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Abstract 

The dynamics of a half integer resonance excited 

by quadrupoles and octupoles are classified by map

ping the catastrophe and Maxwell surfaces of its 

Hamiltonian. Procedures for generating these 

surfaces are presented, and generic separatrices 

associated with some regions of the control space 

are displayed. 

1 



One standard way of extracting particles from an accelerator 

is to excite a half integer resonance with quadrupole and octupole 

magnets. By introducing a suitably scaled set of variables, the 

physics of this process can be idealized by a Hamiltonian of the 

following form. 

H = [v+cos(2a+~)]J+[K+Cos2a]J 2 

: *(p2+q2)[p2(K+l)+q2(K-l)) 

1 2 1 2 . + 2(v+cosq,)p +2(v-cosq,)q -pq s1nq,. 

where q = ,/2J sina, p = ..f2J cosa. 

The three control variables, v, K, and q, are related to the distributions 

and strengths of the quadrupoles and octupoles around the accelerator: v 

is the difference between the tune and the half integer n/2 scaled by 

the nth harmonic quadrupole driving term, K is the ratio of 0th to nth 

harmonic octupole driving terms, and q, is the relative phase between 

the octupole and quadrupole harmonics. The dynamical variable q represents 

horizontal displacement from an equilibrium orbit, scaled by betatron 

functions and by the ratio of quadrupole to octupole harmonics; p is its 

conjugate momentum. The angle-action pair (a,J) are conjugate as well. 

We will classify the dynamics of this system by mapping its transi

tion boundary, the catastrophe and Maxwell surfaces. The Hamiltonian 

possesses three conspicuous syTillletry transformations. 

l. a-+a+~: All phase space flows are sy11111etric under inversion. 

2. q,+-q,; a+-a: The flow at 2~-q, is obtained from that at q, 

through a reflection across the p-axis. 
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3. ::.-+-o.+11/2; K-K; v->--v; h+-h: The flow at (-v,-K) is obtained from 

that at (v,K) by a 90° phase space rotation and time-reversal. 

Because of the last two we need explore only half of the control space 

explicitly. 

The topography of the transition boundary can be envisaged most 

easily by sectioning it at constant values of $. Eight such sections 

are shown in Figure l; the solid lines indicate the catastrophe surface, 

and the dashed lines, the Maxwell surface. The latter lies in the 

elliptically cross-sectioned tube 

2 2 2 . 2 V - VK COS$+K = Sln $. 

The former is a more complicated surface consisting of two major pieces. 

The first is independent of$ and contains the planes v = ±1 and K = ±1. 

These determine the flow characteristics at the origin and at infinity, 

as we shall see shortly. The second grows out of the corners v = K ~ ±1 

as $ increases. It remains confined to the unit square when $e[0,11/2] 

but then leaks into the regions JwJ>l, forming a cusp at its extremes. 

It begins to intersect itself at $ = 511/6, and eventually attaches 

itself to the two straight lines 2K+v = ±1 when $ = 11. 

Figure 2 and Figure 3 show how the dynamical possibilities are 

organized on the sections at ¢ = 0 and ¢ = 11. The former encloses 

nine regions possessing five generically different classes of behavior; 

the latter, eighteen regions, with seven classes. The origin is stable 

or unstable accordingly as lvl>l or lvl<l (the latter inequality 

expresses the half-integer stop band in our units); separatrices are 

closed or open in phase space a~cordingly as IKJ>l or \Kj<l. These 

transitions occur for all values of ¢, but at ¢ = 0, they are the only 

3 



ones possible. On the Maxwell boundary at ~ = rr the separatrix consists 

of two straight lines intersecting at and a circle centered at the 

origin. No separatrix is associated with the regions v, <>l and v, <<l 

because there are no unstable fixed points there. 

In the intervening region, the dynamical effects of crossing 

transition boundaries are appreciated best by following paths in the 

control space. Figure 4, for example, illustrates what happens along 

part of the path (v,K,~) = (-0.6, 0.4, 0 .• rr). In going from ~ = 0 to 

~ = 150°, the system does not cross a transition boundary, so separatrices 

at 4a are still diffeomorphic to two intersecting lines. Passage through 

the catastrophe surface at 4b and at 4d is signalled in phase space by 

the creation of a symmetric pair of degenerate, non-Morse fixed points, 

each appearing as a cusp in some trajectory. Those trajectories become 

new branches of the separatrix as each degeneracy splits into a stable

unstable pair of normal fixed points. 

A "soft" transition occurs when the system crosses the Maxwell 

surface at 4f. The Hamiltonian at the unstable fixed points created at 

4b takes on the value zero, and those branches merge with the one passing 

through the origin. They fall apart again at 4g, but a transition has 

occurred: the flows 4e and 4g are not generically equivalent. In particular, 

the latter contains trajectories which wind around the origin --- even 

though the origin is unstable ---- while the former does not. However, 

this transition has taken place without passing through a catastrophe. The 

fixed points are always Morse type fixed points, they are always the same 

in number and of the same character. This kind of transition has a non-

local character. That is, it cannot be characterized by what happens at 
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one point of phase space. A minimal characterization requires equating 

the value of the Hamiltonian at two separated, unstable fixed points. 

As the system point approaches $ = ~. the stable areas created at 

4d continue to expand until another merger takes place and we end up 

with the separatrix of Figure 3h. 

Another example, this time along a path at constant $, is presented 

in Figure 5. At the endpoints the flows are diffeomorphic to that of 

Figure 2a, because all three of these points can be connected without 

crossing the transition surface. Crossing the boundary at 5b creates 

degenerate fixed points and new separatrix branches that encircle stable 

fixed points, as shown. As the system moves from 5b to 5f each unstable 

fixed point separates itself from its stable partner and travels across 

to attach itself to the other one, which of course annihilates it. 

There are 12 stable dynamical classes in all. One can sketch the 

generic separatrix associated with any control point of interest by 

following a path from a known control point and keeping track of all 

transition crossings. However, we shall turn away from continuing this 

catalog in order to describe the procedure for mapping the catastrophe 

surface. 

Fixed points are found by applying Hamilton's equations to Eq. (1) 

and setting time derivatives to zero. This yields the following 

expressions. 

J
0 

= -sin(2a
0
+$)/sin(2a

0
) 

sin(2a0 )[v+cos(2a0+~)] = sin(2a
0
+$)[K+cos(2a

0
)]. 
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The latter looks messy but is solved easily by writing it as a manic 

fourth order polynomial. We introduce the complex variables 

2ia
0 

. 
z = e , y = e- 1

4> 

and rewrite Eq. (2) in a form that we shall call the ''fixed point 

polynomial'', or ''fpp" for short. 

4 
fpp(z) = [ ak zk = 0, 

k=O 

A catastrophe occurs when fixed points coalesce. Thus, on the 

catastrophe surface the fixed point polynomial must have a unimodular 

solution of multiplicity two, or greater. Accordingly, it can be 

factorized 

fpp(z) = (z-u) 2 (z-v) (z-w) 

where iul = 1, in order that a
0 

be real. The fpp coefficients, written 

in terms of these solutions, are 

a3 = -(v+w+2u) 

a2 = u2+vw+2u(v+w) 

al = -u2(v+w) - 2uvw 

aa = u2vw. 
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To map this as a surface in control space we must invert Eq's. (3b), 

according to 

-a 
0 

It will be possible to do this and to interpret the answers as real, 

physical quantities only if the coefficients satisfy three "realizability 

conditions" which follow immediately from Eq 's. (3b). 

l. la0 1 = 1 ' (q, must be rea 1) 

2. 1 
3 a2-ao = 1 

* 3. al = a0a3. 

We shall show below that the first two conditions are sufficient as well 

as necessary by proving that they imply the third and that the control 

variables obtained are real. This statement is made formal in the 

following. 

KEY PROPOSITION If a monic fourth order polynomial has a degenerate 

unimodular solution and satisfies the first two realizability conditions, 

then (a) it satisfies the third realizability condition, and (b) it is 

the fpp of a real valued control point, (v,K,q,). 
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Sections of the catastrophe surface are calculated in the following 

manner. Eq. (7b), in conjunction with Eqs. (4) implies that 

Now, ,p = constant is equivalent to a
0 

= -y2 = u2vw = constant. Use this 

to eliminate win Eq. (8); the resulting polynomial is quadratic in v. 

* 2 l 2 * *2 * * (uy )v +2 [u y -u y-3(y -y))v - u y = 0. 

An ''algorithm" can now be sketched, in pidgin algal, as follows: 

for "all" ,pE(0,11) 

begin: y : = exp(-i<P); 

end; 

for "all" u on unit circle 

begin: solve Eq. (9) for v+ and v-; 

end; 

for v = {v+,v-} 

begin: w : = -y2;u2v; 

Jo : = (y2-u2)/y(u2-l) 

if J
0

>0 then evaluate and plot 

(v,K) using Eq. (5) and Eq. (6}; 

end; 

The test J
0

>0 must be done explicitly; only if this inequality is 

satisfied does the control point produce a real non-Morse fixed point. 
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The algorithm does not handle the endpoints ~ = 0 and ~ = n, 

because K evaluates to 0/0. For ~ = 0, J
0 

is always negative so nothing 

more need be done. At ~ = n we have y =·-1, a
0 

= 1, a2 = 0, and 

a3 = -a1 = 4K+2v. The fpp factorizes immediately. 

fpp(z) = (z-l)(z+l)(z2+a3z+l). 

Now, a3must be chosen so that there is at least one degenerate solution. 

The possibilities are 

(a) z2+a3z+l is a perfect square. This means that either 

(a.l) a3 = +2, and fpp(z) = (z-l)(z+l) 3, or 

(a.2) a3 = -2, and fpp(z) = (z-1) 3(z+l). 

(b) (z+l)l(z2+a3z+l) 

This reduces to case (a.l). 

(c) (z-l)l(z2+a3z+l) 

This reduces to case (a.2). 

In all cases we have a3 = ±2, or equivalently, 2K+v = ±1. Further, the 

non-Morse solution is triply degenerate; that is, it corresponds to the 

merger of three fixed points. 

Finally we prove the "key proposition". Begin with the following 

lemma, which assumes the hypothesis of the key proposition. 

* LEMMA: vw = (v+w)/(v+w) (v,w as defined in Eq. (3c)) 

PROOF: Because of the first realizability condition, and lul = 1, 

* Now, multiply Eq. (8) by 3u to get 

* u(l-3vw)+2(v+w)+u (vw-3) = 0. 
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Take the complex conjugate, multiply by vw, and use Eq. (10) to get 

* * u(l-3vw)+2vw(v+w) +u (vw-3) = 0. 

Subtracting these two expressions yields the desired result. Ill 
PROOF OF THE KEY PROPOSITION -----
part (a) 

Using Eq's. (4) and the lemma we calculate 

part (b) 

a1 = -u2(v+w)-2uvw 

= -u2vw[(vw)*(v+w)+2u*) 

= y2[(v+w)*+2u*] 

* First, K is real iff(a1+a3)(l+a0) is real, according to Eq. (5). But, 

using what we've proved in part (a). 

* * * = (y a3-ya3)(y-y ) 

which is manifestly a real quantity. On the other hand, using Eq. (6) 

which again is manifestly real. 111 
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