + L A;m cos q3m . ( 5.4) 
m 

We therefore get 

( 5.5) 

and 

I 8Ga ~ , . ( = -
0 

= J- L....3Aamsmqam. 5.6) 
a m 

Substituting Eqs. (5.5) and (5.6) into Eq. (5.2) and demanding that A3m cancels up 
to first order, A;m can be solved and we obtain 

Ga(a,J;O)=aJ-(2J)312 L Aa~ cosq3m. 
mm- v 

( 5. 7) 

The other parts of the generating function can be obtained similarily. 
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