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Introduction 

Recently there has been some interest in using the magnetic field 

inside a current-carrying cylindrical conductor to focus particle beams. ~8 

Applications include focusing targets and lithium lenses. The calculations 

described in this report were done in connection with the design of a 

lithium lens to focus antiprotons just downstream of the production target 

for the pp collider at Fermilab. However, many of the results are 

generally applicable for any pulsed cylindrical conductor. 

For the simple case of a cylindrical conductor of radius r 
0 

carrying 

total current I with uniform current density j the magnetic induction B 

inside the conductor can be found from Ampere's Circuital Law. 

International System of units (SI) this law can be written 

~· + ~B·ds 

Using the 

where the magnetic permeability µ for a linear material is given by 
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µ = µrµ
0

, with µr being relative permeability and with µ
0 

= 4n x 10- 7 

henry/meter. Applying the Law results in the expression 

or 

where B(r ) 
0 

is 

B(r) = 
µI r 
2n r-z 

0 

B(r) = B(r ) r 
o r 

0 

the value of 

( 1 ) 

( 2) 

the field at the surface of the cylinder. 
... ... 

Since the material is assumed to be linear (B = µH) equation (2) can also 

be written 

H(r) = H(r ) r 
0 

For many applications the Joule heating from direct current is 

prohibitively large. To minimize heating these devices are often pulsed 

with a sine-like unipolar pulse whose width T/2 is small compared to the 

time between pulses. For the pulsed device an expression describing the 

->-
magnetic intensity H as a function of radial position in the conductor and 

time can be derived by solving Maxwell's equat.lons with appropriate 

boundary conditions. A solution applicable to a pulsed lithium lens with 

I = I sinwt for 0 < t < nlw is gl ven in reference 8 • 
0 

This paper assumes 

the cylindrical conductor is a component in an RLC circuit and has a pulse 
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shape modified by a damping factor e-at where a = R/2L. The mathematical 

description of the pulse form 

w = 2n/T and I = O between pulses. 

is I = I e-at sinwt for 0 < t < n/w where 
0 

The paper is presented in three parts. In part A an expression for 

~(r,t) is derived and the time during the pulse corresponding to maximum 

linearity is calculated. In part B an expression for the current density 

Jz is derived and a method for measuring Jz at the surface of the conductor 

is discussed. Part C describes Joule heating, including the radial 

dependence of temperature and the total heat deposited per pulse, 

A. Magnetic Field Intensity in a Pulsed Conductor 

This section describes a derivation of an expression for the magnetic 

field intensity ~ in a pulsed cylindrical conductor. The time at which the 

field is most linear and the gradient at that time are also calculated. 

Assuming that the displacement current is negligible the appropriate 

Maxwell's equations are 

+ ... ... + ... 
J = v x H ( 3) J = crE (6) 

+ + _,_ ... ... 
v x E = -<lB (4) B = JlH (7) 

---at 
+ ... 
v H = 0 (5) 

where CJ' is the conductivity and t ia the time. 
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Taking the curl of both sides of (3) and using (6) gives 

~ x (~ x H) ~ ~ x OE ( 8) 

Using appropriate vector identities and (l!), equation (8) becomes 

+ 
3H 
~ 

(9) 

Assuming that the cylinder is coaxial with the z axis, that H has only an 

+ 
azimuthal (6) component and that the magnitude of H depends only on r and 

t, equation (9) simplifies to 

(10) 

where H is the azimuthal component of H. The boundary conditions are 

where H 
0 

and 

H(r,O) = O; H(O,t) = 0 

H(ro,t) = Hoe-atRe{ie-iwt} 

( 11) 

( 12) 

is the maximum value of H for an undamped pulse. The problem is 

inhomogeneous because the right-hand-side of (12) is nonzero. A general 

solution to (10) can be found by solving the homogeneous problem with 

H(r ,t) = 0 and then adding a particular solution satisfying (12). The 
0 

homogeneous problem is an eigenvalue problem which is solved using the 

separation of variables technique. A solution to the homogeneous problem 

is 



Hh(r,t) = l:a J (A r)e->..Jt/crµ 
j j 1 j 
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( 13) 

Where J 1(x) is a first order Bessel function with a real argument, >..jr
0 

is 

a root of J 1(x) = O and the aj are coefficients to be determined from the 

boundary conditions at t = o. 

A particular solution is found by separating variables and assuming a 

damped sinusoidal time dependence. Thus 

Hp(r,t) =1/(r) T(t) (111) 

where T = ce-yt and y = a + iw. This leads to the equation 

( 15) 

where 62 = aµy = aµ(a + iw). Letting aµw = 2/62 , the expression iwaµ 

becomes 2i/62 • The variable 6 is commonly called the skin depth. Thus 62 

can expressed in terms of the attenuation coefficient a and the skin depth: 

62 = aµa + 2i/6 2 

Equation (15) takes the form 

l ) H = 0 ? l' 

This is a Bessel equation having the solution 

(16) 



H(r) = AJ (i3r) 
1 

6 

(, 7) 

where J (13r) is a first order Bessel function of complex argument. 
1 

Applying the boundary condition (12) to (17) and substituting the result 

into (14) gives the particular solution 

(, 8) 

A general solution to (10) is the sum of expressions (13) and the real part 

of (18). 

H(r,t) = H Re 
0 

{ iJ1 (J3r) 

J 1cSr
0
l 

2 
-:>.. t/crµ 

e 
(19) 

The aj coefficients are evaluated using the boundary condition H(r,O) = o. 

At t = o, equation (19) becomes 

Applying the orthogonality properties of J
1
(:>..jr) leads to 

2H 
0 

aj = -------
r 2 [J (;>..jr )]2 

0 2 0 

Evaluating the integral gives 

Im 
J CSrl 

I 

J C Sr l 
I 0 

dr. 
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The time dependence of the penetration of the field into the conductor is 

illustrated in Figure 1 which shows H/H vs r/r for various values or wt 
0 0 

with o/r = 0.5. Fig. 2 presents the same information in a different way, 
0 

with H/H plotted vs wt for various values or r/r • 
0 0 

The time at which the field is most linear depends on o/r and a• This 
0 

time can be calculated as follows. 9 

(t.H) 2 = [H(r,t) - G(t) r] 2 (20) 

is a measure or the deviation or the field from linearity and the 

expectation value or (t.H) 2 is 

1 211 rn 
= - .(f ( t.IO 2 rdrdt6 

1!r 2 0 

(21) 

0 

The value or G corresponding to a mimimum expectation value is found by 

solving the equation 

01" 

4 
!" 2 

0 
f 'ii 2 4G J""' r H(r,t) dr + ~-2 r dr = 0 
0 ro 0 

( 22) 



from which 

-yt 
G = _.i_ H Re{~i_e __ 

r 2 o 8 
0 

8 

(23) 

A measure of the goodness of fit to a straight line is found by 

substituting (23) into (21) and perfonning the integration. Some results 

are presented in Fig. 3 which shows the deviation from linearity as a 

function of time for, l'i/r
0
:0.5 with a:o and a:1000 sec- 1 • The case >1here 

o/ro:1.0 is shown for comparison. The results of evaluating (21) for 

various values of o/r0 are given in Fig. 4 >1hich sho>1s the time 

corresponding to maximum linearity vs o/r0• For o;r0 ~ 0.7 the summation 

over j in (23) becomes negligible and one can derive an expression for 

(wt)i, the time corresponding to maximum linearity as follo>1s. 

Substituting the first term of (23) into (21) leads to the expression 

H 2 r 
2 o -2at/ 

0
[ 2 -2iwt ~ 

< (l>H) > = r-z- e -Ref e + ff*J rdr 
0 0 (24) 

where 

f = 
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The optimum value of oot is found by differentiating (24) with respect to oot 

and setting the derivative equal to zero. This leads to the result 

(25) 

The error introduced by this approximation increases as 6/r0 decreases, 

ranging from 2° at 6/r0 = 0.5 to 8° at 6tr0 = 0.3. The values shown in 

Fig. 4 were calculated using the complete expression (23) rather thari the 

approximation. Fig. 5 shows H/H vs 
0 r/r0 when the field is most linear. 

B. Current Density in a Pulsed Cylindrical Conductor 

An expression for the current density may be derived using Maxwell's 
~ + + + 

equation J = V x H. The curl of the expression for H(r,t) given in (19) has 

only a z component 

J (r,t) 
z 

Fig. 6 shown Jz vs rtr0 for various times during the pulse. 

(26) 

Fig. 7 
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contains the same information with Jz vs Wt for various values of r/r0• The 

curve describing J at the surface of the conductor vs Wt is of particular z 

interest because it is related to the potential difference between two 
-+ -+ -+ -+ 

points on the surface of the conductor via the equation V = fE·dt = pfJ·dt 

where p is the electrical resistivity of the conductor. Consider a line 

segment of length L, parallel to the axis of the cylinder and having as its 

endpoints two points on the surface of the cylinder. The potential 

difference between these points at time t is LpJz(r0,t). Measurement of 

this potential difference provides a sensitive test of whether or not the 

actual device is producing the expected field,10 

C. Joule Heating in a Pulsed Cylindrical Conductor 

An expression for heating due to ohmic losses can be found by evaluating 

++ 
the integral !J·E dtdV. This will be done assuming constant resistivity 

during the pulse and then a method for taking into account a changing 

resistivity will be given. The radial distribution of heat is given by 

Using (26) for Jz one obtains 

q (r) 
0 

H 2 
0 

= t;"(1 

q (r) 
0 

rr /w 
=pf J2dt 

0 z 

(27) 



11 

The units for q0 are Joules/m5 and the temperature rise ~T(r) can be 

calculated from (27) by dividing q0(r) by the heat capacity o. The total 

heat generated per pulse unit length is given by 

The result of this integration is 

1) (e-2na/w_1) 

-2mr/w 
e -

Cl 

1 BJo*(Bro) 
{i Im(J1*(8ro) )} 

l+e-n(a+Aj/oµ)/w 

y+Ajloµ f 
(28) 
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Both (27) and (28) were derived assuming a constant resistivity. An 

approximation which can be used to take into account the temperature 

dependence of resistivity is given by Knoepfe1.11 The resistivity can be 

parameterized by 

P = Po( 1 +bQ) 

where b is the heat factor and Q the increase of heat content relative to 

o0 c. In the solid phase 

Q = cvb.T • 

In the case of lithium, one uses the slope of a p vs T curve and the value 

cv=2.ox10 6 Jm- 3/°C to calculate b:2.4x10- 9 m3/J. If Q0 is the he,at per unit 

volume calculated in (28) then the "corrected" value is 

Q = (29) 

Fig. 8 shows the total heat deposited during a single pulse of a 1 cm 

radius lithium cylinder with I 0:500 kA. The dashed curve is the result of 

evaluating (28) and the solid curve includes the correction specified in 

(29). Fig. 9 shows the radial distribution of heating including the 

correction for changing resistivity. 

D. Some Conclusions 

In designing a focusing target or a lithium lens it is necessary to 

optimize several parameters. Linearity is improved by increasing the pulse 

length but the longer the pulse the greater the demands on the cooling 
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system. For lithium, which melts at 180°C one must decide whether to try 

to prevent melting or to operate with the lithium in the liquid state. The 

volume expansion upon melting stresses the vessel so an effort should be 

made to keep the lithium in one state or the other. For otr0 values around 

0.5 the maximum linearity occurs 20-30° after the current peak (Figs. 2 and 

4). To achieve the required gradient at that time during the pulse, the 

peak current may have to be scaled up. Thus, increased linearity requires 

increased power and heat load. Finally, the optimization for linearity was 

calculated assuming a uniform distribution of particles impinging on the 

lens. For a focusing target where the incident particles are concentrated 

on the axis the optimum time could be different from the one given here. 

B.F. Bayanov, 
G.L. Nicholls, 
Energy Particle 
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Fig. 1 Magnetic intensity vs radius at several times during 
the pulse. H0 has units amp/meter and is the value of 
H corresponding to 10 in the expression I=I0 e-atsin wt. 
For an undamped pulse it is the maximum value of H at 
the surface of the cylinder. 
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Fig. 6 Current density vs radius at various times during the 
pulse. The curve labeled .669n corresponds to the 
maximum achievable linearity of the field. 



300 CURRENT DENSITY 

VS TIME 
8/r0 =0.5 -.... 

/ ' / ' --a=O ,, 
I ' .._o I ' 

-I ' I \ - - -a= 1000 sec ... \ 
\ 200 to \ 

I-...: \ 
I 11 o· \ I .._o ,, \ , , -.: , ... ~ 

I 
I 
I 
I 

100 I \ 
\ 

I \ ,_ 
I \ 

\ ..... I I 
CD \ - \ 
CD I 
E \ 
~ 

\ 
0 \ :c \ 

' wt 
N 0 .2 .4 .6 -:;;:-

J 

-100 

Fig. 7 Current density vs time at various distances from the 
axis. This figure contains the same information as 
Fig. 6. 



w 
en 

7 
x I 0 

120 

110 

100 

90 

80 

..J 60 
::::> 
a.. 

' t- 50 
ct w 
:r: 

40 

30 

20 

10 

0 

TOTAL HEAT PER PULSE 

IN LITHIUM CYLINDER WITH 

I CM RADIUS 10 = 500 kA 

ASSUMES CONSTANT 
RESISTIViTY 

CORRECTED FOR 
CHANGING RESISTIVITY 

-J 
a= 1000 sec ----------

I. 0 I. 5 

Fig. 8 Joule heat deposited during one pulse. See equations 
(28) and (29). 



...... 
IC)::? 

...... 
w 
....J 
:::> 
0 -, 
~ 

I-
<( 

w 
::c 

18 

16 

HEAT PER UNIT VOLUME 

PER PULSE VS RADIUS 

FOR 10 c 500 kA 

--a=O 
-I 

14 - - - a = 1000 sec 

12 

10 

8 

6 
/ 

/ 
;' 

,..,,.."' 
4 5 --81 r = O. --_o......------

2 
'SI t = o.4' 

0 .2 .4 .6 .8 

AT C°C) 

80 

60 

40 

20 

Fig. 9 Heat per unit volume per pulse vs radius for a lithium 
cylinder of radius 1.0 cm. The nT scale was calculated 
assuming T=0°C at the start of the pulse and cv=l.88xl0

6
Jm-

3
/°C. 


