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MOSER-LIKE TRANSFORMATIONS USING 
THE LIE TRANSFORM 

Leo Michelotti 

Abstract 

We present the Deprit-Hori-Kamel recursive algo
rithm +or carrying out canonical transformations 
that eliminate non-secular terms of a Hamiltonian. 
The method is illustrated in the context of accel
erator theory by application to three sample 
problems. 



1. INTRODUCTION. 

How Alexander wept 
worlds to conquer. 
has some reason to 
matter having been 
mentioned. 
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when he had no more 
everybody knows --- or 
know by this time. the 
rather frequently 

Charles Dickens. 
Bleak House (1853) 

Like many other good ideas. the one which accelerator physicists 

call ''Moser's transformation"! was in fact developed and studied in 

some detail by Poincare. According to Jupp Ip. 413), 

''In his Methodes Nauvelles de la Mechanique Celeste, Poincare 11893) 
describes techniques to 'eliminate' successively nan-resonant periodic 
terms f'ram the Hamiltonian of a dynamical system. Each elimination is 
achieved by means of a canonical transformation of variables. which is 
constructed using a generating function depending upon the old angle 
variables and the new momentum variables. After all the periodic terms 
have been removed in this way. the final Hamiltonian is purely 
secular. ii 

The method was modified by von Zeipel in 1916 and is called, by the 

rest of the world, the "Poincare-von Zeipel procedure". Even so. it had 

antecedents. Giacaglia lpp. 55.471 writes. somewhat ambiguously. 

"It is a recognized f'act. although several times not mentioned, that 
the averaging methods were introduced by Lindstedt I 1882), though it is 
not clear whether his ideas stemmed f'rom the efforts of Euler (17501 in 
the solution of the problem of motion of the moon. . . In his celebrated 
'Methodes Nouvelles', vol. 2, CPoincare] developed a canonical analog of 

~-******************* 

1. /But not the superconvergent procedure 
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Linstedt •s method which, even at=ter a super~ic iai iook, proves to be a 
ver~ elaborate generalization. However. it is obvious that the main 
idea of Poincare's development comes from Delaunay and some remarks of 
Tisserand on Delaunay's Lunar Theory [Theorie du Mouvement de la Lune, 
1867]. " 

This work of Delaunay's culminated an effort that appears superhuman by 

modern standards. Deprit, Henrard, and Rom Ip. 1569) state that 

''Delaunay worked at his theory without any assistance, by hand. 
some 20 years continuously (sic); his literal calculations cover 
volumes in quarto of 400 pages each; he alone proofread them.'' 

for 
two 

Although he is not frequently mentioned outside celestial mechanics, 

Delaunay's influence on the physics of his age was considerable. Among 

his other accomplishments, he seems to have been the one who invented 

action-angle variables. According to Lanczos lpp.254,245), 

''Delaunay invented a beautiful method for treating separable systems 
which satisfy the additional condition that the stream lines of the 
separated phase planes Cq~ pk) are closed lines. He considers a 
canonical transformation wnose position coordinates are the "action 
variables" Jk defined by the areas enclosed by the stream lines. The Jk 
are constants for the actual motion while the negatives of the 
conjugate momenta. the "angle variables" Wi.. change linearly with the 
time t. The partial derivatives of E with respect to the J; give n new 
constants which are the frequencies "V;. of the motion. At first 
sight Delaunay's theory seems rather technical and involved. Yet it was 
this procedure . which opened the eyes of physicists to the power of 
the Hamiltonian methods." 

Somewhere in history this association was reversed. We now think of the 

action variable as the "momentum'', although a vestige of the original 

ordering may be contained in the terminology "action-angle'', rather 

than "angle-action''. 

It has been remarked by many authors that the Poincare-von Zeipel 

procedure suffers from a serious disadvantage. Because the generating 
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function is written in a mixed system of variables, the trans~ormation 

from the new. ''averaged'' variables to the old, ''exact'' variables is 

only defined implicitly. Practically. then. carrying out the 

transformation to better than lowest order is accomplished more in 

principle than in practice. Beginning with a theoretical paper by Hori 

<1966), Lie transforms provided a new. alternative "averaging" 

procedure in which transformation equations were explicit and could be 

developed recursively to any order. Further. the algorithm was written 

completely in terms of nested Poisson brackets, explicitly providing 

invariance under canonical transformations and thereby assuring that it 

could be implemented without alteration using any convenient system of 

conJugate variables. Finally. the new theory possessed the almost 

unique distinction of being ''not known ta Poincare. a thing hard ta 

discover in perturbation thearies"2.. indeed in dynamics as a whole. 

That alone would serve ta make it exciting. 

Although it is true that the current renaissance in Lie 

transforms can be traced ta Hori. it was not until Deprit 's work. three 

or four years later, that the world took notice that something new had 

come on the scene. Working independently. Deprit <19691 wrote his own 

algorithm. and. in 1970, he and his collaborators linked it to a modern 

computer algebra program <MACSYMAl and reproduced Delaunay's monumental 

calculations. <The dramatic result of this double checking was that in 

******************** 

2. /Giacag 1 ia. p. 144. 
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twenty years of effort Delaunay had made only one mistake --- amounting 

to writing 147-90+9 = 46 --- at the 9th order, all other errors 

resulting from its propagation through other terms. Deprit's method 

was studied further by Kamel and Dewar. and recently it has been used 

in plasma physics by Dewar, Kaufmann. Littlejohn, and Cary. 

Also using Lie operators in plasma physics, Abarbanei recently 

has exhibited perturbation series free of small denominators <1980) and 

has worked on calculating diffusion in phase space for chaotic systems 

11982) His ideas are exciting and may prove useful for accelerator 

problems. but we shall not consider them here, as they have not yet 

been crystallized into an algorithm. 

In accelerator theory, Dragt and his coworkers. using a different 

approach, have been systematically exploiting Lie transforms for 

constructing transfer maps through accelerators with nonlinear 

elements. A version of PROGRAM MARYLJE, the first fruit of their labor, 

is now available for general use and is rapidly gaining acceptance by 

accelerator physicists. Although the underlying theoretical framework 

of this program is that of the celestial mechanics and plasma physics 

work. the application is very different: MARYLIE constructs a 

symplectic mapping which is to be iterated while the others generate an 

averaged hamiltonian which operates in continuous time. 

When the dynamics are integrable, Deprit's algorithm is a simple, 

systematic procedure for generating invariant KAM surfaces to any 

desired order. These surfaces provide a useful tool for solving the 
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dynamic aperture problem when the fundamentai iimitation comes ~ram 

distortion of elliptically cross-sectioned emittance tori.~ Of course, 

nonlinear systems are almost never integrable, and in lieu of major, 

unforeseen breakthroughs, fast numerical tracking algorithms (coupled 

with good interactive graphics) will be essential for detailed 

dynamical studies. Even in such cases, however. it may prove useful to 

strike a balance between ''analytic'' and ''numerical'' methods so as to 

increase the useful information obtained per computational cycle. As an 

example of this, consider numerical quadrature, where it is frequently 

good practice to smooth the integrand by a Judicious choice of 

variables before entering a numerical procedure. By tailoring the 

problem to the algorithm in this way one can sometimes achieve 

increased accuracy with fewer computational steps. 

In this memo we shall consider briefly Deprit's algorithm in the 

context of accelerator theory. The method is presented in Sec.2, and in 

Sec. 3 it is applied to three simple, familiar examples by way of 

illustration. Sec. 4 contains a few irresponsible concluding remarks. 

********~**********~ 

3./For example, ;ee F.Willeke, "Determination of the Dynamic Aperture 
of Circular Accelerators by the Perturbation Theory Method'', Proc. 
SSC Workshop, U. of Michigan, Ann Arbor, Dec. 12-17, 1983. 
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2. PERTURBATION THEORY AND THE LIE TRANSFORM. 

In this section the symbols z, and u will denote a generic 

set of 2N conJugate phase space variables. 

z, u = ( i ) or ( ~ .) or whatever . 
f- I J 

We are confronted with the problem of solving the presumably 

complicated dynamics gernerated by a Hamiltonian H<z;p; el. 

[. JI-I (z."'"·,<t>' t,) 

l<l' 'Z:..,... 
ti=(OJi\ 
' -11 0 ) 

Because we look toward applications to circular accelerators the 

independent variable t/J is taken to be cyclic; H is periodic in ¢with 

period 2-rr. This attribute is not essential. however, and in most 

applications the indepenaent variable is interpreted as <non-cyclic) 

time. The variable £ is a control parameter, the "small parameter" on 

which the perturbation series will be built. Everything must behave 

smoothly in a neighborhood of c =0; no catastrophes are allowed in the 

phase space region of interest. In particular, the limiting hamiltonian 

H = lim H 
0 

£-+ 0 

is well defined. and its orbits are presumed known. 
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Although an orbit of H may be very complicated we assume that its 

behavior can be averaged. in a sense to be made more precise. The 

expectation is that this ''averaged'' orbit will be easier to solve, or 

at least to study. Its development also is governed by a hamiltonian. 

say f'\. 

dz -d¢ IT 
aK(z;r,6 

3z. 

Further. by slicing state space at constant values of¢ we get a one

to-one correspondence between points z on the K-orbits and points z~ on 

the H-orbits. This mapping z-----:;;.. z"", which Dewar (1978i calls the 

"clothing transformation" in analogy with renormalized quantum field 

theory. is needed to solve the exact dynamics from the averaged 

dynamics. 

A Lie transform gets at the clothing transformation by defining a 

new dynamics using € as the independent variable, •llith <j, held fixed. 

For a hamilton1an system. its equation of motion is written 

du.. -de. 
JI . 

The fundamental problem is to find a generating function S such that if 

we apply the boundary condition u(£=0) = z, then u(e) = z*. 

In perturbation theory S is constructed by expanding everything 

in powers of e about £ =O. The algorithm presented below has been 

derived or explained in various ways by Deprit, Kamel. Nayfeh, Cary. 
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and others. The oevelopment in Nayfeh 1s recommended, although perhaps 

less formally elegant than the others, in that he treats Hamiltonian 

dynamics as a special case of the more general problem of solving first 

order ordinary differential equations. We will lay out the procedure 

without derivation and then describe briefly two methods for solving 

the linear partial differential equation which it spawns. 

2. 1 Recursive algorithm for hamiltonian systems. 

Begin by expanoing H, K, and s as power serie$ in €. 

~ """ 
• ..:1 

n €h E. n 

~ 
£ =[ =L' H = -H K -K s }Sn+I 1"1'~ n I .. " . n. 

,, -=- c h-:::'"" n-:=o 

The functions H., are known; it is required to find all i-;., and s,, order 

by order. The initial step is trivial. 

Oth order: K 
0 

Now. define an operator D, acting on real valued functions over 

state space. 

Df = i}fl()p + { f, HO} 



where { } is the Poisson bracket, 

{a, b} = a-a . 
oz. 

Tne first order ~~uation is then written as follows. 

1st order· DS · K 1 T 1 

10 

There are two unknown functions. K1 is determined by re~uiring a 

bounded solution for S1 , unbounded solutions doing violence to the 

convergence of a perturbative series. <This will become clearer in 

Section 3 when we consider some concrete examples. ) 

For n ~ 2, the nth order e~uations are constructed as follows. 

K1. 
J 

+ "£K 
h 

,.,_, 
= L (~_-:){ H ,,_..,, 

rrt .: I 

s } ..,, 

s } 
1 

i-1 . 
_ l: (1-l){K 

m=l m-1 i-m,j 
s } m , L ~ z. 

< la) 

( 1 b ) 

( 1 c ) 

( 1 d ) 

( 1 e ) 

For example, at the fourth order, we first find K 1~, K
1 

... , and K 31 

by evaluating the Poisson brackets of functions constructed at lower 
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orders, according to the prescription of Eq_ 's. ( ld, ie i. These are then 

'-'I'\ \..._--II 
out together to form ;:.....'i. z.._'tis built similarly. and the two are 

combined with Hn to ~rite the partial differential eq_uation. For future 

reference and in order to see the pattern that emerges~the seq_uence of 

steps through si>th order are displayed below. 

Oth order. 

1st order. 

<2nd order. 

3;-d order. 

4th order 

H, 

K,.:: {.,.;,' <::>,} 

DS k t- K 2 - H 1 +- { H I l s I ~ + K i j 

K,.L { K 
2 s,} :: 

) 

K~, .,. {k,-l<il ' s '2. } 

DS~+K</ 

+ + 2 K •"J. 

1-1 61 + {H3 , s1} + 3{H., s,,_} 

+3{H,,S3 }+ K 31 

+ 3 K-= + 3 K, 3 

( 1 Ii 

( 1 g i 

( 1 h ) 

( 1 i ) 



5th order: 

6th order: 

Kl4 = {K4,Sl} 

K23 = {K3,S2} {Kl3'Sl} 

K32 = {K2,S3} - 2{Kl2'S2} - {K22'Sl} 

K41 = {Kl,S4} - 3{Kll'S3} - 3{K2l'S2} 
- {K3l'Sl} 

os 5 + K5 =HS+ {H 4 ,s1 } + 4{H 3 ,s 2} + 6{H 2 ,s 3 } 

+ 4{Hl,S4} + K41 + 4K32 + 6K23 

12 

+ 4K14 (lj) 

Kl5 = {K5,Sl} 

K24 = {K4,S2} - {Kl4' 5 1} 

K33 = {K3,S3} - 2{Kl3'S2} {K23'Sl} 

K42 = {K2,S4} - 3{Kl2'S3} 3{K22'S2} 

{K32'Sl} 

K51 = {Kl,S5} - 4{Kll'S4} - 6{K2l'S3} 

- 4{K3l'S2} - {K4l'Sl} 

DS 6 + K6 = H
6 

+ {H 5 ,s1 } + 5{H
4

,s
2

} + 10{H
3

,s
3

} 

+ 10{H 2 ,s 4 } + 5{H
1

,s
5

} + K
51 

+ SK
42 

+ lOK 33 + lOK 24 + 5KlS (lk) 
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Storing the intermediate array K 0 requires a memory that grows 

ouadratically with the order of the calculation. It is possible to 

redesign the algorithm for linear growth by making the calculations in 

each order call upon previous solutions only, not upon intermediate 

results. To this end it is useful to introduce a frequently used 

ooerator notation. To any real valued function f over phase space we 

.-ssociate the operator L(f), itself acting on real valued functions 

over phase space, defined by 

L<i'lg = {g, f} 

These operators are derivations, 

L(flgh = (L(flgih + g(L(f)hl 

and in fact are called Lie derivatives. 4 Note in passing that 

Now introduce the operators O~ defined recursively as follows. 

"t-. /For whimsical reasons of his own, V. I. Arnold calls them fisherman's 
derivatives. Dragt's unique notation for 'L(f)' is ': f: 
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It is easy to prove by induction that 

K = 0 K m ..i-m m 11-..-,., 
I 

Making this substitution in Eq. (1cl leads to the new. desired form. For 

example. at fifth order, and with the condensed notation L.,.,: = L<S,.,I. 

'£ I< = 4 LlK4 s 
+ 6 (L2 

2 
- Ll)K3 

+ 4 (L3 - Ll(L2 - L 2) - 2L2L
1

)K
2 1 

+ 1 (L4 - Ll (L3 - Ll (L2 - L2) - 2L 2L1 ) 1 
-3L2 (L

2 
- L2) 

1 - 3L3L1)Kl 

Although conserving memory, this form of the algorithm wastes 

time by duplicating previous computations. For example, the function 

2 l<' 
(L 2-L1 ) K2 which appears in the expansion for £s was previously 

. -..-.:- I( 
computed as the second term appearing in ~~ 

Solving these equations yields the averaged hamiltonian and the 

generating function, but the dressing transformation itself must still 

be written out. That also is done systematically, order by order. 



z*= "L £" . 
- ! T'I{ z; <ti ) ,., '. 

Oth order: zQ i z; </J) = z 

ist order: z 1 iz; <t>i =I -aS 1 <z;<f> i/cz. 

For n ~ 2: 

z 11 
= r. as.., 

az. 

z . = {z.,8
1

} 
I 'J .) 

z .• = {z,,S.} 
L •) J ' 

where 

t - I 

L ( ,._,) 
- {z . • 

m-1 i .• n.-r ·.' 
r.1-=1 'J 

s } ,.., 

iS 

<2ai 

( 2b ) 

< 2c i 

( 2d ) 

(2ei 

( 2f i 

This looks very much like the algorithm for constructing the Sn's with 

the important difference that only one Sn appears in Eq. i1e) while all 

previously constructed S
11

's appear in Eq. C2fl. 

2.2 Constructing solutions. 

To find the functions 8 11 we must solve partial differential 

equations of the form 

DS ,.,< z I ¢ ( 3) 

Two methods will be considered: integration along orbits and expansion 

in eigenfunctions. 
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2.2. i Integration along oroits. 

The differential operator D is, by Hamilton's e'luations, the 

total derivative along the direction of the local H
0
-orbit. Solutions 

to the partial differential e<tuations can be obtaineo therefore by 

integrating the inhomogeneous term along these orbits. This approach is 

actually an instance of the method of characteristics. 

be the orbit that passes through z at </>= ¢i· 

z. 

We then have the following 

ASSERTION: The general solution to the partial differential e<tuation 

( 3) is 
~. 

S"\2;</~) - Jd¢/ r-hs..,~r}\:z.;-i<',¢),¢) 

+ Go VI'S f "(j 1-.t 

it 
0 

1"10{,·c:.n 

The proof of this is easy and will be omitted. There is about 

this integral a whiff, albeit subdued and disguised. of resonances and 

small denominators. For, suppose that ·'}-possesses a period in 
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commensurate with 2n Then the integrand would be a periodic function 

of ¢. Unless K.., be chosen to annihilate the integral over one period, 

the solution would grow indefinitely with increasing cj>. 
The arbitrary 'constant of H

0
-motion' is fixed by demanding that 

the solution have the appropriate 2rr periodicity in 15. In the 

particular case 

the solution is specialized to 
. ../-i 

s 
11 

\ r , ~ ·, ¢ ) - J c1,t/ .-- h~ .. ( 

., oF 
(JJ 

( 4) 

where 'func' represents that function which will makes~ periodic. 

2.2.2 Expansion in eigenfunctions. 

Like all linear operators, D possesses eigenfunctions. By using 

these as a basis, the differential equations (3) can be expanded and 

solved algebraically. We will specialize considerations of this section 

to the unperturbed hamiltonian 5" 

~******************* 

!;. IA small warning: this 
theorem, det hess H0 

violates the crucial hypothesis of the KAM 
-F 0. 
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H ( y J 
0 - ) J 

Our operator D then becomes 

D + 

acting on the space of functions periodic in rp and in all the "$.'s. 
L 

The eigenfunctions of D on this space are the complex exponentials 

where m is an integer. and p is a list of integers. CNote that D is an 

anti-Hermitian operator.) Written in component form. Eq. (3) becomes 

...., . 
' 

where we formally acknowledge that the components depend on the action 

variables. J. 

For all m ano p that satisfy the resonant condition m +-,1.p = 0 

we must choose the (m, p) component of K.., so that rhs = 0. 
";"'i 

Even in 

the absence of non-trivial resonances. we must at least choose the 

average term K according to this criterion. 
n; o £. 
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To use this representation in the solution algorithm that was 

laid out in Eci. ( 1) and Eci. (2), we must obtain the .:omponents of Poisson 

brackets. Since we will always be dealing with polynomials in the 

action variables. it is sufficient to consider brackets of the 

fol lowing form. 

-a-' b- I 

l Jlc_ j .. - c) J 
,( 

The notation L ;ignifies a sum carried out over all m', m", p ', p" such 
<m f?l 

that m'+m"=m and p '+p"=p. For one dimensional problems this expression 

simplifies to 

1- J 
-a t- b 

( 5) 
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3. EXAMPLES. 

To illustrate the Lie transform perturbation series, we shall 

look at three sample problems in one dimension: \1) zeroth harmonic 

sextupole and octupole terms (to 4th order), <2> ~uadrupole field 

errors (to 2nd order), and (3) arbitrary sextupole and octupole terms 

<to 2nd order). Our purpose here is certainly not to study these 

systems and we will by no means make a thorough JOb of them 

only to use them as settings for realizing Deprit's algorithm. 

3. 1 Zeroth harmonic sextupole and octupole terms. 

The hamiltonian for an accelerator with zeroth harmonic 

sextupoles and octupoles can be expressed in action-angle form as 

follows. 

H 

That is, 

H, 

H =-:z.. 

-v J + 

vJ 

J 3/-... :s l.h 3'( 

JJI-... ( !i ~>.., y 
I 

4 

+ 

but 
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Introducing the parameter K is a device for expressing an intrinsically 

two-parameter problem in a one-parameter formalism. For this to be 

legitimate. ~ should not be too large. 

The first order equation to be solved is 

Its solution can be written by inspection. but we will use traJectory 

integration just to illustrate the method in this simple case. First of 

all. there is no growth term --- that is. neither ·;in (nor sin 3{ has a 

non-zero average --- so we must choose K1 = 0. Then using Eq. 141 we 

write the solution for s1 as 

¢ 

s d<P/ [ # 5;,,( y t- -.v\¢/-¢)) 

+ I~ (<!..CS 3 Y - <!..~ ( Y - ,,1¢ + ,)¢
0 

) ) ] 

+ twric ( Y - vd> l J ) 

The arbitrary +unction is now chosen to cancel the unwanted terms and 

to make s 1 periodic in ~as well as ~ We are left with 
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( 
3/2. ). [ 3 I J S

1 
- j f "J) - '+ C-oS '{ + l2- ~o~ .. 3"( 

At the second order, because K1 = O, Eq. (1g) is simplified to 

(. ei . o )0 K - -r- -)/- .Cl + = 
a-¢ or z 1 

The Poisson bracket is evaluated easily. 

{ H 1 i S, } 16
3
7J J,_ (-s- + 5"c..cc;3Yc.<:sr + 3,,,,,3y--:;;n¥) 

= ( 3 J 1 / tj.,; ) ( - ~ + -:T C.-os '-1-i + C'..o!D 2 Y ) 

(6) 

K1 must be chosen to cancel the average term on the rhs of Eq. 16), 

because the presence of such a term would make S~ grow without bound. 

K-i - 2 15 3 -
- (J /v) ( J:6 - B VK 

The solution For S~ is written by inspection. 

Pushing on to third order, we First note that since K 1 = K 11 = O, 

then K11 = 0. The evaluation oF K l'2. is straightforward. 



Kl2 = i6 (J
512 

/v
2

) ( ~ - VK ) ( 3siny - sin3y ) 

The other two brackets that we need are evaluated below. 

K.. 

8 z.i 

S/"2. . 

J (s;., s-"( +- 3sin 3r - Jt../s,.,Y) 

+ (3.,JK./16 J sin 3Y 

t"J..'O \102..vK - r3.:.;-) 'l;., y J 

Putting these into Eq. (ihl and solving yields the result. 

s .3 - { J S/2-Iv 3 ) [ 
3 '.2..0 

\ 2.? - It./ -,) K ) us c:;-y 

+ I (S--6vK) us. 3·< . ; 6 

I (31S - 286 yK_) (....oS ( ] 
61../ 
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Note that there are no average terms to be cancelled, and thus K'.3 = 0. 

To see the next contribution to K we must go to fourth order. 

The terms K •:!> and K 31 vanish. The evaluation of K '2.:Z. is tedious 

but straightforward. We will only give the result here. 
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K22 (J3/v3) [ 15 3 = (-256 + 128 VK ) cos6y 

+ ( 45 3 3 
(VK) 

2 
128 + 32 

V K - TI ) cos4y 

+ ( 225 75 3 2 
) cos2y -256 - 128 VK + 8 ( \) K) 

+ ( 75 15 l] 32 - I6 VK 

The two nonvanishing Poisson brackets which contribute to rourth order 

are as fol lows. 

+ 

I 

6'f 

3 

( 3L/ zh<. - L/S) ] 

( 38 li I( - 4?) c.os 6 Y 

6., c· ) 128 6 JI I'( - '7 ft.o.S 'f y 

5'~-:L ( '726 °V K. - 7'-f 3) t..-O'S "1. Y 

,! ( 6'2.vK -6?)] 
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Now choose K 'f to cancei the avE>rage part of' Eq_. (iii. 

- (J3/ 3)12115 - 675 + 51 ( )2] 
V 128 32 VK 32 VK 

it is left to the reader to finish the calculation for S~ from the 

expressions already given. 

Putting the pieces together. then, the averaged Hamiltonian to 

fourth order can be written: 

KC J) 

+ 0 (€6) J 
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3. 2 Quadrupole field errors. 

The application of Deprit's algorithm to this linear problem is 

going to be cumbersome and obscure in comparison to the elegant 

creatment of Courant and Snyder, which takes no more than a few lines. 

This is not surprising: linear problems are solved best by linear 

methods. Again. our purpose is only to observe the working of an 

unfamiliar algorithm within a familiar setting. 

Because we'll want to compare the results obtained in this 

section to known. correct answers, let us start a little further back 

cnan in the previous section in order to establish the notation. Assume 

a hamiltonian of the form 

a. J (S) X 
~ 

,.., 
The functions Gisi and glsl are equi-periodic. We now 111 make a s . 1c1s 
Floquet transformation using the betatron functions ~and Zf = 11¢ = 'f 
associated with HD,and 12) change the independent variable from s to 

rp The transformation equations are given by 

'/"L x - [ 2. J ~ \.¢ ) ] s;., '( 

p - [2J/f3('P)] 11~( 2~ ~,1;,f\(¢) S•."Y + c.osY) 
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and the new form of the hamiltonian 1s 

. "" 
where gl¢1s)l = gls1. Because we are dealing with a purely linear 

system we expect that 

( v ;- ~,;) J 

where AYl~)= 01 C:k I. We shall evaluate .1-i-l through second order. 

To ease the notation, def'ine the f'unction 

The parametric dependence of' F on A- will i'requently be suppressed. 'r< 

Reexpress the hamiltonian in terms of' this function 

WO ·- yJ 

1-11 - j i.f ( I -- e..os ·2y) 
d)l'> 

- Jh/Y,.PJ 
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In writing the first order equations, it is convenient to define 

so that Eq. 11fl becomes 

( 0~ + "2-' 8°y ) '3., = j¢ ( l - e-os L.. Y) - k 

We will break this up into two pieces. 

independent of Y 

= ·.i 
s ' 

+ b 
SI 

The solution for st is written easily by inspection. 

J s., - r=(¢ <i>o) 

i=- (</> ) <:P. ) 
r 

d where s 
1 

The constant k 
1 

must be chosen so that FY- is periodic. and thus 

bounded. That is. we must have Fr<¢.,+ 2·.-; cf.>= Q, and therefore 

·2_-n: k 1 F (Po -r 'lTC ~ cfoo J ( 7a l 

- ~ <} dcp J( ¢ ~ ~ "1. (<j> ) 

is 

This gives us the first order tune shift arising from perturbations in 

the quadrupole fields. 

t:k 
I ( 7b i 
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2¢ 

b The differential equation for s 

b 
'SI 

could be solved by integrating along a trajectory and adding an 
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appropriate null space function to make the solution periodic. as was 

done in the last section. We shall short circuit this process and just 

write the final. easily verified answer. 

¢ + L.rr 

j d F( J,' ) ~ /w 2 [ y + ;..I ( c:j./ - ¢ ) - Tl v] 
</> 

The function is represented as a Lebesque-Stieltjes integral with 

oseudo-length dF<¢l. Periodicity is confirmed by using the boundary 

condition dFI </> + 2-icl = dF( 4' ). 
Because H ,_ = O. the sec and order Eq. (lg) becomes 

DS~:;:: {H, -t- K, ) ~,} l-<.
1 

As before. we factor out the J dependence explicitly and define 

) 

Because k
1 

is a constant. the second order differential equation gets 

rewritten as 
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Consider solving this by the method of integration along orbits. 

The number k2 must be chosen to eliminate unbounded growth of s 1 . The 

trouolesome term comes from the combination of circular functions in 

both h 1 and s 1 • 

- 1 -

JF /d.i 

- h 21-s. 
1(7y 

~+1~ I 

JdF(4:»')[2s.'ri 2Y s:n1(Y+-v'(~-<b)-irv) 

<P +- 1.C..o'l.'2"¥ c.,o~,, 1-('( +iJ(¢
1-cb}- c-?1) J 

4, + '.2.1T J cJ !=( ¢· ; ) C-o<;; [ '}_ J-) ( tfo I - <P - 7l'. ) J 
(~ 

a 
Applying Eq. (4) produces the growth term~s'.:2.. 

II 

J, <f> + 1.!f 

5-;.,-~-,,-µ sdF(¢")fdF(4/)c.,a 0 [2v~</> 1-<P~~)J- k-i(4-~ .. ) 
{Jo ¢" 

That this could grow indefinitely is demonstrated easily by noting that 

the integrand is invariant under the diagonal translation q,,_,..~, + 271I > 

a ~ a 1 p"-+'f;" + 271:. Because of this, s
2

CY.cp6 +2rrnl = n-s-2.CY,cµe +2rrl. To 

eliminate the growth we must make s~ periodic by choosing 



,, 
d:> -1- 2r.: 

1 1, F(<j>") f.c#F(<P/) 
s ; .,.., '2..7r,; r J 

q:/" 

We note in passing that 
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,-1/ , H ) 
C<:-S. 2 -z) ( 'f, - ¢ - TC <Bai 

( Bb l 

For completeness. we shall write the the full differential 

equation for s~. 

<I>+ 2n 

IDs,. - - dr=/olct> f di= (4'') 
.5111 '2.irV. 

<:/> 

The solution of this is 

s = 2. S~ +- 'S~ + s~ +- +1.1nc (Y- -vc:f) 
</> t;>"' + '2-~ 

- sih~'TMI J (dl=(c:f>") -t- k 1cijJ 11 )j qF(_</>/) C...C'.3 L[Yt--i.1(<:f/-¢-n_)J 

. """ ¢" 
Sc. .,_ 

4> 
- 2 J d.Ff¢") Fr ( <$") -s•n '1. ( Y -t-.{f/( - 4' )) 

4'o 
where func is chosen to make s'l- periodic. 
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We now want to compare our results to those of Courant and Snyder 

IEq.4.371. Written in our notation. their expression for the perturbed 

tune is given below. 

CC->J-' - c.c-:,)-<c - -E.")l.,2."1fV F<._i.n·)D) 
. :2.n: 2-rr 

+ £
2 

• 2.J cJF(q,")J d.F\1'')~1.,-v(<f/-<f_, 11 ).,,y,,;('Lrr-(<f/-J,11 )) 
0 ct>// 

+- 0 (. E..3) 

where 2~~ = fo' and To make the 

comparison, We must expand COsr - CDS f-';, to second order. 

- 1.7' 
'2.. 

2 n s ; .,., '.L "It v . /'.l 'l/ ... ) .- .~ c. os '2.nv .( 2-7!'. Av V)) 

-+- 0 (f.~) 

We can already identify the first order term using Eq. 171. The second 

is given by the following. 

- :2n-:.."w2:n'l;. az.l'"' ~ c.-0s 2-n:•J · ( '2.n lrz..i''
1

)
2 

19> 

2"1t 1.:11 

_ E. ... J cJi:=l¢ 1') j olF(¢'') [ eos 2JJ (ti' - ¢ 11 
- ir) - c.cs. 1n-;J J 

0 
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where use has been made of the sine product formula. It is easily seen 

that the terms involving cos 2niJ on both sides of this eci.uation are 

identical. 

- - ~ c.--c <> 2-n -V [ C:. F l 2.n ) O ) J "l.. 
- - .~ c:..c~, '2T<-V ( '2tr. 4-v(•))-z... 

incorporating this into Eci.. (9) yields the result 

Z:tt 

~ di=(¢>'') c:J f=( ¢') U,<.;. 1.:J) ( ¢:/- ¢'1 - -it ) ( 10) 

d;, ¢_,'/ 

This is eci.uivalent to our previous result provided that the 

double integral in Eci.. (10) is nalf that in Eci.. (8a) That demonstration 

is easy. First note that 

J ¢'' + 21T - J "2.n 

+ 

Then. all that is needed is the following line of development. 
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·271 cj, ,,,.... + 2.7t. 

Jd J , . dF(c;") dF(cP 1
) c.L>S'hl (¢

1
-¢//-n:) 

cf; =. o ¢ -= 2n 
2.11 ¢,, 

= J<t,1'-=0[¢1=· o1r-(ct 11 ) oir-(q,') U>'S2..,;(p 1~i/"+-TT-} 
·/ 

-- J .21{ r <P J .,, d F ( ¢> ,,.) Jr= (<t>") <!.-<)";; 2.z> (¢.'/' _ q, '+ n_) 
..6

1
::0 ct> ·=o 

= I:z.n J
271 

dr=(¢'1')dF{,PI') C-.os2'l.I (¢"-¢ 1"-~ ") 
¢'/ =- l> </. ~~ .p // 
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3. 3 Se•tupoles and octupoles with arbitrary harmonics. 

We consider now a Hamiltonian with arbitrary sextupole and 

octupole terms. 

1-+ () - vJ 
3h- 3/z. 

H-, = Pr ( ¢) J Stn "3 )"' -= AC<t\J (es;,..y-*s1.,3y) 

- .3/'Z h 
J 1 lY1<P) 

H - 13(<P) J 2 
s,"n 'fy 

2. 

2 . 3 I c.os 2.'( +_L c_.o '2. L.f y ) = 13(¢1 J ( 8 - -"2. B 

- J 1 h
2

(Y
1
¢.) 

The transform equations will be solved by expansion in eigenfunctions -

-- that is. Fourier decomposition. 

A(<f>) -

8(¢) -

h "-· _..,.., 
) 

z Z,-.,¢ 
an.. e. 

l'l'1 

L. .bl}, ~""' ¢ .e.. 
l')1 

l 
·a -_,..,.., 

b = 
) - .,.., 

e. 
: ( r>->cP +pr-) 

·a""* ,.,.., 

* b...., 

' 
k_ - I, 2 
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The only nonvanish ing components of h 
1 

and h ,_are 

k,.111±1 - ± 3Cl,..,,/e i. h 1 · m L'> - '=F a,.,., /Bi 
) 

I ) ) I 

"'91 · m Cl - 3b;.., /S h '2. • ,,.., ·t:. 2- - - brn /4 ( 11) 
' 1 

.) I 

h2. m .t:.'t - b.,.., /16 
) ) 

The first order equation is 

We must choose K1 ) 00 := H1 ;oc = 0. We shall also assume that no 

resonance terms are important, so that m+Vp vanishes only for m=p=O. 

Cherefore. K 1 i...,, p = 0 for all m. p, or more succintly 

K 1 0 

if we define s ' •; ... p then the nonvanishing components are 

3 Ci..,., 
.S,.""±1 "=F s rY1 ± ,_) ) ) 

a..., 
s,.""' ·.t.3 + 8 m ±3-V I > 
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Going to second order, we must consider the equation 

The Poisson bracket is evaluated using Eq. 151. 

{ ~. ) s'} j !Wl' = { J3/l-~1 J3,h s } 
) j j .,.,.,p 

3 J 2 2.. c f ,._ r i/ ) h 1 , ..., , r. 'S ,,,. Jr - l 2 I j ,.,.., p 
<1>1,p) 

/ J/ 

h1;rl?"f" 
~ J~ L p - p h 1 ) ,,., 'p , - 1 "'1 I( + -iJ p ;,, 

(rn,p) 

Again, projecting out the average term gives us K~ 

P I~ J 32: m+-vp /h1."'f 
~,r ' 

Note that we have used h =h~, . ...,p' i '.)-M -p A little further evaluation, 

using Eq's. 111) leads to 

2. 

k_1;oc 
?, b0 

J 5" J ·-a"' I 
s J lR :I) 

00 
1 +· ... 1,~)t-a..,,/ 

'2. 

+- 2 '7-V ~ ~ --
Y"I "'"- v" 16 ni - ,; 

m=1 
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l~hen b 0 =O this expression agrees with Eq_. (5. 6) of Cole (1969). One 

special case is worth mentioning. Suppose that for some :a:, all 

:a,,..l = lal. Then the sum can be done using 

The result is 

kl.'CG -
' 

1 

2"'Plal.,. (Jf 
-::;- e-0 t n -v + 

I 6 ~ 
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4. REMARKS. 

Chief among the questions associated with any perturbation theor~ 

is that of convergence. As the Lie series is calculated to higher order 

in E., larger harmonics in "{ are pulled into the generating function 

and, as a consequence. into the clothing transformation. If the series 

converges. then the magnitudes of these terms should decrease rapidly 

with increasing order so that. for example. a Fourier spectrum of the 

orbit would show only a few dominant frequencies. In general. however. 

the interval of convergence in E or J will be finite. Near its 

boundary all the higher order terms become important and the spectrum 

would be broadband. This is precisely the behavior one has come to 

expect in approaching chaotic regions of phase space. It is tempting tc 

speculate that divergence of the Lie series and passage through the 

last KAM boundary coincide. Unfortunately, the situation is more 

complicated. Dewar 11978) has constructed examples in which the Lie 

transform is well defined and leads to integrable orbits past the 

convergence interval of its power series expansion. 

A second issue, not unrelated to the first. is the ambiguity 

inherent to setting up a problem with several important nonlinear 

terms. within a single parameter perturbation theory. The naive. 

"natural'' ordering blindly associates higher powers of J with higher 

powers of e, usually in the combination E.J •/-& This is not 

necessarily the best for all problems. There may be instances in which 
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it would lead to a divergent Lie series whereas restructuring the 

problem --- changing the association of multipoles with powers of £ 

perhaps even combining several multipoles into a single power of E 

would produce a convergent series. One ultimately would like to get 

around the problem by generalizing to a multi-parameter Lie 

trans f'ormat ion. 

At any rate. setting up problems correctly and interpreting the 

results will. as always. require Judgment; these tasks cannot be 

absorbed into the formalism. The perturbation series associated with 

most nonlinear problems in fact almost always diverges, and yet their 

f'inite partial sums generally provide usef'ul (in the eyes of' the 

beholder) inf'ormation. (Perhaps we should think of' the Lie series as 

"asymptotic" in some sense?) 

The power of the Deprit-Hori-Kamel algorithm lies in its ability 

to be automated easily. The examples done f'or this memo do not 

suf'f'iciently demonstrate its usef'ulness. We plan to exercise the methoc 

more vigorously and to write programs that apply it to more realistic 

problems in four dimensional phase space. 
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