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I. INTRODUCTION

The present volume is most easily described as an extension
of an earlier similar effort! The extension is mainly to higher emergies
but it also includes colliding beam simulations as well as mion
production and transport. There is also a larger variety of geametries
presented. But the purpose remains the same: to provide a collection of
graphs which may serve as a rough guide in shielding applications. De-
tailed designs seldom resemble the idealized cases analyzed here and
deserve specific camputation with particular attention to any suspected
weak spote. The graphs included here are intended to go no further than
to form a useful starting point in design work. Such an approach is al-
ready quite effective at 1 TeV and below and will became even more so at
higher energies where shielding costs are even larger.

The choice of stardard energies (5, 10 and 20 TeV) reflects
the range of c¢ollider energies presently contemplated and allows for
modest extrapolation outside this range. For fixed target results up to
1 TeV refs. 1 and 2 may be consulted. As in refs. 1 and 2, all results in
this volume (except those pertaining to "muon beams") use the Monte Carlo
code CASTM® Where x° induced electramagnetic showers are included as,
e.g., in muon production or in energy deposition, they are simulated with
the AEGIS* code. Predicticns of CASIM (plus AEGIS where applicable) for
target heating, induced radicactivity and absorbed dose in the sub-TeV
regime agree quite well with experiment® Likewise CASIM results campare
well with a set of abscrbed dose measurements taken cutside thick shields
for a variety of beam loss and shielding gecmetries® The full extension
of CASIM into the multi-TeV domain requires cansiderable modifications to
both particle production and particle transport models. This extension is
presently anly partly completed.



Particle production in CASIM for the fixed target (parti-
cle-mucleus) case is still described by the Hagedorn-Ranft model’ plus a
high p, component and a low energy nuclecn campenent® This model campares
well with experiment in the sub-TeV range? No such comparisons exist for
the extended (>1 TeV) moxdel but at least mo grossly unphysical features
seem to appear. Scme trends are worth noting: (1) the average fast
charged particle multiplicity increases too slowly with emergy, e.g., far
copper it rises from 13 at 1 TeV to about 17 at 40 TeV. From CERN
Collider results a larger multiplicity is to be expected; (2) the
normalization of the Hagedorn-Ranft production c<ross sections becomes
samewhat, worrisome at the higher energies. In CASIM leading particle
spectra are normalized to a total of exactly two such particles and pien
spectra are ncrmalized to enforce overall energy conservation. Both fac-
tors stay within 10X of unity in the 3 to 1000 GeV range. However the
leading particle ncrmalization factor climbs to 1.17 at 40 TeV while for
pions it falls to 0.46 (using again copper as an example) .

Thie does not mean that the typical shielding calculaticn
is invalidated by these defects. Such calculations usually sum over many
generations and the mechanism of energy conservation <(uilt into the
model) ensures same self-correction for reasonably small deviations from
reality. For example, by underestimating its multiplicity, a Monte~Carlo
interaction at 40 TeV necessarily produces particles with higher average
energy, which in turn produce more particles in the next gemeration than
would be the case if the correct miltiplicity were predicted. It should
also be emphasized that these deficiencies of the model are limited to
the highest energies and hence affect only the first few genmerations. In
fact, predictions of CASIN on star densities and broad beam energy depos—
ition in the TeV damain agree welll® with results of other codes which
employ production models of more recent vintage. Also, while an inmproved
particle production model is clearly desirable, scme care must be taken
in its farmulation to assure agreement with experiment at the highest
available emergies while maintaining the predictive power of CASIM in the
sub-TeV domain. This might be bYest undertaken when more detailed results
of the CERN Collider and Fermilab Tevatron are available.



Hadron production by colliding beams is described by an
empirical model based mostly on Fermilab data, alang with some CERN Col-
lider results and constrained by conservation laws. This model is out-
lined in Sec. II. Prampt macn production is described by an empirical
formulal! which expresses muons as a fracticn of pions produced as a
function of Feynman—x. This formula is based on much lower energy work
and is used here mainly out of convenience. Nonetheless, the formula does
feature a slow increase in muon multiplicity with incident energy as is
expected from increased charm and bottom (plus perhaps top) meson produc-
tion though it is not attempted to quantitatively justify this particular
rate of increase.

Particle transport in the multi-TeV regime differs signifi-
cantly from that at lower energies due to the increasing importance of
bremsstrahlung and direct pair production as a source of energy loss and
angular diffusion. The basic approach and implementation into CASIM is
described elsewhere!? Results presented here involving mucn transport are
obtained with the updated code. Predictions of this code are in excellent
agreement with data of Kopp et all® on the energy distribution of a
120 GeV muon beam transmitted through a 9.3m thick iron target. Hadron
dose and star density calculations are perfarmed with a simple extensicn
of the old code which treats energy loss due to bremsstrahlung and pair
production on an averaged basis and neglects the associated angular
diffusion. This is justified for this type of calculation since anly the
most energetic particles are affected by this and since production angles
will tend to be much larger than the deflection incurred over one
interaction length. Energy deposition at large radii is calculated in
similar fashicn.

By contrast, energy deposition calculations over radial
distances of the order of typical beam sizes anticipated at the colliders
(as low as 50 um must include an accurate description of these new sour—
ces of angular diffusion. The reason is that faor such small beams the
radial dependence of the energy demsity varies rapidly over distances



comparable to the beam size. This has important applications in the de-
sign of beam dumps and the problem of radiation induced quenching in
supercanducting magnets. Calculations of this type are also more likely
to be affected by the details of the particle production model. Therefore
they are not included in the present volume.

The basic CASIM code is reascnably well documented® and the
recent update to the {(mxn) transport part is described elsewherel?
Below, in Secticn IT, the particle model used to similate colliding beam
interactions is described. Section III deals with presentation and
interpretation of results, while the results themselves are briefly
reviewed in IV. Secticon V contains some information an the codes used in

preparing this volume.
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II. PARTICLE PRODUCTION IN COLLIDING EEAMS

The particle production model used in the simulation of
colliding beams is a simple parametrization based on extrapclation of
lower energy experimental results. As is the case for the Hagedorn—Ranft
model used in the fixed target part, leading particles, i.e., final state
particles which may be identified with the incident particles, are dis-
tinguished from particles newly created in the collision. For the present
purpose leading particles are always protans or neutroms. Elastically
scattered (colliding) protons will almost always either remain within the
beam or else leave the beam apertare at large distances fram the inter—
action regicn and are therefcre ignored. The more energetic leading par—
ticles will typically also remain in the beam pipe for a considerable
distance. Hence leading particle production need not be treated in utmost
detail. (Large angle elastics and leading particles along with other
produced particles mist be removed by scame collimaticn scheme so as to
protect the downstream superconducting magnets. This type of problem is
not considered here. It is also possible that such a collimatar, particu-
larly one intercepting a large fraction of these particles near the in-
teraction region, may recquire shielding for persomnel or emvirommental
protection. This is strongly dependent on the detailed design of the
interaction region and therefore likewise amitted here.)

A. Leading Particles

leading particles are divided into a diffractive and non-
diffractive component. Gouliancs'? uses the parametrization

do/dx, = .01A/(1-x) + ACl-xp) 0.9 < x, £ xx** @W
where the first term is the diffractive part. To canform to the treatment
of the produced particles (see below) the radial scaling variable, X;,
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the particle’s energy in the center of mass expressed as a fraction of
its maximum kinematically allowed value, replaces the more usual Feynman
x used by Goulianos. For the present work these should be completely
interchangeable. From the coherence condition®? the diffractive part must
vanish around x,*0.9. It is therefore assumed that

do/dx, = B(l=x) = 2A(1-x) xRt < % £ 0.9 )
where the secand equality follows fram continuity at x,=0.9. The value of
A follows from normalizing egs. (1) and (@) to unity. The behavior of
do/dx, when x, approaches its kinematic limit is not well described by
eq. (1). Note that x, can be expressed as

X =MD /8 <)
where 8 is the square of the total emergy in the center of mass and M, is
the invariant mass recoiling against the leading proton. The datal® at
low My, Quigh x;) show that do/dx, starts at zero at Id;""’=up+u’ra.nd (on
average) increases relatively rapidly through a series of resonances in
M,, to a maximm whereupon it the declines in accordance with eq. (D).
For our present purpose the complicated behavior of do/dx, near threshold
is gimilated by assuming that it remains constant between

X2 = 1-0.6/s @

(corresponding to M,=1.22 GeV) and Xp** (where M, =51 . Below xJ eq. (D
is assumed to hold.

The p, dependence of the leading particle cross section is
assumed to be of the type

do/dp? « exp(-bpD ).
For the non—diffractive part b is set to 5 (GeV/c) 2. For the diffractive
part b=Cb_, ;4 where b_, pertains to elastic scattering near the ferward
direction and is taken from the parametrization of Block and Cahn’® It is
assumed that diffractive protons do not undergo charge exchange but that
nn~diffractive protons convert into neutrons with a probability of cne
half. This is in rough accord with data of Engler et all”?
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Upon multiplying eqs. (10 and (2> by x; and integrating
over the entire x, range cne obtains the leading particle center of mass
inelasticity, i.e., the fraction of the total energy carried off by lead-
ing particles. This equals about 0.43 with little variation over the 5 to
20 TeV colliding beam energies explored here.

B. Pions and Kacns

As in CASTM, the leading particles’ energy is subtracted
from the total energy and the remainder is shared among the produced
particles. Not every particle species is represented in the simlated
collisions. In CASIM the produced particles are simply the three types of
pions. For the colliding beams, partly because the cross section formulae
are mich simpler, kaons are included as well. In either scheme other
particles can always be added without having to recast the entire model.

The invariant cross section for r and K production is assu-
med to be

Ed®/dp® = AUx ) (@2 @-131.3%"2/2(p +1.3)™ Gy

where A and n depend on particle type: A(r")1 and AK")=A(r*)/9, and
n(r*=3.5, n(rH=4.2, n"=2.8, nK)=5.2.  Since small angle particle
production has not yet been studied in detail at the CERN Collider these
parameters are talen {(scmewhat loosely) fram Fermilab data of A. Bremmer
et al!® and J. R. Jameon et all? and with the A(x™ fixed by energy
canservatian. The p, parametrization is based an the work of Arnison et
al?® with the value of m based n extrapolation of CERN ISR and Collider
data. For the present work m=6.5 for <2 and #9.0 for #>7 (» being the
center of mass rapidity) and m is taken to vary linearly in between. The
usual rule of taking the r°&®) production cross secticn to be cne half
the sum of the charged @& cross sections is followed.

This simple model predicts a charged particle inelasticity
of about 0.77 and a rms p, is about 0.67 GeV/c both with little variation
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over the range of vs fram 10 to 40 TeV. The charged particle miltiplicity
varies from 43.9 to 48.3 over this range. This is likely to be an under-
estimate.

Eq. & as well as its counterparts for leading particles,
eqs. (1 and @, permit relatively simple Monte Carlo selection schemes

to be implemented, whether selecting proportional to the multiplicity or
to the inelasticity.
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ITI. INTERPRETATION OF RESULTS

A. Dose and Star Densities.

A frequently used procedure followed, e.g., in Ref. 1) is
to present star densities above some predetermined cut-off. The standard
cut-off is 0.3 GeV/c?! (Above this value cross secticms vary only slowly
with energy and this permits a mumber of shortcuts in the program which
could not be maintained at lower momenta. The precise value of the cut-
off is scmewhat arbitrary but considerable convenience is derived by
adhering to the 0.3 GeV/c standard.) These star densities may then be
converted to dose assuming the presence of an equilibrium momentum spec-
trum of the participating hadrans. Such an equilibrium spectrum (with a
spectrum shape insensitive to locaticry prevails aonly at sufficiently
large depths and radii. At lower values of r and z a conversicn factor
based on an equilibrium spectrum would underestimate the dose. In these
cases ane must use a location dependent canversion factor?!

This procedure is included in a mmber of experimental
tests® of CASIM and yields quite satisfactory results. It is however
limited to shields camposed of soil and cancrete for which the equilibri-
um spectrum shape is reasonably well established. For shields composed of
iron or heavier elememts application of a similar procedure!:?? requires
great caation. Because of large fluctuations in neutron cross sections
as a function of energy for these elements and because of the absence of
hydrogen it requires deeper pemetration to establish an equilibrium spec-
trum. Furthermore while an equilibrium spectrum, e.g., in soil, may be
expected to be reascnably robust with respect to small changes in (soil)
campoeition this is not necessarily so for the heavier shields. Perhaps
most importantly the empirical basis of the procedure, which is quite
well established for soil and concrete, is lacking.
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The rule adopted here is to present results in terms of
dose equivalent (rem) for soil and concrete and in terms of star densi-
ties for all other materials. The dose is calculated by applying a star-
to—dose conversion factor, which depends on particle type and on momen-
tum, within the Monte—Carlo. For low energy neutrans this factor is iden-
tical to the one of Ref. 1 thereby guaranteeing agreement with the above
menticned procedure in regions where low energy neutrons predominate.
Closer to the incident beam there are additiomally significant contribu-
tions due to r° initiated showers and due to charged particles. For comr-
parisan, the results for a solid concrete (soil) cylinder are presented
both ways.

The limitation of reliable dose calculations to soil or
cancrete is in practice mot a severe ane. Almost all accelerator shield-
ing relies on an outer layer of soil or concrete for neutron attemmation.
A rule of thumb is that about im of concrete (radially) is required to

establish an equilibrium spectrum.

Hadron production (mostly low energy neutrcans) by electro-
magnetic cascades is not included in any of the calculations. Compared to
direct. production this seems quite inefficient, but the fracticnal energy
spent on electromagnetic showers (~67% at 20 TeV in irond increases mono~
tonically with energy and this guarantees that eventually this mechanism
will beccme significant.

Expressing dose~equivalent in rem (Gn lieu of sievertd may,
regrettably, inconvenience some but it offers at least sume contimuity
with ref. 1. Since rem is still widely used and the canversion is tri-
vial, there need be no further apology. Mcre seriocus is a likely future
revision of quality factors, particularly if the calculated dose—equi-
valent, has more than one significant camponent which could underge dis-
gimilar revisions. Fortimately, in most applications a daminant component.
(usually either muons or low energy neutrans) may be readily identified
and a vevised dose—equivalent can then be evaluated.
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Ref. 1, amcng many other sources, c<ontains scme hints and
recipes on converting calculated results of the type presented here into
more immediately useful numbers. For convenience some often encountered
conversion factors are reproduced here with the caveat that these are not
universally agreed upom.

In concrete and in regicns where the cascade is sufficient-
ly developed the beamcon dose rate may be estimated from the star den-
sity:

ane [star/cn®) corresponds to 350 hadrons/cm?
ar 1.5 107® rad
ar 9.0 107® rem.

In ixon and in regions where the cascade is sufficiently
developed star density may be converted into expogure rate resulting from
induced radicactivity. For the "warst case" of infinite irradiation time,
zero cooling time and on contact:?3

one [star/(cm3+sec)] corresponds to 3 10°® rad/hr.

To protect against groumd water activatign, the criterion
is a limiting concentration of radiocactivity in drinkding water. It is the
practice at Fermilab to translate this into a limiting mumber of stars
per incident proten produced in uncontrolled soil. This, in turn, dic-
tates size and shape of beamdumps. There is no unique conversion factar
from radicactivity coocentration to stars per incident protan. This de-
pends on the expected beam intensity as well as the (usually poorly
known) transpart of the radicactivity produced around the dump to the
water source. Based on very conservative arguments a typical Fermilab
beamdump admits 0.015 stars/incident proten in uncontrolled soil. In
contrast to the conversion factars above this mumber is anly meant as an
illustration and is not for direct use in design calculatians.
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B. Scaling.

For homogeneous shields of roughly the same atamic composi-
tion simple scaling rules?* may be applied to adjust for different densi-
ties. Since the basic parameters (interaction length, stopping power,
particle production characteristics, etc.> vary only slowly with atomic
mass these scaling rules have a rather wide range of application particu-
larly where rough answers suffice. In the present study these rules are
applied over a very narrow range viz., to inter-relate calculations for
wet soil, dry soil and concrete. Given their similar camposition the
scaling should be nearly exact. For convenient access it appears useful
to repeat here scme farmulae of Ref. 24 upon which the scaling (illustra-
ted in a large mmber of the graphs) is based.

Star densities scale as:

S, T./p) =8 & /p 3 v
vhere ¥ is the position vector within the shield and p is the density.
The subscripte identify different materials, e.g., ¢ for concrete and w
for wet soil with assumed densities p_=2.4 g/can® and P=2.24 g/cm®, In
eq. (7 it is assumed that S_ is explicitly calculated and that S, is
derived by scaling, i.e.,

§,1.071F ) = 0.8138_& ) @ .

For star density results presented in the form of comtour plots the above
equations show how both r and z axes must be recalibrated as well how as
the contours are to be relabelled.

Doee scales as

D, ¢ E./p) =D & /502 @,
i.e. with the axes to be recalibrated as for star demsities but with the
contours relabelled differently. Star densities integrated over radius

]
Iz = [ S@2xrdr ¢1))
C
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obey the scaling rule

I, Cp.2/py = 1.20p /00 an.

Note that in all cases presented here (unlike eq. (11)) the upper limit
is actually same finite radius (problem boundary) . Use of the scaling law
requires that the problem radius be large.

The integrals of star density over depth (z) shown in the
graphs refer to

z
Iy = 20 [ S@dz a2 .
Q

I¢) follows the same scaling law as I(z), shown in eq. (11> and with the
same caveat about the upper limit of integration. The factor 2#r in
eq. (12>, while samewhat unconventianal, facilitates subsequent integra-
tion of IG) over r.

Foar heterogenecus shields scaling laws are cbviously less
applicable. Yet ane may identify instances where these laws may be used
though generally to a lesser degree of appraximation. The case of a beam
striking a target in an otherwise empty tumnel provides a suitable illus-
tration. For exanple, cne may seek to apply scaling for different turmel
wall materials while keeping everything else identical. If the tumnel
wall surface is thought of as a source of particles at constant r but
widely distrituted in z then it is clear that scaling does not apply in
the z-—direction. However the integral over all z can still be scaled
provided radial distances are measured fram the tunnel wall:

IGrJ/o 1) = C/p2l & ~1) as.
For a cave, scaling may be applied for the integral over r in the z—di-
rection provided the daminant contribution enters through the back wall
rather than through the tumel wall. Certain problems, though in prin-
ciple heterogeneous, will yield reascnably approximate answers when trea—
ted as homogenecus for scaling pwrposes, e.g., the more energetic muons
emanating from a malti-TeV proton beam loss in a magnet inside a tarmel
may traverse several km of soil before stopping and little accuracy will
likely be lost by scaling on the basis of the homogeneous soil case.
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IV. RESULTS

A convenient tabulation of all results appears in the Table
of Contents. For ease of reference the entries in this listing refer to
the page mumber of the corresponding graph. Most of the graphs are readi-
ly interpreted but, where appropriate, some camentary is provided in
this secticn. The results are divided into : (A hadron dogse and (B mucn
dose from fixed target initial interactians, (O hadron dose and ) mucn
doge from colliding beam initial interactions, where "initial" indicates
that effects of the cascades induced by these interactions are included.

A. Hadron Dose. Fixed Target.

Figs. 1-3 present cantour plots of star density for § ,10
and 20 TeV protcens incident an a solid (i.e., homogeneous) carbon cylin-
der. Fig. 4 shows radially integrated star densities as a function of
depth (2> and fig. 5 longitudinally integrated star demsities as a func-
tion of radius ), also for carbon and for the same incident proton
energies. Figs. 6-10 repeat this sequence of graphs far concrete and
similtanecusly, via the scaling of Sec. ITI, for soil. Figs. 11-13 are
iso—dose plots for the concrete/soil case, obtained from the same calcu-
lations as the star demsities but converted to dose—~equivalent by a fac-
tor which depends on particle type and momentum. Figs. 14-28 show star
density results for alumimmm, iron and lead. For all cases the beam is
parallel to the cylinder axis and has a Gaussian distributicn indepen-—
dently in x and y with a:=ay=1 mm.

Figs. 29-33 deal with radicactivity induced in soil ocutside
thick targets. Fig. 29 plots contours of equal total star production in
soil outside an iron block by 20 TeV protens incident on axis. Forward
and backward directions are shown separately. Note that these results
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pertain to a block, not a cylinder as for the star demsities, with x(=y)
indicating the half width of the block. As can be seen in fig. 29 all
iso-star contours quickly assume their asymptotic form parallel to the x
and z axes. This is expected since little can be gained by adding to the
sides when escape is predominantly from the back and vice versa. Since
not mich information is contained in the "corners" of the contours, the
rest. of the plots, figs. 30-33, show only the location of the asymptotes
as a function of x or z. Thus fig. 30 exhibits the total mumber of stars
produced ocutside an infinitely wide, semi-infinitely long iron block,
i.e., the block has finite length in either the positive or negative z-
direction. Fig. 31 plots the total mumber of stars produced outside of an
infinitely long iron target which is likewise infinitely wide for either
z>0 or z<0 but has finite width in the other half-space. Figs. 32 and 33
are the corresponding graphs for concrete/soil. Results for z<0 are less
well established and conservative interpretation is advised. These fig-
ures may be useful as starting values in, e.g., optimizing the ocuter
dimensions of a beam dump. Although the star density contours caontain
essentially the same information, the results presented in figs. 29-33
are more convenient to use as well as expected to be more accurate, espe-
cially at large x or z. This is a result of a different Monte—Carlo
strategy employed: (1) in computing the number of stars in soil due to
escapees the "score" associated with each such escapee is the average
total mmber in stars, a mmber not subject to fluctuation, and (@ col-
lision length biasing is introduced to ensure that types and spectra of
the escapees are sufficiently sampled. This strategy can be adapted to
inhcmogenecus targets as well as to more camplex gecmetries.

Figs. 34-58 show energy density cantour plots alang with
radially and longituadinally integrated energy demsities for the same
standard cases as shown for the star densities. These results emphatical-
ly exclude the regicn close to the beam trajectory where more care must
be taken in evaluating the energy deposition.
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Calculations of the hadron dose resulting from catastrophic
beam loss appear in figs. 59-72. Calculations of a more specialized na-
ture such as these are more useful, by virtue of a more realistic gecme-
try, but at the same time less useful since they are influenced by design
changes and since some simplificaticn in modelling beam loss, accelerator
geametry and magnetic fields is inevitable. Two gecmetries are included
here: (i) a contimuous, circularly curved dipole represented by a "C5"
magnet. and (ii> a 1 mm thick beampipe in a straight secticn, each enclo-
sed in a 1.2 m radius (respectively curved and straight) turmel. Beam—
pipe. magnet and tuamnel are assumed to be concentric. The composition of
the tummel wall is assumed to be wet soil. Because the main objective is
to determine the wall thickness needed for protection from catastrophic
beam loss, the star density is evaluated in the turmel wall only.

Design drawings of the cross—section of the dipole alang
with a sketch of its representation in the program are shown in fig. 73.
An ideal magnetic field is assumed present in the gap. In all cases of
this stady the central field is taken to be 6.0 Tesla. This means that
for a centimious dipole case (the only type ccnsidered here when a field
is present) the ring radius is adjusted for different beam momenta. Out-
gide the gap the field is obtained by interpolation from arrays of its x
and y components specified an a rectangular grid with 0.25 inch spacings
covering the magnet cross—section®® Also for the dipole case three beam
loss modes are presented: (1) beam loss on inside of the beampipe, i.e.,
towards the center of the ring, (ii) beam loss on outside and (iii) mid-
dle. The latter may be thought of as resulting, e.g. fram beamrgas inter-
action. In each mode the beam is assumed to interact precisely at z=0 and
with its direction tangential to the cowrving magnet. For inside and ocut~
side beam loss the beam is of infinitesimal extent in the horizental
directian and has a Gaussian spread of 0.01 cm vertically. For beam loss
in the middle the beam is assumed to be (ucorrelated) bi-Gaussian with
crx=0,_=0.01 cm.

To obtain the azimuthal dependence of the star demsity the
O to r range (the problem is symmetric about the midplane) is divided
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into three bins: O to 7/4, /4 to 3r/4, and 37/4 to 7. Not unexpectedly
the azimuthal dependence is small encugh to be ignored since the dose in
the tummel wall is neutran dominated. The z axis for all cases is the
distance along the central orbit of the accelerator. Results for 10 TeV
are not shown since these are easily obtained by interpolaticn from the 5
and 20 TeV graphs. The interesting second bump appearing for the case of
inside beam loss is due to particles cressing the aperture which is geo-
metrically favared in this case. The location of the peak is roughly
where the tangemt to the inside of the beampipe at the interaction point
meets the beampipe cnce again on the outside, which is where neutral
secandaries are expected to land.

Figs. 74 and 75 show the linear star demsity in the air of
the tammel, which swrrounds respectively a magnet and a bare beampipe, as
a function of distance from the point of interaction. This serves as an
estimate of air activation resulting fram beam loss. For the beampipe
case the dose calculated in the backward directicn is not shown since it
is both very small and very uncertain.

B. Mucn Dose. Fixed Target.

The first set of figures survey some results on muon pene-
tration in soil. For all cases a monc—energetic, parallel muon beam of
infinitesimal extent is incident on a homogeneous soil target of infinite
extent. The incident emergies range from 10 GeV to 20 TeV. Figs.76-83
show the distribution in z where the mumns came to rest as well as the
rms spread of the mxn beam as it pemetrates into the scil. These graphs
illustrate strikingly the qualitative changes occurring with increasing
energy in the slowing down process of the maons. At the lower energies
where collisian losses are still dominant the distribution is well de-
scribed by a range plus a straggling tail (0/<z>=0.070 at 10 GeV) . At the
higher energies where pair production, bremsstrahlung and miclear inelas-
tic scattering are more important ' the distribution resembles a broad
Gaussian (0/<z>=0.29 at 20 TeV). Figs. 8487 display the x distribution
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of muons caming to rest. Figs. 83~9l are scatter plots showing the densi-
ty of stopped mons as a function of radius and depth. Figs. 92-65 are
contour plots of the energy deposition density as a function of r and z.
For small r and z these results are not well resolved. Figs. 96-99 dis-
play the linear energy demsity as a function of z along with a breakdown
of muon energy deposition mechanisms.

Figs. 100-104 pertain to muons generated by the hadron
cascade when a mono—energetic hadran beam enters a homogeneous soil tar-
get. While this has few immediate applications it may be of interest as a
limiting case, since the presence of any voids will generally increase
the muon flux. Also, without geametric or other camplications, it may
serve as a test case, e.g., in comparison with other calculations.

More practical fixed target muaon problems are addressed in
figs. 105-141. Muon dose from catastrophic beam loss on a beampipe is
shown in figs. 106~108. The gecmetry is the same as for the hadron case
but,, because of the deep penetration by the muans, the tumel length must
now be made explicit and is chosen to extend 1 km beyand the interacticn
point. This is of the order of the length of a straight section contem—
plated for the SSC?¢

The remaining figuwres in this set deal with muon dose fram
catastrophic loes in a contimaous dipole. Again the geometry and magnetic
field description are identical to the hadron case. The presence of a
magnetic field along with the large distances involved and the curved
geometry introduce same ambiguity in the choice of reference frame to
analyze this problem. There are two obvious choices: (i) a "beam frame"
in which the z axis is tangential to the accelerator and (ii) a "magnet
frame" where z is replaced by s, the distance alang the cemtral orbit.
Analyzing the same calculation separately in each frame is not necessari-
ly an optimal procedure but it should produce an overview of the problem
from which more detailed calculaticns can then depart.
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The beam loss mode is idealized as in the hadron dose cal-
culations with the same distinction of losses on the inside, outside and
middle of the beampipe. In contrast to the hadron case the muon dose
rates show a marked azimuthal dependence. An exhaustive treatment is not
attempted, but figs. 109-141 present an overview as well as Chopefully)
the more interesting cases. Note also that results for beam frame and
magnet frame overlap to some extent at small z or s. Magnet frame results
are given only for the azimuthal quadrant to the inside of the ring since
(D muon dose in the outside quadrant is better analyzed in the beam
frame and (i muons can travel large distances by "charmelling®, i.e.,
being repeatedly reflected between magnet aperture and retarn field. From
the latter viewpoint positive muons are somewhat more interesting than
negatives by virtue of () having the proper gnide field crientaticn in
the aperture where there is no energy loss and (i1 being produced in
scmevhat larger mumbers by proton induced cascades, particularly the more
energetic myns. Since positives reflect off the inside of the magnet
they are expected to leave the tammel in that direction.

Longitudinally integrated energy density plots in the beam
frame have scme contribution at radii less than the tarmel radius which
is cmitted in the figwres for lack of simple interpretation, on account
of the curved geametry, and because this regicn is easier to analyze in
the magnet frame. This also applies just ocutside the tunmel wall.

C. Colliding Beams. Hadron Dose.

The idealized geametry of a collision hall used in the pre-
sent calculations is shown in Fig. 142. Dimensions are roughly those
given in ref. 26. A1 m thick beampipe runs through the center of the
hall. The protans are assumed to collide at the arigin and produce sec—
ondaries according to the model of Sec. II. These particles in turn
interact with muiclei in the beampipe and walls according to the extended
Hagedorn-Ranft model. In addition to the usual azimithal symnetry there
is also reflection symmetry about the vertical center line. This is ex-
ploited in the calculations and also in the presentation of the results,
which cover only half of the interaction region. This must be borne in
mind when integrating results over the entire region.
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Results are given separately for the side wall and for the
back wall of the cylindrical hall in figs. 143-150. This geometry provi-
des a "worst case" since the hall will typically house some apparatus,
e.g., a large detector, which provides significant shielding. Figs. 151~
154 show results for ancther extreme: a beanpipe suwrrounded campletely by
soil. These results plus same interpolation and extrapolation could pro—
vide a useful starting point for a more realistic calculation.

D. Colliding Beams. Mucn Dose.

Mxn dose calculations from colliding beams socurces are
primarily cancerned with the deeply penetrating muons travelling alang
the collision axis. The relevant geametry is that of the accelerator near
the interaction regions and it strangly influences the relative importan-—
ce of decay versus prampt mucns, since this is largely determined by the
distance traversed through voids by » and K produced in the collision. A
realistic calculation would trace the produced particles through a rea-
scnable idealization of the accelerator components and thus compute for
each particle of the sample its appropriate decay probability into a
mxn, as well as keep track of scattering and any magnetic bending of
both produced particle and resulting muon. Such an undertalcing is proba-
bly warranted when the design of the machine is sufficiently frozen. Here
a mxh cruder approach is talken: the interaction is assumed to take place
in a void at a fixed distance from a semi-infinite homogenecus soil
shield in which the mxn energy deposition is analyzed. The distance to
the soil shield is taken to be respectively 20 m, 100 m and 250 m. The
20 m and 100 m represent the distance to the begimning and end of the
strangly focussing quadrupoles near the interaction region where scame of
the produced r and K are expected to leave the aperture. The 250 m cor—
respands roughly to the distance at which the two beams re—enter their
separate apertures?® The main objective here is not to make quantitative
predictions for the SSC but rather to explore the questiom of prampt
versus decay muns for a reascnable range of decay lengths. Figs. 156-175
show results far the penetrating mucns. The radially integrated plots
also cantain a brealddown on the muon production mechanisms.
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The final set of graphs pertain to muon dose in the vicin-
ity of the collision hall. The particle production model indicates that,
in an average event, a large mmber of soft hadrons are emitted. Accom
panying these hadrons cne expects same mucns of comparable energies to be
present, resulting both from prampt and decay mechanisms. The different
character of hadron and mucn absarption poses the question as to which
camponent determines the shield thickness. It appears that for the side
walls (figs. 176 and 177> the muon dose already beccmes camparable to the
hadron dose at around 2m of soil for the regicn nearest to the colliding
beams. At the far end of the hall this equi—dose thickness is about 4m.
For the back wall «ig. 178) the hadron dose dominates campletely. The
collision hall gecmetry is the same as used to calculate hadran dose. To
obtain meaningful results in reasanable execution times the selection of
hadrons and prompt maons in the colliding beams must be heavily biased
towards those with large p.,.

In the light of these results and of the uncertainty of the
production model, especially for mucns, the side wall calculation might
be worth repeating with different sets of assunmptians as a check an sen-
gitivity of this result to the model. Ancther uncertainty about this
problem is geametrical: to find a reasonably simple geametry which ap-
proximates a "worst case" from the muon shielding point of view. It has
been ascertained by separate calculations (not explicitly included here)
that the removal of the I1mm beanpipe changes the results very little,
i.e., the beampipe’s effect as an absorber of muons roughly campensates
for its effect as a source of new muons. This is not clear a pricri, and
it is also not clear that this will contime to hold as the beampipe’s
thickness is increased, e.g., to simulate the presence of other
apparatus.



V. PROGRAMS

As mentioned in the Introduction the basic program used in
this work is CASIM supplemented by AEGIS for electromagnetic showers, by
the empirical particle production model for colliding beams and by muon
production and transport. To generate the various results CASIM was cast
into several different versions. The differences between any two such
versions not only reflect the presence (or absence) of colliding beam or
mxn beam similations but also include different gecmetries, presence of
magnetic fields as well as bimming, normalization and printing of the
results. This modus operandi, vis—a—~vis the obvious alternative of com
bining everything into cne program with multiple optioms, is the result
of both necessity and convenience. A single program alternative would
easily exceed the ~100 Kword limit at the CYBERs of the Fermilab Computer
Department where most of the development and debugging was done. Actual
rumning took place almost exclusively on the FPS of the Acceleratar Divi-
sicn where starage is more than sufficient but where turm-around far

short debugging runs might create a problem.

Any of the various versians is available by contacting cne
of the Fermilab authcrs. The programs are all in FORTRAN V and are tested
cn both CYEER and (VAX equivalenty FPS computers. Most need ane or more
extra files (e.g., range—energy tables) as well as a data file. The codes
are not necessarily “user friendly" but all carry an introductory de—
scriptiom specifying where the major changes from the standard CASIM
occur and which files are referred to by the program. All such files as
well as sample data files are likewise available. This work, especially
the graphs, may serve as a "memu" of what is available as a suitable
starting point for further explaration.



CASIM VERSIONS FOR SSC SHIELDING STUDIES

A. Fixed Target. Hadron Dose

CASZ. Standard CASIM. Computes star densities, rem dose and (at
large radii only? energy depositicm.

CaX7 . Catastrophic beam loss in continmucus dipole placed in a
(carvedd tumnel or of beampipe in straight section.

CAIR. Star density in air of tumnel for catastrophic beam loss

in cantimaous dipole or beampipe in straight section.

B. Fixed Target. Muon Dose

MUP3. Muon beam in infinite, homogeneous soil. Requires
histogramming package, e.g., KIOWA or HBOK.

Q4N. Mucns from catastrophic beam loss in contimuous dipole.

QUSS. Mucns from catastrophic beam loss in straight section.

C. Colliding Beams. Hadron Dose

IRHS. Collision ha.liaﬁane Ca.lculates gtar density or rem
dose in gide

D. Colliding Beams. Mucn Dose

IRMS. Colliding beams in void. Variation of decay space is
similated by moveable wall. Includes contributicn of
hadron cascades in scil.

NIRM. High p, mamns in collision hall geametry.
Cammmicaticns about bugs, u;n‘ovamts new or unusual

applications, etc., with reference to the codes will always be
greatly appcreczated
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5, 10 and 20 TeV protans incident an 12m long solid concrete (left
& bottom axes) or soil (right & bottom axes) cylinder. The calcu-
lation has a cut—off momentum of 0.3 GeV/c. The protcns begin
interacting at zero depth.
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Fig. 10. Longitudinally integrated star density (in stars/cm*incident
protarw for 5, 10 and 20 TeV protons incident on 5.0m radius
solid cancrete (left & bottam axes) or soil (right £ bottam
axes) cylinder. The calculation has a cut—off momentum of
0.3 GeV/c.
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Fig. 11. Contoars of equal dose equivalent (in rem/incident proton) for 5 TeV protons incident on

solid concrete/soil cylinder. The beam has a bi-Gaussian spatial distribution with o =0 =0. 1cm

and is parallel to and centered on the cylinder axis. The beam starts interacting at zéro’ depth.
Contours for concrete (left £ bottom axes) are integral powers of ten. Contours for (wet) soil
(right. & top axes) must be scaled down by 0.87 as shown for one example. Same contours may be

omitted for clarity or due to statistical uncertainty.
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Fig. 12, Contours of equal dose equivalent (in rem/incident protord for 10 TeV protons incident on
solid concrete/soil cylinder. The beam has a bi-Gaussian spatial distribution with 0,70 =0 lan
and is paraliel to and centered on the cylinder axis. The beam starts interacting at zero depth
Contours for concrete (left & bottom axes) are integral powers of ten. Contours for (wet) soil
(right & top axes) must be scaled down by 0.87 as shown for one example. Same contours may be
amitted for clarity or due to statistical wuncertainty.
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Fig. 13. Contours of equal dose equivalent (in rem/incident protay for 20 TeV protans incident on
solid concrete/soil cylinder. The beam has a bi-Gaussian spatial distribution with ax:a,r:oAlan
and is parallel to and centered on the cylinder axis. The beam starts interacting at zero depth.
Contours for concrete (left & bottom axes) are integral powers of ten. Contowrs for (wet) soil
(right. & top axes) must be scaled down by 0.87 as shown for one example. Some contours may be
omitted for clarity or due to statistical uncertainty.
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Contours of equal star density (in stars/an>sincident protony for 5 TeV protons 1incident on
solid aluminum cylinder. The beam has a bi-Gaussian spatial distribution with ¢_=o =0 1am  and
is parallel to and centered on the cylinder axis. The beam starts interacting *at”zero depth.
The calculation has a cut—off momentum of 0.3 GeV/c. Some contours may be omitted for clarity
or due to statistical uncertainty.
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Contours of equal star density (in stars/cm>+incident. proton) for 10 TeV protons 1ncident on
solid alumimmm cylinder. The beam has a bi-Ganssian spatial distribution with ax:a’=OA1cm and
is parallel to and centered on the cylinder axis. The beam starts interacting “at’zero depth.
The calculation has a cut—off momentam of 0.3 GeV/c. Some contours may be amitted for clarity
or due to statistical uncertainty.
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Contours of equal star density (in stars/am’>+incident protor) for 20 TeV protons incident. on
solid aluminum cylinder The beam has a bi-Gaussian spatial distribution with o_=o =O iom  and
1s parallel to and centered on the cylinder axis. The beam starts interacting *at zero depth.
The calculation has a cut—off momentum of 0.3 GeV/c. Same contours may be amitted: at high
star density for clarity and at low star density due to statistical uncertainty.
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Fig. 17. Radially integrated star demsity (in stars/am+incident protarw

for 5, 10 and 20 TeV protons incident an 12m long solid aluminum
cylinder. The calculation has a cut—off momentum of ©.3 GeV/c.
The protons begin interacting at zero depth.
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Fig. 18, Lengituadinally integrated star density (in stars/cmeincident
protary for &, 10 and 20 TeV protons incident on 5.0m radius
solid alumimum cylinder. The calculation has a cut-off
momentum of 0.3 GeV/c.
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Fig. 19. Contours of equal star demsity (in stars/am®+incident proton) for b TeV protans incident on
solid iron cylinder. The beam has a bi—Gaussian spatial distribution with o =0 ~0.1lan and
is parallel to and centered on the cylinder axis. The beam starts interacting at”zero depth.
The calculation has a cut-off momentum of 0.3 GeV/c. Some contours may be cmitted for clarity
or due to statistical uncertainty.
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Fig. 20. Contours of equal star density (in stars/cm®+incident proton) for 10 TeV protons incident on
solid iron cylinder. The beam has a bi-Gaussian spatial distribution with o = =0 lem  and
is parallel to and centered on the cylinder axis, The beam starts interacting *at”zero depth.
The calculation has a cut—off momentaum of 0.3 GeV/c. Same contours may be omitted for clarity
or due to statistical uncertainty.
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Contowrs of equal star density (in stars/cm®sincident protorn) for 20 TeV protons incident on
solid iron cylinder. The beam has a bi-Gaussian spatial distribution with 0.~ ,0.1am ard
is parallel toc and centered on the cylinder axis. The beam starts interacting at” zero depth.
The calculation has a cut—off momentum of 0.3 GeV/c. Sume contours may be amitted for clarity
or due to statistical uncertainty.

124



STAR DENSITY (STARS/cm-inc. PROTON)

z,ft

0 5 10 15 20 25
LI L L L R O B R -2
102 fo;
o' 10”!
(4
10° 20 TeV 10°
10 TeV
S TeVv -
IO'T O
1072 1072
RE 107
o4 Tol
s IOl
107° l l l ! ( | | = \ 10°®
-1 0 2 4 6 8
Z,m

Fig. 22. Radially integrated star density (in stars/cmeincident protcrw
for 5, 10 and 20 TeV protons incident on 12m loang solid iren
cylinder. The calculation has a cut-off momentam of 0.3 GeV/c.
The protons begin interacting at zero depth.
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. 23, Longitudinally integrated star density {(in stars/cme*incident

protory for 5, 10 and 20 TeV protons incident on 5.0m radius
solid iron cylinder. The calculation has a cut—off momentum
of 0.3 GeV/c.
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Fig. 24. Contours of equal star density (in stars/aw®sincident proton) for 5 TeV protons incident on
sohd lead cylinder. The beam has a bi-Gaussian spatial distribution with o _=¢ =0 lan and
s parallel to and centered on the cylinder axis. The beam starts interacting at’zero depth.
The calculation has a cut—off momentam of 0.3 GeV/c. Same contours may be amitted for clarity
or due to statistical uncertainty.
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Fig. 25. Contours of equal star demsity (in stars/cm>sincident proton) for 10 TeV protoms incident on
solid lead cylinder. The beam has a bi-Gaussian spatial distribution with ¢ _=o =0 tcm and
is parallel to and centered on the cylinder axis. The beam starts interacting at’zero depth.
The calculation has a cut-off momentum of 0.3 GeV/c. Same contours may be omitted for clarity
or due to statistical uncertainty.
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Fig. 26. Contours of equal star density (in stars/cm>+incident proton) for 20 TeV protons incident on
solid lead cylinder. The beam has a bi—Gaussian spatial distribution with o _=o =0 tam and
is parallel to and centered on the cylinder axis. The beam starts interacting *atzero depth.
The calculation has a cut-off momentam of 0.3 GeV/c. Same contours may be cmitted for clarity
or due to statistical uncertainty.
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Fig. 27. Radially integrated star density (in stars/cmeincident protor

for 5, 10 and 20 TeV protans incident on 12m long solid lead
cylinder. The calculation has a cut-off momentim of 0.3 GeV/c.
The protens begin interacting at zero depth.
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Fig. 28. Longitudinally integrated star density (in stars/cmeincident
protary for 5, 10 and 20 TeV protons incident on 5.0m radius
solid lead cylinder. The calculation has a cut-off momentum
of 0.3 GeV/c.
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Fig. 29. Contours of equal total star production in (wet) scil (in stars/incident proton? outside solid
iron block of dimensions 2x, 2y(=20 and z in meter by 20 TeV protons. The beam has a bi-Gaussian
spatial distribution with o _=v _=0.1cm and is parallel to and centered on the axis of the block.
The beam starts interacting al zero depth. The calculation has a cut—off momentum of 0.3 GeV/c.
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Fig. 30. Stars in soil d{in stars/incident proton) ocutside infinitely
wide solid iron block as a function of length of the block.
The block has finite length either for z<0 or for z>0 and is
infinitely long in the opposite direction. The calculation
has a cut-off momentum of 0.3 GeV/c.
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Fig. 31. Stars in soil (in stars/incident proton) outside infinitely

long solid iran block as a function of length of the block.
The block has finite width either for z<0 or for z>0 [xGy
is the half width) and is infinitely wide in the other half-
space. The calculaticn has a cut—off momentum of 0.3 GeV/c.
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Fig. 32. Stars in soil (in stars/incident proten) outside infinitely

wide solid concrete (bottom scale) or wet soil (top scale)
block as a function of length of the block. The block has
finite length either for 2<0 or for z>0 and is infinitely
long in the opposite direction. The calculation has a cut-
off momentum of 0.3 GeV/c.
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. 33. Stars in soil (in stars/incident proton ocutside infinitely
long solid concrete (bottam scaled) or wet soil (top scale)
block as a function of length of the block. The block has
finite width either for z<0 or for z>0 [x{=y) is the half
width] and is infinitely wide in the other half-space. The
calculation has a cut~off momentum of 0.3 GeV/c.
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solid carbon cylinder. The beam has a bi—Gaussian spatial distribution with ¢ =0 =0.1am and
is parallel to and centered on the cylinder axis. Some contours may be omitfed”for clarity
or due to statistical uncertainty.
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Fig. 35. Contours of equal energy demsity (in GeV/am’sincident proton) for 10 TeV protons incident on

solid carbon cylinder. The beam has a bi-Gaussian spatial distribution with od_=¢ =0 tcm and
is parallel to and centered on the cylinder axis. Some contours may be amitfed”for clarity
or due to statistical uncertainty.
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Fig. 36. Contours of equal energy density (in GeV/cm3+incident protorD for 20 TeV protons incident on

solid carbon cylinder. The beam has a bi-Gaussian spatial distribution with o =o,=0. lan  and
is parallel to and centered om the cylinder axis. Some contours may be omitfed’for clarity
or due to statistical uncertainty.
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for 5, 10 and 20 TeV protens incident on 5m long solid carben
cylinder.
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protory for 5, 10 and 20 TeV protons incident on O.5m radius
solid carbon cylinder.
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Fig. 39. Contowrs of equal energy density (in GeV/am’+incident proton) for & TeV protans incident om solid
concrete/soil cylinder. The beam has a bi-Gaussian spatial distribution with ¢_=¢_=0 lcm and is
parallel to and centered on the cylinder axis. Contours for concrete (left & botlom’axes) are in-
tegral powers of ten. Contours for (wet) soil (right & top axes) must be scaled down by 0.81 as
shown for one example. Some contours may be amitted for clarity or due to statistical uncertainty
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Fig. 40 Contours of equal energy density (in GeV/am’sincident protem) for 10 TeV protons incident on solid
concrete/soil cylinder. The beam has a bi-Gaussian spatial distribution with ¢_=¢ =0.1cm ard 1s
parallel to and centered on the cylinder axis. Contours for concrete (left & botfom’axes) are in-
tegral powers of ten. Contours for (wet) soil (right & top axes) must be scaled down by 0.81 as
shown for one example. Some contours may be omitted for clarity or due to statistical uncertainty
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Fig. 41. Contours of equal energy density (in GeV/cm®+incident proton) for 20 TeV protons incident on solid
concrete/soil cylinder. The beam has a bi-Gaussian spatial distribution with o_=¢ =0.1am and is
parallel to and centered on the cylinder axis. Contours for concrete (left & botfom’ axes) are in-
tegral powers of ten. Contours for (wet) soil (right & top axes) must be scaled down by 0.8t as
shown for one example. Same contours may be omitted for clarity or due to statistical uncertainty.
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Fig. 80. Distribution in z of a pencil beam of 1.0 TeV muns stopped in soil (histogram, right scale,
in m™ ). Projected mms spread of beam as a function of penetration (curve, left scale, in m.
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Fig. 84 Distribution in x of a pencil beam of 0.01 TeV muns stopped in soil (in m™!). For wet soil use
left & bottom axes and for dry soil use right & top axes.

0.6

0.4

0.2

4 6 8 i0 12

STOPPED u /{inc. .- m) DRY SOIL



x,m DRY SOIL

0 2 4 6 8 10 12 14
J | 1 1 1 I 1 i | I I 1 I 1
0.8~ Obx:O'oy= 1.29m
4 -0.6
O
w
— —
Ll
=
E Ho.4
1
O
£
\:: —
i
w
a 0.2
Q
O
—
w -
L L - L l | 1
6 8 10 12

x,m WET SOIL
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Fig. 90. Scatter plot of z and x for a pencil beam of 10 000 muons of 1.0 TeV stopped in soil.
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Fig. 91. Scatter plot of z and x for a pencil beam of 10 000 muns of 10.0 TeV stopped in soil.
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Fig. 92. Contours of equal energy demsity (in GeV/an®+ incident. mxn) for a pencil beam of 0.01 Tev

muons incident on solid soil cylinder alang the axis. Contours for wet scil (left & bottam
axes) are integral powers of ten. Contours for dry soil (right & top axes) must be scaled
down by 0.52 as shown for one example. Some contours may be amitted for clarity or due to
statistical uncertainty.
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Fig. 93. Cantours of equal energy density (in GeV/cm®sincident muon) for a pencil beam of 0.10 TeV
muons incident an solid soil cylinder alang the axis. Contours for wet soil (left & bottom
axes) are integral powers of ten. Contours for dry soil (right. & top axes) must be scaled
down by 0.52 as shown for one example. Same cantours may be omitted for clarity or due to
statistical uncertainty.
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Fig. 94 Contours of equal energy density (in GeV/cm®sincident muon) for a pencil beam of 1.0 TeV
muons incident on solid soil cylinder alang the axis. Contours for wet soil (left & bottam
axes) are integral powers of ten. Contours for dry scil (right & top axes) must be scaled
down by 0.52 as shown for ane example. Same contours may be amitted for clarity or due to
statistical uncertainty.
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Fig. 95. Contours of equal energy density (in GeV/am>+incident. mun) for a pencil beam of 10.0 TeV
muons incident on solid soil cylinder along the axis. Cantours for wet soil (left & bottam
axes) are integral powers of ten. Contours for dry soil (right & top axes) must be scaled
down by 0.52 as shomn for one example. Some contours may be omitted for clarity or due to
statistical uncertainty.
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Fig. 96. Radially integrated energy density (in GeV/cmeincident muon) for a pencil beam of 0.01 TeV
muons incident on solid soil cylinder (of infinite radius).
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Radially integrated energy density (in GeV/cm*incident mxm) for a pencil beam of 1.0 TeV

muons incident on solid soil cylinder (of infinite radius) .
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Fig. 99. Radially integrated energy density (in GeV/cmeincident muon) for a pencil beam of 10.0 TeV
muons incident an solid soil cylinder (of infinite radius) .



z,km DRY SOIL

| 2
15
= — o= 15
10 [ _ ﬁ \\ ]
=R BN o
- ———— - 10%° N0 5
L —— AN %
= T Q
e [T~ 10" 3
" 5 NJesi0™® \\ \ i
—F—1_g® \\ 5
\ 10-17 ‘>1\ \
A p— IO-16 \\ \\
‘O-lm \
0 \\ <97 ™ . ~J,
0 | 2

z km WET SOIL

Fig. 100. Contours of equal dose equivalent. (in rem/incident proton) due to muons for a beam of 5 TeV
protans incident on a solid soil cylinder. Mumms generated by both hadron and electromagnetic
cascades are included. Contours for wet soil (left & bottam axes) are integral powers of ten.
Cantours for dry soil (right & top axes) must be scaled down by G.65 as shown for ane example.
Same contours may be amitted for clarity or due to statistical uncertainty.
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Fig. 101. Contours of equal dose equivalent (in rem/incident protan) due to maons for a beam of 10 TeV
generated by both hadran and electromagnetic
cascades are included. Contours for wet soil (left & bottam axes) are integral powers of ten.
Contours for dry soil (right & top axes) must be scaled down by 0.65 as shown far cne exampie.
Same contours may be amitted for clarity or due to statistical uncertainty.
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Fig. 102. Contours of equal dose equivalent. (in rem/incident protan) due to mumns for a beam of 20 Tev
protans incident on a solid soil cylinder. Muons generated by both hadran and electramagpetic
cascades are included. Contours for wet soil {(left & bottom axes) are integral powers of ten.
Cantours for dry soil (right & top axes) must be scaled down by 0.65 as shown for one example.
Same contours may be amitted for clarity or due to statistical uncertainty.
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Fig. 103. Radially integrated energy density (in GeV/cmeinteracting
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Fig. 105. Contours of equal dose equivalent (in rem/interacting proton) in a (wet) soil shield, due to
mions from  interactions of § TeV protans lost on the side of a bare beampipe ina 1.2m
Some contours may be amitted for clarity or due to statistical

A

— 10722
— 10—
—_\)‘\IO?I T
T -20
\]O\ -

\

:

l:'-—'_—“"*-_
Bl
\L\i
T
T

"
—(

N\

L\
F\1\
N

\1

TN
O I
| z,km WET SOiL2 ’

radius, 1.0lom lang tamnel.

uncertainty.

SOt1d



R,m

Fig. 106. Contours of equal dose

T~

i T “Q ~
T — ] -21
X T
[ D S 20 \\\
] \
H \\\ 10" T _
__—__—-_‘\ B
—~——_ _i® \\\\
| 10" _
e
15
— o""‘o\ T~ \\ \ |
110" TR~ ~
' Nt

radius, 1.0ian long tamnel .

uncertainty .

2

z,km WET SOIL

equivalent. (in rem/interacting protcr) in a (wet) soil shield, due to
mins from interactions of 10 TeV protoms lost on the side of a bare beampipe ina 1.2m
Scme contours may be amtted for clarity or due to statistical

9014



-\10'22
— .\
| *O-EI ™.
T — 20 \ \
— 10
1o) — [ —— ~ \\
T —]
\\“—h——‘..\nj‘g \\
E, o \\
) —{ \\\ 108 \\ \
ey \—-..__ \
—— \ 7 T
~ \ 16 \\
\\ ~10 | \1
\\\ 10" \\\ \
O et [

| 2 3 4 5
z km WET SOIL

Fig. 107. Contours of equal dose equivalent (in rem/interacting protan) in a (wet) soil shield, due to
muons from interactions of 20 TeV protons lost on the side of a bare beampipe ina 1.2m
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Fig. 108. Radially in ated energy density (in GeV/cmeinteracting
protary in soil shield around a ikm long, 1.2m radius tumnel
due to muons from interactians of 5, 10 and 20 TeV protans
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Fig. 109. Contours of equal dose—equivalent (in rem/interacting protar) in the inside quadrant (with
respect to the ring) of a s0il shield around a 1.2m radius tumnel due to mucons fram interactions
of 5 TeV protons on the inside of the beampipe of a magnet inside the tunnel. The z-direction
is tangemtial to the ring at the interaction point. Contours for wet soil (left & bottam axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65

as shown for ane example.
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Fig. 110. Contours of equal dose—equivalent (in rem/interacting protan) in the inside quadrant (with
respect, to the ring) of a soil shield around a 1.2m radius tunnel due to muons fram interactions
of 10 TeV protans on the inside of the beampipe of a magnet inside the turmel. The z—direction
is tangential to the ring at the interaction point. Contowrs for wet soil (left & bottom axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65
as shown for ane example. Same contours may be amitted for clarity or due to statistical
uncertainty.
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Contours of equal dose—equivalent, (in rem/interacting protan) in the inside quadrant (with
respect to the ring) of a soil shield around a 1.2m radius tunnel due to mwons fram interactians
of 20 TeV protons on the inside of the beampipe of a magnet inside the turmel. The z-direction
is tangential to the ring at the interaction point. Contours for wet soil (left & bottam axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65
as shown for one example. Some contours may be omitted for clarity or due to statistical
uncertainty.
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Fig. 112 Radially integrated energy density (in GeV/ameinteracting

protarw in the inside quadrant (with respect to the ring of
a soil shield around a 1.2m radius tumnel due to mamns from
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Fig. 113. Longitudinally integrated energy density (in GeV/ameinteracting
protary in the inside quadrant (with respect to the ring) of a
soil shield around a 1.2m radius tunnel due to muons fram inter-
actions of 5, 10 and 20 TeV protons on the inside of the beam
pipe of a continuous dipole inside the tamnel. The R-direction
is perpendicular to a tangent to the ring at the interactiaon
point. For wet soil use left & bottom axes and for dry soil

Tight & top axes.

GeV/cm-inel.coll., DRY SOIL



z,km DRY SOIL

! 2 3 4 5
20 ' i r | I l ; r

16 P — 20

T~

/
A AT N :
/ - AN N
AN AR

° /f\ o \\Io—ua \
/ \.\o-l? \\ \ \

4 \Jj'e \\“6.5-10"8\ \\ \

0 S x\\ \ \l \ \

z,km WET SOIL

Fig. 114 Contours of equal dose—equivalent (in rem/interacting protan’ in the top/bottom quadrant (with
respect to the ring) of a soil shield around a 1.2m radius tamnel due to muons from interactions
of 20 TeV protans an the inside of the beampipe of a magnet inside the tuarmel. The z directian
is tangential to the ring at the interaction point. Contours for wet soil (left & bottcm axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65
as shown for one example. Some contours may be amitted for clarity or due to statistical
uncertainty .
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Fig. 115. Radially integrated energy density (in GeV/ameinteracting proton
in the top and bottom quadrant of a soil shield around a 1.2m
radius tamnel due to muons from interactions of &, 10 and 20 TeV
protons on the inside of the beampipe of a continuous dipole
inside the tunnel. The z-direction is tangential to the ring at
the interaction point. For wet soil use left & bottom axes and

for dry soil right & top axes.

GeV/cm-inel.coll., DRY SOIL



GeV/cm-inel.coll., WET SOIL

F116

R,m DRY SOIL

5 10 15 20
T ]_1 7T 1 1 ] I T T1T1 | T T 1 I | L
N .|
10 ' _ E 10
i -
5 -2
..2 —_
10 _ ElO
- -3
103 310
- 20 TeV a
C 10 TeV 7
B 5 TeV _
i O -4
..4 —
10 _ EIO
i -5
- LEL I N N S N B O A S T | .
@] 5 10 15 20
TUNNEL
WALL R,m WET SOIL
(Z=0)

Fig. 116. Longitudinally integrated energy density (in GeV/cmeinteracting
protory in the top and bottam quadrant of a soil shield around
a 1.2m radius tunnel dye to muons fram interactions of 5, 10 and
20 TeV protons on the inside of the beampipe of a continuous
dipole inside the tunnel. The R-direction is perpendicular to a
tangent. to the ring at the interaction point. For wet soil use
left & bottom axes and for dry soil right & top axes.
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Fig. 117. Contours of equal dose—equivalent (in rem/interacting proton) in the outside quadrant (with
respect to the ring) of a soil shield around a 1.2m radius tamnel due to muns from interactions
of 5 TeV protons an the inside of the beampipe of a magnet inside the tuarmel. The z-direction
is tangential to the ring at the interaction point. Contowrs for wet soil (left £ bottom axes)
are integral powers of ten. Contouwrs for dry soil (right & top axes) must be scaled down by 0.65
as shown for one example Some contours may be omitted for clarity or due to statistical
uncertainty.
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Fig. 118. Contours of equal dose-equivalent (in rew/interacting proton) 1in the outside quadrant (with
respect, to the ring) of a soil shield around a 1.2m radius tamel due to muons from interactions
of 10 TeV protons on the inside of the beampipe of a magnet inside the tummel. The z-direction
is tangential to the ring at the interaction point. Contours for wet soil (left & bottam axes)
are integral powers of ten. Cantours for dry soil (right & top axes) must be scaled down by 0.65
as showmn for one example. Same contours may be amitted for clarity or due to statistical
uncertainty.
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Fig. 119. Cantours of equal dose-equivalent (in rew/interacting protan? in the outside quadrant (with
respect to the ring) of a soil shield around a 1.2m radius tammel due to muons from interactions
of 20 TeV protons on the inside of the beampipe of a magnet inside the tarmel. The z-direction
is tangential to the ring at the interaction point. Contours for wet soil (left & bottam axes)
are integral powers of ten. Cantours for dry soil (right & top axes) must be scaled down by G.65
as shown for one example. Same contours may be omtted for clarity or due to statistical

uncertainty.
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Fig. 120. Radially integrated energy density ( in GeV/cmeinteracting

protard in the outside quadrant (with respect to the ring) of
a so0il shield around a 1.2m radius turnel due to muons from
interactions of 5, 10 and 20 TeV protaons on the inside of the
beampipe of a continuous dipole inside the tumnel. The z-
directicn is tangential to the ring at the interaction point.
For wet soil use left & bottom axes and for dry soil right &
top axes.
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Fig. 121. Longitudinally integrated energy density (in GeV/cmeinteracting

protany in the ocutside quadrant (with respect to the ring) of a
soil shield around a 1.2m radius tunnel due to muons from
interactions of 5, 10 and 20 TeV protans on the inside of the
beampipe of a continuous dipole inside the tunmel. The R—direc-
tion is perpendicular to a tangent to the ring at the inter-
action point. For wet soil use left & bottom axes and for dry
soil right & top axes.
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Contours of equal doseequivalent (in rem/interacting protan) in the inside quadrant (with
respect to the ring) of a soil shield aroud a 1.2m radius tunnel due to mxns from interactions
of & TeV protong an the outside of the beampipe of a magnet inside the tummel. The z—directian
is tangential to the ring at the interaction point. Contours for wet soil (left & bottam axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65
as shown for one example. Some contours may be amtted for clarity or due to statistical
uncertainty .
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Fig. 123. Contours of equal dose—equivalent {in rem/interacting proton? in the inside quadrant (nith
respect to the ring} of a soil shield aroud a 1.2m radius tummel due to muons fram interactions
of 20 TeV protons on the outside of the beampipe of a magnet inside the tammel. The z—direction
is tangential to the ring at the interaction point. Cantours for wet soil (left. £ bottom axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65
as shown for one example. Some contours may be omitted for clarity or due to statistical
uncertainty
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Fig. 124. Radially integrated energy density (in GeV/an*interacting
protary in the inside quadrant (with respect to the ring) of
a s0il shield around a 1.2m radius tunnel due to mucns fram
interactians of 5, 10 and 20 TeV protens on the outside of the
beampipe of a continuous dipole inside the tunnel. The z-
direction is tangential to the ring at the interaction point.
For wet soil use left 2 bottom axes and for dry soil right &
top axes.
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Fig. 125 Longitudinally integrated energy density (in GeV/cme*interacting

proton) in the inside quadrant (with respect to the ring) of a
soil shield around a 1.2m radius turmel due to muons fram
interactions of 5, 10 and 20 TeV protons <n the outside of the
beampipe of a continuous dipole inside the turmel. The R-direc-
tion is perpendicular to a tangent to the ring at the inter-
action point. For wet soil use left & bottom axes and for dry
soil right & top axes.
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Fig. 126 Radially integrated energy density ( in GeV/cmeinteracting

protory in the outside quadrant (with respect to the ring) of
a soil shield around a 1.2m radius tunnel due to muons from
interactions of 5, 10 and 20 TeV protcns on the outside of the
beampipe of a continuous dipole inside the tunnel. The z-
direction is tangential to the ring at the interaction point.
For wet soil use left & bottom axes and for dry soil right &

top axes.
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Fig. 127 Longitudinally integrated energy density (in GeV/cm*interacting
protond in the outside quadrant (with respect to the ring) of a
a soil shield around a 1.2m radius tunnel due to mucns fram
interactions of 5, 10 and 20 TeV protons on the outside of the
beampipe of a continuous dipole inside the turmel. The R-direc-
ion 1s perpendicular to a tangent to the ring at the inter-
action point. For wet soil use left & bottom axes and for dry
soil right & tcp axes.
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Fig. 128. Cantours of equal dose-equivalent (in rem/interacting protan’ in the inside quadrant (with
respect. to the ring) of a soil shield aroud a 1.2m radius tuamnel due to muons fram interactions
of 5 TeV protans in the middle of the beampipe of a magnet inside the tumel. The z-direction
is tangemtial to the ring at the interaction point. Contours for wet soil (left & bottom axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65
as shown for ane example. Same contours may be amitted for clarity or due to statistical
uncertainty .
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Fig. 129. Contours of equal dose-equivalent (in rem/interacting protan) in the inside qlaf:‘trant, (with
respect to the ring) of a soil shield aroud a 1.2m radius tamnel due to mons fram interactions

of 20 TeV protons in the middle of the beampipe of a magnet inside the tummel.

The z—direction

is tangential to the ring at the interaction point. Comtours for wet soil (left & bottom axes)
are integral powers of ten. Contours for dry soil (right & top axes) must be scaled down by 0.65
as shown for one example. Some contours may be omitted for clarity or due to statistical

uncertainty.
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Fig. 130. Radially integrated energy density ( in GeV/ame*interacting

protory in the inside quadrant (with respect to the ring> of
a soll shield around a 1.2m radius turmel due to muons from
interactions of 5, 10 and 20 TeV protans in the middle of the
beampipe of a continuous dipele inside the turmel. The z-
directicn is tangential to the ring at the interaction peint.
For wet soil use left & bottom axes and for dry soil right &
top axes.
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Fig. 131. Longitudinally integrated energy density (in GeV/ameinteracting

protony in the inside quadrant
a soil shield arowd a

(with respect to the ring) of
1.2m radius tunnel due to muons from

interactions of 5, 10 and 20 TeV protans on the middle of the
beanpipe of a continuous dipole inside the tunnel. The R-direc-

ion is perpendicular to a

t to the ring at the inter-

acticn point. For wet soil use left & bottam axes and for dry

s0il right & top axes.
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Comtours of equal dose—equivalent (in rem/interacting protond in the cutside quadrant (with
respect. Lo the ring) of a soil shield around a 1.2m radius turmel due to muans from interactions
of 20 TeV protons in the middle of the beampipe of a magnet inside the turmel. The z-direction
is tangential to the ring at the interaction point. Contours for wet soil (left & bottam axes)
are integral powers of ten. Contours for dry socil (right £ top axes) must be scaled down by 0.65
as shown for ane example. Some contours may be omitted for clarity or due to statistical
uncertainty.

2eTd



R,m WET SOIL

TUNNEL
WALL

s,ft WET SOIL
0 200 400 600 800 1000 1200
] T { | | T
- 30
= 5 !
AT 10}\ N\ H20 <
2SN ;
-16 1 =
Y/ .1-1>10\\\ \ \ i-
N \\\\\\\\\ o
(N N NON NI DN
\ \.g\._ \\ \\ N~ N
0 100 200 300 400
s,m WET SOIL

Fig. 133. Contours of equal dose-equivalent {in rem/interacting proton) in the inside quadrant (with
respect to the ring) of a soil shield around a 1.2m radius tunnel due to muons from interactions
of 5 TeV protons on the. inside of the beampipe of a magnet inside the tammel. The abcissa, s,

is the distance along the ring from the interaction point.

clarity or due to statistical uncertainty.
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Fig. 134. Contours of equal dose—equivalent. (in rem/interacting protor) in the inside quadrant (wmth
respect. to the ring) of a so0il shield around a 1.2m radius tanmel due to mans fram interactians
of 10 TeV protons on the inside of the beampipe of a magnet inside the tunnel. The abcissa, s,
is the distance along the ring fram the interaction point. Same contours may be amitted for
clarity or due to statistical uncertainty.
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Fig. 135, Contours of equal dose—equivalent (in rem/interacting proton) in the inside quadrant (with
respect. to the ring) of a soil shield aromd a 1.2m radius tumel due to muons from interactians
of 20 TeV protans an the inside of the beampipe of a magnet inside the tumel. The abcissa, s,
is the distance alang the ring from the interaction point. Same contours may be omitted for
clarity or due to statistical uncertainty.
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Fig. 136. Radially integrated energy demsity ( in GeV/cm*interacting

protary in the inside quadrant (with respect to the ringd of
a soil shield around a 1.2m radius timnel due to muons from
interactions of 5, 10 and 20 TeV protans on the inside of the
beanpipe of a cantinuous dipole inside the tunnel. The abcissa,
s, is the distance alang the ring from the interaction point.
For wet soil use left & bottam axes and for dry soil right
& top axes.
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Fig. 137. Longitudinally integrated energy density (in GeV/ameinteracting
proton) in the inside quadrant (with respect to the ring) of
a soil shield around a 1.2m radius tunnel due to muons fram
interactions of 5, 10 and 20 TeV protons on the inside of the
beampipe of a continuous dipole inside the tumnel. The abcissa,
R, is the radial coordinate of the tunnel. For wet soil use
left & bottom axes and for dry soil right & top axes.
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Fig. 138. Contours of equal dose—equivalent (in rewm/interacting proton) in the inside quadrant (with
respect. to the ring) of a soil shield around a 1.2m radius tannel due to mums from interactions
of 5 TeV protons on the cutside of the beampipe of a magnet: inside the tunmel. The abcissa, s,
is the distance along the ring fram the interaction point. Some contours may be omitted for
clarity or due to statistical uncertainty.

BETd



R,m WET SOIL

TUNNEL
WALL

Fig. 139. Contours of equal dose-equivalent (in rem/interacting protan) in the inside quadrant {with
respect to the ring) of a soil shield around a 1.2m radius tammel due to muons fram interactions
of 20 TeV protans on the outside of the beampipe of a magnet inside the tummel. The abcissa, s,
is the distance along the ring fram the interaction point. Sowe contours may be amitted for
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Fig. 140. Radially integrated energy density ( in GeV/cmeinteracting
protor) in the inside quadrant <(with respect to the ring) of
a soll shield around 2 1.2m radius tunnel due to muons from
interacticns of 5, 10 and 20 TeV protons on the outside of the
bearpipe of a continucus dipole inside the tamnel. The abcissa,
s, is the distance along the ring irom the interaction point.
For wet soil use left & bottom axes and for dry soil right
& top axes.
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Fig. 141. Longitudinally integrated energy demsity (in GeV/cmeinteracting

protan) in the inside quadrant <(with respect to the ring) of
a soil shield around a 1.2m radius tunnel due to muons frem
interactions of 5, 10 and 20 TeV protons on the ocutside of the
beampipe of a ccntinuous dipole inside the tunnel. The abcissa,
R, is the radial coordinate of the tumnel. For wet soil use
left & bottam axes and for dry soil right & top axes.
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Fig. 142. Cross—section of collision hall as represented in program. For simplicity, the geometry is
assumed to be cylindrically symmetric about the beam direction.
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Fig. 143. Contours of equal dose equivalent (in rem/inelastic collision? in soil side wall of collision
hall, due to hadrons fram collidirg ieams of & TeV each. A imm thick beampipe is present.
Some contours may be omitted for clarity or due to statistical uncertainty.
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Fig. 144. Contours of equal dose equivalent {in rem/inelastic collisiow’ in soil side wall of collision
hall, due to hadrons from colliding beams of 20 TeV each. A 1mm thick beampipe is present.
Same contcars may be omitted for clarity or due to statistical uncertainty.

&)
O

¥id



STARS /{cm - inel. coll.) WET SOIL

F145

z,ft WET SOIL

0 1CT)0 200 300 400 500 600
T T ] T T T | T T T
20 TeV + 20 TeV
IO'l— —‘10-I
gl 19
st 5 TeV + 5 TeV 48
7t 17
6 16
5 15
4 {4
3 —43
2 42
10-2 11072
9 19
8 18
7 17
6 46
5 15
at 14
3 13
2 42
-3 ' T S U N N S T YU ST UK NS N VO ST SN N
105 50 100 50

z,m WET SOIL

Fig. 145. Radially integrated star density (in stars/cmeinelastic col-
1151cn) in side~wall of ceollision hall {(see fig. 142) for col-
beams of 5, 10 and 20 TeV protons interacting at z=0.

'Ihe calculation has a cut-off momentum of 0.3 GeV/c.
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Fig. 146. Longitudinally integrated star density (in stars/cmeinelastic
collision in side-wall of collision hall (see fig. 142) for
colliding beams of 5, 10 and 20 TeV protons interacting at z=0.
The calculation has a cut—off momentam of 0.3 GeV/c. For wet
soil use left & bottom axes and for dry soil right & top axes.
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Fig. 147 Contours of equal dose equivalent (in rem/inelastic collision) in soil back wall of collision
hall, due to hadroms from colliding beams of 5 TeV each. A 1mm thick beampipe is present.
Same contours may be omitted for clarity or due to statistical uncertainty.
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Fig. 148. Contours of equal dose equivalent (in rem/inelastic collision) in soil back wall of collision
hall, due to hadrons from colliding beams of 20 TeV each. A 1mm thick beampipe is present.
Some contours may be omitted for clarity or due to statistical uncertainty.
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Fig. 149. Radially integrated star density {in stars/cneinelastic
collisian) in of collision hall (see fig. 14D for
colliding beams of 5, 10 and 20 TeV protons in ing at
220. The calculation has a cut-off momentum of 0.3 GeV/c.
Far wet soil use left & bottcm axes and for dry soil right
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The calculation has a cut-off mcmentum of 0.3 GeV/c.
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Fig. 162. Contours of equal dose equivalent. (in rem/inelastic collisian) in soil, due to muans for
colliding beams of 10 TeV each followed by a 100m long decay space. Contours for wet soil
(left & bottom axes) are integral powers of ten. Contours for dry soil (right & top axes)
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