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Abstract

The phase dynamics of small amplitude synchreotron
oseillations in the vicinity of the transition energy is discussed
with kinematic nonlinearities ‘neluded. We introduce a
synchrotron amplitude funetion analogous to the betatron amplitude
function and solve analytically the time evolution of ‘bunch
shapes, where the kinematic nonlinearities result in unsymmetric
bunch shapes. In addition, the above synchrotron oseillation is
singular at transition orogsing because of the kinematic
nonlinearity. From this simple faet, we identify an inherent
source of bunch diffusion. A method for estimating its size is
presented. When this theory is applied to the case of the FNAL
Main #ing, the predictions are in good agreement with numerical

simulations and are not inconsistent with experimental resultis.



§ 1. Introduction

The =affect of nonlinear kinematic terms /1,2,3,4/ 13 studied
for energies below and above btransitiosn energy. ™ese nonlinear
kinematic terms are stronger the narrower the bunches. The
momentun eight o»f the bunch pasgses through 2 maximum at
trangition and the kinematic terms therefore have a maximum at
trangsition. They can ditort the particle orbits in different
ways, and they may lead to longitudinal emittance blowup.

In recent experimentJJZn the FNAL Main BRing, b»unch lengths
were measured at two energies, 14 GeV and 19.7 GeV, below and
above transition, at an average intensity of 2.6%10%° protons per
bunch ( total Main Ring Iintensity 2.8%10'2 protons per cyele),
Values for the longitudinal emittance at the two energies have
been derived from these measurenents. The results were
0.22 eV-sec at 14 GeV and C.28 eV-sec at 19,7 GeV, indiecating an
emittance 1{increase In the region of transition. Bunch lengths
were also measured at transition (17.6 GeV), where they beconme
very nuarrow (about 2.% nseec). Furthermore, in order fto eclarify
the reasons which lead to thils longitudinal emittance blowup at
transition c¢rossing, many extensive computer simulations have
been performed independently by several people, inecluding the
present author. The simulation results, which strongly imply that
the effects of the nonlinear kinematic term are large, are
surprisingly consistent with the measurements.

It is the purpose of this paper to calculate the effects of



nonlinear kinematio  terms In  the range around the transition
energy and compare to results of computer simulaticns and real
machine studies.

This paper is divided in four main parts: In the first
part (§ 2,3) we derive difference equations for acceleration in an
explieit ferm znd transform them into an differential form, which
enables us to construct a Hamiltonian formulation for longitudinal
motion. Here we =zhall restrict ourselves Lo small amplitude
oscillation. ™ addition, only the lowest-order unonlinear
kinematic term will bte retained din this formulation. In the
second part (§ 4), introducing the notion of a synchrotron
amplitude functicn, we construct the " linear <¢lassical theory "
of tranaitiocn in a form analogous to betatron oseillation, where
the nonlinear ‘tinematic term 13 neglected. In the third
part { & 5), using the perturbation theory, we calculate increments
of the longitudinal emittance a3 an effect of the nonlinear
“Iinematic term on  llinear motion. We identify this effect as a
reason of the unsymmetric bunch shape just at transition that has
been recognized in the computer simulations. Tn the fourth
part { §6), from a general poiﬁt of view with respect to
time-reversability, 't will be shown that only such nonlinear
kKinematic terms can accumulate to give net effects over transition
erossing. Finally, a theoretical for formula for the emittance
blowup ratio will be presented.

In the aresent discussions, effects of longitudinal

space-charge foreces/6/ and timing error of the phase-jump at
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transition /7/ are not included, hecause the [ormer 3 negligible
at least For the present situaticn of the FNAL Main Ring and exact

information about fhe latter has not been obtained.

§ 2, Difference and Differential Egquations for Acceleration

The theory of longitudinal phase motion, describing the
energy and phase oscillatios that cceur when a particle passes
repeatively GUarough cne or more "accelerating cavities" situated
at localized points around the aceelerator ring, is well known.
Since the oscillations nermally are at a relatively low frequency,
1t is often legitimate as well as convenlent to analyze them
theoreticall with differential equations derived by spreading the
accelerating field uniformly around the orbit. In reality, the
energy changes experienced by a particle are better represented by
difference equations and depend on the s=sine »f GLthe o2lechirical
phase angle ¢ at which the particle traverses the cavity. The
corresponding squations of motion are therefore both nconlinear and
disecrete. -

We consider here the case of synchrotron oselllaticns during
acceleration stage. To obtain the actual transforﬁation, we
consider a short cavity system operating at a harmonic number h,
an angular Cfrequency wWelt) and a peak voltage V(t). We assume
that We(t) and 7(t) are independently controlled during

acceleration. The gquantities denoted by E™ and &" are,



raspectively, the =nergy and Lhe electrical phase angle with which
a particle enters the ocavity at the time of transit. Then the

nonlinear transformation may %Se writtan in the form

EnH = E" + eV(n) sin CP", ‘2-7%a)
Weg(n+i)
n+l F{- n ZTC
= + Wriln . —_— f2-1b)
¢ { Wy (n) ? e w(E"“)}’

where =2V(n)sind™ is the energy gain at the n-th transit and the

revolution period i described in the form

2T Co (1 + ofp2™) ( w BT (2-2)
oy = T F —— 2.2
w(e™) c [ | = (wo® / Elﬂ-l)‘J%. P‘(E;‘") E;‘"))

where Cgis the length of the closed orbit corresponding to the
synehronous energy Eg , < is the veloecity of light, moc2 iz the
proton reat z2nergy, 2z i3 the momentum deviation from the
synchronous momentum, and olp i3 the momentum compaction factor.

Since we assume the guiding magnetic field of H type, the betatron
aeceleration can  bte neglected heré. The synchronous particle is

defined by the equations

ne n

Es = B + 4(n), (2-3a)

il

WeycnY TS w(EX)

ni Wry(n+1) 2T
—_— + Wy (n+1)
bs { ¢ r }’ (2-3b)



where

Aln) = eVin) sin q>;‘)

{2-3e)
o W& . 4 aln) . .1 A(n-1)

Note that A(n) is determined by the change in the exterral guide
field 32(%). Now the momentum compaction factor olp/%/ may be

written in the form
1 " '
dp = d(o‘n + c,‘lrzm- )‘* dGY(znw)?-_*_ O((zm-)), (2-4)

where 0(( 3" ?) 1s the Landau symbol. Expanding the right-hand

gside of £gq.{2-2) with respect to 3"", we have the expression

am Co
uJ('Em-') - CP(E,”‘)

-3 n 1 2 2
[1 + ?( cm')Z fl+?( )(gu-ﬂ) +7( )(znﬂ)s_r ___] (2_5)

Co 2T 21th

CREr)  wi(g™)  wenn)

where

?“’(n+ﬁ): d@\-—1/TﬁE:H) (dmgl/nﬁ) (2-6a)

>

Y wery %I(Es"ﬁ) R E(""")

T (n+t) = d -+ = + o6
THEM™)  2wi(Er) 20 ),

1 e L BED A ey BETY [ 5
THEMY  YHE™) r"(}::;"‘) 2% LE'"' (2-6 )ﬂf'

n-\

;.." D{(z‘ E(E‘-s 2
:,(Euﬂ)
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We note that all particle simulations for a real acceleration mode
stated in the Introduction have been performed by Following the
difference <quations [2-7a) and (2-1b). The pair 2 and ¢ is
recognized not to be canonical because of the time dependence of
the frequency. We zre Interested in small-amplitude oseillations
around the synchronous point ( ¢: ,E; ) as a gulding center.

Setting

- Es (2—73)
n

r AREI A (2-7b)

we may write the difference equations for a small amplitude

agcillation as
e - " o eV(V\](S;V\(#)H— Silhq):)

= €" + ev(n) (osq:o;' x" r2-8a)

»

\ Wey (Ar1) . ~14(h+ .
a™ = { i 2" +[21l|n +Sin ) siwt 208 Ty
Wy () eV ivt) eviny

— - 211(2-8b)
[P 2 €™ 792 e (e‘"')]}

where

FMne) = ) (2-9a)
B eV -9

(y

—— '
) (ne) = 7 o) (2-9b)

[ PZ(.E:#!) EshﬂJZ .



To write Jdown *%the difference =quations In <he Torm of exact

differential ones we may use a § -function:

2R e V() tosgslt)
Ts(t)

M
\

X ), (2-10a)

. _ Wrglt) 4 [ﬂth-ﬂsit)({)s
wr"‘(t) Tslt)

] o — —_
L0 e Yo 1009
»

where Tg(t) 1is the period of the synchronous particle and one
iteration of the mapping. Here t'= Q(t)t+t' ; f{e)=2T /Ts{t)
and the & -function of pericd 2R is given by the Fourier
expansion

= Loesnv). e

1 a0
Sty =g (1 + 2L

After neglecting rapidly oscillating terms in Eg.(2-10a), we have

eVvit) cosdlt)
T:it) {2-12a)

m.
1
-

. . T [ 7 + 20 €
yow e, TR ]

Wr4 Te(t) {(2-12b)
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3. Hamiltonian Tormalism

Inder %the assumption that the damping term in Eq.(2-32b) is
negllgible in the short pericd of <ransition c¢rossing, we can
congtruct a Hamiltonian formalism For small-amplitude
ogcillations. VNeglecting the damping term, we find [ X ,€ ) to

s

be a canonical pair that yields the Hamiltonian

. l —— —
H(x , € 5t)= -T-l—mfztk W] [ 7 e’ + 4 7““”"3]

e Vi) (os $sit) g (3-1)
2 Ts{t) .

We shall assume that the synchronous phase angle 453 Jumps

discontinuously at t=0 in such a way that sint‘P5 i3 eonstant and
sgn ( Cos P ) = - sgn ()

We shall measure - from this instant. Now we introduce a secale

change of the independent variable t by

t eVt) cosd; ()
Ty =) [" at (3-2

Tslt)

Note that the new independent variable 7Y hag dimension of
energy. With the above origin “or the time &, ™ is always

pesitive at all t, namely,

t —» O~(approaching transiticn), then ™ = 0+,

0+ = t (leaving transition), then O+ =2 .
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Such a scals 2aange yields the new Hzmiltonian

[ 21h + Tsleddie

H(x, € )=
e V{t) cos dslt)

v I
[3 "€ +3 '7“‘(«:163]
(3-3)

2

-+ X,

L
z

For later convenience, let change the notation of the eznonical

variables to

X =P {3-4a)

€= -x. (3-4b)

Thus we obtain the Hamlltomrian in the simple Form
“ . T { 2 ! 3
H (x.p;x)z =P + 5 AM0T -3 A1), (3-5)

where

-A (t)= _ [ZILI'% Ts‘ ['ﬂ&s] ’?”({-) - [2Ih+Ts[§.)",s] [d(nl l/f:lt)]

e V(1) cosp gt BrOE ) eVie) Cosdslt) (3.6

A(0) = - 7ce) = 2B S (3 6

eVit) cos Pslt) (B (Y Estty] ‘e Vet ) coscps (t)

b : y 385@)
{aths st ] — oo [atht Ts) ] [of .._P_S_f_]

The form of Eq.(3-5) reminds us of the betatron oseillations in a
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transport Line with 3 unonlinear component. n  analeogy 4o
certurbed hetatron oseillations, we separate the right-hand side

5>f Bq.(3-5) into unperturbed and perturbing tsras

z

K=, p5 ) = 2P+ 3alox]

[

{3-7a)

]
k2 (x.p %) = -3 a, (=3, (3-7b)

In the next section, we shall discuss the phase dynamies in

the vieinity of transition by studying the above linear

Hamiltonian de{
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§ 4. Linear Motion

-

We consider the linear system described by

K x.p; )= 5 [ P+ Ak x?]. -1

He make the assumption *that the peak RF voltage and the
synchronous phase angle are constant near transition. At  the

transition energy, the quantity
x
o(“” — 1/Ts(t):

vanishes. Then, in the vicinity of thils energy this quantity can
be approximated by the first term in a Tayler series expansion of

Eq.(3-6a) for deviations of ¥ from ¥y . We can therefore write

4anth [vi@)- ¥y]
Aol) = — . sy
Bé (0 ) Eylo) eVio) (03dhste) ¥

Further, the quantity ¥ (t)- TT can be written in terms of

Ys(ty - ¥¢ = ]:s t
eVS"“¢x
lMoC"Ts

Sl‘“‘bs“’)

= - T (4-3)
mo(? (ossto) '

Substitution of Eq.(4-3) into Eq.(4-2) yields



A, () 2 47h sinds
BLES &reV rosds

g

ere all gquantities are evaluated at transition. For the sake of

later simplicity we set

2 4—1("\ Sl‘hb;
* =

L 3 *
8’ Es 5'.( eVos'd;
We point out that the system represented by Eq.(¥-1) has an

axacth dynamical invariant, which is designated a3 the

"Courant-Snyder invariant" /8,9/

1 . 2
Tx.p: ) = 2t Lsyx- St } (4-5)
* ) :'.sm{"c*[2 t ply,

where S (%) satisfies thne auxiliary differential squation

E S

I 1o T _
> S ~ 3§ tA(OsT= 1. (4-6)

When A (X ) is constant, the invariant I is 1identical 50 the

action variable of the system if we take the initial condition
S(+o0) = 1 [VALs) , S(xe) =0, (u-7)

In the following, §(Y) will be called a synchrotron amplitude

function. For a time-varying functin Ae{Y ), from Eq.(U4-5) we



ow that an infinite sequence of phase points that have a certain
constant value of T at an arbitrary tSime behaves as a deformable
moving =2liipse I the phase space {x,p;¥’ after that time. The
form of such a ellipse, called an "invariant ocurve" in  the
following, ‘s uniquely determined by the zuxiliary differential
equation (4-5) alone. We consider the invariant curve deseribed
in terms of

I p;xd)= 1o (ig)

with constant I,4. The quantity I i3 equal to the value of the
action variable of the infinite set of phase points that comprise
the invariant curve, as mentioned above.

We may characterize the ellipse by two parameters E ' 5‘

which are functions of S{T) and S{%)

E() = y2I,5(0), (4-9a)

| ‘3(21)/4]
8'(1):/21., e . (4-9b)
S

They are the maximum extent of the ellipse in x and p,
respectively.
If we assume that all parameters change adiabatically after

T =M1, we can choose the approximated initial conditions



§(1)

x

S{v ) = I/Ja,(m R é('l'.)=0- (4-10)

At ¥ =7, *he ellipse begins to move, following the Gtime
evolution of S(Y ) which is determined by Eq.{4-8). If we know
the values of §${T), :S(T) at N =0, which is the transition
time, we can evaluate exactly the maximum upper or lower height
from the synchronous energy £{0) and the half paase spread Q(O).

For the present A (X ), we kiow the general solution of
Eq.(4-6) aan be written in the terms of RBessgel

“unctions (3ee Appendix A),



g r 2 2 : ‘
T N 3 N2 “La11)
ey = (Tt {a M) + b, ) -2 (ab LT 0wy )]
where a and b are arbiitrary coefficients that must he determined
by the initial conditZons (4210}, and

2 - Lok

After mathematical manipulation ({(see Appendix B), we have the

coefficients
3 2 3 2 7
qQ= "2'-2|J.)§ Ql)l*:le’;{g') [;‘lzf_;(i|)”y‘5(gl)+ TL]
(S \ (4-12a)
- e | 2 @INy(2)) + -
1(2:”,’3‘?!)[- RV =]
=3 : “(eNf9.+—2-zf_
b= 3 2Ny (&@) -o-lzlj_g{?‘)[z.j_% Ny (2,) .,t] (4-12b)
wheraea

2 3/
2,z ?"ﬁ o) (4-13)

The coefficients a and b have besen wuniquely determined by the
initial conditions and we now know the exact time evolution of the
invariant curve, Tn particular, we are interested ‘n the
invariant curve ‘uast at ‘Gtransition; 1t represents a bunch
anvelope. From Eq.(4-11) we obtain the values of S(7%) and

S(X)Y at 1 =0 (see Appendix C)
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LSRN _a o
Sl = 3 (3 ) (dé- !-.1(2_/3) » A-THa)
. T Q Y
S(o) = % [- = 7 (ab~ %)2] {4-1lb)

Introduction of Eqs.(4-14a}, U-18b) into Fqs.(8-Ua),(UY-Ub)} Ieads
to analytical expressions for the maximum upper or lower height
from the synchronous energy and %the half spread arocund the

synehronous phase at transition, that s,

$0)= £ (%) \' sty/s(%) (4-15a)

§(o) = 8(%)][1&4&’] s(%)/ Sto) . (1_15p)

e consider the case with the initial conditions at 7, -+o00

where &the Tlinear Y -dependence of Ae( ) still naold to good

approximation. At such a region, the Bessel and Neumann functions
become sinusoidal with equal amplitude and quadrature phase

relationship, namely,
jy3(8|): 2fTE, (o5 (2.-5'“—/(1))
Ny (2= {22, sin(2,- s®/2),

1)/3 (2,)= -JZ‘/T[i, (OSfit'i'Tt/e?-)
='\’2/TE2. sta(2,—ST2),

also (4-18)
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Substitution of Tq.(4-16) into Egs.(4-723) and (U4-12b) yields

(17

From Eq.(%-17) we can cbtain a universal relationship between
q '

and S

. 2 '/
tor50) = Fn sy [+ =2 1"

2
"3 $()E(T). (4-18)

Equation {4-18) is equlvalent to the result obtained by
Hereward /11/.

Predictions of the linear theory are not discussed in detail
here. Nevertheless they are in very zgocd agreement with numerieal
simulations. These simulations have been performed following the
exact mapping =quations £2-1a) and (2-1b) where  aonlinear
kinematic terms are not ineluded in order to verify the validity
of the linear theory. In addition, the 1linear theory discussed
here which provides exact time evolution of bunch shapes can
re~establish the well-inown story /8/ associated with transition

crossing.

§ 5. HNonlinear Motion



The mnonlinear <inematic +erm has Teen distinguished as a
perturbing term in £9.(3-Tb). Tt gives unignorable effects Lo the
liear oscillztion only during a very short periocd when a particle
¢rosses  the GLransition energy. Tn arder P, assess its
quantitative effects, 1t {3 o2onvenient to use the action-angle
Tormalism.

Under the linear canonical transformation

Q = §'x,

P=-¢X~+ 9p,

where $(%)=yS{A) satisfies the auxiliary equation

P 4 ALV § = £73 (5-2)

the Hamiltonian {3-5) reduces Lo

5
K(Q,P;x) =5 [+P+ -;-Qz-%a“")QB]- (5-3)

If a change of independent variable

~

8(1) = S'r ?—z(ﬂ d¥ + 6o, (5-4)

z

‘g made, the Hamiltonian (5-3) becomes

3
Ka.p;e) = 3 (P+Q)- "?’“'”Q- 56
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Furthermore, ‘ntroduction of the action-angle variables (Y,
Q = JZJ' anLP)
(5-6)
P = J?-‘J Cosy,

yields the Hamiltonian

5 3

G(¥.T:8)= 7 - —g- A7) (27)/25‘\“3“\’. (5-7)
From Eq.{5-7), we derive the canonical sgquations

¢ = %? 21 - Paum (T siwi g, (5-8a)

nll =-Z_f}, = A (23)'7‘ S’ tosyp, (5-8b)

If the perturbing <erm n Eq.(5-8a) s much less Zhan “he

unperturbed term, that is, small compared with unit, we obtain to

firast order

etr)

3 V2
J(ew) =~ J(6kd) + [fj(g(m\)]/zg £ (¢ ) AotV s Bt} 105 O1) d(%g)
Ol

Using the relation (5-4), we have a more convenient “‘ntegral

expression
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*

Jle) = F() + [2](7;)5/25 E(1) A, () s B17) tos 6L7) dy, 15-10)
A

where the lower boundary of %he integration will be determined in
the following considerations.

We note that the period of phase oscillation has the same
notation as the synchrotron amplitude function S{% ) because the

oseillation frequency s described by

’ 1
= ( = —— (5-11)
v w(s) 1 & 4 I

From Eq.(5-8b), the typleal modulation period of the perturbing
term is S(X)/2. Generally, the value of S{%;)/2 1is much
smaller than °f; . This fact means *that the effects of the
perturbing term are averaged out , at least, at the early stage of
non-adiabatic motion (0K $£7 ), So it is reasonable for us to
take S{(0)/2 as the typical 1lower boundary Y, w#hen the
perturbation begins to retaln net effects. Fortunately, ‘n many
real situvations, 4, is sufficiently small so as to satisfy the

condition

3
() = -;-'-ﬁ"(z/‘ « 7., {5-12)

The relation (5-12) enables us to describe $(T) or S{N) by



glementary Sunetions., Tn order to do this, % 1s necessary 43
wiow the Zesgel funection for small value of z. In Ref.13 we

observe that

'3

! 2
@) = —_ (5}, ‘5.
]-‘/3 2 I_,(4/3-) (Z ) ' 5-133)
o tos /3 2 Y3 I 2 -1/
Ny, (2 )= sinth [r{m) (;Y- {,(2/3)(;_ ] 75-13b)

Considering Eqs.{5-13a) and (5-13b), we obtain to first order with

respect to "

S(t)= ¢lt) = (-%t- )L (~ 94 ~ Ir') (5-14)
where
_ 4 9
b 3r(43)r(f3) (5-152) .

'Yy 1

q4a (—5—343 _j_(ab_j_ -
3reh) MR W plfI0 (#43) -

{5-15b)

Further substitution of the above result (5-14) into (5-4) yields
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x
B(x) = gq \/s(y’) d’ @,
2 (5-163

V) [y (B earer) - oy (FVErmem] + 60

I the other hand, A,(7T) can be expanded with respect t3 Vs - Yy

and to first order

=
ath Lon T3B5/2 4 tau
00 - - ] ; [1 + X3 Ps “c} (5-17)
A5’ (mol Y eViosps ¥y ol T
[
where aﬂj&iﬂ; is the nonlinear lattice parameter. Using

Eqs.(5-14) and (5-17) , we write the perturbing integration in

Eq.(5-10) in terms of

aJ = [zj(h)] ﬂ(o)SIz(o)g (i- %ﬂb(n s Y)Sm&h)useh)d'c
"2

& [2] 'nﬂlﬂ (o\S ru\g [|+ 4'1:““‘ ¢’s - ?\r_) ’L'] stw 8iT) tos BT A,
WoC* ¥ (5-18)

Here we set

4tan O 32-

v — " (5-19)
' hﬂoczr" zr ’

9(ﬂ=3zfog (% *3,)13,,, (5-20)

where

9.2 (%T("%), Iyz5(0) = (%)1% 3.9:'—31 -Poa (-;é-* ﬁj)-l'f)n,
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Tsing the identity

[ ros6(t) — (o536 ] ,

. !
siw B osBIT) = =

with together (5-19), (5-20), we have

3, ~
8~ + I a0 %0 § (1eg0)

B!

o318, 20y (5 + 8,)75] - 033 [ Doy (59, B sz

We are interested in the value of &J at T =0. This value is
evaluated in the following way.

The integration to be performed is

o]
I '-"!E.d“'{(lfﬂ."()g s [glﬁoa(-;':««g, )1'5,]-— (osB[jJ?[{ﬁg),E}'i-az)

Change of the integration variable £o

W= ja-g"} (‘;;"‘ 3;)“ 30,

hd

oM w
T =€- 33( dw €% (1- 3.3.9:+%.9.
W]

i

|

wfy

1}/3‘)

x (5-23)
(Cosw - (os3w ),

where
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“1 = 9, log (—%+ 3.)+%. =6, (5-2a)

92 =0utog 8+ Bus Gudoy [9/(0-9:)]+0, . (52

The integraticn of Eq.(5-23) is trivial. We obtaln

__-3-:/3‘; 1 \'”‘/11. | | W2
T-¢ < (I-ﬁ.jaﬁs);‘/g:_” [e (—3—;{0510 + SahW)'w'

Al w2
Vgt +9 e (033U + 35'5) {M }

--Ea/ 2 ! 2\0/31
e {‘1/3:11 Ie

w,
- \ [ew/"(—;-';ros’sw 1-3;-'-.31»)’ 65_25)
4’3:""' wry,

ot}
(—;—l"fosw -+ s -‘“W) ’w'

Some of the intermediate steps in the calculation are explained in

Appendix D. The final results are
- 9.9 3(1~9.9.4,

N

3

){'[—sm@ «9a (058 - 3,047, +1) T5w0,

+ [ (os® + 9.5iu® - (if29,+ 1) R rosB.,I—
- 3&55(“313133)

Trqar { [~ Sin36) + 3320538 ~39.0/29.+1) ] 5w,

+ [os30 + 33,5438 = (123.41) ] 0530, }

+ 313233:

4*32 { [—2S|‘u@ =+ 3‘;(05@ “31 (I/&;’ﬂ-lfj 5,'.‘96

“4 [2(05@ - 9. Siw () —2_(1/23,-“)1] (oseoi'
- ﬁ'lﬂaz 3:'

3- 19 3 { L" 2538+ 3?1(053@" 3 3;('/23;1-])2 ] Si'm3f, (5.26)

+ [2c0538 +35.(0538 ~2(t/28.+()"] fos?Qo_}

where
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@ = 3. 909 Ty/ ('i"gl"; +1)]. (5-27)

The value of T is dependent of the Initizl phase &, . Tf the
maximum and minipum values of T are denoted by Imax( > 0) and
Tmin( £ 0), we can writs the positive and negative changas of the

acticn variable in terms of

_ [2 B (Tz)]’/z
<+

3
AT)y = o) S0y T rex (5-28)

where the suffix symbols of the left-hand side do not always
correspond to those of the right-hand side because of the negative
sign of 1.(0). We define the emittance increase parameter, which
is independent of the initial emittance (the initial value of the

acticn variable) of a particle, by

! A
be = 5 Mit0) S70) Lome (5-29)

I% is assumed that there are no net affects of the perturbing term

up to T=7", and we can take the value of J{ % ) as J(¥2). Then

ey U+ W 17(?.)] ¢ TLT 1+ K, 17“‘-)], (5-30)

Thus incoherent changes of the action variable give an unsymmetric
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ellipse In +the phase s3pace. Tn particular, we can obtain
expressions for the maximum upper and lower height from the

synchronous sanergy and the maximum and minimum excursion from the

synchronous phase as

h !
S o)t :iz]'f't.)slf’)[!* K 2.]1?.)3/'-' #(T.)Lg%’)[lf Kz];}?r.)f'

(5-31a)
S("1) Yo
§loyrax = & () TRY L1+ Kaf2Tm) ] . (5-31b)

where the value of S(0)/ S{%, ) has already been derived in the

previcus secticn.

§ 6. Applications

The theoretical considerations are applied to an example that
corresponds 452 the nominal acceleration mode in the FNAL Main
Ring /12/. For this example, several parameters of acceleration

are listed in Table 1.

Table 1 Acceleration Parameters of the FNAL Main Ring

Harmonics h=1113
RF Voltage eV==2, (MV)
Synchronous phase 4}:235.87o

Transition gamma ¥;=18.8
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Transition energy E =17.639(Ge")

(M (e}
Nonlinear lattice parameter o [ =0.1L (Ref. 1)

We choose %, as

n, = wos o) (Eglo) - Eslr))]

"

559. 9428 MeT, (6-1)

where E.;(T.) is enough far from transition. TUsing the parameters

In the table and the value for %, , we getl

|

arh ls'ad,l e _q -

® = { P ] = 4,089 vi0° MeV, (6-2)
Es(0) ¥y (o' lev]

then 2 3/
2, = 3 ] T}z = 3.6120

|
Sle)=1/ /%7 = 103.3476 MV (6-3)

From a table of Beasel functions /14/, we read
Jyz(zT)=-0.2736, N'/}(z1)=0.3172, J_zé(z1):-0.309, (6-4)

Substitution of these values for z; ,Jig (z1),Ni4(21), and J,aé(z;)

into Egs.(4-12a) and (U-12b) gives

B
i

0.4056 + 0.3296 + 0.1877 = 0.9229)

(6-5)

o
i

0.5451 + 0.443 - 0,9881,
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From Eqs.(6-2) and [5-5} we get Ghe value of the synchrotron
amplitude funetion at transition

-y@
1y q
so) - = () (5) ey

- 277.503 (MeV),  (5-6)

Here, we use
[7¢173) = 2.6801, €273y = 1.3550, F(4/3) = 0.89338 7157

The value of the coefficient R,(0) is

2
2Tth [ Olm/d(” -+ BPS {03/2 ] - -3
l;‘]_,lo)": =|-13q3’"0r’ Nﬂz(fi-?)

T ps"’(o) (wolY eV(o) (osd, (o)

The S(0) above leads to the value of the typical boundary
My = S{0)/2 = 138.7515 (MeV) (6-8)

The parameters 9, 32 in the integration cof Eq.(5-18) are

?z = -0.8279/a = —0.8971’
{6=9)
g, - 3ens gt (AT (NP oy g
' 2P (443)\ 3 s
then
@ =49, Doa L /(—- t 1) ] ==0.7312 (6-10)

Substituting these values for ¢, , 31’33’ ® into (5-26), we

obtain the integral I in the form

= {=39.1614)#sin(B0) + (~72.9502) *cos (o)

+(71.98L0)*3in(30,) + (-5.2259)*cos{38,), (6-11)
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Thus Imax = 96, Tmin = -174. (6-12)

From Eq.(5-12), we have

By =1/2%0.9577%10 7 *4622.76190179 = 3.85%10 °
(6-13)

B_ =-1/2%0.957T#10 #4722,7619%96 = -2, 1241102

H

Finaly, substituting +these values for S{0), S into

Eq.{5-37a), we get

]
B0) = $(T)*1.6386 * [ 1. v 3.7871%1070 § (%) 7
(6-14)

$(0) = £ (% )%1.6386 # [ 1. - 2.0804%107° & (%, ) i
L1 .

vh

For several 1initial emittances which still allow linear
approximations, results obtalned from Eq.(6-74) are plotted in
Fig.2. In the same Tigure, numerical simulation results are also

Ziven. We see quite good agreement.

§ 7. FEmittance Blowup at Transition

Wnen a particle crosses the transition energy, the electric
phase of RF is abruptly changed externally to TU - ¢s . Such a
manipulaticn yields time-reversal of the phase motlion for the

dynamical system described by

2
Mx.ps <)== [Pt + Ael0x ], (7-1)
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because of the change of sign of the cosine funection in

1
ity = g -
o)

[ eV(t) fosdltr 7 ¢

(7-2}
Tt)

will lead to time-reversing as seen in Flg., 3

T-"a't;. 3
A ()

- .-l

A 4

1N

Transition

while the sign of AL(% ),

quh € riey - %]
Aol = — — 3 » (7-3)
Bs Y Es(t) eV os CP,lﬂ 5r

8till remains unchanged due to sign changes of the denominator and
numerator. This holds even 1f all higher order terms with respect
to phase are included. Consequently, emittance blowup during
transition crogsing can't in principle be explalned by synchrotron
ogeillation theory, which restricts itself to ordinary pendulum

oseillations with adiabatically changing coefficients.
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On the other hand, th2 coeffizient of the nontinear “inematie

Larnm,

it [ o + 3(3: ft)/?—d’;‘(t)]
() = - (7-1)
LgsmEsit)]‘evu—) osstt) 7

changes its sign after the phase-jump. The dyamical system
including such a term is therefore no longer timereversible. In
other words, synchrotron osceillations accompanied with «inematice
nonlinearity are singular at Cransition. Just after passing
transition, a bunch suddenly meets an unmatched bucket. This
leads to actual emittance blowup. The magnitude of the blowup is
proportional to the amount of emittance distortion due to the
nonlinear kinematic term. Thus we may write the final emittance

blowup ratio during transitlion crossing as

b+ 2 - Ko- 2T, {(7-5)

3
]

where J( 7, ) is the emittance or the value of the actlion variable
far below <Lransition. The final blowup ratio R is plotted as a
function of the initial emittance fbr the normal acceleration mode
(h=1113) 1in Fig.4. Results of measurements are alsoc glven in the
figure. The small overestimate seen may Imply that the exact
nontinear lattice parameter 313 somewhat smaller than the value

used in the present calculations.
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§ 8. Conelusion
A linear olassiczl theory of transitizan, which 13  2quivalent
to the sual >ne of matrix form,/31,76/ has bazen developed by

introducing the synchrotron amplitude Ffunction. 43 a3 ratural

&

xtension of this linear theory, a general method which relies on
perturbation techniges to assess affects of ihe lowest order
nonlinear xinematic *%srm i3 presented. When these theories are
applied to the ecase of the FNAL Main Ring, they agree very well
with r~esulis of compubter simulations and real measurements, This
emphasizes the Importance of the higher-order chromatieity
control, which can be done by adjusting the n-th and 2n-th Fourtier
conponenta of the sextupole magnetic fields (n= horizontal
betatron Sune) /4. If Aa(7T) is reduced by such higher osrder
chromaticity control, the emittance blowup discussed here will be
improved.

The present analytical approach can be also used 52 derive
2xplicit sxpresslions for emittance inerements resulting from other
nonlinear forces which become significant, tn particular, fn the

vieinity of transition.
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Appendix A General 3zlution of Auxiliary Egquation

When x,{Y Y and x,{%) are linearly independent s->lutilons of

“he time dependent 1Linear =quatlon

x + ASf0Ox =0, (A-1)

we can write a general solution of 1{t3 modified nonlinear

auxillary equation (or snvelope equation)

.o 1
 + Al)F = H3s (a-2)

where $(t) 1s the square root function of ${(7), in terms of x,(% )

and x,(% ) as

V
P(r) = (Cixt+ X2+ C;I.Iz)z. (A-3)

Squaring both sides of {A-3) and Differentiating with respect to
the independent variable { , we have
. . - ‘e - .
20+ 208 = 20 x 120X x, + 202X, +2C. % ¥,

t Csxixl -t C3 j(u 4:(.:. + 2‘C3 I‘qi’l . (A-u)

From (A-1) and (A-2), Eq.{A-4) reduces to an equation ineluding

firgst time derivatives alone. ?urther, using (4-3), we obtain

- . * P
LHS = (2¢,%, X+ 2000+ GX X+ (13X, Yz) + 2
2C ¢ xﬁ‘f’ C:.I.z + Ci Z|X).) <y T.L'f' (17:1‘ G

- 221) ( Qe X+ Gt ),

.1 Ll [ ] -
RHE = 2C:17, +2G 2+ 26T, 2 — 20 (X' GG+ G X2

Equating both sides and eliminating terms, we find

) - \2
(¢i- 46GXLa- )+ 4=0, (4-5)



from (A-5), “he arbitrary o2onstant 2, ,%2 , and T3 are not

‘ndependent. Namely, T3 i3 determined from C; and C; as

Cy = ¢ J4c,c,_- 4 (4-6)

WJ—

where W is the Wronskian X, 2y - %, X; , which is 2 constant.

Tonsequently, we can write the general solution of {4-6) as

Sty = OX O+ GXTe) -2 ‘C.Cz._ :;‘,': X () ¥alr), "A-T)

For the present case

a0) = B¢, (A-8)

the independent solutions of the linear equation can be written in

terma of Bessel and Neumann Tunctlions of order 1/3,

1 3
z, (%) = " N, (“52-' 8% )} (4-9a)

3
() = A Ty ( %ﬁ ’t"). (A-3b)

Thus the general solution becomes
2 3 3
s(Q)= ¢ [ o by, (280" )+ by (2875 ) -2 )ab- L ¢

{A-10)

Ny, (3YA) Ty (255) ],

with
W= x)(0) %00 - x,(0) x,(0) = 3/TC,

This iz in agreement with the result obtained by Lewis 710/,
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dppendix 2 Particular Solution of the Auxiliary Equation (U-6)

Since the initial aonditions are

!
ste.)= 1/ §2
()3 1/ 1 > {B-1a)

S(e,}) = O, (B=1b)

we have _mmediately fwo algebralic equations for a and b

6
-ﬁ_t'zl §) (B-Za)

z /.
aN, 1 bLY - 2(ab- =) TN, =

%

’ ’ 1 / ’ 2 {B-2b)
avyl) + BT T = (ab- ) RNt TN )= -5,

where V i3 1/3, the prime denotes derivatives with respect to z,
and all Bessel functions are to be glven their values at

z1=z{%,}. From (3-2a), we have

(ab- — /2 any’ + LIk~ ¢ [T 'B-3)
[#] - ——— = B
LS Zj-v Nv ’

Substitution of {B-3) into (B-2b) yields

NJ(U:-J.; - N\Ju, ) ju(ju, N, - j-uNJ, ) S(TJN\J*T\JNJ) 2
a + b =- -—(B.4)
27y 2Ny I M WA

Using tae formula
/ / - / ,
TNy = TNy = 2/T3, {(B-5)

we have
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ax 2y o 2 (g o 2N
v TN 38

{B-6)

TFf wa substl-ute {(B-6) “nto (B-3), square bath sides, and compare

zorresponding terms, we obtain

2 !

b: ‘%EIN\) =+
627

, 3 7%
(2 (30 TuM) t TN = |

Further, from a recursion equation for Bessel funcetions
/ -1
j\a - Tv - - v ]-v 2’

and the relation (B-5), we find

/ 4 / / 2
j-v v, + Tu“v ‘Ju Nu + JuNy + T2

V 2
= 2(73,, " ”g‘jju) N, + el
Introduction of {B-9) into (B-7) leads %o
=
3 2 3 .ji )
b= '{?l”g * —-—;—(3.-};_.?\!0* ™ /.
. 2. -Ip

Thus we also find

3
28, Nal

T 6(217;:.4 Nyt ‘/7_(')_

N
(z Nyt —
l];“ vor TT?lfVol

3 L
a=‘i'2|7‘) -

Appendix ¢ ZIvaluation of S(0) and $ {0

We set

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)
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!
S = 0w (X) Y [aM:;(i’(r)}-rL];:'(e('zl)-?_(alr-_%-)&j,fi‘l-vﬂuvgﬁﬂ) (c-1)

.0
2 J/
where z(% ) is -_'3-'5'{ ¢ ., Using the formula
Ny, (2 )« [s T -3 -T,],  «o»
sy T’S

5(0) becomes
(-';-)m o] L 343, Ty 235, ) STtal F)r; 3,1 }‘0-3)

If we retain only the lowest order term of the series expansion of

the Bessel functiors, we have

f )
£ Y L
I/J (20)) = (—;j rlsf3)’ (C-H4a)
-|/3 Ar'/t.
Ty(zta) = (—5') =Ty (C-Ub)

Substituting {C-4%a) and (C-4b) into (C-3) and taking its limit at

Nt =0, we obtain

SO) = 5 (—) ( I"'(zli) (c-5)

S (0) can also be evaluated in a similar way. We set

2

. Corm
Sloy = A%_‘w (“3')

. / f q -
+ 2% R [ aMy My +bTJy, T (qb-?jzf')'éwhf ’J'hM,:)] S’; (c-6)

i [ aMy +bJy,— 2(ab- —)’ TNy ]
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where dots denote derivatives with respeect to ' , primes ienote
derivatives with respect -2 2z, and 3ll Bessel functions are
functions of z(%x ). Tsing Cformulas {B-10), {C-2), and the

recursion relation (B-9), we have

Ty, 2
Ny Ny = 5 (Tg- 2T Wiyt Jy 55 7 53 1 ),

7-T72)
/ 1
T = T (T - 3734, (C-7b)
L+ Ty = ATy 3T 2 T) v
Tg Ny T I8V sty e N T Ty

Retaining only the lowest-order term of the series expansion for

J3 (2(%)) and J-'-L/_JZ(%))’ we have

%
— [t ¢
3 At
. (X . ‘-
Ty 1200y = (3) ) (2-8b)

. 3
From YTz = k"(/‘ , the limiting values of the component terms at

" =0 in (C-6)} become

f 2 1
1.2 % -1
, R (E)T AT
Lm 3 Jg Jos = ‘-?'"o t(s ) mgf;)/m;n ©.
s B g [RY3T3 aet/1+ ] N
-’%_"‘r 2]-/.»7-/5 s 0 T‘[ T-(e,/;)r(:ﬁ) =0,

-lz‘! 3

y )/r( ,)z/m/s) T PRI ) 2

, /3133 A=Vt f

4@1““‘ 3 - - _,L‘un 'ﬁ. 'i -—3--——-——— ed
'\t-'N"z _J-l/)—ffi ~3e 3 79[,_/5){'(;/3) =0, (£-9)

D ¥ Ty Ty« g 2@V )
e T e LD, =0

L 2 Loy Typy= i % (—{‘TI/‘- ’
=0
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Substitution of (7-9) into (£-6) yields

_ 2 8'(3 .
S(o) = .QAM<[Q j-_/g = ]-1/3 ) T a(" ’;’ j}{; 7—5‘1‘, + %'? T’:‘ 14/3)

) 4% by
+ (b LY (7 Ty Ty 3;: T8 7 ) ]

(C=10)

T [-— “44a b — _ 12 z’té
remrn) 2 Grapyran) wE )jl)j ’

Thus, we have
: 2T q ? A
Ste) = == [‘ﬁ t (ab- -ﬁ-a.) ]- (=11

Here we use the relation

r(x3) 7(f3) = ;35

Appendix D Caleculation of Perturbing Integration

One of the four parts in the perturbation integration,

dzgl '\U/
Ip = € l Tr 1, ; l
’ ARY TR DL
is calculated as follows:
W,
. $20-99%) -5/ w,fg T
Ta- —T:—ﬁ:_z-_ < [C Etbsw,_-t' 9; Smw,,}- 3 (foswu*? Iluw')]

(=3, %9) ¢ do T,
= $u0-3.9 10[ 333 ¥ ros wi + gzg,'“w,)-eﬂoﬁg;(l"“)(“" Wit 9.5 w:)]

\-13;

(339D

tt 32}

f 9,005 Lo gl 0 gL bl -89
-9, (—'H) { 050 o+ 3;_50.w9.)$ ,



1,. Ah-230,)

lﬁ'jLZ

{ESj‘h@ -+JJOS@-—?,{%1;)};;LB.
N E (o5& ""gz s —(:-;-‘ﬂ)]rosgo ‘% .

where

\
® - g._.ooa l/&——-——--3&+t.

The other three parts c¢an be caleculakbed in a2 similar way.

(D-2)
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Abstract

The phase dynamies af small amplitude synchrotron
osecillations in the vieinity of the transition energy is discussed
with kinematic nonlinearities included. We introduce a
symchrotron amplitude function analogous to the betatron amplitude
function and solve analytically the time evolution of bunch
shapes, where the kinematic nonlinearities result in unsymmetric
bunch shapes. In addition, the above aychrotron oseillation 1is
singular at transition eroasing because of the kinematle
nonlinearity. TFrom thls simple fact, we 1ldentify an inherent
source of bunch diffusion. A method for estlmating 1ts size is
presented. When this theory is applled to the case of the FNAL
Main %Hing, the predictions are in good agreement with numeriecal

simulations and are not inconsistent with experimental results.



COmax
§(z) 2.C | | ] ! ! !
" ! i ] I |
' | { || | ! |
! ! | ! i P .
.8 | I ‘,‘ i _m
i | L | ! ! !
O e e R 1 T S
— r ) T L | !
.€ i 'i _I'f""‘-hul el
| | |
h9 R
| | ! i
g | l ! |
' | :’ T{'!e?r)lr
1.3 B
% I | !O .+ Simulation "‘J
2 | NN RN
&E(0Ymin ¢ ‘ | | J } !
‘E('ﬂ] 1.O | >
10 20 30 40 " 80

3 (1'1 ) [MeV]

————

’T\ Momentum
f{O)mux corresponds tc the maximum momentum
deviation R just at transition . T—_.—. —_

L/
s

f(O)min corrgsponds to the minimum momantum
deviation h

Phase

<
- ¢y
v

Fic. 1 BUNCH SHAPE AT TRANSITION




2J(T1,).

machine study

- Resuit of

J (‘l‘l)
[Mev]

20

I5

|

1

i

0.20eV-3ec  0.248Y-sec

11

Jj,_TJ,
5 10

R-{=2K,-

_

1.0
Q.5
0.4
0.3

0.2

Q.1

0.0

0.22eV-sec

FIG, 2 EMITTANCE BLOWUP RATIO



