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Abstract

The dependence of the TEVATRON dynamic aperture on the
syatematic high field multipole errors of the bending magnets is
studied wsing a distortion function technique including second order
affecta in perturbhation theory. The results are in good agreement
with tracking studies, It can be concluded that the dynanmic aperture
of the TEVATRON 1s given by the break off of the guide field for a
large distance from the magnets center. There is no "accidental®
ulild up of single driving terms due to unfortunate choice of the
phase advances pey FODO cell. Tt 1s expected that a somewhat
smcother curve of the gulde field as a function of the distance from
the center would inprove the dynamic aperture. A detailed discussion
and derivation of distortion functions is given in the appendix.



1. Introduction

The design of Lhe superconducting dipole magnet is one of the
crucial aspects of a large future hadron collider. The magnets costs
- a zignificant part of the total <costs of such a project /550847~
depend strongly on the magnet aperture and on the required accuracy
of the magnet manufacturing and assembly.

The zame parameters are very Important for beam dynamics. The
magriet aperture requirement 1s determined by the Dbeam size at
intection, the linear lattlce design, and an operatiocnal need for
free aperture to allow for injection errors and orbit distortions,
azapntlial for commissioning and optimizing the machine performance.
The magnetz2 imperfections are determining factors for the beam
stability and the dynamic aperture.

An optimum magnet deslgn implies that the physical aperture of
the machine is nearly identical to the dynamic aperture. Otherwise,
magnet aperture 1s wasted if 1t cannot be used by the heam. Magnet
acouracy ig a wasted effort 1f  the dynamic aperture can not be used
due to physical aperture restrictions.

In existing machines, the problem of matching the magnet design
as well as pogsible to the beam dynamics requirements has heen
avolded by applying a certain safety factor. One wants to avoid
thiese @xtra costs bhuilding a large future machine.

The field quality of a superconducting mignet is determined by
pergistent currents effects mainly at injection energy, the accuracy
and mechanical stability of  conductor placement, and by the design
of  the vonductor arrvangement, There 1s a distinction between
designed and random field errors. We will concentrate on the
aystematic multipole ervors, the sum ¢f designed and average random
errors in this report.

The aim of this study is to reveal how details of the systematic
guide fileld errors are related to the dynamic aperture and the beam
dynamics.

The reason why the TEVATRON has been chosen as a test lattice 1is
quite obvicus. The TEVATRON 1is the prototype of superconducting
aynchrotrons. In wmany aspects it is very similar Lo any future large
machine.

The well tested tool for such investigations are tracking
calculations uaing conventional kick codes. For the TEVATRON, such
calculations were performed in the past (/WILB3/, /GEL83/ and have
been compared with the multipole structure of the TEVATRON diooles.
But it is  wvery difficult to relate the vresults of tracking
calculations with details of the magnet structure. In order to make
gure rot to be misled by accidental coincidences one has to perform



of tracking runs changing many parameters

a ilarge numbey )
: ,time consuming, and after all,

ayetematically. Thla is very costly
does not guarantee success.

Analytic methods are therefore a very desirable complement to
tracking calculations. For the TEVATRON first attempts were made
/WILE3/ using Moser transformations /MOS55/ to obtain the nonlinear
distortions cof phase gpace trajectories as a perturbation expansicn.
kecently, the lowest order contributions to these distortions have
heen introduced as ‘distortion functions’ /COL84/. We will use this
expreaslion 1n this report for nonlinear phase space distortions
expanded to any corder in perturbation theory.

The basic i1dea to obtain phase space distortions as a result of
a canonical transformation 13 as follows:

The nonlinear dynamics i3 described by a nonlinear hamiltonian,
which 13 a product of the nonlinear field coefficients and powers of
the particle distance from the equilibrium orbit., The hamiltonian
can be  decomposed  Into fast oscillating (nonresonant) terms,
ronatant {(detunlng) terms and slowly varying (resconant) terms. The
conagtant and slowly varying terms dominate the particle motion. The
fast ocacillating terma are expected to cancel over many revoluticns
in the machine and can be treated as a distortion. Resonant terms,
however, can be avoided by a careful choice of the linear machine
tunea. If one finds a coordinate transformation into a new
hamiltonian system wheve the new hamiltonian contains only constant
terma for which the solution of the equations cof motion is trivial,
the whole nonlinear effect is described by the coordinate
trangformation back intoc the o0ld system. The distortion functions
used here are a  perturbation expansion up to 2nd order of this
transformation.

Though the concept of successive canonical transformations is
well known and has been often described in the literature, explicit
sxpressions for two degrees of freedom for any multipole order and
for higher orders in the perturbation expansion ave not easily
tound. Therefore details of the analytical model used here and the
faormulae on which the study 1is Dbased are derived and presented in
the appendices.

The numerical results presented in this report are cbtained from
the computer code CANOL /CAN8S/ which calculates driving terms,
distortion functions (up toe second order perturbation theory incl.
Lermg up to 24-pole) and resulting phase space trajectories.

The report is gtructured in the following way:

Firat the model which degcribes the TEVATRON will be presented.
The analysis is based on this model.

In the following section application of the phase space
diztortion concept to the TEVATRON model will be presented and
discussed.



Then pnumerical resgults are shown and the multipole errors and
rheir impact nn  the dynamic aperture will Dbe discussed order by

order.

he appendices describe details of the formalism.

2. A Model for the TEVATRON

2

The analytic method is quite different from tracking
calculations. In tracking one usually tries to describe the real
lattice az closely ax  poszible. Because of the complexity of the
input it is very Alfficult to obtain a qualitative understanding of
how the bteracking results come about. Therefore the tbracking code
appears as a 'black hox’.

An analytical method loses its advantage 1f one proceeds the
safme way. An Important aspect of analytic calculations is that the
formuilatiocn of the problem leads transparently to the final results.
It ia therefore essential to condense the complexity of a lattice
into a medel which contains only the essential features of the
lattice.

in this senge a sinplified model of the TEVATRON is introduced
which is the basis of the study.

The TEVATRON consists of six sextants separated by straight
sections., Bach sextant arc is composed by 16 FUDO cells. Four dipole
wmagneta (1=6.127m, ©=8.2 mr) are 1in each half cell. The arc is
completed at the downstream end by 3 additional dipole magnets., The
regularity of the arc is distorted by two missing dipcles in the 7th
half cell from the upstream end of the arc.

I the model, nonlinear forces are concentrated in the middle
of each half cell (or in the bending center .of a group of 2 or 3
dipales), Nonlinear forces in quadrupole magnets are neglected. Thus
the straluht sections enter iIn the "description of the machine only
by a betatron phase advance and different B functions in the first
half cell and the last 3 dipoles.

There are two kinds of straight sections. This reduces the
supaerperiodicity of the TEVATRON to 2: two high B straight sections
with a maximum B of = 250m and four normal straights with 8=150m.
However the phase advance was designed to be the same for each
straight section. Neglecting the difference in the B-functions over
the first and last group of
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fig 2.1 TEVATRON Lattice Model with Linear Lattice Functions



dipoles in the arc for the high B and normal straight section, we
have restored the sixfold symmetry. This is not only a large
reductlion of complexity without sacrificing much lattice
information, but 1t also reduces the computing effort by a factor of
36.

The chromaticity correcting sextupoles are placed next to the
gquadrupole magnets In the vreal machine. In order to reduce the
number of nonlinear kicks and the computing time, they have been
moved to the center of the half ¢ell in the model. The sextupole
strengths have been scaled with

3/%2

(BX) for terms~x3 and with Bx1/2

-BV for terms~x-y2
which means the anly ervor 1In deoing so arises from neglecting the
phaze advance between the actual sextupole position and the middle
of a half cell (=17°). This 15 not a more severe approXimation than
concentrating the nonlinear kicks of the dipole magnets.

In the real machine some further minor distortions of

gupersymmetry are present which are neglected.

The multipole errors used in the model are the average of the
measurementa made for each 1ndividual TEVATRON dipole /HAN79/. The
numbers are listed in table 2.1.

It s2hould be mentioned at this point that it is not expected
that the resulta of this gstudy will quantitatively agree with
meazurementa made at the real machine or with simulations based on
the meazurements of magnet errcrs. However 1t is expected that the
gqualitative rezults reflect the coherence of Dbasic 1lattice
parametara, magnet properties and beam dynamics.

The model lattice and hasic linear lattice functions are shown
in fig 2.1.

TABLE 2.1

Average Multipnole Components Measured at_& inch

relative field errors in units of 10

normal coefficlents bk skew coefficients ay
&-pole 0,99 0,38
8-pole =27 -.07
10-pole -.76 -.07
lZ2-pole -.05% -.10
ld-pole 6.69 0.15
l16-pole D.02 0,25
1B-pole -15.69 -.73
20-polie 0.01 0.42



3, Phase HGpace Distortions in the TEVATRON

The difficulties of wusing the concept of isolated resonance
driving terms for a real machine llke the TEVATRON are well known:
Evaluation of driving terms for realistic cases very often results
in a large number of egqually iwmportant terms rather than one
dominant one. Furthermore, a driving term 1is Jjust one term in a
fourier series of a component of the nonlinear field which dominates
the reat of the series only 1if the distance to the resonance is
cloge enough. This, however, 13 always avolded 1n real machine.
Therefore driving terms or widths of isolated resonances calculated
for a real machine are only a relative measure of the importance of
5 certaln component of the nonlinear field.

Therefore it 13 more advantageous to use the phase space
distortions as such & measure. First of all, they contain all
harmonics of a certain component of the nonlinear force. If the
total distortion 13 2mall, the lowest order distortion functions are
a sufficiently accurate deacription of the nonlinear motion. Near
the dynamic aperture the lowest order distortion function concept
hreaks down because distortions Dbecome very large and many higher
orders in the perturbation expansion contribute. But even in this
gltuation distortion functions are wuseful. The strongest terms of
the distortions at the dynamic aperture are those terms which ocught
to be retalned as dominant terms in the hamiltonian. An analysis of
the phase space distortions therefcore provides an excellent
criterlon for the selection of driving terms. Moreover the betatron
amplitudes for which the distortion function concept obviously
breaksa down agree very well with the dynamic aperture obtained from
the hamiltonian procedure having chosen the “right" driving terms.
(This is not very surprising after a close look at the mathematics
which determines the unstable fixed points and which determines on
the other hand the amplitudes Dbeyond which the distortion functions
become unphysical (see below).)

If one 13 not interested 1n details of phase space trajectories
but only in which are the dominant terms and 1in why are they
dominant, one can do without the hamiltonian procedure and draw
conclusions from the distortion functions alone.

In this sense we are calculating vrelative distortions 8¢ for
the betatron amplitudes (emittance or Lagrange invariant)

ex=x2-y+2xx‘~m+x‘2-ﬁ
of the form:
n-2 m
Sefe, = 1 + ¥ wvo J 2 J2 cos(vd _+ud +@ ) / sinm(
Sele _ nmvd x v 0s (Ve +u v ¥ nmon sinm vQX+qu)

nmvu



The distortion 18 calculated for a certain position in the lattice
23 & function of the hetatron rhase angle . The variable J is the
Polncare integral invariant [dé-e(®)/27 where & 13 the distorted
emittance. Note that the Invariant phase space area would not change
if the nonlinear forces were switched off adiabatically. It
corvesponds thevefore to the radius of a circular linear phase space
Crajectory and will be referred to as the "undistorted” emittance or
betatron amplitude. The iIntegers n+m are the nultipole order and
fvli+iul is the order of the nonlinear resonance potentially driven
by the component.

A similayr formula 18 glven for the distortion in the y-y'-plane.

To obtain the distortion of the betatron phase 8% as a function
of the undistorted amplitude J one has to invert the following
expression:

n-2
8.= 1+ 1 3 23

5% my Jx Sin(v(?x—8@x)+p(T ~-8d )+(bn
nmvu [ ¥ ¥y

mvp)/Slnﬂ(va+“Qy)

onaig

whevre ¥ 1a the undisturbed phase. This form of the distortion is the
same for all crders of the perturbation expansion. The coefficients
o depend on the linear lattice functions and the multipole
caefficlents and are given in appendix A.(sections A7,8,9)

The phaze space distortions have been calculated for the test
lattice presented 1In the previous section. The tunes have been
chogen carefully in order to avoid vresonance enhancement of the
distortions.

Fig 3.1 shows a projection of & distorted phase space
trajectory on the x-x’' and y-v' plane for different emittances. The
undisterted emittances have been chosen to be equal for x and y
(round keam). Because the phase phase trajectories in x-x' depend on
the phase angle in y and vice wversa, points with the same phase
angle in v and ¥ respectively have been chosen. The projection can
tharefore be considered as a cut through the 4 dimensional phase
space for (approximately) constant vertical betatron phase.

The distortions Include first order effects up to 20-pole and
second order effects up to the corder n+m=10 {that includes
interference of the strong 18-pole and 6-pcle, lo-peole and B-pole,
ld-pole and 10-pole, 1lZ-pole and l2-pole). The outermost trajectory
18 the trajectory for which the slope of the distorted amplitude &8¢
a3 & function of the undistorted amplitude J 1is zero. This is
sxpechbed to ke a trajecteory very close to the dynamic aperture.
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In fig 3.2 the minimum value of the distorted emittance e(3) is
shown as a function o¢f the undistorted emittance J. The dynamic
aperture is expected to occur when the slope of this curve is zero
{dashed line). Comparison with tracking calculations ( dotted line)
using the RACETRACK kick code /WRU84/ shows good agreement with the
distortion function result. The dash-dotted curve has only first
order terms which shows that the contribution from the second order
terms are approximately 1/4 of the first order terms. This shows the
importance of higher order contributions near the dynamic aperture.
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The nonlinear tune shift as a function of the undistorted
emittances J_+J_ 1s shown in fig 3.3a and 3.3b. The tune shift is
rather linea i¥% the range between O and 3 7 mm mr and it becomes
gtrongly nonlinear near the dynamic aperture.

O, BRCE-C2

@. 25¢E-02

AQ,

2. |8IE-02 -

C- 12EE-02

. B4CE-03

324

Q. QOlE ~QO

-, LOCE-O2

-. 20CE~QZ

- 30CE-02

- 4OLE-G2

~ BOCE 02 T T T 1

o OQOE 00 C. 1#CE-C] S SHOE~0O1 e #2QCE~C1 2. SELE~Q ! 0. 704

fig 3.3 a Horizontal Tune Change with Undistorted Emittance
J +J
Xy

fig 3.3 b Vertical Tune Change with Undistorted Emittance
J _+J
X Yy



13

4, Detalled Disgussion of Multipole Errors Crder by Order

In order to understand the results presented in the preceding
Fection, we have to decompose the total distertion into
contributicons originating from the different multipole components of
the nonlinear field.

A look at the reasonance dencminator spectrum (fig 4.1) confirms
that there are only few terms among the distortion functions which
are enhanced because they are close to a resonance. This happens for
the terms with 7va2Q for which one obtains a resonance enhancement
of S4. We will sed la¥er that the dynamic aperture is not very much
affected by these termas. Besides this the spectrum looks very well
balanced with most of the terms near unity. '

We firat compare the gspectrum of phase space distortions for an
enittance which corresponds to the beam size at high energy (£=0.2 =
mm mr) and the emittance near the dynamic aperture (=6 T mm mr).
(The distortion amplitudes are given by eg. 9.7 in appendix A for
all terms characterized by n+m:12 and (vl+|u|<12 which includes 915
terms.) As one expects from the above form of the distortion, for
the small amplltudes (fig 4.2 a,b.,c) the low order multipoles (6-
poles, B-poles) dominate the distortions which are confined to
values below 0.2%. Near the acceptance 1limit (fig4.3a,b,c) only
14,18 and 20-pole are important. The distortion amplitudes reach
25%,

The mogat 1mportant contributions (at least up to an order
n+m=10) are firat order terms (flg’'s 4.2a, 4.3a) for small and large
amplitudes as well. However the second order terms which consist of
¥-~iike terme and y-like terms (see apprendix A) are an important
contribution at the large amplitude and cannot be neglected. This
reflects the fact that the perturbaticn expansion diverges near the
dynamic aperture and many higher orders contribute unless there is a
dominating lower order term enhanced by a small rescnance
denominator which we can exclude in our case. Fig 4.2b,c and fig
1,3bh,c show that the most important 2nd order contributions are
teyms with n+m=10. They are produced Dby the interference of the
atrong 1B-pole and the 6-pole and the interference of the l4-pole

with the 10-pole.
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It is also wvery instructive to compare the strongest
contributions to the distortion from the different multipole
components and plot the appropriate distortion as a function of the
undistorted emittance (J see fig 4.3a,b,c). At emittances below
I 1T mm mr the 3gextupole cgntributions are by at least 1 order of
magnitude larger than any other component. At J=1.5 mmm mr however
the situation has changed. Above this amplitude 1l4-pole and 18-pole
components are by far the strongest contributions and at the dynamic
aperture J=5.4mmm mr, the 18-pole compcnent 1s almost an order of
magnitude larger than any other multipele term. The 12-pole and the
16-pole and normal 20 pole are the least important contributions
whereas the octuponle 13 comparable with the sextupole (fig 4.4a).

The skew terms (fig 4.4b) are 1in general smaller than the
normal terms. This i3 simply because the skew components of the
field are smaller than the normal components. An exception is the
akew 20-pole which becomes almost as strong as the normal 14-pole at
the dynamic aperture.

TABLE II

1st crder normal lst order skew
multipole n m v u rel.dist. multipole n m v u rel.dist
6 1 212 .007 6 21 2-1 .004
B 222 2 .00B 8 3131 .001
10 3212 .006 10 4 1 2-1 .001
12 4 2 2 2 .003 12 5131 .002
14 16 1-4 .091 14 2503 .002
16 26 2 2 .,002 16 5331 .01l
18 361 2 .348 18 27 07 025
20 small 20 7 3 1-3 035
znd order Znd order
rormal terms nom v p rel.dist. skew terms nm v u rel.dist.
18 S 2 7-2 .,002
20 4 4 2 2 .010 20 5 3 %3 .006
22 54 7-2 .060 22 2 7 2-5 .025
24 4 &6 4 4 .043 24 555 3 047
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Table II gives a listing of the strongest contributiqns.to the
diatortion from.each multipole component and its characteristics.

There are séveral factors which cause a particular term to be
important or dominating:

# The multipole component which drives the term is large.
* The reaonance denominator is small.

* The contrihutions from the different nonlinear elements around
the ring build up rather than cancel each other.

4 The term is a coupling term with n close to m and drives a
low order resonance (|v|+lu] smaller n+m, large bkinominal
factors).

# The distortion phase of that term has to be such that there is
a poalitlve interference with other strong terms.

An important aspect of the design of the magnet and the choice
of phase advances and tunes should be to avoid the coincidence of
all thege factors which can result 1in an accidental dominance of a
few terms which can cause a drastic reduction of the dynamic
aperture.

We want to analyze the strongest contribution to the distortion
under these conditions.

The 18-pole component together with the also strong lé4-pole
describes the break off of the guide field. It 1is not very
gurprising that this multipole has the largest impact on the dynamic
aperture ‘

ce denominators of almost all the strong terms considered
re not particularly small with the exception of the terms
, M= -2 where the enhancement is 54. The strongest 18-pole
3.,m=6,v=1,u=2} 13 only enhanced by a factor of 1.7 which
means that the dynamic aperture 1is not reduced by an unfortunate
choice of the tunes.

The regonan
e

It 12 furthermore not surprising that the terms with a large
binominal factor
{n+m-1)!
(n+v n-vy, (m+u)I (R {see appendices)
P 2 207 2

are large for the terms which cause a large distortion.

YU
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Finally we have to consider the build up of the terms as a
auperposition of the nenlinear elements in the ring. If one neglects
the effect of the missling magnets 1in the structure, one can use the
formula Al3.3 which gives the distortion amplitude for a regular
FODO structure as a function of the phase advance per cell and the
nunker of cella. Azsuming & =& one finds for all strong terms a

build up factor smaller than®oné,
Fig. 4.5 shows the build up factor

s1n(S (v 8 ) /sin((vhw@_/4), k=16, .= 68°, vu = 1,...12
for several phase advances near 68° as a function of the phase
nultiplier (v+uw). The TEVATRON phase advance with 68.8° is fairly
well chosen. The build uwp of terms could be improved however by
lowering the phase advance to 67° which corresponds to a machine
tune of 18.9 instead of 19.4 (neglecting the missing magnets which
maximally add 0.75 to the built up factor).

A 1ist of the strongest 18-pole contributions is given in table III.

TABLE IIT

term binominal resonance build up relative distortion
nmvyu factor enhancem. factor Sese for J=6mrmm mr
54 3 0 420 1.18 0.66 0.141

5 4 3-2 280 3.15 0.61 0,100

541 2 560 1.70 0.66 0.243

54 1 0 B840 1.54 0.61 0.157

S 4 1-4 114 4.21 0.66 0.121

361 2 420 1.70 0.66 0.348

36 1 0 560 1.54 0.61 0.127

36 1-4 168 4,21 0.66 0.301

36 32 140 1.41 0.79 0.126

3616 28 6.37 1.11 0.175

7 2 7-2 4 54,42 0.79 0.227

7250 56 2.54 0.79 0.171

72 30 198 1.19 0.66 0.144

72 10 280 1.54 ¢.61 0.184
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The total distortion as shown In figs 3.1 and 3.2 is essentially
the superposition of these terms with proper distortion ?hasgs.
Thare are 15 singular digtortion contributions larger than %O% wh}ch
result in a total distortion of 16%. This shows that the distortion
phases are very well distributed for our test lattice.

The second order terms (fig 4.4c) have to Dbe considered at
emittances larger than 2.5 7mam mr and conmpete with the normal 14-
pole and the gkew 20 pole at the dynamic aperture.

The atrongest contribution (6%) from the second order
perturbation theory to the phase space distortions is derived from
the term n=7,m=4,v=7,u=-2. It 13 the only important term which is
enhanced by a small dencminator by a factor of 54. It is the result
of interference between mainly first order l4-pole and B-pgle terms,
Without enhancement theae terms cause distortions smaller than 1%.

Begideg this single 1l4-pole -~ B- pole interference, the most
important 2econd order distortions (2%-5%) come from 18-pole - 6-
pole 1Iinterference terns. The strongest (4.7%) 1is the term

n=4,m=6,v=4,u=4. It 1s enhanced by a factor of 6.09. Interference
between 1B-pole and 6-peole results 1in about ten times larger phase
apace distortionz than the interference of l4-pcole and 8-pole.

There are 16 combinations of lst order sextupole and first order
18-pole contributing to n=4,.m=6,v=4,u=4. It 1is not very surprising
to find the strongest 18-pole terms among these contributions. The
build up of the strongest pair of lrst order terms ( n=1,m=2,v=l,u=2
+ n=3,m=6,v=3,u=4) as a result of a double sum over the lattice
elements (eq.A9.3) 18 not particularly strong as one verifies
quickly by checking the denominators in eq Al3.5 (which is the
evaluation of the double sum for a regular lattice).

We can conclude this section by stating that there are no
lmportant accidental enhancements of particular terms contributing
to the distortion function due to the choice of tunes or due to
unfortunate lattice design. Thus there is no accidental reduction of
the dynamlc aperture in the TEVATRON.
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5. Conclusions

The discussion in the previous sections leads to the conclusicn
that the TEVATRON dynamic aperture is essentially given by the break
off of the magnetic guide field. There are apparently no features of
the magnet multipole structure which are enhanced by the beamnm
dynamics and cause surprisingly large effects on the dynamic
aperture. Moreover, the multipole structure of the magnet 1s very
well reflected by the spectrum of phase space distortions which are
clogely related to the dynamic aperture. The strongest phase space
diatortiona at the dynamic aperture are produced by the strong 18-
pole. That are the multipole components which describe the break-
down of the guide fileld. Interference effects of the strongest
multipole components among each other are important for the dynamic
aperture but, at least up to 24-pole effects, are not dominating.

The characteriatica of the distortion spectrum suggest a
slightly different multipole structure. Because the 18-pole is much
atronger than 10,12,16 and 20 pole one expects that a somewhat
apoother break off of the gulde fleld emphasizing a little bit more
those components. Reducing the 18 and 14 pole 1leads to a larger
dynamic aperture and a more effective use of the avallable physical
aperture. This hypothesis will have to be analyzed on the basis of
magnet design and field calculations.

The analysis in the previous section is by far incomplete and is
intended to be a first step. At this stage we are not allowed to
extend of these qualitative results beyond the machine model used
for the calculations. The conclusions may even change qualitatively
for a different lattice design, Thus we cannot not derive yet a
general rule which applies to all machines and each magnet design.

It 1s alsc c¢lear that as a complement to investigation of
systematic multipole errors it 1is also necessary to analyze the
impact of random multipole errors.

One major goal of this study was to demonstrate how analytical
methods can he used to understand tracking results,

A large amount of future analytic and complementary tracking
calculations will be necessary to provide the magnet builders with a
heam dynamics criterion for an optimum magnet design.
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APPENDIX A

Fxpansion of Phase Space Distortions and the Slowly Varying
Hamiltonian

1. Introduction

In the following sectlons, phase space distortions (‘distortion
functions’) and the slowly varying hamiltonian will be expanded in a
perturbaticn seriea. The results are expressed in multipole
expansion coefficients and linear lattice functions.

The traditional procedure using a generating function mixed in
a new and an o0ld sgset of canonical wvariables as introduced by
Moser /MOSS5/ and applied to accelerator problems by Schoch /SCHS57/
and Hagedorn /HAGS57/ is followed.

In the past, the examinatlon of the slowly varying hamiltonian
has been emphasized. It has been attempted to parameterize the beam
dynamics by the strength of isolated resonances. Much effort has
been spent to define and to study the width of nonlinear resonances
/GUI71,73/.

In a real accelerator or storage ring however, one tries to
avold situations where just one or a few terms of the hamiltonian
are lmportant. This is accomplished by a careful magnet design and
the appropriate chcoice cof the working point.

Therefore in practice, one usually finds many equally important
components in the hamiltonian rather than one strong term and the
nodel of a single 1solated resonances fails to describe the beam
dynamics.

In such cases, the dynamics may be characterized much better by
a transformation function of the canonical variables into a new
system where the hamiltonian 1is trivial. Tom Collins called this
tranaformation function ‘Distortion Functions’'/COL84/. Contrary to
the slowly wvarying hamiltonian, distortion functions contain all
harmonics of the nonlinear field distribution around the machine.

An important property of the distortion functicons is that they
are given in an expansion in the nonlinear field strength and the
particle’'s transverse oscillation amplitude. Tt 1is well known that
the expansion converges only as long as the total nonlinear effect
1a 2mall. Near the dynamic aperture, where the nonlinear effects
become dominant, the concept of distortion functions has to be used
with great care.

Besides the traditional method described here, more recently Lie
algebraic methods have Dbeen used to derive distortion functions
/DEB69/. First applications to accelerator problems have been made
/MIC8B5/ which look very promising.
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2. Hamiltonian Ebrmulation of Particle Motion with Nonlinear Fields

i ow

We start with a linear machine with no distortions and no linear
coupling., The only forces acting on the particles are linear
restoring forcea due to normal magnetic guadrupole and dipole
fields. The particle dynamicas 13 derived from a linear hamiltonian

G:

2 2

2 )
ky(s) v (2.1)

1
G =3 x t 5 ¥ + kx(s) X

Here, x and y are the particle transverse posgsitions with respect
to the closed orbit; x° and y’ are the slopes cf the trajectories
which are the canonical momenta 1if no longitudinal magnetic fields
are present. The independent wvariable 1is the longitudinal position
on the closed orbit 3. The 1linear restoring forces are represented

by functions kx Y(s). The solutions of the eguations of motion

aG/ax = -3x’'/aes ; 3dG/X’ = AX/fd3 ; X' =3x/as (2.2)

for x and y as a function of s are given in terms of the linear
lattice functions B(s) and a(s) and the phase advances &(s) for x

and y plane respectively,

X = JEEXﬁX(s) cos (@x(s) + ix); y = J2ey8y(s) cos(@y(s)+@y)
(2.3

EX'Y and @x,y are constants of motions.

Sources of nonlinear forces are eg.g. sextupole fields for
chromaticlty compensatlon and field imperfections of quadrupole and
dipole magnets, Such nonlinearities contribute to the hamiltonian by
the longitudinal component of the vector potential of the nonlinear
magnetic fields which is expressed 1in a multipole expansion in the
tranaverase particle coordinates x,y with respect to the middle of
the nonlinear element:

~ _ 1 1 .2 2 2 n . m
P = 5 K + 59 + kx(s)x + ky(ﬁ)y + im anm(s) Xy

(2.4)
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Because the magnetic field has to satisfy Maxwells
equationg, the multipole coefficients 8.m are related by:

VB =0 » ajion t 8 pep 0 (2.5)

(for the relaticnship of the a with the familiar coefficients a
. nm n
and b, see appendix B)

If the nonlinear fields are @gmall distortions of the linear
reatoring forces, 1t 1s desirable to keep the concept of linear
lattice functiona. In order to express the solutions x(s),y(s) for
the distorted hamiltonian in terms of the linear lattice functions,
the ‘linear’ consgstants of motion € and & must vary (variation of
conatants). If one ingerts the solutions for x and y with varying
conatants in  the equation of motion, one obtains a system of
differential equaticns for e and ¢ which 1s of hamiltonian form
where & play the role of a generalized coordinate and & the role of
the canonically conjugate momentum. The hamiltonian for this system
contains the neonlinear distortions only. The transformation to the
new canonlcal varlables £ and ¢ 1s a standard procedure in classical
mechanics (transformation to action and angle variables),

3€ aH(e_,e ,® ,& ) ad aH(e_,e_,®& .2 )
- n_m, X X"y Ty Ty X _ ' "y’ x "y
H z anm(s)x Y i 35 aﬁx : 35 <E

X
(2.6)

The hamiltonian has to be expressed by the new cancnical
variables & and ¢. It 1ias convenient to change the independent
varlable from 3 to the machine azimuth ©. The hamiltonian then has
to he multiplied with the scale factor between both variables:

R = fds/2w.

Expressing the cosine-function in exponential form, one

obtains:

m

n . -
B, [gzl b 1(v(r, (@142 ) +ul (0148 )

] [mTu]anm(e) [2“]

13
ST

e

The v and u are Integers with ve{-n-nt2,....n-2,nl
and el -m-m+2,....m~2,m}
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3. New Hamiltonian Containing only Slowly Varving Terms

It 13 well known /LIA66/ that, in general a nonlinear system is
nonintegrable and solutions expressed by invariants and periodic
lattice functions as Iin the linear case don’'t exist.

Solutions of the problem have always to be restricted to two

extreme cases:
a) the total impact of the nonlinear fields is small or

Iy only one or a few components of the nonlinear hamiltonian
dominates the motion.

The aim of the expansion below is to advance as far as possible from
these extreme casea in the region of interest for accelerators and
storage rings.

The advantage of the above formulation of the dynamical system
{3 that 1t allows one to extract from the complicated hamiltonian
those terma which are dImportant for the particle motion while the
rest i treated in perturbation expansion.

We will try to find another set of canonical variables belonging
to a new hamiltonian which contains only those ‘important’ terms. If
the variation of the hamiltonian terms with the independent variable
@ 13 fast compared with the machine periocd, the effect of such terms
is expected to cancel over many periods of the particle motion. Only
the parts of the hamiltonian which vary slowly are expected to be
important.

Before we proceed further, we want to factorize the hamiltonian
2.7 in two factors. One factor 1is periodie in the the variable ©
with a period of 27 (ring periodic) and the other is unperiodic.
This 1a done bhy splitting the phase advances into average and
fluctuating part:

@x,y(e) = @x,y(e) + G°Qx,y (3.1)
where Qx y are the linear machine tunes.

r

Then we define the periodic hamiltonian functions as: -

) ) . 1 l . -~ el
~ n m B15 (B.Y5 1( vb _(O) + ud (O)}
h (@y =R n-viim-uf: a [ﬂ§}2,[_1)2, e x ¥
LMV e nm {2 2
(3.2)
The hamiltonian can then be written as
n m
= 5 i | ve, +ud_+(vQ_+ul )@]
_ 2 2 [ X X 54 v
H= I hnmvu €y ay a (3.3}

nmvu
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We are now lLooking for a canonical transformation, whicb removes
all the parts from the hamiltonian which vary fast with O and
retains only slowly varying and constant parts. We assume a new
hamiltonian K which depends on new canonical variables J and ¥ but
has a similar form to the old hamiltonian H.

n m

= 5 b [vT +p¥ +(vQ_ +uQ )6]

K= % k 3212 e x TUx Tx Y (3.4)
amuy TRVM - TX Ty

The new varlables J,¥ should differ only by a small relative
amount from the original ones &,® because the motion is dominated by
the linear forces and the nonlinear forces are only distortions
agcording to our basic assumption. Thus the canonical transformation
is the identity transformation plus a small correction o. Because
the generating function removes parts of the old hamiltonian, the
mest obvious ansatz for o 13 to aassume it hasgs the same formal
dependence of the varilables as H and K. As a generating function it
ig mixed in old and new canonical variables:

S(Jx,Jy,@x,@y) = Jxéx + JYQY + O (Jx,Jy,QX,QY,G)
n m '
nomoy (v@ B+ (V0 +Q )e)
0(6) =L o (0) g2 g2 e VX X XY
UMV M ¥
{3.5)
The transformation between new and old hamiltconian is always
K = H + ag/a0o (3.6)
and the transformation between old and new canonical variables is:
Tx,yz aszaJx’Y ; Ex,y = aS/B@xry {(3.7)

4, Perturbatlon Expansion of 0id and New Hamiltonian in Mixed

Canonical variables

The algorithm described in this section was developed by Moser
/MOS55/. Bxplicit expressions for the hamiltonian up to second order
and the generating function in first order have been presented by
Jchoch /8CHS57/ and Hagedorn/HAGS7/.

We insert our expressions for XK and 8 into eguation 3.6 in order
to determine the functions k and o by expressing the momentum
variable & by J and the coordinate wvariable ¥ by &. Powers of e and
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exponentials of ¥ must be expanded in a taylor series:

noom n, m n-2 m nom-2
¢ ei Ji-;Ji I Jg ‘a0r28, + O JiJY -30/38 + .
n m
. Jz J§
L - Jn+r2]f.-§ m;m’ei(\,rq,f uye + (v'wa*Qx)e)
nim'v W’ PA n'm'viu Tx v

1(v @X+u @Y +{wv Qx+p Qy)@]

n'‘m’'v'u
*
(4.1)
ileX+HTy+(vQX+pr)®]F i[v@x+péy+(vgx+qu)@] ag 30
e = @ 1 + VAT + HEF + ...
.4
] ei(v@x+uéy+(va+pr)@)
n'-2 m’ , ,
o ny ol ei((v+v ) (3, +0 0) + (u+u )(@+Qx)e)
nmiv 2 n‘m’'v’'u
1’1' H\"Z x ’ Fl
' - B2 1wy ) (8, 40,0 + (') (840,)0)
+ 2 Tonlmrvr fJ J e
n'‘m’'v'u’ M
+ ..., {(4.2)

These expressions get inserted in the equaticn 3.6 which relates
the old and new hamiltonian to the generating function.
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g

: 2Znmvp
z l(VQx+“Qy)0nmvu+ 30
nmvu *
n m .
331 [v¢x+p®y+(va+pr)®]

_ L 2.2
- nivﬁ knmvp hnmvp) JoJ

n!.\)ll
+ ]'.E [k n " 1 |10 ' r ’ ’ - h i i 1 ! U " n 1} 1|]
nmvu { 2 ntmtvt st Tn'movy nm'vu n'm'v'u
n“m“-\)“p"
n+n"“-2 m’ +m"
i[ vt (e + SO VRE IV N O)J
S 5 T 5 I ( W) @X QXG) [V ! y Qy
. ml pil
+ lE (k it 1 1 IIO f ) i ! - h ’ ! L ! U L1} 3] H ||)
n‘m‘v‘p‘[ 2 n'mtv'p" n'm v n‘m’'v'u’ n'm"v'u
n“m"\)“u”
nl+n” m'+m“—2 ' fl " ] " ]
] 5 ; 5 ‘el({v +v )(QX+QXB}+(H +u )(@y+de) }
+ ...,

(4.3)

The terms are ordered according to their powers n/2 and m/2 in
the J and the arguments vd,ud of the exponentials. Because the
sguation holds for any value of the amplitude J or phase & it is
true for each summand characterized by nmvu:

l(va+“Qy)0nmvp + agnmvp/ae =
. n‘v"

knm\’u_’ hnm\)u_i'nfr]r-l;v.‘“l 2 (kn“m“\)“}l“ Onrmrvnuf hnnmr\)n“; O'n"m"\.)"}l")
n”m“\)“u“
+ iz m Lz.l (knli K L1 lé.UnIvaI l._ hnfml.\il J.Gnllmll\)il H)
nd'm-‘\)fuf mwv H iul u }J
n”m”\)“““
+ ... {4.4)

The two sums stem from expanding
Ex'@x and Ey’@y
respectively and will he referred to as x-like and y-like. The eight
indices of the double sum are related by
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lrst sum (x-like): n = n'+n"-2 2nd sum (y-like): n = n’'+n'
m = m' +m" m=m'+m" -2

. Vo= oy vt Vo= vy

R B VR T Moo= oA

(4.5)

At thia point, we expresa the periodic functions h,k,o by their
fourier coefficients

gq _ 1 -ig®
hnmvuq = 5 [ de hnmvp(e) e (4.6)

Because the relation between h,k,o must hold for every O, it is
true for each single fourier component of h,k and o

19 -9
o9 - nmnv nmvi
nmyvy
i(va+pQX+q)
) n'w" q-q° g’ g-g° g°
lz (k (1] IF it Uc ’ 4 i i _h i i i i 0 7] il it i )
nmN ug 2 n'm"viut T My mv'pn'm'v'u
L pmUviu
i(va+qu+q>
. m' " q-q° ’ q-q’ q’
12 ( k " 1] " llg I3 ’ ’ ‘ —h 4 / [ f U n n (L} 1 )
n'mv g P n'v'u" ' n'mvu n‘m'v'u n'm"v'u
L, nimivty
1(va+uQY+q)
+ ... {(4.7)
5. 2olving the equation for k and ¢ by Iteraticon

Now we reguire that the new hamiltonian K contains only terms
which vary 2lowly (resonant terms) or which are constant, thus terms

with:
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vQX+uQY + g = amall or v=u=g=0 (5.1

For such tepms, the whole right hand side of egquation 4.7 must
vanlah and we can chose ¢ to be zZero in this case, For_all other
terms we can solve the equation by iteration. We start by inserting

cgmiﬁ’ = 0 (5.2)

in the esguation and obtain in first order

o 1 - hgmvp Moy .
o = and k = h (5.3)
nmvi i (vQX+pr+q) M Ve by M Ve My

The index r indicateas resonant or constant terms. In the next
iteration step we obtain

! il

l"l"\)' q_qr qf n'v q_ql ql
"E h ' : ' ' h TP T TR T h i : ' 4 h [T R T
(ID) n'm’v 2 nym v ntmt 2 n‘m’'v'u n"m"v"'u
Uq . n'mtvipt
nmvu : " " ]
IOVQu+uQu+q) (V0 +u R +g ")
-5 mplopd-gt o pal _Rp o499 nd’
nm'vu’ 2 nm v M, nimtetu 2 n‘m'v'u n"m"v"u
+ nHmll.\)IlHl!
i (va+qu+q) (v“Qx+p“Qy+q')
(5.4)
n“\)' q_-q! ql nl\’ll q_ql ql
T Z: o ! ! r I h {F u 1} JI-. e h [ ! ! lh " 1] 113 1
q(LI) _nmvy 2 e MUMIMEES T 2 n‘m' v’ n'm"v'u
NV na'm"vu " " ;
£ 10v"Q +u Qy+q )
Z m.f—H_!l hq-f-q: r ! hq l’l 1] " " - M—I. hqjq: [ ? hq :l " " n
. n'm’v 2 nom v uo ntmtyt 2 n‘m' vy n"'m'v"u
n”m”\)"p“ " " s
Liv Qx+p Qy+q )
(5.5)

If we apply the canonical transformation generated by 8
including all terms up to second order{ gquadratic in h), the new
hamliitonlan K contains only constant terms or resonant terms up to
2nd order. The lowest order oscillating terms are third order terms
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{cubic in h). We cut the expansion and iteration at this point and
azaume that the particle motion is described sufficlently accurately
by the terms up to 2nd order.

&, Introduction of a Thin Lens Approximation

and Evaluation of the Greens Function

To evaluate the new hamiltonian and the generating function and
expresa them 1n a closed form 1in terms of the linear lattice
functions, we have to carry out an inverse fourier transformation to
optain the Greens function for the differential equation 3.6. It is
convenient for later evaluation on a computer to agsume the
nonlinear forces are acting as thin lenses on the particles. This is
no restriction on the generality of the result and has the advantage
0f dealing with sums of terms around the lattice rather than dealing
with Integrals. It i3 also straight <forward to extend the result to
the general case.

Thus we wrlte for the multipole coefficients as a function of the
longitudinal positions i around the lattice:

s+1i/2
j ds a__(s) (6.1)

1 i
Cn 8(0-0)  a- =

SO

a (@) =X a
nm N

The fourier transform of the function h is then

-}

. i1 i1 i
1[v(¢x 0,01) + nte -0 oM - qo ]

q _ 1 i
hnmvp' 2n ? h nnvu® (6.2)
S o m
. n m i.5,51i.5 . :
L - _ ~ BY2(B Y2 .1
L — f [Eiﬁ][ﬂiﬁ](ii] {EX] fhm (6.3)

In order to carry out the sums over g and q' to obtain the
Greens function, we have to evaluate sums of the form:

gw eiq@ i T e-imieﬂsiqn(e}n} C lim: a cos (1o . o)
a+g - 2in(mo) d O%O' sin(mro) '

If « 13 an integer or near an 1nteger the term g=-o. gets
excluded:
= —i(e-sign(@m e *° ; lim: 0 (6.5)
-0
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7. Evaluatian of the Generating Function; First Order Terms

We are now able to evaluate the generating function 5 order by
order at the azimuth Gk' The zero-th order of S5 is just the
identity transformation. The first order terms are given by
inserting eg. 6.2 into eq.5.4:

- pd nmo
o (1) - hnmvu 2.2 l[w®x+”®y * (va+“Qy+q)ek)
g (0,) ) JXJy e
nmv 1(va+vQy+q)
- n! £ D 1(vE_+ud_+(vQ_+uQ )9, ice¥-oh)
= —DMVM 552 o X Ty TXOTTY 5 8
inmwu  27i ¥ g 1(vQ_+uQ_ +q)
X X
_ni nom i(v(@ w3y 4 e +@i>]
.y _nmvM 5252 x ox MRy
inmvu 21 Xy

f iﬂ-siqn(ek— Oi)(va+pgy)
e

for VQX+pQ # integer
sin w(va+pr) ¥

9, -0.
s k 1
P2

- sign(@k*@i)} for va+pr ~ integer

(7.1)

1t may appear confusing that integer and noninteger terms are
distinguished after resonant terms have been excluded from the
generating function in order to retain them as a driving term in the
new hamiltonian. However we excluded only one term in the fourier
series. All the rest of the terms 5.3 have integer but non vanishing
denominators and are therefore included in the generating function.
Now we want return to real numbers and combine terms with the same
ju+] . Then the sum over v extends only over positive numbers the
while sum over u extends cover positive and negative numbers. We find
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nom : i i

S(I)(e y = % ~ hi JZJZ Sln[v(¢x+®x+ skinx)+p(Qy+@y+ SkiﬂQy)l
K inmuy  EVHO XY sin w(vQ_+ud_)
. X y

3y = 3ign (O -Op) (7.2)

In wrder to carry out the transformation Dbetween old and new
coordinatea, 1t 1is convenient to introduce an amplitude and a phase:

~K (1) 2, 2 ] _ i i i J
bnmvu‘ 23+ L ; Ec = ? hnmvucos(v(@x+skiﬂQX)+p(®y+skiwgy)
K(T) 1) e i { i
I s ] R hnmvH51n[v(@x+skiﬂQx)+u(®y+skiﬂQy))
nmvu
(7.3
nm . k(I)
= = 51n(v® +ud + @ ]
siI’ - -% si&i) JiJ2 X "y nmuy (7.4)
nmvu M ¥ sin w(va+pgy)
The same procedure for the ‘integer’ terms results in:
. 0, -0, )
_ i k "1 i i -
L. = ? hnmvp [ T Ski] COs(v®x+p@Y) etc (7.5)
nnmnm
(L) k(I) 2.2 k(1)
Sk = ngvpsnmv“ Jny cos(v@x+u¢y+ @nmvp) {7.6)

B, Bvaluation of the Generating Function; Second Order - First Part

We are turnling now to the aecond order terms for 8. There are
four parts of second order terms:
There are two sums each for ‘®X-like’ terms and ‘y-like’ terms
respechively. The first sum in each group contains the product of a
‘rezonant’ or ‘constant’ coefficient h with a '‘non resonant’ one.
The zecond term in each group c¢ontains products of 'resonant’ and
‘non resonant’ terms h as well with a ‘non resonant’ one. We start

with the first term:
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g1ince véQx+uégy+ gq-q‘=0 (or=0) for resonant or constant terms
V0O + G = (VIRVIIQ (W IR g VU0 "0,

e (8.1)
9, = a9

For constant terms vr'=u’=q—q’=0 the expression vanishes
because 1t haa v ‘ as a factor 3o that we have to deal with resonant

terms only:

i ‘ i j
n N h ¢ i} r Ih H u i 1 Q I_r.l [ ]
s(ID. ¢ g £ PeleVely DTMVIRT (302 F (Y THE VMR IO,
k!‘ nm\)u nllmli\)ll“rl Bi..n-z X y
13 nmovpHy

’ i : i : ¥ i . " j " j " T j
i(vréx+pr@x+<urgx+prgy)e } 1[v 2 +una)eivig rumg 0 )

e a X
1eF-ahq, -1ef-odig:
¥ e « 5
9, q (v"Q, +u Qy+q ) (8.2)

The sum over

nm.w
rrr“rqr

extends over only a few terms. We carry out the sum over g’ and find

n # i j . =
n v h f / ‘ 1 h " t " 1] k_ J - " " l
S(II)= . ronmov u ntmte [G o wskj+wcotﬂ(v Qx+p Qy)
kr nmvik ntmtytu B sinﬂ(v“Qx+u“Qy)
1] Ny Ve dy
E _m_ ] L] K} j L] j 1l "
) 1(v@x+p§y) 1[v @x+p ®y+skjﬂ(v Qx+p le]
Jny e e

TSNS S | , . k i
1(vréx+préx+(ver+prQy+qr)(@ -Q ))
(8.3)
In wmost cases, where theres are resonant ferms in first corder, we
need not proceed with the perturbation expansion. On the other hand,
usually we try to avoid isolated resonances driven by first order
terms by a careful choice of the tunes. Thus we will exclude from
our considerations situations where the above terms may become
inportant. One should mention at this point, that the first sums

e
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juat evaluated for the generating function wvanish for the second
order hamiltonian coefficients 5.5. Because we would have
vQ +u0 +q 0.

with the restriction v'Q +u Q +q~q‘=0, we also have v“QX+p“Qy+q‘=O.

Far auch terms however the ceefficient o(n"m"v'u"g’) in 5.3 is zero.
Thua there are no contributions to second order hamiltonian

coefficients k from the first sums.

3. Fvaluation of Generating Function Second Order: Second Part

We move now on to the second sum 5.4, If we dinsert the
coefficients hi (6.3) we find for the x-l1ike terms:

e ! j n m
S(ID)_ 4 - NOVUB g By ey 2.2 1(v@x+uéy+(vQX+qu)Gk)
k B C e 2 X y
nmvu n'm'v’u Binw

j.j I’l"m“\)"]..l"

f i f i ) ! i 1 j " j M Tl j
i[v @x+u @x+(v Qx+p Qy)e ] . i{v @X+u @Y+(v Qx+p Qy)@ )

e e

10%q Jet-ah)g

s & . .3
q va+qu+q qn QytH Qy+q (9.1)

Carrying out the sums over gq and q' and combining complex
numbers to real numbers as before leaves us with:

] L1} j_ i ] j__ i " H
I ¢ nov hn RTE hnnmuvnpncos( |25 14U 18 -8 | +m (V") 4y Qy)l

HTvHIQ . 2 sinn(va+pr) 51nn(v“Qx+p Qy)
n"m'v'u
nfma\)ful

nom

2, 2 i i

-JXJy Sln(v(¢x+®x)+p(@Y+§Y)+skiﬂ(va+pr))

(9.2)
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we get a similar result. The symmetry

betwesn ¥x- and y-terms 13 only broken Dbecause v but not u iIs
restricted to pdsitive integers. This results 1in a factor sign(uj
for the 'v-1ike’ terma. Besides this, the y-like terms differ from
the x-1ike terms only by the factor mu instead of nv and the
different relationship hetween n,m and n'm’.n"m" for x and y like
terms.

If we exclude the existence of resonant terms in first order, we
don’'t need to exclude any terms in the above sum 9.1 over gq’. Thus

we will have no

Faor the ‘y-like’ terms,

v“+pr“Qy=integer - terms.

except constant terms with "="u=0 which vanish because because of

the factor v".
The gum In 9.1 over ¢ however contains second order dencminators

which in general include terms
vQX+przinteger.

Therefore for each second order resconant term £o be retained in the
hamiltonian, we keep the complementary sum over g in the generating
function $ which has the form:

Pyl ] RS . | wigd_ad " "
S(II)z Z n‘w hn'm’v’u’hn"m“v“p“cos(v 1@x ®x1+p I@y @yl+ﬂ(v Qx+u Qy)]
k nmvui j 2 Sinﬂ(v"Qx+p"Q )
n"m"v"u" y
nlmf\)l’u}
n m
{ei 0 + 5 ] JZJ 2 cos[v(@ +@i)+ (¢ +@i)]
il ki Xy x Cx’TH ¥y 'y
(9.3)
in the second order generating function.
We now define the second order coefficient
’ 1 i j " j___i " j_i r H
1011 _ n'w hv,p,v,p.hnumu“up"cos(v ]@x @K{+p |¢z_éyl+w(v Qx+p QY))
nm\)u ﬂ”‘m” zsin T[(\)“Qx‘i'pugy)
\Jllp”j
(9.4)
(i(I) Lt ]
MMV nmwl

and see the analogy between first (see 7.2) and second order terms:
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i
+& + g5, . )]
y v ki QY
gin ﬂ(va+pr)

i
Sin(v(éx—@x+ skiﬂQX)+p(§

oonm

(I - 1(ITy 2.2

3 (0, ) = L o J. 3
k invaAnmvu Xy

(9.5)

First and second order terms differ only by different
coefficlents o. The dependence on the wvarlables is the same for all
orders. 0f courgse the 3second order coefficients include higher
orders n+m than we have in first order. The second order
coefficients for each lattice point 1 require a sum over the whole
lattice starting from i and a sum over all pair of first order terms
which combine tc the second order teérm under consideration according
to the rules 4.5.

We proceed in the szame way as for the first order terms by
defining an amplitude and a phase

oKX, YUIT) g akx, v (ID) (9.6)
nmyvi nmvu _

for ¥ and y-like terms respectively.
The generating function wp to 2nd order 1s therefore of the

forms

n.m k(I
5 5 1 (v& _+ud_+¢ )
5(0,) = J @ +T 8 + I —Sﬁéi’ JiJz o x "y ¥ amvu
X ¥ nmwvy H Yy
nm . kx (1)
+ Skx(II) J2J2 el (v@x+ﬂéy+®nmvu )
nmvu Xy
nmvu
nm . ky (I1)
sy gD 252 BB angy )
Amvu nmvu Xy
+ higher orders (9.7)

It i3 interesting to notice that the transformation between new
and old canonical momenta J and e is essentially a fourier transform
In the phase angle $ with ccefficients expressed in a closed form in
terms of the multipole coefficients and the linear lattice

functions.

If no resonant terms have to be retained in the hamiltonian, the
tranaformation function, e=J+a3/a®% describes the whole effect of the
nenlinear fields up te the order it is expanded. One can consider it
ag a ‘distortion function’. It i3 a ring periodic function which
describes the distortion of the beam emittance as a function of the
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unperturbed emittance J and the particle phase ¢. J is solution of a
frivial new hamlltonian which contains only constant terms

s 3
s

K =T k J-J
nm nmoQ x"y (9.8

The wvalidity of the descyription of the nonlinear effects by the
generating function and a trivial hamiltonian is however restricted
to the cage where the distortions g-J and ¥-% are small, because
this was an explicit demand as we truncated the taylor expansion for
powers of & and exponentials of ¥( eq’s 4.1, 4.2).

Nevertheless it 1s very wuseful to calculate the generating
function. One recognizes which multipole component are important for
the particle wmotlon and 1t 18 easy to relate the strength of the
distortion with lattice parameters like systematic multipole errors,
phase advances etc.

Fig, Al showa as an example the comparison between phase space
trajectories cbtained by tracking (solid 1lines) and obtained from
distortion functions (dashed lines). The lattice contains just one
strong sextupcle represented by five kicks at a betatron phase
advance spacing of 4%=0.01. There is no betatron amplitude in the y-
plane. The horizontal tune is 0.27.

If the amplitude decesn’t exceed =1/2 o0of the maximum stable
anplitude represented by the outer solid trajectory, tracking and
perturbation theory agree fairly well. There are strong differences
in the trajectories at the stability limit. However, the outermost
dashed curve 13 also what one can consider as a stability limit for
diztorted trajectorles., The amplitude distortion e-d starts to
eXcesd at this amplitude the Increase in the amplitude itself thus
ae/ad is zero for this trajectory. This agreement is a very
surprizing and encouraging property of distortion functions. The
comparison has been repeated for another tune far from a resonance
Q=0.38. The result is shown in fig A2. One finds the same kind of
qualitative agreement between tracking and distortion function.



Fig Al
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Comparison between Tracking and Distortion function
solid lines are tracking, dashed lines are distortion
Q0 = 0.28 ,see text



Fig A2 Comparison bhetween Tracking and Distortion Function
for a Tune of (Q=0.38, see text.

44
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10. Evaluation of the Hamiltonian; First order

2
-

We turn noWw to the evaluation of the new slowly varying
hamiltonian based on equation 5.5 and the hamiltonian coefficients
defined 1n eg. 6.3, According to 5.3, the first order new
hamiltonian K containa just the resonant and constant parts of the
¢ld hamiltonian H. We 1insert eq.56.2 1into equation 3.4 and combine
again each term with 1ts complex conjugate and find:

I
(Iy 1 i 2
K == ¥ h J4J
T nmvu nmvy ¥

ig

m
2 i, .1 i
Ycos[v@x+péy—(va+pr+q)@ +v¥x+pyy+(va+pr+q)O)

(10.1)

The sum over nmvug exiends over regsonant terms only.
As for the generating function, we form an amplitude and a phase

by:

il
i

g(I)_ p) _ 1 i i, 51 1,
Klon= (2242l 0 o= g nﬁvphnmvucos[v@x+uéy (VQ, +40, +a) © ) retc

{10.2}

The hamiltonian can then be expressed in closed form:

nm
g(I) 2.2 ( g(I) ]
z Knmvp JXJY Cos v?x+pwy+(uQx+pr+q)O+@nmvu

nmv (10.3)

K(I)

If there 13 only one resonant term nmvpy, one usually introduces new
angle variables .

.\)Qx-t-q ] [qu—'rq ]
o = Y + yl—e"—s|0 o = ¥ + ui—=——|0
X X v2+ pz y y v2+u2 (10.4)
which are generated by the generating function:
F(Ix,@X,Iy,@Y,@) = Ixmx(@x,@) + Iy¢yc®y,®) ; Ix: Jx’ Iy= Jy
(10.5)

The corresponding hamiltonian W does no longer depend explicitly on
the 1ndependent varlable © and i3 therefore constant:
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v +gq MR +d
W = K + 3F/230@,= va miﬁ——i + uJ [“§I_~§]
B AV R V' AU S V1
2.2 (1)
2.2
knmvquJy COS(v¢x+“¢y+¢nmvp ) (10.6)

Phase space trajectorles J(¢) are given for each value of W by
ilnverting W =W{(J,9) with respect to J. The separatrix is the orbit
which pasaes®trough the fix points glven by aW/3J=aW/23¢=0.

11. Evaluation of the Hamiltonian Second order

The evaluatlon of the second order hamiltonian is much like the
ayatuation of the second order dJgenerating function. We again insert
the hamiltonian coefficients from egquation 6.3 into the expression
5.4. We already polnted out 1In section 8. that there 1is no
contribution from the firat part of 5.5 which involves products with
resonant first order coefficients. For the second part, after
carrying out the sum over g’', we obtain

i L1 i j El @ .
K(II}= ¥ nw hn’m'\)'}l'hn TR J2 2 el [\)‘fx+p‘l’y+(\)Qx+pQ+q)@]
in’mdvr“f 8“2 Sin ﬂ(V“Qx+p“Q b4 Y
jn”m“\)upn _Y

. ( " + " ]
e AR ARRSFRAME LS

i,,,.1 - wigd vegdogl
ei(véx+u®y (VQx+pr)Oi] (v (8J-21)+ucal-e

(11.13

We combine again conmplex numbers to real numbers and v is
resgtricted to positive integers again. The gum over j n'm’v’'y’ and
n"m*v"u" 1s the same as in equation 9.3. Thus we can use the second
order coefficient o defined in eqg. 9.4 to express the generating
function and we write the second order hamiltonian:

m

(IIy -1 - _1(ID 2

K = = B a J
T RV

VUi

J

n
2
Xy

i i -
cos(vTx+pr+(va+pr+q)®+v@x+u@y—(vQX+pr)Oi)

(11.2)
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For the y-like terms we have a similar expression which differs
only by the factor mv in the o-coefficient and by the factor sign(u)
for the reason pointed out in section 9 discussing the generating
function. For the hamiltonian too, the second order terms have the
zame form as the first order term differing only by the coefficient
h vs o, Defining amplitude and phase the same way as before (see
eg's 10.2, 7.3, 7.4), we obtain the new hamiltonian containing only
alowly varying terms up to 2nd order in the multipole fields:

nm
B g(I) 2.2 [ q(I) ]
K = nivu meM Jny Cc03 v‘ifx+u‘i’y+(va+pr+q)O+®anpl
n m
_ gr(ID) [2:;2 ( gq{II)
nivu Knmvu Jny cos “?x+“?y+(“Qx+“gy+q)®+¢nmvp ]
n m
- qy (I1) ;2.2 ( q(II)
z Knmvu Jny cos w?x+pr+(va+ugy+q)@+@nmvH ]

nmvy

(11.3)

Note that not all second order terms which appear in the
generating function are potential driving terms in the second order
hamiltonian. If the second crder term in the generating function is
composed of Just one palr of first order terms with v=v’'+v",v’'=y"
(game for W), the resonance denominator 1is cancelled as it has been
rolnted out by L.Michelotti1/MIC85/. Thus the transformation
contribution from such terms does not get infinitely large when
approaching the rescnance but remains confined to off resonance
values. That means for example that 1in second order perturbation
expansion sextupole fields don’'t excite the 6th integer resonance
(3+3) but excite only the 4th and 2nd integer resonances,

Figs A3,A4,AS5 show as an example the phase space trajectories
near the 4th-integer rescnance driven in 2nd order by sextupoles.
Juat ane oacillation plane in phase 3space {3 assumed. The tunes are
0=0,25%{f1g A3), 0=0.2¢6 (fig A4} and 0=0.27 (fig AS5). The other
parametera determining the4 phase space trajectories were: f=100m,
B=30mr,r°=1 inch and b,+-10" = 100, The lines in the figures are the
perturbation theory tr&jectories and the dotg are the result of

tracking.
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Close to the resonance, the agreement between tracking and
theory is almost perfect. The only difference is a small rotation of
the theoretical trajectories with respect to the tracking result.
This is due to the missing higher order ( than 2) detuning terms.
For the tune . 0=0.26, the agreement 1is still satisfying. At the
largest tune disagreements become bigger and the single resonance
approach starts to break down.

CANOL VERSION 2
[XxALFA+XP«BETA) /MM= 9, 613938

CEX/MM= 8.519398

fig A3 Comparison between theoretical phase space trajectories
and tracking near the sextupole excited 4th integer
resonance ( Q=0.255, see text)
Lines: Perturbation Theory
Dots: Tracking
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CANCOL YERSION 2
OlALFR+XP*BETA) /MM=13. 17346

Q= 0.26

- X/MM= 13, 1734

™ TrT

fig A4 Phase Space Trajecories for a tune of 0.26.
Lines :perturbation theory
dots: Tracking
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CHMWOL YERSLUM &
((xALFA+XP=BETAH) /MM=16_ 944456

0 =8.27

- 2/MM= 16, 9444E

fig A5 Phase Space Trajecories for a tune of 0.27.
Lines :perturbation theory
dots: Tracking
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L
13. Third and Higher Order Terms

It is very straight forward but a little tiresome to extend the

expansion to higher than 2 orders. Higher order Taylor expansion
terma have to be included 1n equation 4.3 and the iteration of
equation 4.7 has to Dbe continued wuntil all terms up to the
particular order are 1included 1In equations 5.4 and 5.5. The
procedures to obtain the generating function and the hamiltonian are
the same a2 before., We will not Dbore the reader by repeating it
agaln and give the result for the third order generating function
instead:
In third order, we have three different terms which we will
characterize by xy-like, xx-like and yy-like. They differ by an
integer factor f. As the two second order terms they differ by
relationship between the indices of the (first order terms they are
created from and the indices of the <third order term. The
relationships are

xy-1llke ®x-like yy-like
n=n‘+n"+n’’ -2 n=n’'+n"+n’"’'-4 n=n‘+n"+n"’"’
m-..:ml +mll+m! : __2 m=ml+mil+ml T m=ml‘ +mll+ml‘ ’ _4.
.\Jz\)l +\’ll+.\’f + vz\)l +vll+.\)t ’ \,=\,1 +\,ll+vl ’
“:HJ+“|I+“II H=H'+H“+H” “=M‘+H"+H" (12.1)

The Integer factors (which are nv for the x-like 2nd order terms
and mu for the y-like 2nd order terms) are far more complicated for
the third order terms:

xy-term: fxy: n'(v=v' )y (m-m' )’ "+m' (u-p’)(n-n"Iv" "-nm v'u'’

xxX-term: fxx: n‘(v-v'J{n-ni)v’ "-n'(n’'-2)v"v" '

yy-terms fyy: m (- Y (m-m" Y’ -m (m=-2) "’
(12.2)

The third order generating function evaluated at position p in
the lattice then has the form:
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nm .

= 5 1|vd_+ud }
yw(III)_ fow ;252 [ xTHey
nQvi p Yy

SR , ,
1[v B H Bks TV Qb Qy)]

5 1 e p
n!ml\)lul ]
i gin (va+pr)
: It j__ i 1 j~ i " "
1(v (8)-8")+u(e)-20 )45, m(v by Qy)]
£ hi, £
n m”\)”H” ] . R
j sin 7 (v Qx+“ Qy)
. P k_ i ‘. k__ i I ¢
) el(v (8-30+u" " (85-81) s, m(vQ +u Qy))
Z h ' & s ror
n Hil N 9] ' I
k gin 7 (v Qx+u Qy) (12.3)

The most remarkable and important aspect of this result is that
the sum over k does not depend on the index j but on the index 1i.
That means that for the third order expressions we don’'t have to
carry out a triplile aum but two double sums. The same is expected for
any higher order. Therefore it 1s not 1impossible to evaluate the
distortion function or the hamiltonian for higher orders
parturbation expanaion. If there i3 a fixed maximum resonance number
v+u up to which the terms 1in each perturbation step are calculated,
the coemputing time increases only linearly with the expansion order.

13. The Case of a Simple Reqular Lattice

If the lattice consists of a regular FODO cell structure with
ayatematic multipole errors of the dipole magnets and of an
insertion with no nonlinear fields, the driving terms and the
diatortion function can be expressed 1n terms of the phase advance
per FODO cell. This can be done for any distribution of nonlinear
field I{n the FODO cell. As an exXample the result for the case with
just two nonlinear kicks 1in the middle of each half cell is
pregented. The phase advance per FODO cell will be denoted by & and
Lhe phase advance between two nonlinear kicks 1is Qf or @d For a
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focusing or a defocusing gquadrupole in Dbetween respectively.
Horizontal and vertical phase advances and lattice functions are
assumed to be the same at the positions of the nonlinear lens. The
number of the +regular cell 18 denoted by k. The situation is
sketched in fig A6.

Qf nonlin. Qd nonl. Qf nonl. Qd

kick kick kick
S 4 v
()1 Bend— - (-1 Ben@ 1~ () -1 Bend 1) (-1 -
- @d ale @f -
Ll & -

c

Fig, A6  Schematic view of Regqular Cell structure

For this case the sum 7.3 for the first order generating
function or distortion function is:

n
2 e Prmon kgl[3in[k(v+u)@c—ﬂ(va+qu))+sin(k(v+u}@c+v@f+u¢d—ﬂ(va+qu)]
P +ud v . +ud
k VEeTHRg k+1 £THE
zzhnmvpsin[§(v+p)éc)-cos(f——iuﬂw]-cos[*§~(v+p)ﬁc+———§—~— —ﬂ(va+qu)
sin(v+p)@cl2)
K v¢f+p¢d (k41 v¢f+p§d
: =2hnmvusin(i(v+u)@c]'cos(——*jh—* -sin —7—(v+plic+~—~§mm~ —w(va+pr)
3 sin( (v @_/2)
(13.1)
vl _ +ud
1 2hnmv“sin[%(v+p)@c)~cos[ﬂm£§——g]
Amvu sin( (v+u) e _/2)
&.+ud
1 _ k+l VEPTH®y
nmvy -"-2—(\J+L1)@c+—'—*-2‘“m 77(\'QX+Hgy) (13.2)



For a ¢guick estimate one can assume @§=¢?. The amplitude of
mple

the generating function is than given by the s expression:
14
. h sin[§<v+p)@ J
si . = —mi 2 (13.3)
TmYM sin( (v e /4)

One expects a large contribution to the phase space distortion
from those terms for which the argument of the sin-function in the
denominator of 13.3 is equal or <close to (2k+1l)-n (k integer). Then
the lattice sum reaults in a factor n for the amplitude S. Note that
this 18 always the casze for detuning terms wv=u=0.

Unfortunately the expressiona for the second order coeficients
are rather complex. We first introduce the abreviations:

r = Vtu: p = ﬂ(va+pgy) ;d = vé+udy; g = p + d/2 4+ r2/2; a=n,m, v, u
(13.4)

Reference polnt for the amplitude of the second order generating
function 8 i3 the first element in the structure. One obtains:

IIx= n'w" hm,hm”COS(d"fz)COS(d/Z)

S z
* oot 2 3in(p) sin{(p") sin(r“QCIZ)
k- 1l it d-” k u s k 1" ] " . k
sin(zr @C~p —ﬁ) sin(§(r+r )@C)+ 51n(§(r—r )@C) +251n(q )51n(§réc)
r+r" . r-r" .
2 sin(—j— @c) 51n(—§* @C) . 51n(r@C/2)

(13.5)

One recognizes that the build up of second order coefficients
over the lattice is maximum if

(v+p)-@c/2 = jr {j integer )

(vi+u")e /2 = j=
(v+v"+p+p")@C/2 = jn
(vrv”+p—p“)@C/2 = jw

The use of these formulae saves an immense amount of computing
effort. It may bhe the conly way to use the distortion function
concept for very large accelerators.
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APPENDIX B

Multipole Ceoefficients a

nm

Multipole coefficienta as a vresult of a measurement are
usually expressed as the relative fleld error measured at a certain
radius vr. The multipole field strength in terms of these
coefficients ay and bk and the bend angle @° 1s given by

5 st ( By+1BK] £, 0°( by +ia ) (x+iy)

X k

/ r

In thils report , the vector potential A of the magnetic field
1s cxpanded in multiploles using coefficients a

nm

o 5 0 horizontal
s fds A = 0 A om vertical compornent
P Z a Xy loengitudinal

The coefficients ap, 2re given in terms of the &, and bk’
m = even, "normal multipole"
fam T T (-1)"/? iﬂ%%é%ll n+m-1 go. pointm-l)
m = odd, "skew multipole*
a _ (_1)(m—1)/2 (n+m-1)! . @o. r~(n+m~1)

nm nim! h+m-1
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