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1. Introduction

Over the past guarter century, & considerable amount of work
has been devoted to the study of the time-dependent linear
oscillator

X + K(sYx = O, (1-1)

which represents betatron oscillations in accelerators and storage
rings. Courant and Snvder/l/ first found that a conserved
quantity for Eqg. (l1-1) is
1= [ s (89 —porxV] (1-2)
z@G) 2 <
where x(s) satisfieg Eq. (1-1) and B(s) satisfies the auxiliary

equation
.o | - &
68 —xp +kof =1 (1-3)

Several derivations of the dynamical invariant(1-2) have been
given in the literature: The exact invariant was derived by Lewis
and Riesenfeld/2/ on the assumption of gquadratic invariance.
Lutzky/3/ derived the invariant(1-2) from Noether's theorem and
recently Korsch/4/ presented a proof of the dynamical invariance
of (1-2) , using the method o¢f dynamical algebra. An early
discussion about the general interrelation between the
differential equation(l-1) and (1-2) can be found in an article by
Milne/5/. In addition, a physical meaning of the origin of the
invariant was presented by Eliezer and Gray/6/, with the help of

auxiliary plane motion.



It is the aim of the present note to review the three
different methods for deriving the dynamical invariant (1-2) and
to investigate possibilities of applying them to the nonlinear

betatron oscillation

= + KCsYx <+ K’cs)x" =0 (1-4)
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which is derivable from the Hamiltonian

-

] ’ 3
Hex posy = 3 (p2+ keIX') + 5 KX (1-5)

2, Derivation of Invariant
2-a Time-Dependent Linear Canonical Transformation
We shall show explicitly that a time-dependent Hamiltonian

H(x,p;s) = -'2— (pP*+ l<(s)x‘)/ (2-1)

can be converted to time-independent form with the help of a time-
dependent linear canonical transformation and a change of time
scale,

The canonical equations of motion obtained from (2-1} are

. r s

x = %-F-’- = P ) (2-2-a)
. 2H

p = 5y = - K5y, (2-2-Db)

First we require that the Hamiltonian in Eqg. (2-1) is transformed

)

’ i 2
. =l—- -+ -—
Hex,prsy =5 (P + X)) (2-3)

into the form



with a time-dependent function f(s) which is determined later, by

means of the time-dependent linear transformations

X = A x + ALGdp (2-4-2)

P

Because we assume the canonical transformation, the time-dependent

AtsH)x + NP ) (2-4-b)

coefficients A:“”, Aks), K?s),and Ai(s) in Eg.(2-4) must satisfy

the relation
) |
MO AL - Ay = 1 (2-5)

The canonical equations of motion obtained from Eg. (2-3) are

X = 2"-;‘-"1 = {eHp (2-6~a)
. 2K’ 6~
P = -2 = --f-ts)X. (2-6~b)

In order to determine the unknown time-dependent coefficients in
(2-3),(2-4), the relations in (2-2),(2-4),and (2-6) are combined
in Such a manner that the new canonical variables are replaced by
the cld ones. This is effected by taking the time derivatives of
the relations in (2-4), replacing X and P by the expressions (2-6)
, and then substituting x and p by the guantities given in (2-2).
Finally we equate the coefficients of like powers of x, p, x% and
pzfrom both sides of the equations and obtain the relations among
the coefficients

;\: = K(sYA + oA (2-7-a)
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L= -+ 4o (2-7-5)

A = --]-(s)/\', + Ks) A ) (2-7-c)
AL = - A, - A (2-7-d)

The coupled equations (2-7) may be solved by the well-known matrix
method. However we show a set of particular solutions satisfying
Eqgs. (2-5)}, (2-7). Taking AL=O and replacing Ai with fy(s), it is
then trivial to obtain the solution for nu from {(2~5)}. The

solution is
» -
]
substituting A3=0, A3= $(s), and (2-8) into (2-7-b), we have

{-(s) = ?‘1(5). (2-9)

t 1
Also substituting the time derivative of ﬂ|, A;;O, and (2-9) into

{2-7-a}, we have

z L]

A = PO, (2-10)
Eq. (2-10) 1s equivalent to Eq, (2-7-d). Next, substituting (2-8),
{2-9) and (2-10) into Eg.(2-7-a), we obtain the differential

equation satisfied by f (s),

P+ KGYP = p3 (2-11)

If we replace F(s) with Vﬁ(s , the differential equation for the
so- called betatron amplitude function ﬁ(s) will be easily

written down



T T N

Furthermore, if the change of independent variable
S ’ ,
db(s) = g fCS > ds (2-13)
rd
is made, the Hamiltonian H' becomes

HOX, P :é) = 3 (P4 X2, (2-14)

Evidently the new Hamiltonian H" is a constant of motion in the
coordinate system of (X,P;¢). It is apparent that Eq.(2-4) is

invariant in the old system (X,p:Ss):

dr”_ dH"dd g e
ds dd as ¢

Next let us show (2-14) as a function of ﬁ(s), x and ﬁ.

Using (2-8) and (2-10), we write the s-dependent coefficients of
1 [ . .

Aﬂs), Az(s), AT(s), and A:Uﬂ in (2-4-a),(2-4-b) with the

function p(s), |

/\:fs) = {3":(5) )
As(s) = O,
‘ »
AL () = —3 Fpl)
\
AL () = B3(9),

(2-15)

Setting these values in (2-4-a), (2-4-b) and substituting them

into (2-14), we obtain the invariant
- Loz —d 2
H = -;—[ ("3':(5 "Px*P‘P) + (%) ] (2-16)

*
Setting p=x and H"= I in (2-16), we write the dynamical invariant



in the form
1= ....‘._[ =t + (-gﬁs)x —(ats)*:r)a]. (2-17)

In addition for reference, we show that the generating
function for the canonical transformation (2-4-a),{2-4-b} 1is
easily derived.

Using a generating function FI(X,P;S) cf the second type, we

write
>F? i
P =3x = -/\_':'. (P- 1 ’C) (2-18-a)
2F?
X =3p = AL (2-18-b)

From (2-18-b), we assume
F(z.P:s)= AP + 9(x: (2-19)

where g(x} is an arbitrary function of x. Substituting (2-19)

into (2-18-a}) and equating the term of P and x on hoth sides, we

obtain
2
2% _ /\u
>x A; (2-20)
From (2-20}, g(x;s) becomes
£
A:
x;s) = x4 his) (2-21)
z
Furthermore, setting h(s)=0 in (2-21}, we have the generating
function
2 Aﬁ
- l L
Fx,P:isy= AP - —x (2-22)

A ¢



2-b Dynamical Algebra

We <c¢an constryuct easily the dynamical algebra for the

Hamiltonian

3
Hex,p.s) = Z hatsd>lMa(x. P) (2-23)

ne=t ’

following the usual procedure. Here the dynamical algebra is the
Lie algebra of the phase-space functions Ta , which are closed

under the action of the Poisson bracket [ P

3
A l,_z_- Coe v, (2-24)

h
where the C, g are the structure constants of the algebra. For the

Hamiltonian (2-23}, FL has a set of Poisson brackets

[r",.f",,]=—2r'.r£r1:r'a]=-2r; r[rsrnlzrz. (2-25)

From Eqg. (2-25) we see easily that the algebra is closed.

The structure constants C:; are described by the matrices

¢ -2 0 0 © -1\ 0o o ©
{ £ 3
Com= 2 © O Cn.m {0 o 0| Cum=l 0 0 2] (2-26)
o o of | O © 6 2= o/

The time development of a phase-space function I is given by

?

and the dynamical invariant I is characterized by

41 . »I _
-a-; =0 , L.€. %‘3‘ - ]:1f H]. (2-28)



We now look for an invariant that is a member of the dynamical

algebra

3
1 = gE} 24,(S) r; ,

{2-29)
which gives, with (2-28),
3 . 3 v
[ 2, +;zm Com D VA Y] = 0, (2-30)
r=1 '
and therefore the system of linear first-order equations
. 3 .3 r
Ar + Z [ L Com hut) ]2, =0, (2-31)

with hl(s)=l, ha(s)=0, h3(5)=K(s). The coefficients 245) of the

dynamical invariant

T = -;_-H‘(S)P" + A()Y px —t-}'-hgfs)x"’

(2-32)
are solutions of the differential equations
n-l 0 - 0 ;ll
d
1S Aaf=] Kisy o -1 || A (2-33)
A3 o 2K 0 J\ 2,

Setting 1‘= pc(s), we find

Nz = — (5.-./2- , (2-34-a)
A3 = — KCs) éc ) (2-34-b)
A3 = p.f2 + K6)Be (2-34-c)

Equating the derivative of (2-34-c) with (2-34-b), we finally

obtain

@c ~+ 4“(’)(;'1 + zlé")(a‘—z 9, (2-35)
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which has the integral
I .e ‘ « 2 3
S8 B —“F B T+ K(syfe = C, (2-36)

with integration constant C. The solution (2-36) determines the

Rm(s) and the dynamical invariant (2-33) is therefore expressed

in the form

| 2 3¢ 1
T = ;(_;'c C X —+ (g""ﬁcf’) ] (2-37)

The arbitrariness implied by the presence of the constant C is

illusory, as may be verified by making the scale transformation

L
sy = ¢ F (3.-., (2-38)

pfs) being a new auxiliary function of s, The auxiliary

equation which @(s) satisfies is

o6~ A pt « xorptal,

After discarding a constant multiplicative facter C and setting

P=i, we write Eq.(2-37) in the form

I::lﬁ['x" + (g—x"ﬁ'&)z]’ (2-40)

2-¢c Noether's Theorem

The formulation of Noether's theorem used is the one given by

Lutzky. If the transformation

G = é(z,s)% -+ h(‘:r.s)%::—t-,

leaves the action integral S | (x,i;s)ds invariant,



11

2k 'aL. : _ 41
55 t hay +(n- 3?§‘) + ¢, =4 , (2-41)
where f=f({s,t), and 4-
: 2 - 2§ - _2n .an _Ei' )
éé:%é*‘x"a_‘x-,h_bs—'-x‘b"'* s X '37;

then a constant c¢f the motion for the system is given by

= (8x-m2 -4+ 4 242

| 2
The Lagrangian L» = Er(x —K(s).xz) gives the equation of moticn

(l); using this lagrangian in (2-41) and equating coefficients of

powers of x to zero, we obtain a set of equaticns for § N ,{'

% Y. (2-43-a)
2N | 2 o
2= “ 2 3s =Y, (2-43-b)
211 _._L kxs)Z,é a‘J----o
2S 2 X x T, (2-43-c)
s 2

—s 5Ky x™ kcs)x-?‘km %5—::"- i-o (2-43-d)

Eg. (2-43-a) implies that e is a Eunction of s alone, From

(2-43-b) and ({(2-43-c), we obtain the results

nCx,s) = = &% + G5 (2-44)

)
2
._L

-;-('x, $)y = 1; x*+ q—ts)x + C(s5), (2-45)

where 1;{g+»K(s)-LP(s)=O and C{s) is an arbitrary function of s
alone. Choosing C(s)=0, {(s)=0 and substituting (2-44),(2-45)

into {2-43-d), we find
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- & & L]

£+ 4K06)E + 2k E =0,

has the integral

1y - 48 + k= c

(2-46)
Eq. (2-46)

’ (2-47)
where C is an integration constant. Replacing é with ﬁds)

in
(2-44) , (2-45), and (2-47), we have
nex, s> = 4 @',_(svx (2-48-a)
| .0 _ _
‘S'Cx, ) = F° Bl x? ) (2-48-b)
| *: ' . 2 3
?@c (3; - "a_" (3: —+ K(s) {?c = C.. (2-48-c)

Further using (2-48-c), we obtain

fan =[S 5 B — kEs)fe | =2 (2-49)
’ 2 (Be 4fc “ .
Finally setting é =(3cin (2~42) and substituting (2-48-a), (2-49)

inte (2-32), we write the invariant

. . a
l . ¢
= CXxX =+ ('e- o — cﬁ;) ] -
5 = o[ Sx=pedV]
The arbitrariness by the presence of the constant C can be removed

in the same way as in the previous subsection,

3. Cosiderations of Arbitrariness Appearing in Each Method
The unknown variables, integration constants, equations of
condition, and arbitrariness finally left as their result <can be
summarized as follows:
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unknown variables

integration constants

equations of condition

arbitrariness

2-~a
uTeqrahd fowt
"'(s) IC(AD) MA: = A; AT =1 1wt rwa'- W cousTanmts
' ! Ci . Ca
AiG) .
All (s) IC(A;) 4 A A;'
ds '@ AL = wain wa aitt e
A:cs I¢(M) ds A, A2 cow 3 {m dit 7.
' i A' (S - A:: _L % -
Ai(S) IC(A;) IE(A)' :oo' 2 PP +P k) ‘l‘
2 .
9 7 5
2 ~b
i"\""Y“""’“ consTontg
A65) IC(a)
C. ¢, C
.0 Ic(a,) d'ﬂ =M N=|2, R
3 Ay wmiua -f-ro..., difl . e,
3¢5y IC(as) R
TP TR RN=C
6 3 3
2-C YLE o
ICL(8) a:x ‘ ?;t ) .'u'te-t/\al'&m CoustomTs
865)  1058) 5%~ T -0
24 BE 2% C, C . Cq
I Gln) 25 ——K( X =O'
nes) . Kok _a2f | coming from dibt. -
ICS(“) ";_"# KZ - MKI_;"&S x —,E-.:o a
Il e U, ,
+($) H‘) Ilsw)=0 | _‘ZGP-ZPL"'P l(rs)=(.:
ICs(‘I') ICst;)--o.

6
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where IC(A) is the integration constant appearing when the
differential equation for A where A symbolizes the variables n%,
Aé, % , n, and f is solved and 1ICg(A), ICx(A) are integration
constants appearing when the partial differential equations for A
are solved.

We already know that the arbitrariness ceming from C can be
removed. Therefore, adopting the periodic solution of the

auxiliary equation
| * boeg L
TEE ~F et KwpT=l
with K(s+L}=K(s), where L is the circumference of a ring, we can

decide uniquely the dynamical invariant I

L= ;(;Esjtxl*' ('g’—@’.'y],

with p(s)= p(s+L).

4. Towards an Invariant for Time-Dependent Nonlinear Betatron

Oscillation

The existence of invariants for non-harmonic systems was
recently demonstrated in several articles, Ray and Reid/7/

derived the invariant for the nonlinear equation of motion

~ sYyx + —-3—- = 0 (4-1)
~< -+ K(sH X3 ,
using Noether's theorem. Kaushal and Korsh also presented the
invariant of (4-1) with the help of dynamical algebra. The

invariant derived by them is written as
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1= -é_.. [9_3 (%‘i))l.;. C (-%‘(-;)Y-p ( )X — f’(s)i)z]’ (4-2)

where [(s) satisfies the auxiliary eguation

C
P,

P+ KOP = (4-3)

with the integration constant C,
Leach/9/ attempted to construct the invariant for
time-dependent nonlinear harmonic oscillator of more interest to

accelerator physicists,

. " - ’ 2

~x + KGOX + KiyxT =0, (4-4)
using the so-called time-dependent nonlinear canonical
transformation. However, such transformations must be considered

as infinite series; if we use a generating functicn of the second
2
type F (x,P:;s) so that

_?F" 2F*
P=3x , X=3p (4-5)

we write
o r . -1
Fi(x, P:syY=xP +2Z L A;\CSY"’PV'J (4-6)
v=3 =0 .
Difficulties with convergence, therefore, are expected. These
difficulties are seen in other methods. For instance, the
dynamical algebra for the system (4-4) does not close for finite,
but becomes an infinite set. Namely, the system of linear
first-order equations (2-31), which determines the invariant I, is

infinite in extent. This means that there are questions of
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convergence and existence of solutions, which are related to the
existence or non-existence of dynamical invariants.

Hence, 1t seems difficult to describe the invariant of (4-4) in
the form of a finite polynomial.

Nevertheless, results of numerical studies for the system
{4-4y /10/,/11/,/12/, seem to indicate the existence of the
invariant, which 1is equivalent to the existence of invariant
curves on the Poincaré map. For simplicity, we consider betatron
oscillations receiving kicks due to a sextupole field located on
the orbit. Such a system 1is described in the term of the

Hamiltonian
HCi,P,S)""——(P —\-K(ﬂx")—i———x é\(S) (4-7)

where & 1is the parameter of the sextupole field strength. Using
time-dependent linear cancnical transformation and time scale
change discussed in 2-a,

x =@,

Pr + f6 (ﬁﬁﬁ) ?
P = % ) (4-8)
- SS as’

CP(S)- EEE’) .

we can transform the Hamiltonian (4-7) into the form

’ *()
H(?. Pp®) = (P—, +7*) =+ G—@-—I’( §(s), (4=9)

with the betatron tune of Q. Further, setting @(jfs)gﬁ)to Fl¢), we

have

a 2 | %’
MC7. P ) = —?‘f— (P, +77)+7€L m’z’E@), (4-10)
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The canonical eguations derived from the Hamiltonian(4-10) are
egquivalent to the recursion equations,
/
- 2
P, (os2TQ -~Sin2RAN[ p, +&n

— (4-11)
7 Sina2k® Cos 2TQ n

’

where i‘ is —épz(o). If we replace (7, P,?) into (x,y) and

assume Q=0.25, the recusion({4-11) become
y = -X

x'= vy + exz. (4-12)

Furthermore, if the scale change

X,

E
H

Q"Y, (4-13)

s
1]

is made, the recursion equations (4-12) become

=Y+ X . (4-14)

Hence, the system (4-7) becomes free of machine parameters. This
is desirable to study the universal properties for the
system (4-7).

Fig.1l shows the Poincaré map obtained by the recusion
equations (4-14). A sequence of mapping points around the origin
seems to be located on the closed curves. However, 1t is
apparently impossible to prove strictly this expectation by finite

iteration of (4-14).
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If there is an invariant for ({(4-7), then the invariant

function I(X,Y) must be invariant under the transformation (4-14):
2
I(Y+X ,-X) = I(X,Y). {(4-15)

So far, we do not know such a function I(X,Y). In addition, the
question for stability of (4-7}) is still left, It can be reduced
to the question of the finiteness of the progression, which
consists of the Sequence of numbers derived from the
one-dimensional recursion equation between three terms,

2
¥n+l + Xn~-1 = ¥X¥n , (4-16)

which is obtained by substituting the first equation into the
second in Eqg.(4-14). But we do not know the mathematical proof
for the finiteness of such a progression. All these questions are

still open.
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