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Abstract 

'I'he phase dynamics of small amplitude synchrotron 

oscillations in the vicinity of the transition energy is discussed 

with kinematic :1onl tneari ties 'ncluded. We introduce a 

synchrotron amplitude fun ct ion analogous to the betatron amplitude 

fun ct ;_on and solve analytically the time evolution of 'ounch 

shapes• where the kinematic nonlinearities result in unsymmetric 

bunch shapes. In addition, t'1e above synchrotron oscillation is 

singular at transition crossing because of the kinematic 

nonlinearity. From this simple fact, we identify an inherent 

source of bunch diffusion. A method for estimating its size is 

presented. When this theory is applied to the case of the FNAL 

Main Ring, the predictions are in good agreement with nume.-.ical 

simulations and are not inconsistent ·..ri th experimental results. 
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§ 1. ~ntroduction 

The effect of nonl i..near kinematic terms I 1, 2, 3, 4/ is studied 

for energies below and above traus i. t~,Jn energy. ~hese nonlinear 

kinematic terms are stronger the narrower the bunches. The 

momentum '.1eight -:if the bunch passes t:1rough ~ maximum at 

transition and the kinematic terms therefore have a maximum at 

transiti~n. ~hey can ditort the particle orbits in different 

ways, and they may lead to longitudinal emittance blowup. 

IS/ 
In recent experiments in the FNAL Main Ring, bunch lengths 

were measured at two energies, 14 GeV and 19. 7 GeV, below and 

above transition, at an average intensity of 2.6*1010 protons per 

bunch total Main Ring intensity 2. 8*1013 protons per cycle). 

Values for the longitudinal emittance at the two energies have 

been jerived from these measurements. The results flere 

0.22 eV-sec at 14 GeV and 0.28 eV-sec at 19.7 GeV, indicating an 

emittance increase -!_c1 ':.he region of transition. Bunch lengths 

were also measured at transition (17.6 GeV), where they become 

very narrow (about 2.5 nsec). Furthermore, in order to clarify 

the reasons which lead to this longitudinal emittance blowup at 

transition crossing, m3.ny extensive computer simulations have 

been performed independently by several people, including the 

preset1t author. The simulation results, which strongly imply that 

the effects of the nonlinear kinematic term are large, are 

surprisingly consistent with the measurements. 

It is the purpose of this paper to calculate the effects of 



cionlinear 1-:ine!Ilati.c ':erms ::1 the ra.nge 3row1d the transition 

energy and c0mpare to results of computer simulations ai1d real 

machir1e studies. 

Thi.s paper cs divided in four main parts: ~:1 the first 

part ( ~ 2, 3) we derive difference equations for acceleration in an 

explicit form and transform them into an differential form, which 

enables us to construct a Hamiltonian formulation for longitudinal 

motion. Here we shall restrict ourselves to small amplitude 

oscillation. :i.ddition, only the lowest-order nonlinear 

kinematic term will be retained in this formulation. In the 

second part (~ 4), introducing the notion of a synchrotron 

amplitude function, we construct the " linear classical theory " 

of transition en a form analogous to betatron oscillation, where 

the nonlinear 'cinematic term is neglected. In the thi !'d 

part ( § 5), using the perturbation theo!'y, we calculate increments 

of the longitudinal ·=mittance as an effect of the nonlinear 

~inemati.c term Jtl ::near motion. We ident:.f':; this effect as a 

r-eason of the unsymmetric bunch shape just at transition that has 

been recognized in the computer simulat1-ons. Tn the fourth 

part ( § 6), from a general point of view with respect to 

time-reversability, '.t will be shown that only such nonlinear 

kinematic terms cm1 accumulate to give net effects over trm1sition 

crossing. Finally, a theoretical "or formula for the emittance 

blowup ratio will be presented. 

In :-he ~resent discussions, effects of longitudinal 

space-charge forces/6/ and timing error of the phase-jump at 
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trar1si~i.on 17/ J.~e not. ~ncluded, ':Jecause the former :s negligible 

at least :'or the present situation of the FNAL Main R'.ng and exact 

information about :Che '~ itter has not been obtained. 

§ 2. '.)ifference and Differential Equations fo,.. Acceleration 

The theory of longi t:.i:linal phase motion, describing the 

energy and phase oscillatios that occur when a particle passes 

repeatively through one or '110re "accelerating cavities" situated 

at localized points around the accelerator ring, is well known. 

Since the oscillations normally are at a relatively low frequency, 

it is often legitimate e>s well as convenient to analyze them 

theoreticall with differential equations derived by spreading the 

accelerating field uniformly around the orbit. In !'eal ity, the 

energy changes experienced by a particle qre better represented by 

difference equations and depend on the sine ·)f ~,'1e ~lectri_cal 

phase ::i..ngle c:f> ::i.t which the particle traverses the cavity. 'I'he 

corresponding equations of motion are t':1erefore both nonlinear and 

discrete. 

We consider here the case of synchrotron oscillations during 

acceleration stage. :'o obtain the actual transformation, we 

consider a short cavi. ty system operating at a harmonic number h, 

an angular frequency Wrt Ct) and a peak Yol tage V( t). '!/e assume 

that W.t(t) and 'l(t) are independently controlled during 

acceleration. The quantities denoted by E" and ...... 
"r ·"3.re, 
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respectively, t~e -::~~ergy and ~'.'le elgctrical i)~ase ai1g1_e -,.,.ith ·..;hich 

a pa,..tlcle enters the 2av;_ty at the time of tr'ai1sit. 1'hen the 

:·1onl :::.ear transformation may ':;~ writ ~e~1 tn the form 

...... 
E E" + e V(n) S•n <jl" 

• 

( 2- 1 b) 

where eV(n)sinq>ri is the energy gain at then-th transi~ and the 

revolution period is described in the form 

21't 

w<i:"•') 
Co ( 

c: ( I - < .... c.• /E•••)']~ 

where S0 is the length of the closed orbit corresponding to the 

synchronous energy E5 , • c is the velocity of light, "'•c is the 

;Jroton rest ~:1ergy, z; 'i_s the momentum devi_ati.on ~r>om the 

synchronous momentum, ;ci.nd otp :s the momentum compaction fact:Jr. 

Since we assume the guiding '1'.lagnetic field of H type, the betatron 

acceleration can be neglected here. The synchronous particle is 

defined by the equatiot1s 

+ Ll(n) 
) ( 2-3a) 

+ w,...c .. +•) 
( 2-3b) 
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where 

ACn) = eVCn) sin cp;, 
( 2-3c) 

M 

( 
., w(Es )[ . _1 A(n) . -I .11(>1-1) J 

Wr1(")~ htu J; )-t- Sin ---$11'\ ( 
7 S 2.'ll e\/(n) e>V(ll-•) • 2-3d) 

Note that .6Cn) is determined by the change tn the external guide 

field B(t). Now the momentum compaction factor olp /4/ may be 

·writ ten in t:-ie form 

(2-4) 

where 0( ( "i"+I f) is the Landau symbol. Expanding the right-hand 

side of Eq.(2-2) with respect to i",. 1
, we have the expression 

21t Co [ '>col ",.' ..,vi ... )>. (z) .,.., 3 J 
... ce-·)"' 1 + ' c-•)i +' Ci + '7 (~ )+--· C2-5l 
~ C~(lo," .. ) _, 

2 l'L 

.... lt:,"•') Wr+ ("+') 7 

where 

'l {O) ( n+I) = o1<• \ - 1/-r1c Es" .. ) ( 2-6a) 

( ) 
(I) 

>r I ( n+ I) : ol -

I ) '( .... 7• (>1+1) (3 Es) (3J"~ ..L_ 1 
O' ( F"")-+ 2ir11E"") Ttr,"~ l 

s ' ( 2-6c) 
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'"le note that all par::'..cle si.mulati.ons f:Jr a real acceleration mode 

stated in the fotroduction have been performed by :'ollowing the 

difference 2quations '.2-1a) and (2-1b). ".'he pair i:: and ct> is 

recognized not to be canonical because of the time dependence of 

the frequency. '-le ~:'e interested in small-amplO.tude oscillations 

around the synch!'onous point 1 ,+.n n ) 
' 'Ts 'Es as a guiding cOenter. 

Setting 

e" = E" - E" s , ( 2-7a) 

:; ( 2-7b) 

we may write the jifference equations for ~ small amplitude 

oscillation as 

where 

E VITI E.., 

E " 

., eV(n) ( s 1\,q>"- sl .. ~s") 

~ 
1" eV(n) (Oscj>5 ")'..", 

= 1 w.,c ..... 1) ;t ... 

Wrt-("') 

= 
7C•l(...,.,.1) 

(3'<c," .. ) E,"'T' ~ 

't') ( V\1" I ) 

'. 2-Sa) 

(2-9a) 

( 2-9b) 
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To write jown ~"le .:!ifference ~quations -~.n "",1.e form of exact 

differential ones we oiay 'JSe q S' -function: 

• 

• 
?(. -

21C e V Ct) cosq>,tt) 

Ts!t) 
'. 2- 1 Oa) 

Lz7th +Ts It )~/t)] (- _ ,J 
;;:._ _____ _,,,_ • IJ(D) t -t l)U I (" 

Tsl t ) 1 (t) L It\"' ) 2-1 Ob) 

where Ts ( t) is the period of the synchronous particle and one 

iteration of the mapping. !.Jere t' = nc t) t+t' Sl(t)=2ll /Ts(t) 

and the b -fun ct iotl of period 211: is given by the Fourier 

expansion 

2TL 
( I Cosnt'). ( 2- 11) 

After neglecting rapidly oscillating terms in Eq. ( 2-1 Oa), ·•e have 

= 
eV<t) cos<P,lt) 

Tslt) 
x., 

( 2- 12a) 

( 2- 1 2b) 
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3. Hamiltonian ? Jrmal ism 

'Jnder '::he assumption that the damping term in Eq.(2-~2b) is 

negligible in the short period of ':ransition crossing, ·11e can 

construct a Hamiltonian formalism for small-a'Ilpl i tude 

oscillations. Neglecting the damping term, •e find r X. , E ) to 

be a canonical pair that yields the Hamiltonian 

J [I 0 ](I- z. _l- )] 
H < 'l'.. ' E- ; t) = T,lt) :z.:c" + T,lt)~(t) 21'\-t) E. .,.. 3 ?"'tt) f 

e Vtt) cos<l>,tt) 
x-2. 

( 3-1) 

2 Tslt) 

We shall assume that the synchronous phase angle .Ps jumps 

discontinuously at t=O in such a way that sin<P.s is constant and 

sa'"' (Co.s4's) : - >3.,(t) 

We shall measure ~ from this instant. Now we introduce 1 scale 

change of the l.ndependen t variable t by 

"(Ct) = 
eVtt) cos4>s Ct) 

Tslt) 
J dt ( 3-2) 

Note that the new independent variable "t has dimension of 

energy. With the above origin "or the time t, "( is al ways 

positive at all t, namely, 

t ~ 0-(approaching transition), then '"t --.+ O+, 

O+ ~ t (leaving transition), then O+ ~ "( . 
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Such a seal,= '.:!:1ange yields the new Ha.nil toni.an 

H'cx., f, "!): -
[21th i' Tsltl~slt) J l I - 2 I - JJ 

- '?'"~t) f -t - 'l'"<-rl E e V (t) (OS cp,lt) 2 3 

_I -X.2 
2 . 

( 3-3) 

For later oonvenience, let change the notation of the canonical 

variables to 

x. = p, (3-4a) 

(3-4b) 

Thus we obtain the Hamiltonian in the simple form 

where 

. · 1 [ (I) 3~;(t)J 
[21d,T T5 Ct)<1>5 l-11 [21[ht T.<t)cJ>s ol -t 2.r.~lt) it, ('l) : - ..;...... ___ _.1 Ct) :. - ( 3-6b) 
eVCt) cos c\>slt) (fl,'(t) E,Ctl] 4e Vlt) to'!><l>s<t) 

'Che form of Eq. (3-5) reminds us of the betatron oscillations in a 
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trar1sport -:.:t1e '..J"i..th ~ nonli.near component. c'.l 3..'1alogy co 

perturbed betatron oscillations, we separate the ~'.ght-hand side 

Jf Eq. ( 3-5) :_:1 to unperturbed and p8rturbing ter11s 

"( ) = 

p' 
2 

1 3 -3 il, {"C)-:C. 

( 3-7a) 

( 3-7b) 

In the next section, we shall discuss the phase dynamics in 

the vicinity of transition by studying the above linear 

Hamiltonian K(o). 
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~ 4. ~inear Motion 

We consider the }.::1ear system described by 

K(O \ ( 
'Z. I> ( 4-1) 

We :nake the assumption ':hat the peak RF v:i l tage 8.nd the 

synchronous phase .1ngle qre constant near transit1vn~ At the 

transition energy, the quantity 

vanishes. Then, in the vicinity of this energy this quantity can 

be approximated by the first term in a Tayler series expansion of 

Eq. ( 3-6a) for deviations of T from oT . We can therefore write 

(4-2) 

Further, the quantity rsctl- '(T can be written in terms of 

Yi<t) - 0 1 """ r, t 

e vs ,' .. 4>, 
:::: t 

~oc. 1 Ts 

= "( 
"-oC.~ cosc:p,co) 

( 4-3) 

Substitution of Eq.(4-3) into Eq.(4-2) yields 
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'.4-4) 

gere all quantities are evaluated at transiti..on. For the sake of 

later simplicity we set 

' • .,.~ v •,I.. f3s E", "Te {OS. 'l's 

'lie point out that the system represented by Eq. ( 4-1) has an 

exact dynamical i_n vari 3 .. n t , which is ,iesig:-iated '>3 the 

"Courant-Snyder invariant" 18, 91 

where S ( '() satisfies t':le auxiliary differential equatton 

1 . .. .. 1 
4 

5 "t' il.(rc)S -= • (4-6) 

When A0 ('Y) is constant, the invariant I is ldentical ';o the 

action variable of the system if we take the ~ni ti al condition 

. 
/ 

S(.,.oo) = 0. ( 4-7) 

In the following, S ( "( ) will be called a synchrotron amplitude 

function. For a time-varying functin A0 ('Y), from Eq.(4-5) we 



mow that an ~nfini te sequence of phase points that have a certain 

constaat value of ! at an arbitrary '.:Ime behaves as a deformable 

~ovi_ng 2lli.;Jse 2-:1 the phase space (x,p; l; ::ifter that ti.me. The 

form of such '3. ellipse, ~:!alled 8.n ''invariant curve" in the 

following, cs w1iquely determined by the auxiliary differential 

equation ( 4-6) alone. We consider the invariant curve described 

in terms of 

I c~, t:>, "<)=Io 
(4-8) 

with constant I 0 • The quantity I is equal to the value of the 

action variable of the ir1fini te set of phase points that comprise 

the invariant curve, as mentioned above. 

We may characterize the ellipse by two parameters 

. 
which are ~unctions of S ( 't ) and S( '() 

~ ('t) = J 2I.,S(t) ,, (4-9a) 

&'("I'.)::. 2I. 
[I -t SCt)/4] 

(4-9b) 
SC-t) 

They are the maximum extent of the ellipse ~n x and p, 

respectively. 

If we assume 'chat all parameters change adiabatically qfter 

'\' = "t1 , we can choose the approximated initial cot1di tions 



0 ~("C) 

• s('r,)= o. ( 4- 1 0) 

At "C = "C 1 , ':'1e ellipse begins to move, :"ollowing the time 

evolution of SC"r) which is determined by Eq.(4-6). If we know 
. 

the values o:" S ('t), S ( t) at "( =0, which is the transition 

time, we can evaluate exactly the maximum upper or lower height 

from the synchronous energy tc 0) and the half phase spread re 0). 

For the present /l,("C l, "e know t':1e general solution of 

Eq.(4-6) can be written in the terms of Sessel 

:"unctions (see Appendix Al, 
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where a and b eire arb:'. :rary coefficients that must 'ie determined 

by the initial c0nctii:.:'..Dns (4-10), and 

After mathematical manipulation (see Append~x Bl, we 'lave the 

coefficients 

£l = 
( 4-12a) 

3 l 
b: 2 iL ~"3(;;',) ( 4-12b) 

where 

( 4- 1 3) 

The coefficients a and b have been uniquely determined by the 

• 
initial conditions and we now know the exact tlme evolution of the 

invariar1 t curve. In particular, we are interested ~n the 

invariant curve ~·J.st at ~rar1sit:f.on; it :""epresents a bunch 

envelope. From Eq. ( 4-11) we obtain the values of S ( "C ) and 

S("C) at '1. =0 (see Appet1dix C) 
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$(0) 4 ( 1t y· ( ii )-i/3 ~ = 3 '4_ 1 4a) 
3 3 r·ci;3) ~ 

. 211: [ - q 
(ab- -1.. )'/z 1 SCo) = i' '.4-14b) 3 13 1(>- • 

Introducti.on of Eqs.(4-14a),'.4-14b) into Eqs.(4-4a),(4-4b) leads 

to analytical expressions ~or the maximum upper or lower height 

from the synchronous energy and the half spread around the 

synchronous phase :lt trans.:..:ion, :.i...3.t Ls, 

~Co)= ~ (~,) J SCo)/S('r.), (4-15a) 

(4-15b) 

:.;e consider the case ,,.:i ::'l the -~[lit ia l cond"!.. t ions at 'r1 ~ + oo 

where the '.lnear "(-dependence of A0 ("() still ~old to good 

approximation. At such a region, the Bessel and Neumann functions 

become sinusoidal with equal amplitude and quadrature phase 

relationship, namely, 

also 

J~'j ( l! I) = J ~lfio (OS (ii I - '!>Tl/12-) ,> 

N!t3 (;o:,) = J2/it:i 1 So'"' (1? 1 - SlL/,')~ 

'J..>,t3 Cio) = J 2./Jt'i! 1 (OS ( ;! 1 + -rr./12) 

- l "'/ " s .'vd ii! 1-s- 11z.). = v ... lf~1 .. ,, 

(4-16) 
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Substitution of C:q.(4-16) ~:lto Eqs.(4-12a) and (4-12b) yields 

8. = b = 31 T[ • ( 4- 1 7) 

From Eq.(4-17),'l/e cai1 obtain a universal relationshi.p between~ 

and S 

( 4-18) 

Equation ( 4-18) is equivalent to the result obtained by 

Hereward /11/. 

Predictions of the 1 bear theory are not discussed in detail 

1.-iere. Nevertheless they are in very good agreement ·,.;ith numeri_cal 

simulati.ons. ~hese simulations have been performed following the 

exact napping equations '.2-1a) and (2-1b) where clonl in ear 

kinematic terms are not included in order to verify the validity 

of the 1 in ear theory. :::n addition,. the linear theory discussed 

here which provides exact time evolution .of bw1ch shapes can 

re-establish the well-:<nown story 18/ associated with transition 

crossing. 

~ 5. Nonlinear Motion 
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The '.: .. Jnl ine.g,r 'cinematic term has '..:een d-:.stinguished as a 

perturbing term ill Eq.(3-7b). It gives unignorable 'effects to the 

liear oscil l.=.tion 0'.1ly during a very short period when a particle 

crosses '::'1e ':ransi':.lon energy. In :Jrder assess Lts 

quantitative effects. it. ts convenient to use ':.~e action-angle 

:'ormallsm. 

Under the 1 inear car1onical tr-ansformation 

Q = ~-1 x ,, 

where ~ ( 'C) = J Sh) satisfies the auxiliary equation 

':~e 4amt l tonian ( 3-5) r-educes to 

KCQ,P;'t) 5's J --il1C"C)Q3 
3 • 

cf a change of independent variable 

"( 

St-r) = ) .,., f-
2 

('Y) d 'Y + eo , 

~s made, the Hamiltonian (5-3) becomes 

( 5-1) 

( 5-2) 

(5-3) 

( 5-4) 

(5-5) 
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Furthermore, ".:1troduc':.ton of the action-angle var:'..ables ( \..}J,,J) 

Q = J2J S•"•'-1', 

P = Ji.J cos'f', 

yields the Hamiltonian 

~('\','J,9) = J -
f's 

3 

From Eq.(5-7), we derive the canonical equations 

c.jJ I 
()Er 

1 '1z 3 
':: - = - 5" 5 il I ('t') ( 2 J) 'i 1'" + ,> 

"l>J 

JI 1J(T 
S f 'L+ --- :. ? /l..1h:) (2)" So.., fast. 

7>\.\' 

( 5-6) 

(5-7) 

( 5-8a) 

(5-8b) 

If the perturbing ':Brm ~n Eq. ( 5-8a) :.s much ~ess '~han '-,he 

cmperturbed term, '.;hat ls, small compared with unit, we obtain to 

first order 

eei:) 

J ( ec-o) "° J (er .. )) -+ [ 11 ( 6J(IO)) jti.) fs<-r l ,l,l"c )S,',,'ec'l'.) iosef"t') ~~:9 l 
elia!' 

Using the relation (5-4), •.;e have '! more convenient '.ntegral 

expression 
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"( 

Jf'Y) ~ J(Y1 ) -t [2JfrSi1') l"'h) il.,l'!')s,',:ert\1os&l'Y) d~ '5-10l 

"l'i 

where the lower boundary of the integration will be determined in 

the fcillowing ccinsiderations. 

Wg llote that the period of phase oscillation has the same 

notation as the synchrotron amplitude functl.on SC"t') because the 

oscillation frequency ;_s desc~ibed by 

• 
V -: 4-(S) = 1 

S('t) 
( 5- 11 ) 

!?rom Eq. ( 5-Sb), the typical modulation period of the perturbing 

term is SC'( )/2. Generally, the value of S ( '\'1 ) I 2 is much 

smaller than 'Y1 This fact means that the effects of the 

perturbing term are averaged out , at least, .1t the early stage of 

non-adiabatic 110tion ( o« "!'. $ rr, ) . So it is reasonable for llS to 

take S ( 0) 12 as the typical ~ower boundary the 

perturbation begins to retain net effects. !?ortunately, '.n many 

real situations, 'Yz is sufficiently small so as to satisfy the 

condition 

~< 1 . (5-12) 

The relation ( 5-12) enables us to describ-e ~ ( 'C ) or S ( "!'. ) by 
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elementary :·..:.."1cti.ons. 1:n ·:irder to do this. ~t ts r:ecessary ':.:: 

tcnow the '.:essel function for small ·:~lue of z. :::n Ref.13 we 

observe that 

I 

( ~ )~ 

) 
I [ tosr1/3 (i ,YJ 

IV• Li! = - ) -~J s •'1111\)J r( +13) 2 

I ( C! -1/J J 
p{2/3) 2) . 

( 5- 1 3a) 

(5-13b) 

Considering Eqs.(5-13a) and (5-13b), we obtain to first order with 

respect to "( 

(5-14) 

where 

(5-15a) 

(5-lSb) 

F'urther substitution of the above result (5-14) into (5-4) yields 
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(5-16) 

'.)n the other hand, 1,( "() can be expanded with respect to r, - r,. 

and :o first order 

(5-17) 

where r::i.,(,J'Yr:l°~ cs the nonlinear latttce parameter. Using 

Eqs.(5-14) and (5-17) we write the perturbing integration in 

_ ~;) '\'.] ~,\.'!it-r) /05l;f'T) d "t'. 

( 5-18) 

'Jere we set 

2.r ,, (5-19) 

"'( ) -e (-c) = j 2 lo~ ( ~ .. ~. 1" e.,, ( 5-20) 

where 

( ..l 'i' (- -' ) ~... "'It"} '(,. ' 



Using the identc~y 

with together ( 5-19) , ( 5-20) , we have 

'T 
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I >tz lA ( 
~)-::: <+ [2J('l'.)J ;A_,to)S"ro)) ( l-t-~ 1 "l)l< 

"(' 

We are interested en the value of 6 J at 'l' =0. This value is 

evaluated in the following way. 

The integration to be performed is 

b 

I= S .. d"r(1-t-3,"t)~ <os [j .. )oa( ~ + J~ )-re.1- ros>;[3 .. J~(3~'7,}te.~s-22) 

Change of the integration v.g,riable t.'J 

leads to 

e. ""2 )II' &. I 
I =e--r. f awe'· ( 1- ~.~ .. ~~ ... ~.~ .. e-T. e ..... '·) x (5-23) 

WI 

(<osw - ros3w ), 

where 
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C5-24a) 

(5-24b) 

~he i:1tegration of Eq. (5-23) '..s t,-.ivial. 'tie obtain 

I "'• >.W d• 2 1 

l e (-cosw -t ~ ... -..>)I a. ..., 

Some of the intermediate steps rn the calculation are explained tn 

Appendix D. ~he f~nal results are 

where 
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® = 'J, 1)03 [ I I ( 211
, -+ I ) J . ( 5-27) 

".'he value of ! is dependent of the '..nitial ~hase &0 If tl:le 

maximum a'1d :ninimum values of are denoted by Imax( ) 0) and 

:min(<. O), ·.-;·e can wri.te the positive 3.nd :'!.egative changes of the 

action variable in terms of 

J ..... 
'1i"' .J 

(5-28) 

where the suffix symbols of the left-hand side do not always 

correspond to those of the right-hand side because of the negative 

sign of 11(0). We define the emittance increase parameter, which 

is independent of the initial emittance (the initial value of the 

action variable) of a particle, by 

J 
it, 10) sh1o) I'"" 

2 ,.., ... CS-29) 

It is assumed chat there are no net effects of the perturbing term 

up to "( = '!'1 and we can take the value of J( "1:'1 ) as J( 'Y2). T'len 

( 5-30) 

Thus incoherent changes of the action variable give an unsymmetri.c 
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ellipse :.a the phase .·3pace. Tn particular, we can obtain 

expressions for the maximum upper md lower '1eight from the 

synchronous energy and the maximum and minimum excursion from the 

synchronous phase as 

~(o)~~=S(-r1)J 51"1J [1-t 
"''" Slo) 

(5-31b) 

where the value of' 5(0)/ SC "t1 ) has already been derived in the 

previous section. 

§ 6. Applications 

The t'1eoretical ccmsiderations are applied to an example that 

corresponds ~.o the nominal acceleration '1lode in the FNAL Main 

Ring /12/. ?or this example, several parameters of acceleration 

are listed in Table 1. 

Table 1 Acceleration Parameters of the FNAL Main Ring 

Harmonics h= 111 3 

RF Voltage eV=-2. (MV) 

Synchronous phase 

Transition gamma 

<l>s =235. 87 ° 
'fy:18.8 



Trru1sition energy 

Nonlinear 1._attice parameter 

We choose 't1 as 

29 

"i:: =17.639(GeV) 

(1)/ (o) 
ol td. =0.14 (Ref.11) 

"t, = toS ~,lo) ( "Es{O) - E,l'r1)] 

He-V, ( 6-1) 

where E$ ( 'l'.1 ) is enough far from transition. Using the parameters 

in the table and the value for "( 1 , we get 

(6-2) 

then 
2 J/1 I 

i!:, = "3 11 "( 1 : 3. ol2...0 

S(-r,)=l/~·~Y1 -=lo3.?>4'76 MeV (6-3) 

From a table of Bessel fun ct ions / 1 4/, we read 

JY3 (z1) =-0. 2736, N~ ( z 1) =0. 3172, J_'h(zl) =-0. 309. (6-4) 

Substitution of these values for z 1 ,J1~ (z I) ,Nlh(Zr). and J_'IJ( Z I ) 

into Eqs.(4-12a) and (4-12b) gives 

a = 0.4056 + 0.3296 + 0. 1877 = 0.9229, 

(6-5) 

b = 0.5451 + 0.443 = 0.9881, 
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From Eqs. ( 6-2) 3nd '. 6-5) we get 'ohe value of the synchrotron 

am pl J.tude fun ct ion at transi ~Ion 

Slo) = = 277. 503 (MeV). !5-6) 

Here, we use 

f'(1/3) = 2.6801, r<213) = 1.3s50, o.39338 1151 

The value of the coefficient :{1 (0) is 

= 1."l3-.>r1o'l 
7fT4 ~s""to) ( .... ,·)'- e VCo) cos~,fo) 

• 

-3 
~UV (6-7) 

• 

The 5(0) above leads to the value of the typical boundary 

s<ol12 = 138.7515 (MeV) 
• 

(6-8) 

The parameters~'' ~ 2 in the integration of Eq.(5-18) are 

then 

~z = -0.8279/a = -0.8971, 

-4 
q = 3.6118 * 10 a I 

_] r' (2/3) ( .! \>./ 3 = 
ZF('f/3) 3) 

(6-9) 

-5.66 * 10-3 
, 

=-0.7312 (6-10) 

Substituting these values for ~1 , ~ .. , ~ ~, ® into (5-26), we 

obtain the integral I in the form 

I= (-39.1614)*sin(0o) + (-72.9502)*cos(&ol 

+(71.9840)*sin(390 ) + (-5.2259)*cos(39ol, ( 6- 11) 
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Thus :max = 96, Imin = -174. ( 5-12) 

From Eq.(6-12), we have 

=112*0.9577•107 *4622.7619*179 
-2 

= ).85*10 
' 

( 6-13) 

p(_ =-1/2*0.9577*10 7 *4722.7619*96 = -2.1241•10: 

Finaly, subs ti tut ing these values for $(0), SC"f~ ;_nto 

Eq.(5-31a), we get 

3 !t, ~(O) = ~( '?:, )*1.6386 * [ 1. + 3.7871*10- ~( -t1 ) J" 
""" I 

(6-14) 

~co>",~ ~C"t,J•1.6386 • c 1. - 2.os911•10-3 ~c-r, > ]~£ 

For several initial emittances which still allow linear 

approximations, results obtained from Eq. ( 6-1 ll) are plotted in 

Fig.2. In the same figure, numerical simulation results are also 

given. We see quite good agreement. 

§ 7. Emittance Blowup at Transition 

When a particle crosses the transition energy, the electric 

phase of RF is abruptly changed externally to 1l: - <!>s . Such a 

manipulation yields time-reversal of the phase motion for the 

dynamical system described by 

HCx,P;-c)-= [ p' + 
2 ( 7-1J 
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because of the cnange of sign of the cosine function h 

( t - [ '(It): ) 
0 

eV(t) fos4>,ft:) 1 d.t 
Tslt) J , (7-2) 

will lead to time-reversing as seen in Fig. 3 

- - - --· 'C, 

t 

while the sign of ilo ("I'. ) , 

( 7-3) 
~ v "' J> ~· It) Es <t) e 1-t) cos'!'•'"" 'Sr 

still r"emains unchanged due to sign changes of the denominator and 

t1umerator. This holds even if all higher order terms with respect 

to phase nre included. Consequently, emittance blowup during 

transl tion crossing can't in principle be explained by synchrotron 

oscillation theory, which restricts itself to ordinary pendulum 

oscillat i.ons with adiabatically changing coefficients. 



On the other hand~ t~1'9 coeff"!.:::!ient of the nonlinea:- '.<:nematic 

term, 

211:\.i [ o1''1 + 3~: lt)/2.-0,'1t)] 
A., ( t) = 

lfslt) 't,!t) ]~eV(t-) 10.sq>,!t) ' ( 7-4) 

changes its sign after the phase-jump. The dynamic~l system 

including such a term is therefore no longer timereversible. In 

other words, synchrotron oscillations accompanied with :.Cinematic 

nonlinearl ty "Ire singular at transition. Just after passing 

transition, a bunch suddenly meets an unmatched bucket. This 

leads to actual emittance blowup. The magnitude of the blowup is 

proportional to the amount of emittance distortion due to the 

nonlinear kinematic term. Thus we may write the final emittance 

blowup ratio during transition crossing as 

R =- I 1- 2 . f'('~. J2J("I',)' ( 7-5) 

where J( "l'.1 ) is the emittance or the value of the action V"!riable 

far below transition. The final blowup ratio R is plotted as a 

function of the initial emittance for the normal acceleration mode 

(h:1113) in Fig.4. Results of measurements are also given in the 

figure. The small overestimate seen may imply that '.:he exact 

nonlinear lattice parameter is somewhat smaller than the value 

used in the present calculations. 
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§ 8. Conclusion 

A. li::ear classical theory of t~ansitl.?n, '"'hi.ch ts 2quivalent 

to the ·1sual 1ne •Jf '.Uatrtx: for:!!l,/i 1, 16/ has been .jeveloped by 

introducing the synchrotron amplitude "unction. As " >0atural 

exte:1s ion Jf this 1 inear theory' a se~1e:-:.il rneth,'Jd which relies on 

pert'..l;""bat.i.on tech..vi.iqes to assess effects ()f 'l,';1e 1"owest .yr-der 

nonlinear ~inematic ':Br-rn is presented. 1..J'hen these theories are 

applied to the case of the FNAL Main Ring, t f-iey agree very well 

wi.t'-1 ··esults of computer :;imulat-:.ons and rBal measurements. This 

emphasizes the importance of the higher-order chromaticity 

control, which can be done by adjusting the n-th and 2n-th Fourier 

components of the sextupole magnetic fields (n~ hor1.zontal 

betatron ';une) 11•1. If /l.1 ( "[) is reduced by such higher corder 

chromaticity control, the emittance blowup discussed here will be 

L:npt"oved. 

':"rie present analytical approach can be also used to derive 

,~xpl ici t. 2xpress ions far emittance "increments resul t:tng f!"om other 

not\l ineaY" forces which become signi:' icant, r_n particular, '-n the 

vicinity of transition. 
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Appendix A General 30l£1ti.on of ,\'Jxil ia,.y Equatian 

\·lhen x, ( "'() 1.nd :c 1( "'!) 1re linearly independent .s')lutions of 

~he time de pendent linear cquat ion 

. . 
+ 71.f"C) "X ~ 0' ( A-1) 

we can write a gener::il 3oluti..on of lt9 rnodi:'ied nonlinear 

quxiliary equation (or envelope equation) 

1 

f" ' 
(A-2) 

where l'("l) is the square root function of S(t), in terms of x, ('() 

and x._( i:) as 

(A-3) 

Squaring both sides of (A-3) and Differentiating with respect to 

the independent ·;ariable '1. , we have 

.. 
i" c~::r,::r. -t C3 x, x .. 1' 2.(3 ;,.;., (A-4) 

From (A-1l and (A-2), Eq.(A-4) ,.educes to an equation including 

first time derivatives alone. Further, using (A-3), · . .e obtain 
• • • 1. 

( 2c, ::c, x, + ::i.c.x. 1,+ c3::c,:r1.1" cix, )-,) 
~~~--"-~~~~~...:.;........:......::..~=--"-~ + 

2 c c,x(-t c ... :r.'-t c~::c,x.) 

- 2.~ 1 "C) ( c.z,1. -r c .. x.'- -r c1 ::r,:r. }, 
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RHS = 2C1r,
4 

-t 2C2 :i.2+ 2C1 r, :l:2. -2,\CY)(c,:t-.'+ C>X,'-r C1::r1l'2) 

Equating both sides and eliminating terms, we find 

(A-5) 



( A-5), ::i.rbi.. t_,..::i.ry ~.Jns tan t ,., r , '1 2 , 

't1dependent. Namely, ~3 is deter:nined from C 1 and C;o as 

J 4C,(:i_- ' 
(A-6) 

. . 
'Nhere w is the \·Jronskian X'1 x~ - j(, X2 which is a constffi1t. 

~onsequently, we can write the general solution of (4-6) as 

For the present case 

II ( "C ) :: ii .. "( , ( A-8) 

the independent solutions of the linear equation can be written in 

terms of Bessel and Neumann functi.ons of order 1/3, 

Thus the general solution becomes 

S(-r) = "r [ .:i klv~ (1¢."·/!•),. b J;/ft,--{lz )-2JAb-~~ x 

N iJ ( ~ '../Ii ) J ~ ( f t //, ) J .1 

•..;ith 

• 
W=x 1(0)xz(O) x 1 (0) x

2 
(0) = 3/1t... 

This is in agreement with the result obtained by Lewis 110/. 

<A-9a) 

(A-9b) 

( A-10) 
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Append'.:< 3 Particular Solution of the Auxillary Squatlon (11-6) 

Since the initial c:Jndi ti-::>ns a~e 

$('!'') -:. I I t-r,Y• ,, (B-1a) 

s ( "t, ) = 0' (B-1b) 

we have :11~ediately two algebraic equations for a and b 

(B-2a) 

I I L 'J \~ I ") a IVv N., + b )",, )., - ( q " - 1fi: J <)., N.1 t J., ~,, : 
2. (B-2b) 

where ~ is 1/3, the prime denotes derivatives with respect to z, 

and all Bessel '.'unctions are to be given their values at 

z 1:z ( '('. 1 ) • From ( 3-2a) , we have 

~IJ} -t l:>J/ - {, /n';., 
2J"v Nv 

'.B-3) 

Substitution of (B-3) into (B-2b) yields 

I I 

fVv("J~Jo - N;J,,, ) 

2.J.-

"Jo(J;N,- J.NJ) b 

2.N • 

I I 
3(J.,N~+ Tvl.IJ) 2. = - --<B-4) 

' " '". " P,"J., .... Tl ., • 

(B-5) 

we have 
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- ' 0 -

3 (B-6) 

If we subst'.~ute (3-6) '.nto (3-3), square both sLdes, :1nd compare 

eorrespon.ding ter"ms, we 0btain. 

b = 
2. 

[~(J:/J,+J.NS) tJ,N~-t ~ J. 

Further, f!"!Jm a recursion equation for Bessel :'unctions 

-1 } -\)i ,,, 

and the relation (B-5), we find 

v 
:. 2(;,, ... - ~ J,.) N, + 

Introduction o~ (B-9) ~nto (B-7) leads to 

2 
'l(j! I 

2. 

l(~ I 

3 1 \~ 
~ ----,_- ( ~ I }.,_, NJ t -::;L ) . 

l. 2'1 J,, 

Thus we also f ~nd 

Appendix C ::valuation of S ( 0) and S ( 0) 

We set 

(B-7) 

(B-B) 

(B-9) 

( B-1 O) 

( B- 11 J 
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where z ( "( ) is 
2 J1 3 ~ '(" . Using the formula 

SC 0) becomes 

If we retain only the lowest order tel"l!I of the series expansion of 

the Bessel functions, we have 

TyJ (~('!'.\ ) : c~ 1$ "'h 
T rf'f/3) ~ (C-4a) 

J-t/} ( ¥('rl ) - f!. r/' "(-~ . 
3 rtz./3) 

(C-4b) 

Substituting (C-4a) and (C-4b) into (C-3) and taking its limit at 

"( =0, we obtain 

(C-5) 

. 
S (0) can also be evaluated in a similar way. ·;e set 

. 
SCo) = 

(C-6) 
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where dots denote derivatives with respect to 't , primes _;enote 

derivatives ·,..rith respect oo z, '"'d 'lll Bessel functions are 

functions of z('l:). fJsing formulas (B-10), (C-2), ?.nd the 

~ecursion relation (B-9), we have 

1 ":-7a) 

( i::- 7b) 

(C-7c) 

Retaining only the lowest-order term of the series expansion for 

.)'11 (z('I'..)) and J_~(z( "( )) , we have 

(- ~ )¥,, "( 

j~ {-il>rl) ::. 
('(S/3)~ (C-8a) 

T...y3 I ;z h'.l ) 
~ ->{3 y-1 

= ( 3) f'(i/J). IC-.%) 

From 
• lf; 

"( z = k "( ~ , the 1 imiting values of the component terms at 

'Y =0 in (C-6) become 

(C-9) 



Substi::.ltlon oe r~-9) i!lto (C-6) yields 

Thus, we have 

. :zn: 
$(0) = 3 

Here we use the relation 

[ q 9 )'I• J - o/J t (ab- 7fL • 

~ppendix D Calculation of Perturbing Intewation 

( C-1 O) 

w- )l)J. 

(C-11) 

One of the four pat'ts in the pet'turbation integration, 

(D-1) 

is calculated as follows: 

VI 
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~· s.' ... w.)- e T>,,.sw.~~.1.'~w,il 
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(D-2) 

where 

d'- .Po3 1/z.1~ t I 
The other three parts can be calculated in a simUar way. 
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Abstract 

The phase dynamics small amplitude synchrotron 

oscillations in the vicinity of the transition energy is discussed 

with kinematic nonlinearities included. We introduce a 

synchrotron amplitude function analogous to the betatron amplitude 

function and solve analytically the time evolution of bunch 

shapes, where the kinematic nonlinearities result in unsymmetric 

bunch shapes. In addition, the above synchrotron oscillation is 

singular at transition crossing because of the kinematic 

nonlinearity. From this simple fact, we identify an inherent 

source of bunch diffusion. A method for estimating its size is 

presented. When this theory is applied to the case of the FNAL 

Main Ring, the predictions are in good agreement w1. th numerical 

simulations and are not inconsistent with experimental results. 
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