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Abstract 

We reformulate the theory of the acceleration of charged particles 

in the recently proposed plasma wakefield acceleration scheme. Our 

treatment makes manifest the transient effects. To illustrate, we con­

sider a point charge driving beam traversing a semi-infinite plasma. 

We show that it takes a few plasma wavelengths for transient effects 

to dissipate and give the wakefield solutions presently discussed in the 

literature. Thus, the transient effects place a limit on the length of 

the plasma. 
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The present generation of electron accelerators can provide accelerat­

ing E fields up to a few tens of megavolts per meter. Recently, a great 

deal of excitement has been generated by the plasma wakefield acceleration 

scheme. 1•2 In this technique, a bunched relativistic electron beam traverses 

a cold plasma, creating an electromagnetic field in its wake. This wake­

field can generate huge accelerating gradients, up to hundreds and even 

thousands of Mev /m, which can act on a trailing electron bunch. 

Present theoretical discussions of this scheme consider the long-time 

response of an infinite plasma when the E field is a function of z - vbt, 

as is the driving bunch charge distribution, where z is the longitudinal 

coordinate defined by the direction of the velocity vb of the driving beam. 

S. van der Meer3 recently stressed the importance of understanding the 

transient response of the plasma to the driving bunch to insure that the 

scheme does indeed yield the large gradients as is currently believed for the 

short time in which the trailing bunch is inside the plasma. Thus, we want 

to show to what extent the long-time analytic solutions for the wakefields 

are valid. Also, the plasma is localized in space. So, we want to be able 

to specify the boundary conditions on the surface surrounding the plasma. 

Moreover, at t = O, we may have E of. 0 inside the plasma. This would be 

the case if a previous driving bunch had traversed the plasma. Thus, we 

may want to be able to vary the initial conditions inside the plasma volume. 
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Thus, our approach leads directly to a 3-dimensional general formalism 

which can be computer coded and which properly handles boundary and 

transient effects for an arbitrary charge distribution for the driving bunch. 

To illustrate our approach, we consider a point charge distribution 

(1) 

for the driving bunch incident on a semi-infinite cold plasma in the region 

0 < z < oo, bounded by the surface z = 0. The linearized equations of 

motion are 

uni at + n0(V o vi) 0 (2) 

Ov1 -eE 
(3) at m 

VoE -47re(n1 + nb) (4) 

VxE 
loB 

(5) ---
c at 

1 oE 41re 
(6) VxB - -- - -(nbvb + novi), 

c at c 

where m is the mass of the electron, n 0 and n 1 are the background and 

perturbed plasma densities, v 1 is the perturbed plasma velocity, and E is 

the electric field in the plasma. From the above equations we can derive 

(7) 
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where 
1 

4 2 2 
_ ( Ke n 0 ) 

Wp-
m 

(8) 

is the plasma frequency. The equation of motion for E can also be derived 

giving 

Substituting nb from Equation (1) into Equation (7) gives 

( ) 
wp o(r) ( z) . ( z) n 1 r = - - --u t - - sm wP t - - , 
Vb 21rr Vb Vb 

(10) 

where u(x) = J 1' x > O is the Heaviside unit step function. Thus, l o, x < 0 

substituting for nb and n 1 in Equation (9) we derive the following equation 

of motion for the longitudinal accelerating electric field: 

( 2 1 a2 
2) ( ) V - za 2 - kP E. r,z,IJ,t 

c t 

where kp = "';- and f3b = ~· At this point, other theoretical treatments 

look for solutions of the form E, = E,(r, E), where E = z - vbt. But 

this constraint leads to the long-time solution for the wakefield, after all 

transient effects have dissipated. We take a different approach. First, note 

that Equation (11) is the inhomogeneous Klein-Gordon equation. 
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Inside the plasma, namely z > O, we have from Green's Theorem 

E,(r, t) = ht+ dto Iv dVoG(r, t I ro, t0 )q(ro, to) 

+2- {'+ dto I dS 0 o (GV' 0 E, - E,V'oG) 
47r lo ls 

+-1- f dVo[GaE,(ro,to) - (aG)E,(ro,to)] I ' (12) 
47rc2 }y ato ato to=O 

where t+ = t+f and -47rq is the righthandside of Equation (11). We want 

to specify an arbitrary E, on the boundary of the plasma at z = 0. From 

the method of images, the appropriate Green's function is 

G(r, t I ro, to) = 
o(r- l!::pi) 

I r-r0 I 

kp 2 (R 
2 ]t) R --~2-, J1(kpc[r - -) u(r - -) 

[r2-(~) J' c c 

o(r - k:p) 
I r-r' I 

where R =I r-ro I, R' =I r-r' I, r = t-t0 , and Ji is the first order Bessel 

function of the first kind. To obtain a unique solution for the wakefield we 

choose the Dirichlet boundary condition E, = 0 on the surface z = 0 and 

the Cauchy initial conditions E, = 8:i· = 0 at t = 0 throughout the volume 

of the plasma. 

By far the largest contribution to E, comes from integrating the product 

5 



of the second and first terms of Equations (11) and (13), respectively, giving 

2 ! 
2 lnZ, COS W (t - [r'+(•-•a) I 2 - ~) 

E(l) - ( Wp) d p c "' 
z - e Zo 2 1 ' 

Vb 0 -
[r2 + (z - zo) I 2 

(14) 

where, for f3b ""1, io= ,·~~~.~;,·'. For small values of z, one should include 

the integral of the product of the second and third terms of Equations (11) 

and (13), respectively: 

2 ! 21:0 COS W (t - [r'+(z+za) I 2 - ~) 
E~2 l = -e(wp) dzo P ' 

1 
"' 

Vb o 2 -
[ r 2 + ( z + z0 ) I 2 

(15) 

and E = E(l) + E!2l+ six other much z z z 

smaller terms. Note that causality demands that E, = 0 whenever r is so 

- " large that z0 and z0 :<::; 0. 

To make the connection to a real experiment, use our point charge 

model for the driving beam and consider the Argonne National Laboratory-

University of Wisconsin, Madison plasma wakefield test facility presently 

being assembled.4•5 A typical plasma density is no = 1013 /cm3 , giving 

>.P = 1.07 cm and wp = 1.762 x 1011 sec-1 • The number of particles in the 

driving bunch is typically Nb = 1011 with f3b = 0.9997. As above, we model 

the plasma as having the one boundary surface z = 0. 

If one looks for analytic solutions for the wakefield of the form 
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where Ko is the zeroth order modified Bessel function of the second kind. In 

the derivation of this formula, transient and boundary effects are ignored. 

In Figs. (1) and (2), we compare E,(r, z, t) from our calculation with the 

analytic solution E~AL(r, e) versus time for fixed e. The value e = 0.53 cm 

corresponds to ~Ap where I E, I is a maximum, and e = 0.34 cm just corre­

sponds to an intermediate value of E,. Since t = 0 corresponds to the time 

the driving bunch enters the plasma and since Ap corresponds to 35.7 psec, 

we see that it takes about 1! and 2 plasma wavelengths in Figs. (1) and 

(2), respectively, for transient effects to dissipate so that the two solutions 

converge. Thus, for fixed e (as would be the case for a trailing witness 

beam pulse), there are substantial deviations of the analytic solutions from 

the exact solutions. It takes several Ap for these effects to dissipate. As sug­

gested by van der Meer ,3 one has to insure that the plasma is long enough 

that these transient effects dissipate over a sufficiently short fraction of 

the plasma length so that the enormous accelerating gradients indicated 

by Equation (16) are indeed achievable. In the Argonne-Wisconsin experi­

ment, the length of the plasma is 10-30 times Ap so that one can still expect 

the extremely large E, over most of the plasma. 

The above formalism allows one to take more complicated boundary 

7 



conditions on the surface of the plasma, as well as more complicated initial 

conditions for E, and 8ffi· at t = 0 throughout the volume of the plasma, 

such as for subsequent driving bunches. The application of this formalism 

to an arbitrary charge distribution for the driving bunch is straightforward. 
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FIGURE CAPTIONS 

Fig.I Comparison of E.(r, z, t) (solid curve) from our formalism 

with E1NAL(r, e) (dashed curve) from Ref. (6) for r = 0.05cm 

and e = 0.53cm. The solutions converge in about 1.5.Ap. 

Fig. 2 Comparison of E,(r, z, t) (solid curve) from our formalism 

with E1NAL(r, e) (dashed curve) from Ref. (6) for r = 0.05cm 

and e = 0.34cm. The solutions converge in about 2.Ap. 
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