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Abstract

Results of a search for evidence of chaotic trajectories in
simulations of heam storage with a "weak-strong" beam-beam interaction are
presented. The storage ring tunes (\&, \&) and the beam-beam strength
parameter Ay are varied, and chaotic trajectories are found where the
heam-beam spread Ay contalns low-order resonance intersections. Chaotic
trajectories are not found if \&:\y. Variation of tune shift indicates that
the degree of chaotic behavior does not directly depend on the tune spread

but upon the relative location of the resonance intersection with respect

to the tunes.

# Operated by Universities Research Association Inc. under contract with the United States Department of Energy
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I. Introduction

In a previous paperi, we presented results which showed evidence for
chaotic trajectories in a simulation of the beam-beam interaction with the
parameters (vx:.2u5, vy=.12, Av=.01), where Vo vy are the machine tunes
and Av is the beam-beam tune shift. Other cases had not shown these
chaotic trajectories. 1TIn another set of simulationsz, tune modulation was
added to the beam-beam interaction, and it was found that chaotic
trajectories could appear if the modulation amplitude wwere sufficiently
large.

In this paper we change the parameter values (vx, vy’ AV) of the
urmodulated two-dimensional beam-beam interaction and determine conditions

for the appearance of chaotic trajectories, and the density of these

chaotiec regions.

ITI. Simulation Procedure

In our simulations we approximate particle circulation around the ring
as the product of two transformations: a linear transport around the
storage ring fcllowed by a nonlinear beam-beam "kick" at the interaction
area.

Transport around the ring can be represented by 2x2 matrices for both

transverse (x and y) dimensions:



-3 -

- -
X cos 2mV_ B sin2my X
sin2mv
X! - —— o821V x! (1)
After | Bx x ) Before
In this linear transport x and y motion are decoupled. v , vy, Bx’ By are

the usual Courant-Snyder tunes and beta-functions®. The beam-beam kick can

be represented as

hrAv

After L = g — Fy(xyy) ! XV Before

X

(2)

with a similar expression for y, y'.
The preduct of these transformations is equivalent to in%egration of

the equation of motion:

unAux
3 Fx(x,y) x Sp(s) (3)

X

T = -
X + Kx(s) X =

8, the distance along the storage ring, is the independent variable, ﬁp(s)
is a periodic delta-function, and Kx,y(S) is the focusing function.

In the present report we chcose parameters which approximate the
conditions® in: the Tevatron: B;:B;=2 m, where the * indicates values

matched to small amplitude motion, and we choose



1 - e —(x%+y?) /20
F_=F = 3 ("
(x%2+y?)/20"

with 0=0.0816 mm, which is the nonlinear force due to a round, gaussian
charge distribution of rms radius O.

Tune modulation can be added to the simulations by making vx, vy
periodic in time?. In the present paper we choose not to do this and

explore the properties of the variables Ux’ vy, Av.,

ITI. A Test for Chaotic Trajectories

In reference 1, we developed a useful empirical test for the
appearance of chaotic trajectoriesj this is the repeatability test. In
this test a particular trajectory is tracked forward for some large number
of turns of the linear transformation and beam-beam kick and then the
trajectory is reversed in time and tracked backward numerically (reversing
the velocity) and forward and return positions are compared. A non-chaotic
trajectory shows limited position error difference growths that is the
error A increases with the number of turns N as A v A°N3/2 (or even as

1/2

slowly as AON in some special casesl), where Ao is a single turn error

magnitude (#1072

double precision).
Chaotic trajectories develop substantially larger errors. Errors grow

exponentially following

aN
A\J"Aoe



where a is a trajectory dependent parameter equal to the "Lyapunov
Exponent" of nonlinear dynamics theorys. In nonlinear dynamics, "chaotic
regions" are distinguished by the characteristic feature that nearby
trajectories diverge from each other exponentially, with the rate of
divergence given by the Lyapunov exponent.

1

In the repeatability tests of reference” particle trajectories fell

quite naturally into one of two categories:

Category I: ‘'"repeatable"™ trajectories which develop errors of order

1072% in a 100,000 turn reversability test and of order 10™'5 after 100
million turns.

Category 1II: ‘'"chaotic" trajectories which exponentially develop
errors of order unity after <100 thousand turns with measurable Lyapunov
exponents of «.001. -

Figures 1 and 2 show results of reversability tests for sample
trajectories of both typea. The clear empirical difference between them
permits us to separate phase space into "chaotie" and '"non-chaotie™
regions.

In reference 1, for our case "B" (vx=.245, vy=.12, Av=.01), it was
found that 25% of a randomly selected sample of trajectories were chaotic.
Other cases: (Case A: vx=vy=.2u5, Av=.01) and (Case C: v, =.3439,
vy=0.1772, Av=,01) showed no chaotic trajectories. Empirical
investigations indicate that chaotic trajectories can occur at the
intersections of "low-order" rescnances and do not occur when the tunes vx,

V_ are equal.
y q

We want to point out that a chaotiec trajectory is clearly associated
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to a loss of "phase'™ memory, but we have no indication of amplitude growth.
Actually we have evidence that for the periocd of time being simulated the
chaotic trajectories remain confined to bounded domains in the phase space,

with the exception possibly when tune oscillations are added?.

IV. A Bearch in Tune Space (v_, v ) for Chaotic Trajectories
Sl typl

In this section, we report results of a more detailed search for
chaotic trajectories. 1In this search, the tune shift Av=.01 and the other
parameters of the beam-beam interaction (the strong beam size and shape,

#*
and the matched betatron function of the weak beam Bx=B;=2m) are kept

constant while the tunes Vx, Vy are varied. These tunes are chosen near
the intersections of low-order resonances; the intersections are at
Vx + Avy2, vy + AV/2 s0 that they are in the center of the beam-beam tune
spread. A 100 sample trajectories are tracked forward 100,000 turns and
returned, and their trajectories are inspected for chaotiec behavior by the
"repeatability test".

The initial coordinates (x, x', ¥, y') of these sample trajectories

are randomly chosen within a 4-D phase volume weighted by a 4-D gaussian

2=Gy2, and Bx=8y’ as defined

distribution determined by the parameters 02=dx
above. Coordinate sets with an initial coordinate greater than three
standard deviations are discarded. The same iniftial particle positions
were used in all of the simulations, and particle motions are initiated at
the center of the interaction region.

The results of 133 cases are displayed in Table 1, where accumulated

errors between initial and return particle positions are tabulated.

Trajectoriea separate naturally into two groups:
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1. "non-chaotie" - with errors <1019

2. "chaotic" - with errors of order unity; an error cut off of 1071°
is used to distinguish these.

There are a few with "intermediate" properties, with test errors
between 107'°% and 107'%. Most trajectories in this intermediate region are
found to be "chaotic" with smaller Lyapunov exponents in a longer test. We
therefore choose a boundary of 107'® error to separate "chaotic" from

"non-chaotic" regions.

The results show that chaotic trajectories do occur in many of the
test cases. In the most "chaotic" case 31% of the test trajectories are
chaotic.

A more careful analysis indicates that the cases with larger numbers
of chaotic trajectories appear at the intersections of the lower order

resonances. A resonance 1s determined by a relationship between the tunes:

n\)x+m\)y=p
where m, n, and p are integers. The "strength" of a nonlinear resonance is
determined by the "order" {i of the resonance which, for our round beam-beam

force is given by

9] =|n‘+|m\ if both m and n are even

Q=2 (h]+|mp if m and/or n are odd

The appearance of cnly even orders is a result’ of the fact that our

beam-beam force is an even function of both x and y.



In our data set, which is confined to the tune region 0<vx<1/2,
o<vy<1/2 and avoids the diagonal vxzvy, in the present discussions the

lowest order resonances are fourth order:
uvx=1, Hvy=1, 2vx + EvY = 1
Sixth order resonances are:

3Vx=1, 6Vx:1, 3Vy=1, 6Vy=1
v toy - v+ = * =
y % 2 y_1, y v 2Vx_1 Vx 2Vy-1

+ - - = - =
2\)x \Jy_1 \)x 2\)y-0 \Jy 2\3x 0

These resonances (4th and 6th order) are shown in Figure 3. Large
numbers of chaotic trajectories (29%) appear in each intersection case
tested. All cases with more than 7% chaotic are included within this set
except for vx=.37, vy=.12 which is at the intersection of a fourth order
and five eighth order resonances (14% chaotic).

Including eighth order resonances adds another set of intersections
with fewer chaotic trajectories. Intersections of sixth , fourth or eighth
with eighth order resonances have between 0% and 7% chaotic trajectories
(with a single "fourth-eighth" case at 14% as noted above). Figure 4 shows
these additional intersections. We note here that all cases {except 2)
with more than 1 chaotic¢ trajectory in our test cases are included within
Figures 3 and 4. The exceptions are intersections of fourth with tenth
order resonances (3% and 2% chaotic).

In figure 5 we include higher order resonance intersections (up to
twelfth). Most of the additional cases show no "chaotic" trajectories,
although a few have a single "chaotic" case, with the two exceptions

mentioned above.
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We conclude this section with the summary that chaotie trajectories
can appear with large density at the intersections of low order resonances,
and that their density rapidly decreases with the inc¢reasing order of the
resonances.

The evidence supports the empirical hypothesis that the volume of the
chaotic region is proportiocnal to the intersecting volumes of the resonant
region. We believe that the chaotic¢ regions are the same as the stochastice

layers of many non-linear resonances?.

V. Dependence of the density of chaotic trajectories on tune shift

We repeated zome of the above test cases with Av=.02 and Av=.005. The
tunes Vs Uy were adjusted to keep the rescnance intersection in the center
of the spread. We find no dependence on tune shift.

Figures 6 and T display the 74 casees with Av=.02 and the 75 cases
with Av=.005 used in this test, and they can be compared with the Av=.01
cases of figures 3, 4, and 5. The differences are less than a strietly
statistical random error pattern; this is related to the fact that the 100
initial particle positions are the same for all c¢ases.

This result is in agreement with the hypothesis that the density of
the chaotic region is related to the widths of the intersecting

resonances &

. It is a fact that for the beam~beam interaction, resonance
width doesz not depend directly on tune shift to lowest order, but does
depend on the pelative location of the resonance with respect to the tune

spread.
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VI. Resonance "Intersections" with v, =V
A

In the previous sections we omitted consideration of cases with vxzvy.
We now report results of six such cases with v=.12, .1617, .195, .245,
.3283, .395 (1/8, 1/6, 1/5, 1/4, 1/3, and 2/5 resonances) and with Av=.01
in all cases. No chaotic trajectories were observed.

This may seem somewhat unexpected since these caszes contain low order
rescnances and might be expected to contain chaotic regions following the
general discussion above. However, as has been provens, the case vx=vy has
intrinsically different dynamics from vvay. It has been proved that with
szvy and a round beam-beam force there exists an invariant of the motion,

which in this case (Bx=6y) is simply an angular momentum:
Pg = X'y - y'x

(The theorem of reference 6 is more general.)

This means that the dynamics of our vx=vy cases contain one less
degree of freedom and is therefore intrinsically one-dimensional (1-D)
motion. This is intrinsically different from the 2-D motion with vxﬁvy. In
particular the intersection of multidimensional resonances cannot occur in
vxzvy cases, only 1-D "single resonances™ actually occur. Similarly an
extensive search for chactic trajecteories in the 1-D case obtained from
(1), (2), (3) and (4) with the truncation y=0 has been completely negative.

The above discussion and our observations confirm the hypothesis that
the intersection of low-order 2-D resonances within the tune spread is
necessary and sufficient condition for the appearance of chaotice

trajectories.
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VII. Chaotic Trajectories with 0<g¥<.5, .5<g*$1.0

In the above analysis we have only considered cases in the tune region
0<yx<.5, 0<gy<0.5. An obvious symmetry connects these cases with similar
cases in .5<qx<1.0, .5<gy<1.0. The behavior in the quadrant O<vy<0.5,
.5<vx<1.0 is less obvious so we have undertaken reversability tests at the
crozaings of fourth and sixth order resonances. The results are displayed
in Figure 8, which can be compared with Figure 3.

An exact symmetry between the cases can be noted, indicating that the
addition of 0.5 to one of the two tunes leaves the chaocotic properties
unchanged. In particular we note that the line yx=vy+1/2 (2vx_2Vy=1)
contains no chaotic trajectories, which suggests that an invariant of
motion exists in this case as in the vx=x& case, providing 1-D motion.

This case was not specifically covered in the theorem of reference 6.
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TABLE 1. BError profile for 117 interseclions with 0< v < 1/2 and 16 intersections with 1/2< vx<1. OHV = 0,01
for all 1733 intersections, For each intersection 100 particles were tracked 100,000 turns forward,
storing {x,x',y,y') values every 1250 turns; then back to the starting turn zero, comparing (x,x',¥,¥')

with forward values. The error calculated was 10-1{ = '\/(Ax)2 . LAy)z - (ﬁxbx')z . (ﬁyﬂy')z

vhere Ax, Ax', Ay, Ay' were the differences between forward and reverse values, Calculations were

done in double precision (the ¢aterminate of the transfer matrix CL*CH=C2%C3 =1 % £ where typical
values of € were 0,5E=28 £ g < 0.2E=27}; a particle was counted to have failed if N« 18,

The decimal portion of N was dropped in order to compile the table below.

Lowest
Order Inter- Number | N value '
Lines section Failed (<10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | Failed particles
by 3/4,1/1;21,, 0 1L 6L 25 2 1
b 6 2/3,1/63% O L& 13 2
5/6,1/39 2% 0 1 83 b 2 !
2/3,1/3) 26 | 25 149 boo1s 1 4,7,8,(9),14,20,21, 32, H, |
35,41 ,48, 54, 55, 57, 59,68,
' | ) . 69,71 ,73,75,76,77,87,89,90
2/31 /4 1 9 2(16:33) 7 57 22 3 1,(16),(33), 34, 37,41 i,
e U7, 544 57,95
3Ma/3 10 | 10 5 62 19 3 1 |7,8,9,14,19,21,30,44,55,96
4,380 = 19 |19 2 58 18 2 1 |1,2,7,8,14,19,21,30,33, %,
SN | 37,41 4, 50, S, 55, 77,5, 96
5/8,1/’4" )K. 21 20 1(35) 1 7 49 20 2 1,4,7,8,9,16,19,32,33, 34,
(35) 37,41 e 47, 54, 57,
71,76,55,96
1/3,1/4 10 10 5 62 21 2 1,32, 34, 37,84 ,47, 54, 74,90,95
1/3.1/6 %0 28 1(37) () o 4o 18 1 4,7,8,9,14,20,22,30,31,(3),
35,36,(37) 41,48, 54,55, 57,
59,68,69,71,73,75, 76,77,
87,89,90,95
1/4,1/6 11 11 6 64 17 4 1 |1,7,8,9,1%,19,21,30,37,
55,96




TABLE 1 (continued)

Lowest
Order
Lines

L 6

Inter-~
section

1/4,1/8
3/8,1/4
2/3,5/12)
3/5.1/5
3/5,3/10

4/s,2/5

5/6,5/12
7/10,2/5
?7/12,1/3

~

v, > 1/2

7/12,1/6 ]
1/3,1/12
1/5,1/10

2/5,1/5
2/5,3/10

1/6,1/12
3/10,1/10

5/12,1/3
5/12,1/6

Nurber
Failed

21

10
17

12

12

10

12

11

16

N value

<10 10 11 12 13 14 15 16 17 18 19
20 19,
19 {720 46 6
10 t
16 1(85) 2
12
11 1(21) 1
7 t
o y)
6 1(69) ;
9 _ 1
10 1 (1) 1(37) '
9 3
10 1(90) 2
6
15 1(95) 1 2
6
6 '(55) 1 2

20
75

s &

7
72

72
75

73
7
7t

71
7

75

78
72

21

17

16

16

i3

17
14
i5
16

16
1L

14
i1

15
i2

14
16

22 23

2

MW W W W

[4N)

1

Failed Particles

t,2,8,9,14,19,21,30,33, 34,
35,36, 37,44, 5+,55,61,75,
77,(9},96
29“!\?)#9:14316121033r34s

37,41,44,47,57,(61),71,
74,80,90,95,96

1,2,14,19,21, 34, 54,57,90,95

1,5,7,9,19,21,32, 3,37,47,
55,61,71,77,088),95,96

1,7,9,14,19,30,32, 4,55,
71,95,96

1,4,9,14,19,(21),34, %,
55,71,95,96

1,9,14,19,21,34,55
1,2,9,14,19,(21),3#4,55,61,95
1,9,19,30, %,55,(75),96
7,14,19,21,3,37,(69)
1,9,19,32,34,37,47, 5,96

(1)4%4,9,19,30,(37) s 4455,
61,71,95,96

279’14l1915:+!5.5'90l95'96

2,9,14,19,21,34,61,88,
\901395096

1,14,19,21,54,96

2'?'9!"1?119'21: '32.y+l37'
55461,71,75,88,(95) 496

1,2,19,21,34,95
9,14,21,30, %,(55),61

|
[
=~
1



TAELE 1 (centinued)

Lowest
Order Inter- Number N value
Lines section Failed |<10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 } Failed Particles
L 8 1fsaflz 5 5 5 720 17 2 1 |8,9,19,30,96
3/8,1/8 1k 12 1489) 1890 g 17 i,20,30,36,41 47, 4 ,68,(69),
75:77,87,{89),90
5/12,1/4 5 5 1 & 68 20 2 37,5,88,90,95
6 8 1/3,1/8 2 2 o 1 76 18 3 Lk, 21
1/3.4/9 3 2 1) 29 15 3 (1) 14,19
1/3.2/9 2 2 7% 19 3 14,19
1/3,1/18 3 3 ¢ 15 3 1,14,21
1/3,5/18 2 2 82 13 3 14,19
1/6,1/8 2 g 1(2h) 1 77 16 4 14,(21)
1/6,1/9 5 5 1 76 15 3 1,14,19,21,%
1/6,1/18 1 1 1 79 16 3 14
1/7,1/ih 1 1 83 15 1 21
2/7.4/7 2 2 2 84 11 1 14,96
2/7.4/th & 4 g4 11 1 9,14,21,3%
3/72.4/7 1 1 ‘ 75 18 2 96
3/7.2/7 5 4 142/ 78 15 2 (2)49,14,19,61
3/7,3/14 b 3 1(3“) 80 14 2 1,61,95
3/7.5/14 6 6 1 7% 13 1 1,9,14,19,3,55
1/8,1 /16 2 2 80 16 2 4,21
3/8,1/3 0 1 83 12 3 1
3/8,1/6 1 1 2 B0 it 2 1|1
3/8,1/16 2 2 1 8 15 1 1 (2,8
3/8,3/16 0 87 11 1 1
3/8,5/16 2 2 1 79 16 1 1 | 34,95




TABLE 1

Lowest
Qrder
Lines

6 8

{continued)

Inter-  KNumber
section Falled

2/9,1/6
4/9,1/3
4/9,1/6
3/14,1/7
/14,1 /14
5/14,2/7
5/14,1 /14
5/14,3/1h
3/16,1/8
5/16,1/8
7/16,1/8
7/16,3/8
5/18,1/6
7/18,1/3
?/18,1/6
1/8,1/24
3/8,1 /24
3/8, 5/2
3/8,7/24
3/16,1/16
5/16,1/16
7/16,3/16
7/16,5/16
3/20,1/20
7/20,1/20

W

= O W W NwWw O O O 0O N RO N NS NN

N value
£10 10 11 12 13 14 15 16 17 18 19
3 _ 1 2
L 1(95)
3 2
3 17
1(4)
1 1(9 1
7 1
1 1{61) 1
2
1
1 1(30
1 (1%) 2
2
2
1
1
i
3 1
2
3
3
2
1 1

2 & E

75

2282

85
73
82
82
7
73
80
85
86

85
85
81
80
86
86

2L 22 23
12 2

19
18
13
17
i2
16
10
16
12
19
15
i3
17
i8
17
12
11
10
10
12
14
16
11
11

o s D R e ke e BRI R ke e ey N N

Failed particles
14,19,21

1,(95)

1,21,34

14,61,96

(1)

(9) 4 5+,6L,96
(97,61
9.44,19,21, 3%, 55,61
30,(61)

21, %

19,(34)
(14)
1,21

21

14,21,96
14,21
1,19,34
1,24,3%

21

_9‘[‘_



(continued)

TABLE 1
Lowest

Crder Inter-
Lines section
8 8 9/20,3/20
9/20,7/20
5/24,1/8
7/24,1/8
11/24,1/8
11/24,3/8

4 10 1/4,1/5
(8 out 1/4,1/16
of 10) 1/4,3/16
2/5,t
2/5,1/10

3/10,1/5
5/16,1 /4
7/16,1 /4
4 12 s5/12,1/12
6 10 1/3,1/5
(8 w25/
of 36) 2/9,1/9
4/9,1/9

4/9,2/9
5/18,1/18
7/18,1/18

7/18,5/18

Number
Failed

0

- O F O O O O O O FF N O O O WO O F N R

N value

<10 10 1i 12 13 14 15 16 17 18 19

2
1 .
1 1 ()
,(50)
3
1
2
(50
1
(%)

= 5 o o B

20
82
82
87
&6
83

76
70
75
79
7
73
75
72
79
82
85

77
85
86
&1

21
15
13
11
11
14
15
17
1
17
13
19
17
18
22
18
16
12
11
21
14
12
18
13

Y
n

Ll =l =t i T T N S N Y N e S I T  CR o R O

23

T A

Failed particles
1,61
21

(14,21
(50}

9,19,95
55

Sy 7

(90,

2i

(9)

_L'[.-.



TABLE 1
Lowest

Qrder
Lines

8 10

(19 out
of 96)

10 10

(13 out
0f 80)

(concluded)

Inter- Number
section Falled

1/54/15 ¢
1/5,1/20
2/5.2/15
2/5,3/20
2/5,7/20
3/11,1/11
3/11,2/11
L/11,1/11
5/11,2/11
5/11,4/11
3/13,1/13
4/13,1/13
4/13,3/13
5/13,2/13
6/13,2/13
6/13,5/13
4/15,1/5
7/15,2/5
9/20,1/5
1/5,2/15
2/5,1/15
2/5,%4/15
3/13,2/13
5/13,1/13
6/13,4/13
h/L5,1/15
7/45,1/5
7/15,2/15
bf17,1/17
5/17,3/17
7/17,6/17
8/17,2/17

o 0O C 0 0 Q0 0 0 O 0O 0 C O+ OO0 00O O 00 O+ 0 -~ O Cc C
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N value
£10 10 ... 17 18 19

L(2)

(1)

20
89

86

TEESEEEER

86

85
85
89
a7

89
87

IE&EIE

87
87
89
87
87

21
10
11
10
11
12
10
10
13
14
14
10
10
iL
14
13
P
10
i2
14
10
11
10
12
14
13
11
12
i2
11
i0
12
12

oo
[y

e S T R O T U R TP R P = i o i o i e e =l ol G TR - o o Y Y R Y

FPailed Farticles

21
L4y

(2l)

(1)
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e Figur
L | gure 3

Tune space showing all lines of order 4 and 6, and the number of chaotic
trajectories (out of 1C0) at the 13 intersactions; 5 are between lines
whose lowest orders zre &4 and 6; 8 are btetween lines whose lowest orders

are & and 6. The 4%° order lines are darkened,
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- Figure &
- 22 _

Tune spzce showing a2ll lires of orders &, 6 znd 8, and the number of chaotic
trajectories {out of 100) ai the 55 intersections between Bth order lines and
50 orger (3), 6 order (36) ard 8% crder (16) lines.
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_ 93 - lgure 35

Tune space showing 21l lines of orders &4, 6, 8, 2nd 10, and the nunber of chaotic
trajectories (out of 1.00) at M9 intersections betiween ic}th order lines 2nd
5 orger (&), 6" order (8, 8P crder (19), 10%P order {13); and éne intersection

between z hth order line 2nd a 12th order line ske_t'ched'. in.
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Plgure &

- 24 -

Tine space Bhowing =1l

lines of order € or less, =nd

+he number of non=-reversible particles at 74

intersections for AL v= (.02

rojr



o]+~

‘ (W Loy Lnjro

£

PN LV Ly

- 25 -

Figure 7 Tune space showing 211 lines ¢f order 6 or less,

znd  the number of non=reversitble pariicles =1

7% intersections fer AV = (.005




_ Figure 8
-26 -

Tune space for 1/2 < v, <1 showing all lines of order 4 (darkened) and 6;
and the number of chaoctic trajectories {out of 100) at 16 intersections: one
is between lines whose lowest orders are 4 and 4; 7 are between lines whose

lowest orders are 4 and 6; 8 are between-lines whose lowest orders are 6 and 6.
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