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Abstract 

Results of a search for evidence of chaotic trajectories in 

FN-363 
1500.000 

simulations of beam storage with a "weak-strong" beam-beam interaction are 

presented. The storage ring tunes ('le• '!,r) and the beam-beam strength 

parameter 6vare varied, and chaotic trajectories are found where the 

beam-beam spread 6v contains low-order resonance intersections. Chaotic 

trajectories are not found if v = v • Variation of tune shift indicates that x y 

the degree of chaotic behavior does not directly depend on the tune spread 

but upon the relative location of the resonance intersection with respect 

to the tunes. 
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I. Introduction 

In a previous paper 1
, we presented results which showed evidence for 

chaotic trajectories in a simulation of the beam-beam interaction with the 

parameters (vx:,245, Vy=.12, 6V:.01), where vx' Vy are the machine tunes 

and 6v is the beam-beam tune shift. Other cases had not shown these 

chaotic trajectories. In another set of simulations 2
, tune modulation was 

added to the beam-beam interaction, and it was found that chaotic 

trajectories could appear if the modulation amplitude wwere sufficiently 

large. 

In this paper we change the parameter values (V , v , 6v) of the 
x y 

unmodulated two-dimensional beam-beam interaction and determine conditions 

for the appearance of chaotic trajectories, and the density of these 

chaotic regions. 

II. Simulation Procedure 

In our simulations we approximate particle circulation around the ring 

as the product of two transformations: a linear transport around the 

storage ring followed by a nonlinear beam-beam "kick" at the interaction 

area. 

Transport around the ring can be represented by 2x2 matrices for both 

transverse (x and y) dimensions: 
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x cos 21!\I S sin21T\I x x x x 

= 

sin21T\I 
x• x 

After t\-- cos21T\I x ( 1 ) 

In this linear transport x and y motion are decoupled. \Ix' \iy' Sx' Sy are 

the usual Courant-Snyder tunes and beta-functions 3
• The

0

beam-beam kick can 

be represented as 

x 

= 

x• 
After 

41TD.\I 
x 

with a similar expression for y, y•. 

0 x 

x• Before 

The product of these transformations is equivalent to integration of 

the equation of motion: 

x''+K(s)x= x 
(3) 

(2) 

s, the distance along the storage ring, is the independent variable, cp(s) 

is a periodic delta-function, and K (s) is the focusing function. x,y 

In the present report we choose parameters which approximate the 

conditions• in: the Tevatron: * * S :$ =2 m, where the * indicates values x y 

matched to small amplitude motion, and we choose 
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with o:0.0816 mm, which is the nonlinear force due to a round, gaussian 

charge distribution of rms radius a. 

Tune modulation can be added to the simulations by making v , v 
x y 

periodic in time 2
• In the present paper we choose not to do this and 

explore the properties of the variables vx' vy' fiv. 

III. A Test for Chaotic Traject£~~~~ 

In reference 1, we developed a useful empirical test for the 

appearance of chaotic trajectories; this is the repeatability test. In 

(4) 

this test a particular trajectory is tracked forward for some large number 

of turns of the linear transformation and beam-beam kick and then the 

trajectory is reversed in time and tracked backward numerically (reversing 

the velocity) and forward and return positions are compared. A non-chaotic 

trajectory shows limited position error difference growths that is the 

error fi increases with the number of turns N as fi ~ fi N3/ 2 (or even as 
0 

slowly as fi
0

N112 in some special cases 1
), where 6

0 
is a single turn error 

magnitude c~10-26 double precision). 

Chaotic trajectories develop substantially larger errors. Errors grow 

exponentially following 

fi~fi aN 
o e 
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where a is a trajectory dependent parameter equal to the "Lyapunov 

Exponent" of nonlinear dynamics theory5
• In nonlinear dynamics, "chaotic 

regions" are distinguished by the characteristic feature that nearby 

trajectories diverge from each other exponentially, with the rate of 

divergence given by the Lyapunov exponent. 

In the repeatability tests of reference 1 particle trajectories fell 

quite naturally into one of two categories: 

Category I: "repeatable" trajectories which develop errors of order 
10- 20 in a 100,000 turn reversability test and of order 10- 15 after 100 
million turns. 

Category II: "chaotic" trajectories which exponentially develop 
errors of order unity after <100 thousand turns with measurable Lyapunov 
exponents of ~.001. 

Figures 1 and 2 show results of reversability tests for sample 

trajectories of both types. The clear empirical difference between them 

permits us to separate phase space into "chaotic" and "non-chaotic" 

regions. 

In reference 1, for our case "B" (vx=.245, vy=.12, liv:.01), it was 

found that 25% of a randomly selected sample of trajectories were chaotic. 

Other cases: (Case A: Vx=Vy=•245, liV:.01) and (Case C: \Jx:.3439, 

\J =0.1772, liv:.01) showed no chaotic trajectories. Empirical y 

investigations indicate that chaotic trajectories can occur at the 

intersections of "low-order" resonances and do not occur when the tunes \Jx' 

\J are equal. y 

We want to point out that a chaotic trajectory is clearly associated 
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to a loss of "phase" memory, but we have.!:!£ indication of amplitude growth. 

Actually we have evidence that for the period of time being simulated the 

chaotic trajectories remain confined to bounded domains in the phase space, 

with the exception possibly when tune oscillations are added2 • 

IV. A Search in Tu~e Space (vx, Vy) for Chaotic Trajectories 

In this section, we report results of a more detailed search for 

chaotic trajectories. In this search, the tune shift ~v=.01 and the other 

parameters of the beam-beam interaction (the strong beam size and shape, 

* * and the matched betatron function of the weak beam S :S =2m) are kept 
x y 

constant while the tunes Vx' Vy are varied. These tunes are chosen near 

the intersections of low-order resonances; the intersections are at 

V + ~V/2, v + ~V/2 so that they are in the center of the beam-beam tune x y 

spread. A 100 sample trajectories are tracked forward 100,000 turns and 

returned, and their trajectories are inspected for chaotic behavior by the 

"repeatability test". 

The initial coordinates (x, x•, y, y•) of these sample trajectories 

are randomly chosen within a 4-D phase volume weighted by a 4-D gaussian 

d b . db 2 2 2 Q Q istri ution determine y the parameters cr =Ox :cry , and µx=µy' as defined 

above. Coordinate sets with an initial coordinate greater than three 

standard deviations are discarded. The same initial particle positions 

were used in all of the simulations, and particle motions are initiated at 

the center of the interaction region. 

The results of 133 cases are displayed in Table 1, where accumulated 

errors between initial and return particle positions are tabulated. 

Trajectories separate naturally into two groups: 
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1. "non-chaotic" - with errors <10-19 

2. "chaotic" - with errors of order unity; an error cut off of 10- 10 

is used to distinguish these. 

There are a few with "intermediate" properties, with test errors 

between 10- 10 and 10- 19
• Most trajectories in this intermediate region are 

found to be "chaotic" with smaller Lyapunov exponents in a longer test. We 

therefore choose a boundary of 10-18 error to separate "chaotic" from 

"non-chaotic" regions. 

The results show that chaotic trajectories do occur in many of the 

test cases. In the most "chaotic" case 31% of the test trajectories are 

chaotic. 

A more careful analysis indicates that the cases with larger numbers 

of chaotic trajectories appear at the intersections of the lower order 

resonances. A resonance is determined by a relationship between the tunes: 

nv +mV =P x y 

where m, n, and p are integers. The "strength" of a nonlinear resonance is 

determined by the "order" S'l of the resonance which, for our round beam-beam 

force is given by 

S'l = lnl +Im\ if both m and n are even 

S'l = 2 crl+JmP if m and/or n are odd 

The appearance of only ~ orders is a result 7 of the fact that our 

beam-beam force is an even function of both x and y. 
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In our data set, which is confined to the tune region O<v <1/2 
x ' 

o<v <1/2 and avoids the diagonal v :V , in the present discussions the y x y 

lowest order resonances are fourth order: 

4v =1, 4v =1, 2vx + 2v = x y y 

Sixth order resonances are: 

3Vx=1, 6Vx=1, 3vy=1, 

4V ±2V :1 4V ±2V :1 
x y ' y x 

2V ±v : 1 
x y V -2V :0 x y 

6V :1 
y 

V ±2V : 1 x y 

V -2V :0 y x 

These resonances (4th and 6th order) are shown in Figure 3. Large 

numbers of chaotic trajectories (>9%) appear in each intersection case 

tested. All cases with more than 7% chaotic are included within this set 

except for Vx=.37, Vy=.12 which is at the intersection of a fourth order 

and five eighth order resonances (14% chaotic). 

Including eighth order resonances adds another set of intersections 

with fewer chaotic trajectories. Intersections of sixth , fourth or eighth 

with eighth order resonances have between 0% and 7% chaotic trajectories 

(with a single "fourth-eighth" case at 14% as noted above). Figure 4 shows 

these additional intersections. We note here that all cases (except 2) 

with more than 1 chaotic trajectory in our test cases are included within 

Figures 3 and 4. The exceptions are intersections of fourth with tenth 

order resonances (3% and 2% chaotic). 

In figure 5 we include higher order resonance intersections (up to 

twelfth). Most of the additional cases show no "chaotic" trajectories, 

although a few have a single "chaotic" case, with the two exceptions 

mentioned above. 
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We conclude this section with the summary that chaotic trajectories 

can appear with large density at the intersections of low order resonances, 

and that their density rapidly decreases with the increasing order of the 

resonances. 

The evidence supports the empirical hypothesis that the volume of the 

chaotic region is proportional to the intersecting volumes of the resonant 

region. We believe that the chaotic regions are the same as the stochastic 

layers of many non-linear resonances 8 • 

V. Dependence of the density of cha~~~~J'..~~ectories on tune shift 

We repeated some of the above test cases with 6v=.02 and 6v=.005. The 

tunes v , v were adjusted to keep the resonance intersection in the center x y 

of the spread. We find no dependence on tune shift. 

Figures 6 and 7 display the 74 casees with 6v=.02 and the 75 cases 

with 6v=.005 used in this test, and they can be compared with the 6v=.01 

cases of figures 3, 4, and 5. The differences are le~~ than a strictly 

statistical random error pattern; this is related to the fact that the 100 

initial particle positions are the same for all cases. 

This result is in agreement with the hypothesis that the density of 

the chaotic region is related to the widths of the intersecting 

resonances 8 • It is a fact that for the beam-beam interaction, resonance 

width does not depend directly on tune shift to lowest order, but does 

depend on the relative location of the resonance with respect to the tune 

spread. 
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VI. Resonance "Intersections" with \! :\! 

In the previous sections we omitted consideration of cases with \!x=\!y. 

We now report results of six such cases with V:.12, .1617, .195, .245, 

.3283, .395 (1/8, 1/6, 1/5, 1/4, 1/3, and 2/5 resonances) and with t.v=.01 

in all cases. No chaotic trajectories were observed. 

This may seem somewhat unexpected since these cases contain low order 

resonances and might be expected to contain chaotic regions following the 

general discussion above. However, as has been proven 6
, the case \!x=\!y has 

intrinsically different dynamics from \! ~\! • It has been proved that with x y 

\! :\! and a round beam-beam force there exists an invariant of the motion, x y 

which in this case CS =S ) is simply an angular momentum: x y 

Pe = x•y - y•x 

(The theorem of reference 6 is more general.) 

This means that the dynamics of our \! =\! cases contain one less 
x y 

degree of freedom and is therefore intrinsically one-dimensional (1-D) 

motion. This is intrinsically different from the 2-D motion with \!x~\!y• In 

particular the intersection of multidimensional resonances cannot occur in 

\! =\! cases, only 1-D "single resonances" actually occur. Similarly an x y 

extensive search for chaotic trajectories in the 1-D case obtained from 

(1), (2), (3) and (4) with the truncation y=O has been completely negative. 

The above discussion and our observations confirm the hypothesis that 

the intersection of low-order 2-D resonances within the tune spread is 

necessary and sufficient condition for the appearance of chaotic 

trajectories. 
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VII. Chaotic TraJ·ectories with O<v <,5, ,5<v <1.0 y . J[ 

In the above analysis we have only considered cases in the tune region 

O<Vx<.5, O<Vy<0.5. An obvious symmetry connects these cases with similar 

cases in .5<vx<1.0, .5<vy<1.0. The behavior in the quadrant O<vy<0.5, 

.5<v <1.0 is less obvious so we have undertaken reversability tests at the 
x 

crossings of fourth and sixth order resonances. The results are displayed 

in Figure 8, which can be compared with Figure 3, 

An exact symmetry between the cases can be noted, indicating that the 

addition of 0.5 to one of the two tunes leaves the chaotic properties 

unchanged. In particular we note that the line V :V +1/2 (2V -2V =1) x y x y 

contains no chaotic trajectories, which suggests that an invariant of 

motion exists in this case as in the Vx=Vy case, providing 1-D motion. 

This case was not specifically covered in the theorem of reference 6. 
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T~LE 1. Error profile for 117 intersections with O< \I< 1/2 JJ.nd 16 intersections with 1/2< \/ <1. Av= 0.01 x x 

Lowest 
Order 
Lines 
4 4 
4 6 

for all lJJ intersections. For each intersection 100 p.:i.rticles were tracked 100,000 turns forward, 

storing (x,x',y,y') values every 1250 turns; then back to the starting turn zero, comparing (x,x',y,y') 

with forward v?.lues. The error calculated was 10-N = \j(t;x)2,.. \Ay)2,.. (fJxAx' )2,.. (/lyAY' / 

where Ax, Ax', Ay, ily' were the differences between forward and reverse wi.lues, Calculations were 

done in double precision (the d<it~rmim1.te of the transfer matrix Cl *C4-C2*CJ = 1 ! E where typical 

vi;i.lues of €. were 0.5E-28 ..:: E < 0,2E-27) 1 <i. particle was counted to have failed if N < 18, 

The decimal portion of N was dropped in order to com1Jile the t;i.ble below. 

Inter- Number 
section Failed 

3/4,1/4-jlt» 0 

2/3,1/6~ ~ 0 
"" x 5/6,1/3 ::l ~ 0 

2/3,l/J) 26 

2/J;~/41 11 

3/4,1/3 
3/4. 3/8 l -s. 
5/8,1/4 

1/3,1/4 

1/J,1/6 

1/4,1/6 

" >< 
'> 

10 

19 

21 

10 

JO 

11 

N value 
..::10 10 11 

25 

9 

10 

19 

20 

10 

28 

11 

12 13 14 15 16 17 18 19 20 21 22 23 
2 1 

2 

Failed piu-ticles 

1 ( 9) 

2(16,33) 

1 (35) 1 

1 (37) 1 (J4) 

11 61 25 

1 84 13 

1 8J 14 

4 54 15 

7 57 22 

2 

1 

3 

5 62 19 3 1 

2 58 18 2 1 

7 49 20 2 

5 62 21 2 
2 49 18 1 

f-' 
w 

4,7,8,(9),14,20,21,J2,J4, I 

J5,41,48,54,55,57,59,68, 
69,71,73,75,76,77,87,89,90 

1, (16). ( 33). J4, 37 ,41,44, 
47,54,57,95 
7,8,9,14,19,21,)0,44,55,96 

1,2,7,8,14,19,21,J0,33,J4, 
37,41,lilf,50,54,55,77,94,96 

1,4,7,8,9,16,19,J2,33.J4. 
(35).37,41,44,47,54,57, 
71,76,95,96 

1,J2,J4.37,44,47,.54.74,90,95 
4,7,8,9,14,20,22,30,31,(J4), 
35,)6,(37),41,48,54,55.571 
59,68,69,71,73,75,76,77, 
87,89,90,95 

6 61 17 4 1 I 1,7,8,9,14,19,21,J0,37. 
55,96 



TA.BLE 1 (continued) 

Lowest 
Order Inter- Nu,i:ber N V'l.lue 
Lines section F'l.iled ..:.10 10 11 12 13 14 15 16 17 18 19 20 21 22 2~ I F'l.iled P'l.rticles 

4 6 1/4,1/8 21 20 1 (94) 2 75 17 2 1,2,8,9,14,19,21,30,33,J+, 
35,)6,37,4'+,51+,55,61,75, 

1 I 
7?,(94),96 

3/8,1/4 21 I 19 1 ( 7) 1 ( 61) 6 :J+ 17 1 2,4,l7J.9,14,16,21,33,J4, 
37,41,44,47,57 .l 61). 71, 
74,Bc,90,95,96 

6 6 2/3,5/121 10 10 1 68 16 5 1,2,14,19,21,)4,54.57.90,95 

3/5,1/5 17 16 1 (Sb) 2 68 12 1 1,4,7,9,19,21,32,34,37,47, 
55,61,71,77,lU8J,95,96 

3/5,3/101 12 I 12 71 16 1 I 1, 7,9,14,19,30,32,54,55, 
71,95,96 

4/5,2/5 I 12 11 1 (21) 1 72 13 2 1,4,9,14,19,(21),)4,54. 
55. 71,95,96 

>--' 
~ 7 7 1 72 17 3 1,9,14,19,21,Y,,55 

..,.. 
5/6,5/12 .... 

7/10,2/5 /\ 1 (21) 14 
i 

1,2,9,14,19,(21),)4,55,61,95 10 9 75 1 I 
7/12,1/3 ..; 8 7 l l 75) 2 70 15 5 1,9,19,30,54,55,(75),96 
7/12,1/6 7 6 1 (69) 1 73 16 3 7 ,14,19,21, Y,, J7,( 69) 

1/3,1/12 9 9 1 71 16 3 1,9,19,32,34,37,47,54,96 
1/5,1/10 12 10 1(1) 1 (37) 1 71 14 2 \lj,4,9,19,J0,1.37),_54,55, 

61, 71,95,96 

2/5,1/5 9 9 3 71 14 2 1 2,9,14,19,.5'+.55.90,95,96 

2/5,3/10 11 10 1 (90) 2 74 11 1 l 2,9,14,19,21,)4,61,88, 
1.9v;,95,96 

1/6,1/12 6 6 1 75 15 3 1,14,19,21,54,96 

J/10,1/10 16 15 1 (95) 1 2 68 12 1 2,7,9,14,19,21,32,J4,J7. 
55,61,71,75,88,(95),96 

5/12,1/3 6 6 78 14 2 1,2,19,21,Ji+,95 

5/12,1/6 7 6 
(55) 

1 2 72 16 2 9,14,21,J0,'.34,(55) ,61 I 



T~LE 1 (ccntinued) 

Lowest 
Order Inter- Number N v:i.lue 
Lines section F:i.iled <10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Failed P:i.rticles 

4 8 1/4,1/12 5 5 5 70 17 2 1 8,9,19,30,96 

3/8,1/8 14 12 1 t89) 1(69) l 67 17 1 4,20,J0,)6,41,47,,54,68,t69), 
75,77,87,\89),90 

5/12,1/4 5 5 l 4 68 20 2 37,54,&i,90,95 
6 8 1/J,1/8 2 2 1 76 18 3 14,21 

1/3,1/9 3 2 1(1) 79 15 3 \1) ,14,19 

1/3,2/9 2 2 76 19 3 14,19 

1/3,1/18 3 3 79 15 3 1,14,21 

1/3,5/18 2 2 82 13 3 14,19 

1/6,1/8 2 1 1 (21) l 77 16 4 14,(21) 

1/6,1/9 5 5 1 76 15 3 1,14,19,21,')4 
>--' 

1/6,1/18 1 1 1 79 16 3 14 "' 
1/7,1/14 1 1 83 15 1 21 

2/7,1/7 2 2 2 84 11 l 14,96 

2/7,1/14 4 4 84 11 1 9,14,21,)4 

3/7,1/7 l 1 79 18 2 96 

3/7,2/7 5 4 1\2) 78 15 2 1.2) ,9,14,19,61 

3/7,3/14 4 3 1 ()4) 8o 14 2 1,61,95 

3/7,5/14 6 6 1 79 13 1 1,9,14,19,Jl+,55 

1/8,1/16 2 2 80 16 2 4,21 

3/8,1/3 0 1 83 12 3 1 

3/8,1/6 1 1 2 8o 14 2 1 11 
J/8,1/16 2 2 l 80 15 1 1 2,8& 

J/8,J/16 0 87 11 1 1 

3/8,5/16 2 2 1 79 16 1 1 I J4,95 



T~LE 1 (continued) 

Lowest 
Order Inter- Number N v'J.lue 
Lines section F:;i.iled "'10 10 11 12 1.3 14 15 16 17 18 19 20 21 22 2.3 F:;i.iled p:;i.rticles 

6 8 2/9,1/6 .3 .3 l 2 80 12 2 14,19,21 

4/9,1/.3 2 1 1 (95) 77 19 2 1, ( 95) 

4/9,1/6 .3 .3 2 74 18 .3 1,21,.34 

.3/14,1/7 .3 .3 1 7 75 1.3 1 14,61,96 

J/14,1/14 1 1 (4) 80 17 2 (.4) 

5/14,2/7 4 J 
1 l.9) 1 80 12 .3 l.9),_7+,61,96 

5/14,1/14 2 1 1t9/ 1 80 16 1 ( 9) ,61 

5/14,J/14 7 7 1 81 10 1 9,14,19,21,34,55,61 

3/16,1/8 2 1 1 (61) 1 80 16 1 J0,(61) 

5/16,1/8 2 2 85 12 1 21, .34 

7/16,1/8 0 1 78 19 2 
1 (.34) 

>--" 

7/16,J/8 2 1 82 15 1 19,\.34) °' 
5/18,1/6 1 1(14) 2 82 13 2 (.14) 

7 /18,1/.3 2 2 79 17 2 1,21 

7/18,1/6 0 2 76 18 2 

8 8 1/8,1/24 0 1 80 17 2 

3/8,1/24 1 1 85 12 l 1 I 21 

.3/8,5/24 0 1 86 11 1 1 

.3/8,7/24 0 00 10 1 1 

J/16,1/16 .3 J 1 85 10 1 14,21,96 

5/16,1/16 2 2 85 12 1 14,21 

7/16,3/16 J 3 81 14 2 1,19,.34 

7/16,5/16 J J 80 16 1 1,21,.34 

J/20,1/20 0 2 86 11 1 

7/20,1/20 1 1 1 86 11 1 I 21 



TA.BLE 1 (continued) 

Lowest 
Order Inter- Number N v;;tlue 
Lines section F::Liled ..:.10 10 11 12 13 14 15 16 1 7 18 19 20 21 22 23 I F::Liled p:3Xticles 

8 8 9/20,3/20 0 82 15 3 

9/20,7/20 2 2 1 82 13 2 1,61 

5/24,1/8 1 1 87 11 1 21 

7/24,1/8 2 1 1(14) 66 11 1 ,14;,21 

11/24,1/8 1 1 (90) &3 14 2 \90) 

11/24,J/8 0 64 15 1 

4 10 1/4,1/5 0 4 76 17 2 1 

(8 out 1/4,1/16 3 3 5 70 1 c; 2 1 19,19,96 , 

of 10) 1/4,J/16 1 1 4 75 17 2 1 55 
2/5, t/4 0 6 79 1J 1 1 

2/5,1/10 0 1 5 74 19 1 

J/10,1/5 0 9 73 17 1 >-" __, 

5/16,1/4 2 2 4 75 18 l 54,74 

7/16,1/4 1 1 (90) 4 72 22 1 \90) 

4 12 5/12,1/12 0 1 1 79 18 1 

6 10 1/3,1/5 0 82 16 2 

(8 out 2/5,1/J 0 85 12 2 1 

of J6) 2/9,1/9 0 O:i 11 1 

4/9,1/9 0 1 77 21 l 

4/9,2/9 0 85 14 1 

5/18,1/18 1 1 d6 12 1 I 21 

7/18, 1/1a 0 61 18 1 

7/18,5/18 1 1\9) 1 64 13 1 I 1.9) 
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TABL!;; 1 (concluded) 

Lowest 
Order Inter- Number N v11lue 
Lines section F:;i.iled <10 10 ••• 17 18 19 20 21 22 2J F11iled 1'iu:ticles 

8 10 1/5,1/15 0 89 10 1 

(19 out 1/5,1/20 0 88 l1 1 

of 96) 2/5,2/15 0 2 86 10 1 1 

2/5,3/20 0 1 86 11 1 l 

2/5, 7/20 0 2 84 12 1 1 

J/11,1/ll l l 88 10 1 21 

J/11,2/11 1 1 88 10 l 14 

4/11,1/11 0 86 lJ 1 

5/11,2/11 1 1 1 82 14 2 1 

5/11,4/ll 0 l 84 14 1 

J/1J,1/1J l 1 (21) 88 10 1 \21) 

4/lJ,l/lJ 0 89 10 1 

4/lJ,J/lJ 0 2 86 11 l 

5/lJ,2/lJ 0 1 84 14 1 

6/1J,2/1J 0 85 1J l l 

6/1J,5/1J 0 85 14 l 

4/15,1/5 0 89 10 1 

7/15,2/5 0 87 12 1 

9/20,1/5 1 1(1) 84 14 1 (l) 

10 10 1/5,2/15 0 89 10 1 

(13 out 2/5,1/15 0 87 11 1 l 

Of 80) 2/5,4/15 0 88 10 1 l 

J/1J,2/lJ 0 87 12 l 

5/lJ,1/lJ 0 1 84 14 1 

6/1J,4/1J 0 86 13 1 

4/15,1/15 0 88 11 1 

7/15,1/5 0 87 12 1 

7/15,2/15 0 87 12 1 

4/17,1/17 0 1 87 11 1 

5/17,J/17 0 89 10 1 

7/17,6/17 0 87 12 1 

8/17,2/17 0 87 12 1 
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Figure J 

TWle sp.3.ce showir:g :i.11 lines of order 4 P..nd 6-, 'l.Ild the number of ,ch:i.otic 

tr:i.jectories (out of 100) :i.t the 13 inters~ctions; 5 are between lines 

whose lowest orders are 4 o.nd 6; 8 :i.re between lines whose lowest orders 

are 6 :i.nd 6. The 4th order lines are darkened, 
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Fie;ure 4 
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Tune s~ce showing all lines of orders 4, 6 a!id 8, and the number of chaotic 

trajectories (out of 100) at the 55 intersections between ath order lines and 

4th order (3). 6th order (36) 'Uld sth order (16) lines. 
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Figure 5 

Tune space showing :;.11 lines of orders 4, 6, 8, :;.nd 10, "11d tbe nuober of chaotic 

tr:;.jectories (out of 1·00) at Y9 intersections between 10th order lines and 

4th order (8), 6th order (8), 8th order (19), 10th order (lJ); ii.nd one intersection 

between a 4th order line and a 12th order line sketched in. 
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i:·u::ie s~ce s:-io·•:...r..e ~ll li.nec of order 6 or less, ant 

the numbe= of non-:-eve:-sible p;.rticles at 74 

intersections for L:.v = 0.02 
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Fig=e 7 ::·une space showiL.;; -s.11 lines cf o:::-der 6 o:: less, 

and the number of non-reversible p.srticles at 

75 intersections far l:,\! = 0.005 
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Figure 8 
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Tune sp:i.ce for 1/2 < y ..:: 1 showing all lines of order 4 (~~ened) :uid 6; x 
'3.Ild the number of chaotic trajectories (out of 100) at 16 intersections: one 

is between lines whose lowest orders are 4 and 4; 7 are between lines whose 

lowest orders are 4 '3.Ild 6; 8 are between,lines whose lowest orders are 6 and 6. 
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