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Abstract

We present the Deprit-MHori-Kamel recursive algo-
rithm for carrying owt canonical transformations
that eliminate non-secular terms of a Hamiltonian.
The method is illustrated in the contex®t of accel-

erataor theory by applicatian to three sample
problems.



How Alexander wept when he had no more
worlds to conquer, =everybody knows —-—— or
has some rteason to know by this time, the
matter having been rather frequently
mentioned.

== Charles Dickens:
Bleak House (1B53)

i. INTRODUCTION.

Like many other good ideas, the one which accelerator physicists
call "Moser’s transFormatiun"l was in fact developed and studied in

some detail by Poincare. Accaording to Jupp {(p.31I3},

"In his Methodes Nouvelles de la Mechanique Celeste, Poincare (1893)
describes techniques to ‘eliminate’ successively non-—resonant periodic
terms from the Hamiltonian of a dynamical system. Each elimination is
achieved by means nof a canonical transformation of variables, which is
constructed using & generating function depending upon the aold angle
variables and the new momentum variables. After all the periodic ferms
have been removed in this way, the final Hamiltonian is purely
secular. ™

The method was modified by von Zeipel in 1916 and is called., by the
rest of the world. %the "Poincare-von Zeipel procedure". Even so, it had
antecedents. Giacaglia (pp. 55,47} writes, somewhat ambiguously,

“It is a recognized fact, although several times not mentioned. that
the averaging methods were introduced by Lindstedt (188B2), though it is
not clear whether his ideas stemmed from the efforts of Evler (1730) in
the solution of the problem of motion of the moon. ...In his celebrated
‘Methodes Nouvelles’, vol.2, [Poincarel] developed a canonical analog of
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1. /But net the superconvergent procedure
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Linstedt‘s method which, even after a superficial look:. proves to be a
very elaborate generalization. However: 1%t is cbviogus that the main
idea of Poincare’s development comes from Delaunay and some remarks of
Tisserand on Delauvnay’‘s Lunar Theory (Theorie du Mouvement de la Lune,
18671 ¢

This work of Delaunay’s culminated an effort that sppears superhuman by

modern standards. Deprit, Henrard, and Rom {(p. 1569} state that

"Delaunay worked at his theory without any assistance, by hand. for
spopme 20 years continuvously (sicl}; his literal calculations cover two
volumes in quarto of 400 pages each; he alone proofread them. "

Although he is not frequently mentioned gutside celestial mechanics.
Delavnay ‘s influence on the physics of his age was considerable. Among
his ather accomplishments, he seems to have been the one who invented

attion-angle variables. According to Lanczos (pp. 254, 245),

“Delaunay invented a beautiful method #for treating separable systems
which satisfy the additional condition that the stream lines of the
sgparated phase planes (g .pk) are closed lines. He considers a
cancnical transformation whose position coordinates are the "action
variables” J, defined by the areas enclosed by the stream lines. The J_
are constants for the actual motion while the negatives of the
conjugate momenta. the "angle variables” W, change linearly with fthe
time t. The partisl derivatives of E with respect to the J; give n new

constants which are the #requencies 2/, of the motion. ... At first
sight Delaunay ‘s theory seems rather technical and involved. Yet it was
this procedure ... which opened the eyes of physicists to the power of

the Hamiltonian methods. ”

Somewhere in history this associaftion was reversed. We now think of the
action variable as the "momentum", although a vestige of the original
ordering may be contained in the terminology "action—angle", Tather
than "angle-action®.

It has been remarked by many authors that the Poincare-vaon Zeipel

procedure suffers from a seriogus disadvantage. Because the generating



function is written in 3 mixed system of variables, the transformation
from the new. "averaged"® variables to the old: "exact” variables is
only defined impiicitly. Practically., then, carrying out the
transformation to better than lowest order is accomplished more in
principle than in practice. Beginning with a theoretical paper by Hori
(124646), lLie transforms provided a new., alternative "averaging"
procedure in which transformation equations were explicit and could be
develaped recursively to any order. Further, the algorithm was written
campletely in fterms of nested Poisson brackets, explicitly providing
invariance under canonical transformations and thereby assuring that it
could be implemented without alteration using any convenient system of
conjugate variables. Finally. the new theory possessed the almost
unique distinction of being "not known to Poincare, a thing hard to
discover in perturbation theories“a'a indeed in dynamics as a whole.
That alone would serve %o make it exciting.

Although it 1s true that the current renaissance in Lie
transforms can be %traced to Hori, it was not until Deprit‘s work. thres
or four years later, that the world took notice that something new had
come on the scene. Working independently, Deprit (1946%) wrote his oun
algorithm. and, in 1970, he and his collaborators linked it te a modern
computer algebra program (MACBYMA) and reproduced Delaunay ‘s monumental

calculations. (The dramatic result of this double checking was that in
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2. /Giacaglia, p. 144,



twenty years of effort Delaunay had made only one mistake ——— amounting
to writing 147-%0+%7 = 46 -~— at the Pth order:. all other errors
resulting from its propagation through other terms. ) Deprit‘s method
was studied further by Kamel and Dewar, and recently it has been used
in plasma physicts by Dewar., WKaufmann, Littlejohn, and Cary.

Also using Lie operators in plasma physics, Abarbanel recently
has exhibited perturbatioan seriegs free of small denominators (i980) and
has worked on calculating diffusion in phase space for chaotic systems
(1982) His ideas are exciting and may prove useful for accelerator
problems: but we shall not consider them here, as they have not yet
been crystallized ints an algorithm.

In accelerator theory, Dragt and his coworkers, using a different
approach, have been systematically exploiting Lie transforms #for
constructing transfer maps through accelerators with nonlinear
elements. A version of PROGRAM MARYLIE. the first fruit of their labor.
is now available for gensral use and is rapidly gaining acceptance by
accelerator physicists. Although the underlying theoretical framework
of this program is that of the celestial mechanics and plasma physics
work, the application iz very different: MARYLIE constructs a
symplectic mapping which is to be iterated while the others generate an
averaged hamiltonian which operates in continuous time.

When the dynamics are integrable, Deprit’s aligorithm is a simple,
systematic proceduyre for generating invariant KAM surfaces to any

desired order. These surfaces provide & useful tool for solving the



dynamic aperture problem when the fundamental limitation comes from
distartion of elliptically cross—-secticned emittance tori.9 Of course,
nonlinear systems are almost never integrable, anmd in lieu of major,
unfaoreseen breakthroughs. fast numerical tracking algorithms (coupled
with good interactive graphics) will be essential for detairled
dynamical studies. Even in such cases:, however, it may prove useful to
strike a balance between "analytic" and "numerical" methods so as to
increase the useful information obtained per computaticonal cycle. As an
example of this, consider numerical gquadrature, where it Is frequently
good practice to smooth the integrand by & judicious choice of
variables before enfering a numerical procedure. By tailoring the
problem to the algerithm in this way one can sometimes achieve
increased accuracy with fewer computational steps.

In this memo we shall consider briefly Deprit‘s algorithm in the
context of accelerator theory. The methoad is presented in Sec. 2, and in
Sec. 2 it is applied to three simple, familiar examples by way of

illustration. Sec. 4 contains a few irresponsible concluding remarks.

Wb 4 S0 S 3 S R

3. /For zxample, see F.Willeke, "Determination of the Dynamic Aperture
of Circular Accelerators by the Perturbation Thecry Methad®, Proc.
S8C Workshop, U. of Michigan. Ann Arbor, Dec. 12-17,1%83.



2. PERTURBATION YHEGRY aAND THE LIE TRANSFORM.

In this section the sumbeols 1z, z* and u will denote a generic

set of 2N conjugate phase space variables.

~

2, %, u = ('E) or ( ;) or whatever

!

We are confronted with the problem of solving the presumably

complicated dynamics generated by a Hamilteonian H(z:gSi £ 1.
d=r R =T I = EJ_L)
dg Dz > -t c

Because we look toward applications to circular accelerators the
independent variable q_’) is taken to bhe cyclic; H is periadic in ¢) with
peripd Z7v. This attribute is not essentisal. however, and in most
applications the independent wvariable is interpreted as {(non—cyclic)
time. The variable £ is a contral parameter, the “"small parameter” on
which the perturhation series will be built. Everything must behave
smoothly in & neighborhcod of £ =0; no catastrophes are allowed in %the

phase space region of interest. In particular, the limiting hamiltonian

H, = lim H
° ESQ

ig well defined, and ifts orbits are presumed known.



although an orbit of H may be very complicated we assume that ifs
behavier can be averaged, in a sense to be made more precise. The
expectation is that this "averaged" orbit will be easier to solve, or
at least tn study. Its development alsoc is governed by a hamiltonian,
say K.
dz _ . 2K (=5e)
2z

Q.

Further, by slicing state space at constant values of ¢ we get a one-
to—one correspondence between points z on the K-orbits and points * on
the H-orbits. This mapping z ~> z™, which Dewar (1978} calls the
"clothing transformation" in analogy with renormalized quantum field
theory., is needed to solve the exact dynmamics from the averaged
dynamics.

A Lie transform gets at the clothing transformation by defining a
new dynamics using £ as the independent variable, with ¢ held +ixed.

For a hamiltonian system., 1ts equation of motion is writfen

du

JE

——
—

S (w b, €)
H'Q'u.

The fundamental problem is to find a generating function S suech that if
we apply the boundary condition uw(E =0} = z, then ul &) = %,

In perturbation theory S is caonstructed by expanding everything
in powers of £ about £ =0. The algorithm presented below has been

derived or explained in various ways by Deprit, Kamel, Nayfeh, Cary,



and others. The development in Nayfeh is Tecommended, although perhaps
less formally elegant %than the others: in that he freats HMamiltonian
dynamics as a special case of the more general problem of solving +irst
order ordinary differential squations. We will lay oqut the procedure
without derivation and fthen describe briefly two methods for solving

the linear partial differential equation which it spawns.

2.1 Recursive algorithm for hamiltomian systems.

Begin by expanding H. K, and § as power series in E.

. o
[o =) - i n n
H = ‘;T n' = '—K"! S = """'bn+‘
. n n,
n=¢ n=¢ n=o

The functions H, are known: it is required to find all K _ and & order

by order. The initial step is trivial.
Oth order: W = H

o 0

Now, define an ogperator D, acting on real valued functions over

state space.

Df = DF/DH + < #, H
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where < , * is the Foisson bracket:
o 23 T 2b
{a, b}y = —— v —
oz a3z

Tne first order =2quation i1s then written as follows.
1st grder: Db1 + Ky = H1 .

There are two unknown functions. K1 15 determined by requitTing a
bounded solution for 5,, unbounded solutions doing violence to {he
canvergence of a perturbative series. {(This will become clearer in
Section 3 when we consider some concrete examples. !

Far n » 2, the nth order equations are constructed as follows.

" K

DS, + K, = Hp + > + > (1a)
H n =t . )
i =Z'(m_i)4_ Ho o0 5.0 (1b)

>
\ZH=Z(;__:)“MM,,~. (te?

m=,
K‘J ={MJ-,S,} (1d)
i-1..
_ _ 1—1) .
Ki3 = {Kj'si} mil(m—l {Ki-m,j ' Spt 3 + 2 Z {le)

For example, at the fourth order: we first #ind K‘3, K, and K,

12

by evaluating the Poisson brackets of functions constructed at lower
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oerders; according to the preseription of Eq’'s. (id, iei. These are then
put together to rorm SZ::. SE::;is built similarly, =nd the two are

combined with H, to write the partial differential equation. For future
reference and in order to see The pattern that emerges,the sequence of

steps through sixth crder are displayed below.

Oth order. KO = HD

ist arder. DS, r K, = H, (1f)
#Znd order. K, = {K, y 3, _}
DS, + W, = H_+{H,,5,}+ K, (1g)

3rvd order. K,.L - {Kz ] S:}
K, = {K'" K s Sz}

DS, + Ky=Hy +{H,,%} +2{H,,S,}

+ Km + ZK!'L (1h)

1]

ath order K {KB , 3175
Kn = {k,,8,} - {K,,,s,}
K,, = {Ky,53} - 2{K;;,8,} - {K, ,5,)
DS, +K, = H, +{H;, S,} + 344, 5.}
+ 30,8, + K, (i)

+ 3K, + 3K,



5th order:

6th order:

14
23
32

41

DS

15
24

~

33

=

42

51

DS

12

{Kl,S4} - 3{Kll,S3} - 3{K21,52}
- {5y 8,7
Ko = He + {H4 sl} + 4{H3 52} + 6{H2,s3}
+ 4{H1,S4} + Ky ot 4K32 + 6K23
+ 4Kl4 (13)
{KS,Sl}
{K4,82} - {K14,Sl}
{K2r84} - 3{K12153} - 3{K22r52}
{K32,sl}
{Kl,SS} - 4{Kll,84} - 6{K21,s }
- 4{K3l,52} - {K =N }

K_=H_ + {HS,Sl} + 5{H4,82} + 10{H3,s3}
+ 10{H2,S4} + 5{H1,55} + K + 5K

+ lOK33 + lOK24 + 5K

51 42

15 (1k)



Storing the intermediate array H;j requires a memory that grows
guadratically with the order cof the calculation. IL is possible to
redesign the algorithm #or linear growth by making the calculations in
each order call vpon previous solytions only, not upon intermediate
results. To this end it 15 useful to introduce a frequently used
operator notation. To any real valued functionm £ over phase space we
associate the gperator L{#f)., itself acting on real valued functions

over phase space, defined by

These operators are derivations,
L{(f)gh = (L{figih + g{L{£f}h)

and in fact are called Lie derivatives.? HNote in passing that

D =3/2¢ + L(HG).
Now introduce the operators O, defined recursively as follows.

0, = L(5,)
na-l‘ 1
= ~ m-

Op = L(Sp) Z \ k-1 )L(Sk)om-—k

T 3 3 3 5 3 3 9b 3 3 5 3 0 ST

M /For whimsical teasons of his own, Y. I. Arnold calls them fisherman’s
derivatives. Dragf’‘s unique notation for 'L{f)’ is ‘. ¢ '



It is easy to prove by induction that

Making this substitution in Eq. {(ic) leads to the new, desired form. For

example, at fifth order, and with the comdensed notation L, := LS.},

\2 - = 4 L1K4
2
+ -
6 (L2 Ll)K3

2 2QL,L_)K

3 1) A, 1’52
2

+ 1 (L, - - -
(Ly - Ly(L, Ly{L, = L]) - 2L, L

+ - -
4 (L Ll(L2 L

2 !
"3L, (L, -~ L}) - 3L,L

1%y
Although conserving memory, this form of the algorithm wastes
time by duplicating previous computations. For example, the function
2 . . . ¥
(L2—L1)K2 which appears in the expansion forSEZsAdas previously

K
computed as the second term appearing in iq .

Solving these equations yields the averaged hamiltonian and the
generating function, but the dressing transformation itself must still

be written out. That also is done systematically, order by order.



A2 e”
LK - E oy (b i Ta
I = Y] -n“\x.l ) (£a)
=g
Oth order: zo(:;¢:) = ¥ (2b)
ist order: 1,(z; @) = 1-38,(z;i¢ )/ Bz (2c}
For n 2 2:
n-i
aSq -4
2, =1 5= +Z(m)zm‘n—m' where (2d}
m=,
2, . = 4Hz.,.9,} (2e}
JJ o
1ot
5 A A o - N
1,5 = s 2T Kt s 8,0 (2¢)
ey

This looks very much like the algorithm for constructing the 8_,'s with
the important difference that only one S appears in Eq. {(1e) while all
previously constructed § . 's appear in Eq. (2f).

2.2 Constructing sclutiaons.

To find the functions 5, we must scolve partial differential

equations of the form

DS {1, b7 = Ths (z,¢h). (3)

Two methods will be considered: integration along orbits and expansion

in eigenfunctions.



2.2.1 Integration along ordits.

The differential operator D is, by Hamilton‘s egquaticns. the
tetal derivative along the direction of# the local H°~orbit. Solutions
to the partial differential equations can be obtained therefore by
integrating the inhomogeneous term along these orbits. This approach is

actually an instance of the method of characteristics

Let 3_(:;913, qf)L,3 be the orbit that passes through z at ¢>= 951

%gf bz)‘éJ‘ﬁi) ::,H .‘ittr(MB‘#)

"= 3'(2 2y ¢¢)
3 (=iPiy¢) = =z

We then have the following

ASSERTION: The general solution to the partial differential equation
(3} 1is

£
Spalzip) = jdqb, ?‘L\Sﬂ(f}(z;@/)(}é):s'b,)

I ﬁ.h\, constant

oF it Mot on

The proof of this is easy and will be omitted. There is about

this integral a whiff, albeit subdued and disguised. of resonances and

gmall demnominators. For, suppose that n},pussesses a periad in 95
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commensurate with Z+w. Then the integrand would be a perigdic function
af ¢m. Jnliess K, be chosen to annihilate the integral over one period.
the solution would grow indefinitely with increasing gﬂ

The arbitrary ‘constant of Ho—motion’ is fixed by demanding that
the solutien have the appropriate 27vC periodicity in ¢. in the
particular case
oF

Ho (Y s d h) = FUd) 3

£
o
I
T

the solution is specialized to
S QE»QB?’D): jd@’rhgn(‘f-}— ‘:3(?!)' (*i-‘f’),é)cﬁ )

h - (4)

= y-uwc(_f'— @(QBC,& , )

where ‘func’ represents that function which will make 5 periodic.

2.2.2 Expansion in eslgenfunctions

Like all linear operators: D possesses eigenfuncftions. By using
these as a basis, the differential equations (3) can be expanded and
solved algebraically. We will specialize considerations of this section
to the unperturbed hamilftonian

-2k 38 3 3 3 30 35 36 S 9 3 e a3t

5./A small warning: this violates the crucial hypothesis of the KAM
theorem, det hess Ho # 0.
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Our operator D then becomes

0 3
D= — + 72—
ole - T
acting on the space of functions periodic in @ and in all the 5}’5

The eigenfunctions of D on fthis space are the complex exponentials
'D»ex}a {(md + Ei) = -c',(m +-2-J'{2)'U(F‘: (m¢+ ,)Z_f)

where m is an integer, and p is a list of integers. (Note that D is an

anti—-Hermitian cperator. ) Written in component form, Egq. (3) becomes

t{w + -_:,_]E) Shmfkg\ = rhsnrmg(g)

where we formally acknowledge that the components depend on the action

variables, J.

For all m and p that satisfy the resonant condition m + %.p = 0

we must choose the (m,p) component af K _ so that PhSHWh= 0. Even in
the absence of non—-trivial resonances, we must at least choose the

average term Kn . according fto this criterion.
;60
>
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To use this representation in the solution algorithm that was

laid out in Eq. (1! and Eq. (2}, we must obtain the components of Poisson

brackets. Since uwe will always be dealing with polynomials in the

action variables:, it is sufficient to consider brackets of the

following form.

Coa b
{Jh Hl’ ;‘[)) )JQ ‘}k}: ,ﬂt‘)}

;B

asi b
= ¢ ch Jx (Engk Pe — a.J’i Pu )4"""?_' jv\ﬂ”;”

The notation = 3ignifies a sum carried out over all m‘.m“. p’,p" such

{m g7
that m’'+m"=m and p '+p"=p. For one dimensional problems this expression

simplifies %o

+bo-i T ; it y
iJa Z \bF - 3p )Qmﬁ j"’"{i;’ (5
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3. EXAMPLES.

Te illustrate fThe Lie transform perturbation series, we shall
ipok at three sample problems in one dimension: (1) zeroth harmonic
sextupole and cctupole terms (te 4th order}), (2} quadrupole field
errors (to Znd order), and (3) arbitrary sextupole and octupole terms
{(to 2nd order). Qur purpose here is certainly not to study these
systems —--- and we will by no means make a thorough Jjob of them ——- but

only to use them as settings for vealizing Deprit’s algorithm.
3.1 Zeroth harmonic sextupoles and octupole terms.

The hamiltonian for z2n accelerator with zeroth harmenic

sextupoles and octupoles can be expressed in action-angle form as

follows.

H=2J + £J 5wy &

H, = 2J
H, = Js/zsl-hz‘(

3/ 2 . } .
J * (Z}'t’-'n\( - ? S!VIBY}

i

>
n

2- K—NJL SfHLJY

3
l{Jz("g-——;'_aoszY +—é-ws‘4*()



Introducing the parameter K is a device for expressing an inftrinsically
two—-parameter problem in a3 one-parameter farmalism. For this to be
legitimate, K should not be too large.

The first order squation to be solved is

3/2
(& +vs)S i+ K, = J (

3 _- ' .

—9nyY = 5 sinZF

T oY anE:“()

Its solution can be written by inspectien, but we will use trajectory
integration just to illustrate the method in this simple case. First of
all, there is no growth term ~--- that is, neither zinY nor sin 3Y has a
non-zero average ——— so we must choose K, = 0. Then using Eq. (4) we

write the solution for 51 as

P
Sy = [de [2sinlv 2T d) - £ sin 30 + ¥ (¢~ ¢3)T
®.

J 3/2

+ ¥-unc (r—=2¢ J)
3/a

— (J /,;)[—-L“?—(c,os\’ - cos(*(ﬂ-u'yﬂ +7)96o))

+T!{ (cos 3y — cos (Y —v¢ +2¢.3) ]
-+ -s:unc (y— 2¢ ) J )

The arbitrary function is now chosen to cancel the unwanted terms and

to make S’ periodic in ¢ as well as Y. We are left with



3]
n

322, - 3 , ! .
S, = (J7/2)[-5 cosy + 5 cos 3Y ]
At the second order. bhecause Ky, = 0, Eq. (1g) 1is simplified to

. b ) '
(2 +752)S, +K, = H,+ {1,S.}

The Poisson bracket is evaluated easily

| . e,
{Hos k= 160 ("5 + 5 ces 3Y CosY + 35n3¥ sinY )
= (3u%/42 ) (-5 + T cos ¥+ cosay)

K, must be chosen to cancel the average term on the rhs of Eq. (&},

because the presence aof such a term would make Sz grow without Bound.

(&)

|

K_ = - (@®mz

3-—
2 - g VK )

[
h

The solution for S, is written by inspection.

31 _ L)'L[_q]_‘)(% —_ K)S;nl‘r -+ é—'i—v (% +- l(_)Sf—l‘l ‘JYJ

Pushing on to third order, we first note that since K' =Ky = 0

then KQJ = (0. The evaluation of K' is straightforward.

z



K =

3 ,.5/2
12 - 16

5 5 . 23
VAR | 5 T vk ) ( 3siny - sin3v )

The other two brackets that we need are evaluated beiow.

s/,
{H:)gl} = 2= J : (S:n SY + 3sn 3y — NJSIHY)

8y
IH,, 8.5 = (8772 [mm (62x ~22) sin 5v

+ (37’&'/]6 ) sin 3Y
i

— ——

2s Vozrk - 135 ) el ¥ |

Putting these intoe Eq. (1h) and selving yields the tesult.

S; = (Js/l v3) [’3'10 (27 — 19w ) s 5Y

+-—ilg- (S‘-—GVK) ces 3Y

- E*I-T (315 — '7_867'&) Cos ¥ ]

Note that there are no average terms to be cancelled:. and thus K3= 0.

To see the next contribution to K we must go to fourth order.

The terms X, , and K4, vanish. The evaluation of K, 1s tedious

but straightforward., We will only give the result here.
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K22 = (JB/UB) [(_%%E + I%§ VK ) cosby
+ %%8 + 3% VK - 3—2 (w)2 ) cosdy
+ (-%%%-%\m+% (\)K)z ) cos2y
+ l% - %g VK ) ]

The twe nonvanishing Poisson brackets wnich contribute to fourth order

are as follows.

!

3
K
{Hljgz} = J . ;—1 [—--6—:; (7_7JK~—7) Cos §Y
— = (29k+3) cos 4y
+ 6—39 (v - 5) ces2Y

- g’;; (242x-ws) ]

I, s, b = (7)) 22 (38 vk -47) cos 67

€3
128
3
52

+ =(62vk-67)]

(6 vk —"7) eos ¢4y

('77.6 PK -~ 743 ) cos 2Y



fd
W

Now choose K‘fto cancel the average part of Eg. {ii}.

K, = 3<CIn,S,b> + 3<{H, S0 + 34K

} (J3/\)3)[2115 . 6875 . 51 (W)z]

128 32 32

[t is left to tThe reader to finish the calculation for S5, from the
gxpressions already given.
Putting the pieces together, then, the averaged Hamiltenian to

fourth order can be written:

e o
KD =2 D1-2(F -5 ) (&)

2
_Lgaus _ o8rs s c J\¢#
SO = Lo s Z o))

v
+ O (e®) ]
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o

3.2 Quadrupole field esrrars.

The application of Deprift’s algerithm to this linear groblem is
going to he cumbersome and cbscure in comparison to the elegant
treatment of Courant and Snyder. which takes no more than a few lines.
This is not surprising: linear problems are solved best by linear
methods. Again., our purpose 1is only to observe the working of an
unfamiiiar algorithm within a familiar setfting.

Because we'll want to compare the results obtained in fthis
section to known, correct answers, let us start a little further back
chan in the previous section in order to establish the notation. Assume

2 hamiltonian of the form

Hixpseys) = £ (p" + Gx) + £ 5 3"

~
The functions G(s) and g{s) are equi-periodic. We now (1) make a 5

ds
3

Floguet transformation using the betatron functions P and @U=-y¢)= J
associated with Hojand {2) change the independent wvariable from s to

¢., The transformation equations are given by

x
il

(2 @(?‘ﬂ]lhsinf
FZ\J /F3 (#33]’/2.({‘_3' %”M) simY 4+ cees ‘\’)

)
il



A
~J

and the new form of the hamiitonian is

H(v,Jse¢)=vdlr+ e 9(4) B (¢) sin®Y ]

- ~
where g(¢(s)) = g(s). Because we are dealing with a purely linear

system we expect that

K(J) = (2 + av) J

= (v + av” + a2+ ) J

where AV“0= D(EL‘L We shall evaluate A+ through second order.
To ease the notation. define the function
¢ |
Fp d) = §A¢>" z j@,/) i;;“(q‘:,')
®.
The parametTic depencence of F on q% will fregquently be suppressed.

Reexpress the hamiltonian in terms of this function

H = 2

H, = J j’;

JL\,(Y,«;&\

H

(1=~ eos 2Y)

i



28

In writing the first order equations, it is convenient to define

81 = JS; v, ) ane K= Jk, (v, 4

so that Eq. (1#) becomes

i) P d
(§7,3+7)5?)31 ';?E(l——ws’)_\’)—k

We will break this up into two pieces, say s, = 53 + 5? ., where s3 is
independent of ¥

The solution for a? 15 written easily by

F(Gﬁ s Qﬁo) - [‘1'(‘?5'— 40)
= Fi;(qbi:cﬁe )

The constant k‘ must be chosen so that F

inspection.

2
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i

is periodic, and thus
v p

bounded. That is, we must have F_(¢ + 2: ¢,) = 0. and therefore
'l*n'I(, = I—_(f#o-r T c;éo)
: 2

= § A j(gﬁ\ﬁ(q‘w)

{(7a)

This gives us the first order tune shift arising from perturbations in

the quadrupole fields.

. 2
a0 = ek = Z HdE eqid @)

{7b}



£
0

The differential epquation for LI
AF

( Z%Z + 2 g%j ) 3:9 = - :I—— coes 2Y

could be solved by integrating aleong a trajectory and adding an
apprapriate null space function to make the solution periodic, as was
done in the last section. We shall short circuit this process and just

write the final, =asily verified answer.

¢',+L.r:
b_ ___.._!._— d d,) . 3¢’, H 1)—-]
S =~ 3 F') siv2[ v +2(d-¢) - =
s

The function is represented as o Lebesque-5tieltjes integral with
psevdo-length dF(4>§. Periodicity is confirmed by using the boundary
condition dF( ¢ + 2x) = dF{¢).

Because F|2= 0, the second order Eq. {1g) becomes

DS, = {H.-r— H JS,} - K,

As before, we factor out the J dependence explicitly and define

S‘l

I

Js, vy, K, = Jk, (v, ¢)

Because k, is a constant., the second order differential esquation gets

rewritten as
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|

z

. o oh, '
(5 +o2)s, = 225 = (h r kD - &

rhs (Y, )

ill

Consider gsolving this by the method of integration along orbits.

The number k, must be chosen to eliminate unbounded growth of = The

2
troublesome term comes from the combination of circular functions in

bath h, and s -

%, - L} gga

t-zf\"h 1‘;4

2y 'V Y
’ Cb-!—')_m Qé é )
— — Y%
- s Lap c*‘}é aF (¢~ ) ZS n 2Y sim 2 Y-r—':)( ) L4
o+ Leosty condt (Vro(f-d)-c2) ]
gr+2m
JdF /obé .
= — / jdr:(qé-‘) e oS Ef)—v(?& —-¢-—T[)j
Sivy Ly
vz
Applying Eq. (4} produces the growth term)siﬁ
& $"+ 2
S2(6,) = - —— [aFen [dFe cslas (#1T ] — k_($- %)
o ﬁu

That this could grow indefinitely is demonstrated easily by noting that
the integrand is invariant under the diagonal translation d’——)aé’ + 27

p'—> 4" + 2m Because of this, sa(Vid, +2rrn) = n.s3 (Y, de +2w). To

]

eliminate the growth we must make S5 periodic by choosing
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by 27
{ 3 o ‘ . _
2L kz - - r— %c“:(&f’”) jdl:(qb’) ces Q_-u(q‘:/— 2w (Ba}
qb//
We note in passing that
(2) t a2
AY = 3z T l(z. (8h )

For completeness, we shall write the the full differential

equation for S, -
& - 2
dF /> L s
Ds, = - mjd‘:("’ ) ces 22 (¢ - $ - )

* & +2r

+ _—_3tn12nl)(c|_<}: + k )Sdl’—‘&cﬁ’) cos ’L[Y + v (¢7 --96*-“:)1

F
+ 13‘; F@)sm 2y - k

The solution of this is

-

s, = S: + gb + 3;_' ¥ ‘cunc (v-»¢)

" 2m
P = —— J (IF(4") + k dcp”)jdms ) cos Ly +w(@-d-n)]
N
sS = zjcu:/d:”) F (") s 2 (Y + 76 =)

%

where func is chosen to make 5, periodic.
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WNe now want %o compare ogur results to those of Courant and Snyder
(Eq. 4. 37). Written in our notation, fheir esxpression for the perturbed

tune is given below.

Cos = LoD, = ~& Jin AW Fan ')())
J ' 277

2T
+ % . zj 4:=(¢”)j dF (P Y a2 (P = p" Vsin -;)(2.?1‘ -(cb/—cﬁ”))
O Cﬁ”

+ Oe?)

where 2wV = N, and w = 2+ AP0 o+ Av®+ ..o 3 To make the

cemparison, we must expand cusr - cns}xgto second order.

clcgr* — oSS }LO — — 2_7[‘ SI‘VI Loz, * AZJCJ\

r
— 2r 50 Znw - av™® o~ costmr (2 ™)

+ © (%)

We can already identify the first order term using Eq. (7). The second

is given by the following.

- ‘ - (¥ 2
- 2msiw lnw - a®) - - cos 2ne/ - ('211 40" ) (9)
27 X

= €7 Jd;:(q&/f)-}.cjfr(cp’\ [c.cs lv(b/-d”——r) — oS ‘211'7)]
o b X
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where use has been made of the sine product formula. It is easily seen
that the terms involving cos 2w on both sides of this equation are

identical.

ar 27
- ez [P AN 7_77-13 S g \:“: (d«“’) dF (¢y)
P=eo A=d”

in 271
= -eteesame -5 0 [T R aE@n
- &=

=

i

—écmslnﬂ [ﬁfr(hﬂc‘jl

= -t ces 2Amy ( 27 Av“‘\z

incorporating this into Eq. (?) yields the result
27y 2w
- ‘ . /7 .
-Dnson 2md - A < 525 S dF(#")dF(¢") tes 2 (P -d:”—-;z) (10)
QS”:‘\ d:_':rb//
This is equivalent to our previous result provided that the

double integral in Eq. (10) is half that in Eq. {(8a). That demonstration

is sasy. First note that

¢r1+ 27 27 1T f‘dli
CI'/-_'(ZS” &7 = Cf;// ¢’____ 27t

Then, all that is needed is the following line of development.
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ok o] @2
dF (7)) dF (@7) cos 2w (& — =)
= o & = 2In
2n ” ‘ ‘ , ,
= J-// f;f;/:cap((p”)dp(d)/) C,O‘S'l.‘;}(;b‘?é’/{"“n)

s =0
-

2
::j:: V dF(@¥) dF (&) wszv(¢”—¢’+n7

- o
=0 Cﬁ w0

2R L - .
- f j dF (VI (#7) cos2u (B - =7 )
HB7= o df"‘r‘“”
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3. 32 Sextupoles and octupoles with arbitrary harmenics.

We consider now a Hamiltonian with arbitrary sextupole and

octupole terms.
—_ P t 2
H = H, + e, + Fe*H

N

3/ 3/2
H'; = ﬁ(‘?—") J 'angY = f} (Q‘:\) J (% sinY — ‘q‘ 5‘1‘&151’)
. 3/2

= J

Hz = B(f-#) stfhl*Y

b, (v, @)

= B(e) J* (F - 5 cos2¥ + 5 cos #Y)

Jh, (v, )

The transform equations will be solved by expansion in eigenfunctions -

-—- that is, Fourievr decomposition.

AD = Za, e | e =27
B =2 b e™* , b =L,
_ C(mct +pY)
\ﬂkw,sﬂ =20 B“‘ﬂ“P e , k=12

M,T
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The only nonvanishing components of h, and h, are

>
i

i m ) kd * 33, /8¢ l"1',m,-j-,% ¥ a, /81
"L’m/q (11}
b,, /16

i
i

t3&%h‘/ﬁs ’ hz
b

3, k2

if

2ym, 4

The first order equation is

+ K = H

|3nwF 13n«F

z ((m +2p) gﬂﬂp

We must chpose K,}00:= H|,°c = & We shall alsoc assume that no
]

resonance terms are important, so that m+yp vanishes only for m=p=0.

iherefore, K, . = 0O for all m,p. or more succintly

tJWP
K, =0 .

3/a
if we define S = J -3 » then the nonvanishing components are
I}nP |"MF
Qe
S\ = F 2
JAMIE & M+
S = 4 ! dm
1yen, 3 = 8 w43V



Going to second order.

{mewp) Sy + K, =

7P

The Poisson bracket
3/ 34
{Ph )g'}jn, -—.{ J h1 b LJ Si }

(203 (v

II

P P’)lﬂ

3P

is evalvated using Eq. (3)
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we must consider the equation

Hlpﬁp+-{H'?S1};mF

rl rrd

Sy
) P
<M)P>
s
3 i2 -
- 2 'J Zt ) D 1-)m"P’ 1"1',\0'-:”]:::"(
{m,p> F
Again, projecting cut the average term gives us K,.
V(z',oo - J [BL’ 32 m + ] ’LH)WP
— 11<
= \J 2,00
Note that we have used h L —mm = h,. . A little further evaluation,
mep s Tep
using Eq’s. {11) leads to
2
k _ 3\3 s lao’
2,00 & o T ) e <

1'7'2) Z km —

1
'1_ 0’7}'2.

)lamll



When bo =Q this expression agrees with Eq. (5. &)

of Cole

special case is worth mentioning. Suppose that for some

ia_ i = tal. Then the sum can be done using

m
) 2% 20

The result is

)_,cc

k =%\30“ W'(-—u{:rv—f-

(1269).

tai, all

Cot 377:))
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4. REMARKSE.

Chief among the questions asscciated with any pérturhation theory
is that of convergence. As the Lie series is calculated to higher order
in £, larger harmonics in ¥ are pulled into the genmerating function
and, as a consequence, into the clothing transformation. If the series
converges, then the magnitudes of these terms should decrease rapidly
with increasing order so that, for example, a Fourier spectrum of the
grbit would show only a few dominant frequencies. In general, however,
the interval of convergence in £ or J will be finite. Near its
boundary all the higher order terms become important and the spectrum
would be broadband. This is precisely the behavior one has come to
expect in approaching chaotic regions of phase space. It is tempting tc
speculate that divergence of the Lie series and passage through the
last KAM boundary coincide. Unfortunately, the situation is more
camplicated. Dewar (1978) has const{ructed examples in which the Lie
transform is well defined and leads to integrable orbits past the
convergence interval of its power series expansion.

A second issue, not unrelated to the first, is the ambiguity
inherent to setting up a prohblem with several impartant nonlinear
terms, within a single parameter perturbation theory. The naive:
"matural” ordering blindly associates higher powers of J with higher
powers aof &£, usually in the combination Ediii . This 1is not

necessarily the best for all problems. There may be insfances in which
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it would lead to a divergent Lie series whereas restructuring the
problem --- changing the association of multipoles with powers of & ;
perhaps even combining several multipoles into 3 single power of E ——-
would produce a convergent serigs. One uvltimately would l1ike to get
arcund the problem by generalizing to a multi-parameter Lie
transformation.

At any rate, setting up problems correctly and interpreting the
results will. as always, require judgment: these tasks cannot be
absorbed into the formalism. The perturbation series associated with
most nonlinear problems in fact almost always diverges, and yet their
finite partial sums generally provide useful (in the eyes of the
beholderf information. (Perhaps we should think of fthe Lie series as
"asymptotic” in some sense?)

The power of the Deprit-Hori-Kamel algorithm lies in its ability
to be auvtomated easily. The examples done for this memo do not
sufficiently demonstrate its usefulness. We plan %o exercise the methot
more vigerously and to write programs that apply it to more realistic

problems in four dimensional phase space.
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