
.:It. v Fermi National Accelerator Laboratory 

Impedances of Beam Position Monitors 

King-Yuen Ng 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, IL 60510 USA 

December 1986 

FN-444 
0302.000 

(SSC-N-277) 

C Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



FN-444 
0302.000 

(SSC-N-277) 

December, 1986 

IMPEDANCES OF BEAM POSITION MONITORS 

King-Yuen Ng 

Fermi National Accelerator Laboratory', Batavia, IL 60510 

CONTENTS 

I. Introduction 
II. The Cylindrical Stripline Monitors 
Ill. Longitudinal Coupling Impedance 
IV. Transverse Coupling Impedance 
V. Application to the SSC 
VI. Off-centered Beam and Impedances 

'Operated by the Universities Research Association Inc., under contracts with the 
U. S. Department of Energy. 



1 

I INTRODUCTION 

Beam position monitors are required to measure the horizontal and vertical positions 
of the beam so that it can be guided through the central region of a beam pipe of -
1.65 cm radius and circulate around the storage ring many many times. Since beam 
signals are registered at the terminations, the monitors must exhibit impedances to 
the beam. 

The beam monitors that will be discussed here are cylindrical stripline pickups, 
primarily because the computations are usually much simpler than the rectangular 
geometry ones. However, in many cases, for example, the Fermilab main ring, the 
rectangular geometry is preferred over cylindrical. Hopefully, our cylindrical results 
below would provide at least a rough estimation for the rectangular counterpart. 

II THE CYLINDRICAL STRIPLINE MONITORS 

Consider a pair of cylindrical stripline pickups[lJ exposed to a short beam bunch 
as shown in Fig. 1. Each stripline has a length l and subtends an angle ,P0 to 
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Figure 1: Geometry of the cylindrical striplines monitor. 

the beam pipe axis. The stripline together with the extruded beam pipe behind it 
can be considered as a section of transmission line with a characteristic impedance 
Z, = .fiJC, where L and C are the inductance and capacitance per unit length. 
Any signal propagating along this section of transmission line will have a velocity 
{J,c = 1/v'LC. Each end of the stripline is attached via a port to a transmission line 
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of the same characteristic impedance. Hence, any signal induced on the stripline 
will either propagate through one of the ports onto a transmission line without 
reB.ections. This is just equivalent to terminating each end of the stripline by a 
resistance of Z, as in Fig. 2. 

Strip line I' iZ5 

~ I Beam Pipe 

Figure 2: A stripline forming a transmission line with the beam pipe having char
acteristic impedance Z, and terminated at both ends by Z,. 

When a bunch of time distribution I(t) and velocity /Jpc traveling along the 
axis of the beam pipe crosses the first or upstream port, the image current on the 
walls of the pipe sees an impedance of Z,/2, representing the parallel impedance of 
the upstream termination impedance Z, and the transmission line formed by the 
stripline which, since terminated at the far end by Z., also has impedance Z,. In 
other words, the image current splits into two equal parts, one traveling through 
the upstream termination and is detected while the other half along the stripline 
·and ending up going through the downstream termination a time l//J,c later. 

When the bunch beam passes through the downstream port the same thing 
happens but the polarity reverses. One half of the signal will travel through the 
downstream termination while the other half propagates up the stripline to be 
collected by the upstream termination. Thus, the voltage across the upstream 
termination is, 

Vu(t) = z. ("'0 ) [r(t) - I (t-~ -~)], 
2 211" /Jpc {J,c 

(1) 

and that across the down stream termination is, 

Vd(t) = Z, ("'0 ) [1 (t -~) -I (t- ~)]. 
2 2ir /J,c /Jpc 

(2) 

The factor ef>o/2ir comes about because only such a fraction of the image current 
will B.ow through a port. 
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The net signal seen at the upstream port is a bipolar doublet with each lobe 
having essentially the same time distribution as the beam bunch itself but are sepa
rated by a constant time of (l//3pc+l//3,c). However, the signal at the downstream 
port will be completely cancelled if the beam velocity and the signal velocity are 
the same. This is in fact the situation, since the signal velocity in a transmission 
line with a free-space medium is exactly c and the beam particle velocity is also 
very close to c. For simplicity, we shall set /3p = {3, = 1 in below and forget the 
downstream port. 

III LONGITUDINAL COUPLING IMPEDANCE 

In the frequency domain, the beam has a current I(t) = I0 e;wt at the upstream port. 
Note that Io is in general complex but is time independent. The voltage across the 
upstream port becomes 

(3) 

This happens to be also the potential difference across the gap at the upstream end. 
The total image current in the walls of the beam pipe is of course - I 0 • But only 
a fraction t/>0 /2'1f will see this potential different while the rest just flow through 
without meeting any resistance. As a result, the average potential seen by the 
particle beam is 

Vi(w) = (:;) Vu(w). (4) 

The longitudinal impedance for one strip plate is therefore (Z11)BPM = Vi(w)/ I0 , or 

( )
2 ( ) 

.Po • 2 wl . . wl wl 
(Z11)BPM = Z, - sm -+Jsm-cos- . 

2'1f c c c 
(5) 

The same impedance can be computed using Eq. (3) in another way. The average 
real power dissipated in the upstream termination is 

P(w) = 1Vu(w)l
2

• 

2z. (6) 

This is by definition equal to !IIol2 .Re(Z11)BPM, which results in the same .Re(Zu)BPM 
as Eq. (5). The imaginary part can be obtained using Hilbert transformation and 
is left as an exercise for the reader. However, in this situation, Re Zu(w) does not 
vanish at infinity and we have to work with .ReZu(w)/w instead. In using Hilbert 
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transformation, one has to keep in mind that we may not be getting a unique 
result. This is because, a frequency independent real impedance needs not have an 
imaginary counterpart. Also the ideal inductance or capacitance which gives rise 
to Im Zn = wL or -1/wC needs not have a real counterpart. In other word, to 
the Im Z11 obtained from R.e Zn through Hilbert transform, we can add any ideal 
inductive or capacitive terms. On the other hand, to the R.e Zu obtained from Im Zn 
through Hilbert transform, we can add any pure frequency independent resistive 
term. 

Note that the longitudinal impedance starts out inductively at low frequencies 
and·, after w = 7rc/2l, alternates between capacitive and inductive. However, there 
are no sharp resonances since the stripline is match-terminated at both ends. 

There are some striplines, like those in the Fermilab main ring, that have one 
match-termination only at the center (see Fig. 3). The impedance seen at each end 

Z "\ Stripline Z 

SI .... -------'~--------I'_,, , ··~ "'' 
Figure 3: A stripline forming a transmission line with the beam pipe having char
acteristic impedance z. and is terminated at the center by z •. 
is z. in parallel with an open transmission line of characteristic impedance of z •. 
At low frequencies, the impedance seen is therefore just z. and the currents from 
each end of the stripline will be absorbed totally without any reflection. If we keep 
the lowest reactive term, the impedance seen at either end of such a stripline is 

( jwl) 
Z1 = z. 1-

2
c • (7) 

Here, we have set the particle velocity and the signal velocity along the stripline to 
be equal to c. The voltages V,. and Vd seen by the image current while crossing the 
upstream end and the downstream end are respectively, 

V,. = Z; (:;) I(t), (8) 

and 

vd = -Z; (t;) I(t - l/c). (9) 
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The average voltage seen by the beam is therefore 

V = Z; (:;) 
2 

[I(t) - I(t - l/c)J. (10) 

The extra factor of ( </>0 /27r) comes in because of the same averaging process men
tioned above. Putting in I(t) = I0e;"'1, we obtain the longitudinal impedance, 

(11) 

for one stripline terminated at the center at low frequencies. At high frequencies, 
because the stripline can accept resonances with standing waves having a node at 
the middle where the termination does not absorb any power and the resonances will 
not be disturbedi2J. Resonances will occur whenever the wavelength is an integral 
number of l/2. 

IV TRANSVERSE COUPLING IMPEDANCE 

Let us turn to the problem of transverse coupling impedance. Assume a dipole 
current source separated by D.; i. e., I at x = D./2 and -I at x = -D./2. Here, 
we assume that the pair of cylindrical striplines are positioned horizontally as in 
Fig. 1. Note that both currents have the same t and z dependence such as e;w(l-•//Jc) 

so that both are traveling in the same direction, or only the upstream termination 
will see a signal, (for strip lines matched-terminated at both ends). 

When a current Io deviates from the pipe axis by an amount xo = tb, the image 
surface current density at angle () is 

J(O·x)-_Io 1-e 
• 

0 
- 21fb 1 + e2 - 2 e cos o (12) 

This is obtained by the method of inversion by placing a current -I0 at the point 
x1 = b2 /x0 as shown in Fig. 4. Then the beam pipe cylinder is an equipotential 
surface (using the analogy of a line charge). The image surface current density on 
the cylinder at angle () can thus be computed directly from the two current sources 
at xo and x1: 

J(O; xo) = Io (cos Oo _ cos 01) , 
27f ro r1 

(13) 

where r0 and r 1 are distances from the point of observation to the current and its 
image respectively. Using the fact that r1 = br0 /x0 , Eq. (13) leads to Eq. (12). 
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Figure 4: Computation of current density on cylinder by the method of inversion. 

For our dipole current, the image wall current density can be obtained from 
Eq. (12) by differentiation with respect to x0• Since we are interested only in the 
dipole term, J(/1; xo) can be expanded to give 

J(/1; Xo) = IoAcos /1 
(14) 

The current flowing into the right stripline system is, therefore, 

· j;.12 1011cos11 
IR= b2 bd/1, 

-;o/2 71' 
(15) 

and the current flowing into the left stripline system is, 

(16) 

Using Eq. (3), the voltages at the right and left upstream gaps are, respectively, 

VL = -VR. (17) 

The total average power dissipated is 

(18) 
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or 

P = 4Z, ( JI;~A) 
2 

sin2 ~o sin2 :l. (19) 

There is a relation between the power dissipated and the real part of the trans
verse impedance derived by Nassibian and Sachererf31 which we are going to repeat 
here. For a length l of current loop, the interaction with the beam detector will give 
a m~gnetic field Bv through the loop so a back emf will be.induced. Equivalently, 
the current in the loop will see an impedance Z given by 

jwBvlA = Z/0 • 

Substituting into the definition of ZJ., 

tip = {Jpc being the particle velocity, gives a horizontal transverse impedance, 

cZ 
ZJ. = w.1.2· 

The power dissipated is P = ~JI0 1 2 Re Zand we therefore get 

1 w( )2 P = "2~ Io.1. Re ZJ.. 

Thus, for a pair of striplines 

( ) 
BZ, c . 2 ef>o • 2 wl 

Re ZJ. BPM = 2b2 -sm -sm -, 
71" w 2 c 

(20) 

(21) 

(22) 

(23) 

(24) 

which has exactly the same frequency dependence as Re(Z11)BPM/w. The imaginary 
part can be found by Hilbert transform; it should have exactly the same frequency 
dependence as Im(Z11)BPM/w. Therefore, for a pair of striplines 

(z ) _ .!:_ (±-) 2 
• 2 ef>o (Z11)BPM , . I' 

J. BPM - b2 ef>o sm 2 w -'-to strip mes (25) 

or the .:i:-direction here. In above, (Z11)BPM is the longitudinal coupling impedance 
of also a. pair of two striplines. 

To compute the transverse impedance in the y-direction, we put the currents I 
at y = .1./2 and -/ a.t y = -.1./2 instead. Then the current flowing into the right 
stripline system is 

(26) 
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which is identically zero and so is also h. The voltages across each upstream gap 
are therefore also zero. Thus, 

(Z.i)sPM == 0 JI to striplines (27) 

or the y-direction here. The reason is clear, because (Zl.)BPM depends on the 
voltages across the striplines gap which, in turn, depend only on the total currents 
flowing across each gap but not on the actual distribution of the current density. 
However, a current dipole at y = ±.tl./2 will only produce image current distribution 
that is antisymmetric with respect to the x-axis while the total currents crossing 
each gap are zero. 

V APPLICATION TO THE SSC 

In the SSC, the most demanding requirements for the beam position monitors is in 
the commissioning stage where very low beam currents must be used in order not to 
quench the magnets. It appears that both coordinates must be measured at every 
quadrupole (one per half cell); so the pickups must be a 4-electrode design shown 
in Fig. 5. We takel4l <Po = 55°, l == 10 cm, and Z, = 50 ohms. The pipe radius 
is b = 1.65 cm. At low frequencies, w/27r ~ c/4l = 750 MHz, the longitudinal 
impedance per harmonic per monitor (four striplines) is 

(28) 

while the transverse impedance is (only two striplines are contributing, either in the 
x-direction or the y-direction), 

(z ) .8Z,l . 2 <Po 7 kn/ 
1. BPM = J 71"2b2 S!Il 2 == 3.1 m. (29) 

With almost 900 sets of monitors in each ring, the impedances are (Zu/n)sPM -
j0.0318 n and (Zl.)BPM - j2.86 MO/m for either the horizontal or vertical direc
tion. 

VI OFF-CENTERED BEAM AND IMPEDANCES 

We can also compute the longitudinal impedance of a beam passing through a pair 
of striplines shown in Fig. 1 but deviated from the central axis by x0 horizontally 
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SMA Vacuum FHdthrough 

Stand-off -------, 

Figure 5: The 4-electrode stripline monitor of the SSC. 
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and y0 vertically. Using Eq. (12), the total image currents flowing across the right 
and left upstream gaps are: 

I = -J, (</>o) [1 ± 4xosin(</>o/2) + 2(x~ -y5) . ,i.] 
R,L o 271" b </>o b2 sm 'l'O • (30) 

Note that the second term is the dipole term and we have included a third term 
that is of a higher multipole. In the present situation, it is not so simple to compute 
the average voltage seen by the particle beam because the beam has been displaced 
and the distribution of the image current is no longer uniform. As a result, we will 
compute the power dissipated at the upstream terminations and infer the real part 
of the longitudinal impedance. This power is proportional to the sum of JIRl 2 and 
lh\2 and is given by 

(31) 

where P is the power dissipated through one stripline when the beam is at the 
central axis of the beam pipe as given by Eq. (6), and the function 

Xo 4 ·2'1'0 Xo-Yo . 2()2 ,I. (2 2)(4) G(xo, Yo) = 1 + ( b) </>o sm 2 + b2 </>o sm </>o (32) 

takes care of the fact the the beam is displaced. The longitudinal impedance of a pair 
of strip lines is therefore equal to G(xo, y0 ) times the impedance of an undisplaced 
beam. Note that the second term of G(x0 , y0 ) comes from the square of the dipole 
term while the third term is from the higher multipole. Here, the term linear in 
x0 or the linear dipole term cancels out. This is in fact exactly what we expect. 
In order to measure the deviation of the beam from the central axis, one should 
measure the difference between the left and right terminations but not the sum; 
then, the linear dipole term will emerge. 

The longitudinal coupling impedance of a displaced beam provides a way to 
compute the transverse coupling impedancesl31. This method is very useful; so we 
will derive it here. Let us concentrate on displacement in the x-direction only. We 
write E,(x, x0 ) as the image electric field at x due to a current Io at x0 • For a length 
l, define 

Z ( ) l.E,(x, xo) (
33

) 
II x, xo = Io ' 

which is a measurable quantity and reduces to the usual longitudinal impedance 
Z11 (xo) at Xo in the limit x-+ x0. 

The image electric field at x due to a dipole current at xo separated by A is 

E' = aE. ( x, Xo) A (34) 
• axo ' 
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and the magnetic field at x perpendicular to the plane of the dipole is, by Faraday's 
law, 

B' = !!. 8
2 E.(x, x0). 

v jw axaxo 
(35) 

Substituting into the definition of ZJ. in Eq. (21), the horizontal transverse impe
dance displaced by x 0 is 

The vertical transverse impedance can be inferred similarly. 
In many cases, the longitudinal impedance at (x0 ,y0 ) has the form 

Zu(xo,Yo) = [1 + F;(xo) + F;(Yo)] Zul•o=O,vo=O; (37) 

so ZJ. can be obtained directly from the position dependenc~ of Zn. 
the horizontal transverse impedance is 

ZJ. = ~ dF. z 
( )

2 

W dxo 11 l.o=O,vo=O • 

For example, 

(38) 

However, one should be careful that only dipole contributions should be included 
into F. and}~ since the dipole impedances cannot receive contributions from other 
multipoles. In our situation, the square bracketed term in Eq. (38) is just the 
function G(x0 , y0 ) in Eq. (32) but with the higher multipole term removed (keeping 
only the second term). Then, substitution into Eq. (37) will lead to exactly the 
same transverse impedances we obtained earlier in Eqs. (25) and (27). For strip lines 
terminated at the center, the off-centered factor G(x0 , y0 ) is the same. Therefore, 
the transverse impedances can also be obtained through Eq. (38). 

In Ref. [1], the third or higer multipole term of G(x0 , y0 ) has been included 
when the differentiation with respect to x 0 or y0 is carried out. As a result, both 
the horizontal and transverse impedances quoted there are not correct. In par
ticular, for positive frequencies, the real part of the vertical transverse impedance 
quoted is negative which is not possible. The transverse impedance is related to 
and has the same sign as the longitudinal impedance of the dipole mode when w is 
positivel5J. The longitudinal impedance for each multipole must be positive because 
it is responsible for the power dissipation of a beam particle in that multi pole mode. 
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