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ABSTRACT

Analyses of particle dynamies in a simulation of the 2-D "beam-beam"
interaction shows evidence of non-repeatable, "chacotic" trajectories. A
non-zeroc entropy for the transformation is deduced. This requires an
asymmetric transformation (vxtvy) and large dynamic resonances to be
significant. However, a round beam does not show large phase space
biow-up, and any <changes in rms emittances are associated with the

"chaotice" trajectories.

I. Introduction

In proton-antiproton (pp) collisions in the "Tevatron"1, particle
trajectories will be affected by the highly nonlinear force of the
"beam-beam" interaction, that ia, the electromagnetic force field of the
opposite beam in the collisions. Recent theoretical, numerical and
experimental investigations®’3 have not placed precise limits on the
effects of the force. It has been recognized that this case is an example
of a nonlinear dynamic system, and these systems have recently been

subjected to detailed studies,



In the present paper we approximate particle c¢irculation around the
ring as the product of two transformations: a linear transport around the
storage ring followed by a nonlinear beam-beam "kick"™ at the interaction
area.

Transport around the ring can be represented by a 2x2 matrix for both

transverse (x and y) dimensions:

x cos 2V B sin 2mv X
X X X
sin 2ﬂvx
x! Tm cos 2‘!1‘\)x x"
After L x Before {1)

In this linear transport x and y motion are decoupled. vx’ Uy’ Bx’ BY are

the usual Courant-Snyder tunes and beta-functions. The beam-beam kick can

be represented as

x* -
After x Before (2)

with a similar expression for y, y .
The product of these transformations is equivalent to integration of

the equation of motion:
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X' o+ Kx(s) X 5 = 5 X

— ROy x 8 (s) (3)

s, the distance along the storage ring, is the independent variable and
6p(s) is a periodie delta-function,
In the present report we choose parameters which approximate the

conditions! in the Tevatron: Avx=Avy=0.01, Bx=8y=2 m and we choose

-(x21y*)/20%
1 -
Fo=Fy = 2 (4)
(x2+y2)/202

with ¢ = 0.0816 mm which is the nonlinear force due to a round, gauasian

charge distribution of rms radius g. We compare three cases:

Case A: Vx:Vy=.2u5 on a 1/4,1/4 rescnance

Case B: v, =,2145 vy=.12 on a 1/4,1/8 resonance

Case C: v, =.3439 Vv, =z.1772 "resonance-free"”

Y

We are investigating in detail the long time stability of these cases

with the beam-beam interactionn’B’G. It has been suggested that such
nonlinear systems may show instability properties undesirable in a pp

collider, and cur simulations are a gsearch for such properties.



II. Repeatability Test Result

Simulation of millions of turns 1n particle trajectories requires
extremely high accuracy. As a fundamental test of accuracy we have run
repeatability tests for these trajectories. In these tests a particle
trajectory is run forward for many turns following transformations (1) and
(2), and is then returned by reversing these transformations. Forward and
return positions are compared. As noted in reference 4, double precision
accuracy is required, and produces agreement between initial and final

positions to 15 significant figures after 120 million total turns for

typical trajectories in cases A and C of references 4 and 5,
It is expected that each turn of calculation will introduce numerical

error. If the errors are simply additive we find, for each phase space

coordinate x,

N
b g X+ X 51
i=1 (5)

after N turns where Gi is the error at the turn i, and the sum is the

accumulated error. The rms accumulated error is

2,1/2 2,1/2 N1/2 <62>‘I/2

A= <(X-xo) = <(X 61) = (6)

The separate errors Gi are uncorrelated and the resulting total error

172 60, where 60 is an rms error per turn. For our simulations

and N§108, 30 As1o“22; this is not our major source of error.



A more important source of error is the tune error. An error Gi in
position 1leads to an error Gvi in tune through the nonlinear beam-beam
interaction and this leads to an accumulated error in phase of the order

(N-1) Gvi. The accumulated error from such "phase slippage™ is

2,1/2

-
n

N
=<2 (R(N-1) avi]2>1/2

<(x-x0)
i=1

= a N2 g (7)

Here o is some factor of order unity from the summing procedure, The Svi
errors are assumed to be uncorrelated. R and ¢ are simply the amplitude
and phase in x=R cos¢ (amplitude-phase variables) {¢-uN + ¢0) and we have
ignored numerical factors of order unity in obtaining our final expression.

1h for 6:10-26, N:1O8 and

This phase slippage leads to errors of order 10
is the major source of accumulated errors in normal trajectories. In
Figure 1 we display accumulated errors for several normal trajectories,
where particles are tranaported 60 million turns forward and then returned.
Forward and return positions are compared and results of these comparisons
are shown.

In case B (vx=.245, vy=.12, Av=.01), some particle trajectories show
radically different behavior; they fail the repeatability test completely
after only +100,000 turns. The other trajectories in the same case retain
»14-16 decimal digit accuracy for 120 million turms. In a sample of 500
trajectories, selected randomly within a gaussian distribution in the 4-D

phase space, 25% fail repeatability after 100,000 turns and 75% show 220

digit accuracy consistent with 14 digit, 120M turn precision. We



tentatively label the nonrepeatable trajectories as "chaotic" trajectories.
In Figure 2 we display the accumulated error for a "chaotic®
trajectory which quickly 1loses all correlation with its forward position

after only 16,000 return turns. The straight line in the logarithmic error

plot indicates errors accumulate exponentially. Empirically we find:

~ _+aN
§x Z e 60 (8)

where a is a constant which = ,001 and 60310'26. This type of error growth

is what would occur in an unstable region in which a small deviaticon
departs from an initial point exponentially.

Empirically we see very similar behavicr in a single precision
calculation, except that 60210-13. Table 1 and Figure 3 summarize some
results of double precision and single precision tests of "chaotie"®
trajectories. Precision does not change the nature of the chaotic
behavior. 1In Table 1 we display and compare the number of turns at which

errors of 10'23, 10'18, 1013 ana 10~8

Y

appear in double precision, and

erroprs of 10'9 and 107" in single precision. The growth of errors remains

exponential, as can be seen from Table 1 by noting

N(10-8).N(10773) = N(10-"3)-N(1018) = N(10-18)N(10723)

and N(10~8)-N(10"13)

[¥]

double precision

N(10~H-N(10"9) (9)

single precision

where N is the number of turns to reach a particular error level, This

means that equation (8) accurately describes the error growth. Also, from



Table 1, 1t can be seen that the parameter in equation (8), ™a", does not
depend on precision but it does depend on particle trajectory. In
mathematical terms, "a" is "partition-independent™,

The next question we ask is whether these chaotic trajectories define
a compact region in phase space. In Figure 4A we show the initial 4-D
positions of chaotic trajectories projected onto x-x" and y-y~ phase spaces
as well as positions of normal trajectories. A clear boundary between
types 1is not evident, although chactic trajectories are clustered
noticeably near the V. =1/4 and vy=1/8 resonances. In Figure UB we show 127
initial coordinates for chaotic trajectories; the same clustering can be
seen.

However, a projection along one dimension does show a clear boundary.
If we choose initial x*=y”"=0 and x=y, we find normal! trajectories for
Xinitia1S- 1101 and  x5,54441>-1395. Chaotic trajectories are seen when
'11025xinitialf'139u' In figures 5A and 5B we compare 4 of these
trajectories: A: X.=,1101, B: x;=.1102, C: x;=.1394%, D: x;=.1395. After
30,000 turns forward and return trajectories B&C, which were originally
extremely close to A&D, have clearly deviated, following vx=1/u, vy=1/8
separatices. The c¢lear boundary in a 1-D projection is evidence for a
separation of chaotic and normal regions, which 1is not evident in 2-D

projections because of the complexity of U4-D phase space.



III. Non-repeatability and Entropy

Recent mathematical research assoclates 1loss of information in a
transformation with "entropy"T’e.

We begin by describing the entropy H assoclated with a particular

partition {pm} of phase space, where {pm} is a finite set of subsets whose

union is all space. We use

H =2 ulp ) &n ulp )
m

where u(pm) i3 a measure function normed so that

z u(pm) = 1
m

The mapping transforms the partition {pm} into a new partition {Tpm}
which can be "joined"™ with {pm} to form a "least upper bound" partition
{Pm}V{T pm}ET1pm which defines an "entropy"

Hy = £ u(T'p ) #n u(T'p )

1~ m Py
where the sum 18 not over m but over all elements of the new partition.
Successive mappings generate new partitions
n. 2 n
Tpg = {pgt vV {Tp } v {T% }....v{T p }

with entropies H . An "entropy per unit time" of T, p 1is defined by



gim Hn

h(pij) = R n_

The "entropy of the transformation T" i3 the supremum of h(pm’T) over all

finite partitions {pm}:

sup
Pm

n(T) = h (pg,T)
These entropies c¢an be associated with an "information rate" of the
ftransformations as can be demonstrated by a simple example,

For our example we choose a partition of the unit interval into tenths
and choose a mapping of the unit interval into itself by T{x)=fractional

part of (10x). Each transformation reveals a new decimal digit of the

variable x. h(P1O,T) can be calculated using equations

107{(1710M)gn (10M)}
n

<> o0

h(p10,T) =

]
=}

n(10)

7

and a theorem of Keolmogorov' can be used to show that this is in fact the

entropy of the transformation in this example, since the partition p10 is

"generating" for this particular transformation.
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h(T) = h(pm,T) = 4n(10)

This can be associated with accuracy in a repeatability test by noting that
in a test on this transformation one decimal digit of accuracy would be
Jost on each "turn".

We now apply these concepts to our transformation. Cur "measure

function" is the U-D euclidian metric weighted by an exponential factor

~(x2+(Bx") 2+ (By " )o4y?)

202

which simulates a gaussian beam. We have done repeatability tests with two
"partitions": single precision and double precision.
For case B, trajectories picked randomly within this gaussian fall

naturally into two groups:

1) 75%395 the particles are "normal" with errors which grow as
(N) 8.

2) 25% are "chaotic" with errors which grow as 1OaN § with a 210"3.
There are very few (£1%) intermediate cases.

Normal trajectories, if as described above, have =zero entropy and

chaotic ones have a finite entropy. From the information above the entropy

of the transformation can be estimated:
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h($,T) .I5* 0 + .25 a

1

[1H

2.5 x 107

The same answer is obtained with single and double precision partitions,

which provides empirical evidence that the number above is a supremum and

h(T) = 2.5 x 10'u

This entropy is significantly different from zero, and in fact quite large
in view of the "non-chaotic!" appearance of the transformation. (The reader
is reminded that this estimate is not proved but is empirically derived
from numerical evidence.)

"Stochastic trajectoriesa" can obtain precise definition by requiring
that these be trajectories which show "non-zero entropy". Qur
repeatability tests are evidence that these "chaotie™ trajectories are

cases of "stochastic motion".

IV. Entropy in Other Simulations

4,5,6

In case A and case C our repeatability tests show no evidence of

chaotic behavicor in the trajectories tested. This indicates that "chaos”
is limited to a "negligibly small® part of phase space at most, which in
our simulations means $1%.

These cases had the same tune shift as case B but are in very
different regions of tune space (vx, vy). Case A contains large 1/4 and

other high order resonances, but has vxzvy and has an additional kinematic



12

invariant from the equal tunes (as noted in reference U4) which may suppress
the existence of chaotic behavior. Case C has vxgvy but ia free of
resonances up to ninth order and therefore may not show as much chaotie
behavior.

Our simulations give empirical evidence that the appearance of a
significant amount of chaotic behavior at tune shifts that appear in pp
collisions requires unequal tunes (vxivy) and the appearance of low (<9th)

order resonances in the tune spread. Further simulations and analyses can

make these criteria more precise.

V. The Effect of Chaotic Trajectories

Longtime Beam Blow-Up

In references Y4 and 5 we presented results of a 120 million turn
simulation of Case B (equivalent to 40 minutes in the Tevatron), in which
we search for long time beam blow-up due to the beam beam interaction. In
Table 2 and Figures 6 A,B,C these results are duplicated, and these show
RMS emittances of a 100~particle beam calculated as a function of time.
The data points of Figures 6 A,B,C are the linearly extrapolated number of
days needed to double the initial emittance, calculated from a linear fit
to the simulation emittances from time t=0 to the data point time. (&
negative number means emittance is decreasing.) Statistically significant
changes are indicated by points inside the parabolic-like limit lines.
There is evidence for a small exchange between x and y emittances (:1% in

20 minutes), but there is no change in the R-emittance, their rms sum,
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As the present investigation determined, 21 of these trajectories are
chaotic and have lost precise information of their initial positiona after
+100,000 turns, In order to investigate the role of chaotic trajectories
in emittance changes, we generated a set of 100 trajectories, all of which
are "normal". Results of a 60 million turn (20 minutes in Tevatron)
simulation with this set are shown in Table 3 and Figures 7 A,B,C. No
evidence for any change in emittances is seen, and in particular no
exchange between x and y emittances.

This indicates that any changes seen in the previous simulation are
due to chaotic trajectories. The smallness (v1%) of changes due to
"ehaotice" behavior possibly indicates that the major change in particle
positions is in phase and not in amplitude. We speculate that thias
limitation in emittance changes is due to the "roundness" of the beam; a
"flat" beam should be more phase sensitive. This speculation will be
explored.

Also, since precise position information 1is lost in chaotic
trajectories we are not able to determine whether the numerical emittance
changes are physical or not. They may be artificially generated by the
numerical errors. However, the smallness of the changes observed strongly
suggeata that any real changes in rms emittance introduced by "chaotice"®
trajectories in this case are small. The appearance of "chaotic"
trajectories need not lead to beam blow-up.

We are grateful to Leo Michelotti for non-chaotic discussions on the

meaning of chaos.
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N TABLE 1.
TARLE 1. Repszatability results for the 127 particles among the first 3500 generated
for Case B: ¥ _ = 0.245, v& = 0,12, AY = 0,0L, The particles were all run forward
100,000 turns (storing co-ordinates every 1250 turns) and back 100,000 turns,

Cn the way back, the co~ordinates vere subtracted from the forward co-ordinates
¥ y

and the errocr log‘lo-‘/(éx)z + (Ay)z + (ﬁxAX')z + (ﬁy.ﬂy")z

was compared with the cotoffs shown below, The first time the error crossed

the cutoff, a linear interpolation estimated the turn number. That number was

subtrzcted from 100,000 and the result doubled to find the numbers listed below,

Particle Single P:ggision Doublen Precision
i cutoff cutoff culoff cutoff cutoff cutoff
Number -9 wdy -23 -18 -13 -8
1 11,845 26,254 10,840 53,704 68,592 85,868
2 3,804 32,596 2,736 13,322 25,964 35,35
8 1,984 11,950 L86 18,472 63,710 7,188
9 5,474 14,128 6, S 11,77 16,054 23,716
14 5,010 13,358 6,274 14,628 22,924 28,826
19 2,726 15,040 3, 504 20,270 33, 746 49,854
21 13,478 23, 820 9,816 26,174 98, 46 52,8%
30 10,432 29,128 6,164 28,98 50, 594 58, 371
33 6,485 14,558 3,540 10,806 15,252 21, 9%
S 7,668 17,758 - 8,782 16,7382 30,1352 L3,750
35 L, 530 17,126 3,996 21,988 L L7 61,530
35 2,920 16,6840 3,892 9,724 25,046 L6,0L0
37 10, 524 25,998 9,322 18,196 25,080 F,258
L 5,016 21,448 3,508 10,326 16,562 43,248
11,416 21,086 8,706 18,588 35, 594 43,048
55 6,25 11,156 L, 08% 12,228 30,738 40,482
61 3,852 11,732 3,060 8,770 14,816 27,050
75 8,144 24,026 5,654 12,576 26,316 476
77 b k08 15,100 10,784 Lg,000 80, 64y 97,998
oly 17,80k 157,742 iz,l16 149,226 (=17.13) (~17.43)
96 3,593 23,246 6,004 22,370 50,236 80.874
102 7,45k 18,520 8,428 17,0% 27,90k 37,912
103 5,283 18,078 3,470 12,918 30, 596 50,630
111 20,668 Y, 984 8,616 29,408 38,836 Ly, 7ch
12 2,536 19,412 5,058 17,682 2, L9k 30,510
124 5,704 14,192 5,250 14,502 27,592 37,890
125 7,232 29,896 7,438 39,758 63,750 97,906

continued



TABLE i

¥
TABLE 1 continued (Case B)
Particle Single Frecision Double Frecision
cutoff cutoff cutoff cutoff cutoff cutoff
Numbsr -9 =ty -23 ~18 -13 -5

128 11,814 67,018 5,262 20,31C 33,538 51, 50k
129 10,430 140,335 8,410 139,078 (=~15.09) (-15.09)
132 9,168 18,420 4,248 15,984 32,L146 39,868
135 3,653 110,358 b,225 14,690 28, 704 37,032
141 <1,250 13,533 7,258 171,35 186,772 199,198
143 4, b92 12,924 5,846 17,476 30,378 46,938
144 5,990 F+,8L6 L, 596 19,688 473,186 61,802
148 L, 774 17,802 6,250 36,244 68,748 82,864
154 3,300 11,210 7,156 14,002 30,348 32,108
155 5,286 15,676 5,442 14,648 23,568 31,216
160 8,092 25,138 23,956 63,990 86,414 100,264
16k 9,330 19,534 5,672 15,120 25,924 33,678
167 3,066 12,038 l, 080 23,766 28,986 35,596
1683 5,258 13,242 4,028 10,076 16,216 22,108
171 7,292 23,634 6,320 16,440 28,416 38, 304
174 16,330 19,185 i, 510 16,500 25,602 3, 314
179 5,822 13,550 8, 2l 24, 564 31,028 39,226
187 3, 3% 12,7398 5,914 16,506 21,992 27,756
192 3,008 10,320 6,710 15,474 21,392 28,980
194 7,255 17,668 11,556 31,778 47,982 54,828
199 6,440 17,516 5,178 2.,678 29,612 by, 190
203 7 3 14, 380 17,524 33, 582 Lo bl 52,900
209 6,095 12,456 5,998 21,808 33, 374 W, 326
215 3,570 11,592 2,750 15,044 19,886 30,092
218 7,560 22,555 18,472 27,246 58,826 60, 598
219 b, 72k 15,416 7,192 21 404 40,298 51,288
221 6,988 18,478 b, hol 12,002 20, 244 26,476
224 G,934 35,090 4,852 17,576 30,576 L0, ol
225 &, W2 19,130 7,588 18,974 28,878 38,636
23 3,575 23,206 5,294 20,738 36,255 49,878
233 24, 380 8,27k 17,830 46,246 55,1k0 67,070
2k 8,656 23,428 11,368 22,6504 38,036 53,456
2li7 5,700 17,176 3, 504 8,526 13,352 20,096
250 3,672 13,610 <i,250 16,674 28,4380 40,972

continued



TAELE 1

TABLE 1 continued  (Case B) :
Particle ciig%%e Preciﬁiﬁ?f cutoffDOUblecutoff cutof?reClSlgitoff
Number -9 -ty ~23 ~15 -13 -8
254 3,708 10,234 5,066 1,156 22,498 32, 502
255 4,818 10,698 9,430 25,138 33,074 39,782
255 5,912 15,260 4,152 11,714 16,678 27,920
60 7y 9JE 13,708 6,820 14,8580 28,575 Ty Lok
261 7,164 18,974 3,642 18,078 31,996 L4, 276
266 7,228 16,174 5,172 14,623 27,026 39,106
267 3,238 20,535 7,094 25,688 39,860 58,286
269 5,402 47,110 8,822 24,710 99,998 164,796
271 12,364 29,040 6,620 15,376 2h, 09k 33,970
273 4,958 14,772 5,216 14,434 3,578 40, 800
284 LRI 18,512 9,632 24,374 31,322 39,042
288 11,680 23,216 8,982 16,984 29,950 39,418
292 11,184 19,468 6,578 16,770 29,155 4z,310
294 15,020 83,042 5,682 16,416 30,4% 43,912
297 14,702 23,024 4,802 29,616 56,726 76, 374
301 74256 62, 664 16,356 89,282 127,912 155,494
302 25, 640 131,060 19,070 131,240 (=13.34) (=13.34)
303 3, 853 11,138 5,020 14,262 27,604 33,668
305 3,802 12,508 3,7L6 10,698 18,492 22,624
307 5,606 13,288 3,810 13,332 19,100 2l 722
b 5,228 16,004 2,930 17,196 24,420 e, €26
%20 18,460 H2,728 13,164 30,022 52,16 70,158
323 6,15l 32,930 6,530 17,034+ 43,220 85,800
329 6,048 13,674 5,348 20,314 38,276 L6, 560
331 6,255 13,192 5,608 41,636 58,405 97, 68k
337 13,170 122,1% 74306 35,870 82,532 100, 364
339 16,804 50,164 10,512 28,223 39,728 53,258
Y47 6,182 11,372 b, 70% 15,322 24, 2lds 33,036
W8 L, 648 12,090 7,074 15,224 28, 524 3,914
357 3, 550 8,755 3,132 10,274 16,814 26,410
350 5,242 10,950 9,494 17,928 26,650 3,992
350 7,550 22,002 6,910 47,110 71,114 84,714
3 6,274 16,992 3,766 17,052 28,610 L6,302
364 17,510 35,680 7,188 49,808 70, 385 84,650

continued



TABLE 1

bParticle
Number

368
370
373
351
393
392
398
406
L18
h21
L22
423
Lol
Los
431
441
L2
Livg
bh7
b2
462
Loy
Ld5
L6
470
430
L81
482
485
L34
L7
L39

continued (Case B)

Single Precision

cutoff
-9
6,030
3,696
L5, B&O
25,726
5,950
4,890
6,794
7,834
22,75
4,208
5,674
3,936
4 ,L06
4,038
23,0L4
74250
L, 642
3,05¢
L, 500
3,976
3,056
773
5,884
o125
8,060
7,738
6,116
9,450
6,074
5,996
b, 660
b, 582

cutoff
~}

,15!206

11,282
80,468
40,830
15,896
13,786
17,142
161338
63,382
10, 542
19,280
9,446
14,764
19,650
39,310
19,296
10,578

9,720
15,6398
14,042
11,09z
14,190
17,114
13,708
473,598
20,246
13,650
L7,866
12,164
11,850
16,79
28,166

4

Double
cutoff
23

L 858
5,586
17,764
R ve:
7,892
13,536
5,24
13,738
13,326
3,792
10,006
5,762
5,168
3,650
11,486
9,662
3,502
h,736
7,110
L,518
5,780
5,480
5,366
5,170
4,970
5,268
8,132
9,516
3,876
4,832
3,124
6,088

cutoff
~18

9,150
10,930
33,996
24,856
19,220
26,162
12,983
36,006
h0,916
15,966
20,010
18,150
1k, 626
33,95+
23,792
20,185
17,082
25,702
2L, g8l
10,952
6,602
10,362
19,718
27,120
30,608
11,770
20,560
42,502
12,342
22,716
19,900
17,516

TABLE 1

rrecision
cutoff cutoff
-13 -8
19,474 25,378
19,332 26,154
50,812 &, 890
36,262 5 575
30,048 36,428
42,1730 59, 0l
19,868 28,728
51,822 61,174
624200 107,678
25,648 30,626
29,638 36, 734
25,476 U6,156
22,926 30,196
80,190 92,372
3,370 49,272
33,566 LQ, 780
28,5L8 35,618
L5, 5562 62,584
50,818 59,354
19,082 25,380
30,548 35,706
20,43l 30,438
25,240 36,246
45,718 62,558
&, 142 146,862
19,092 30,170
27,254 L2,690
63,552 71,200
23, 7h2 28,152
32,366 43,126
17,460 24 804
23,600 3y, 502

CUNC.LUDED



TABLE 2,

Real
Ring HMillion
Time Turns
{min)

£ 2
14 &
2 6
RZ 8

10
b 1z
b3 14
5= 16
6 18
63 20
7% 22
8 24

: 26
9% 28
10 30
10 32
i1g 3
12 36
122 33
13; 4o
14 Ly
14§ lily
15% L5
16 48
16§ 50
17+ 52
18 sh
185 56
195 58
20 60

Emittance data for Case B,

"Cunulatlive values,

X
av .

0.0227520
0.0227605
0.0227589
0.0227293
0.0227243
0.0227275
0.0227243
0.0227431
0.022773L
0,0227619
0.0227764
0.0227892
0.0228057
0.0228304
0.0223423
0.0228507
0.0228483
0.02287320
0.,0228233
0.0228216
0.0225252
0.0228277
0.0228280
0.0228312
0.0228347
0.0228339
0.0228401
0.0228499
0.,022855
0,0228630

Doubling
Time
(days)

0.2
0.7
1.5

-0.3

~0 4

“1.3
2.0
2.8
0.5
1.1
0.8
0.6
0.5
0.4
0.4
0.4
0.5
1.0
1.5
1.9
1.9
1.9
2.2
2.1
1.9
2.4
1.9
1.5
1.5
1.3

19

TABLE 2

Ny = 0.255; Yo = 0.120; 4 = 0.010

Y
av

0.0192872
0.0193705
0.0193918
0.0193824
0.0193%64
0.0193089
0.0193784
0.0192687
0.0162616
0.0192598
0.0192621
0.0192630
0.0192650
0.0192609
0.0192612
0.0192610
0,0192603
0.0192638
0.0192528
0.0192602
0.0192582
0.0192593
0.0192599
0.0192581
0.0192597
0.0192654
0.0192605
0.0192590
0.0192570
0,0192567

Doubling
Tine
(days)

0.1
0.1
0.1
0.6

~0.3

-0,2

-0.2

~0,2

-0.3

’ ""0-’4'

-0.5
0.7
-1.0
-1.0
-1.3
-1.5
-1.7
2.6
-2.8
-2.6

R
av

0.0298409
0.0299023
0.0299149
0.0258863
0.0298592
0.0298374
0.0298298
0.0298235
0.0298419
0.0298323
0.0298447
0.0298550
0.0298587
0.0298850
0.0298944
0.029%9007
0.0298985
0.0298383
0.02988L4
0.0298782
0.0293796
0.0298822
0.0298828
0,0298841
0.0298878
0.0298908
0.0298924
0.02989%0
0.0299019
0.0299076

Doubling
Time
(days)
0.1
0.1
0.3
~0,.8
~0.b4
0.4
-0.5
-0.6
-2.5
~1.5
37.
3.1
1.5
1.0
0.9
1.0
1.3
2.2
4,2
7.2
6.9
5.7
6.0
6.0
4,8
b.2
ba2
3.3
3.4
2.7



Real
Ring
Time

(min)

208
2l%
22
22%
23%
20

38%

TABLE 2 (continued)

Million
Turns

62
6l
66
68
70
72
7l
76
78
80
82
84
86
88
90
92
ol
96
98
100
102
104
105
108
i10
112
11k
116
118
120

X
av

0.0228672
0.0228724
0.0228687
0.0228658
0.0228660
0.0228666
0.0228645
0,0228599
0.0228599
0.0228646
0.0228682
0,0228650
0.0228654
0.0228664
0.0228648
0.0228633
0.0228635
0.0228650
0.0228560
0,0228655
0.0228661
0,02236856
0.0228703
0.022871L
0.0228657
0.0228706
0.0228705
0.0228687
0.0228668
0.0228629

Doubling
Time

(days)
1.3
1.3
1.5
1.8
2.0
2.1
2.5
3.3
3.5
3.1
2.8
3.5
34
3.8
Uh
5.1
5.3
5.2
5.2
5.7
5.9
5.3
S.1
5.2
549
5.9
6.3
7e5
3.2
14,7

Y
av

0.D192580
0.0192597
0.0192553
0.0192529
0.0L92506
0.0192479
0.,0192450
0.0192422
0,0192396
0.0192380
0.0L92374
0.0192350
0.0192336
0.0192321
0.0192288
0.0192278
0.0192293
0.01923L7
0.0192327
0.0192341
0.01927342
0.0192352
0.0192357
0.0192379
0.0192391
0.,0192429
0.0192545
0.0192463
0.0162462
0.,0192472

Doubling
Time
(8ays)

-3.2
=3.9
=y by
-5,0
=5k
~6.2
-6.8
-8.9
~-10.9
-2l ,0
16,9
+985.
-801 .
+93.5

R
av

0.0299115
0.0299167
0.0299110
0.0299072
0.0299058
0.0269045
0.0269011
0.0298957
0.0298950
0.0298966
0.0298589
0.,0298950
0.0298974
0,0298942
0.0298508
0.0298890
0.0298902
0.0293929
0.0298942
0.0298948
0.0258952
0.0258978
0.0298995
0.0299014
0,029901.1
0.0295043
0.0299052
0.0299050
0.02990%
0.0299012

TABLE 2

Doubling
Time

{days)
2.6
2.0
3.2
4.2
5.0
5.9
8.6

21.1
38.2
19.5
13.9
36.3
20.3
68,8
=556
~30.0
-50.3
216,
61,8
50.1
Ly .2
23.5
18,9
15.2
16.8
12.4
12,0
12.9
16.0
23.0



Heal
Hing
Time
{(min)

I”"I-Jl'j. 3'

fillion

turns

16

jtalbthancs

Cumulative values; 21 new partlicles.

X
av

(mm—mrad)
0,02144731

i o

Qo ortidng
0.0214540
0.,0214 524
0.0214556
0.0214559
0.0214 552
0.02114.94
0.02L449 5
0,9214556
0.0214449),
¢.0218439
G.02L55173
0.0214513
G.021451 5
0,021 504
0.,02160 55
0.0215555
0.,0210:75
0,0215:751
0,0214:35
0.0214527
0.0218L37
0.021450%
G021 50
0.0210455
0.021H477
0.02L4457
G 0214035

0.0215494

e

Doubling

Time
{days)
0.250
75
0554
2.00
1.02
3.61
b.79
=3.35
.
~3.15
~8.51
-10.,2
45 M
0.5
45,7
~47.1
~13.1
~17.9
-12.6
~33.3
-22.k
49,0
-138,
Wi by
L7
~84.5
~20.7
5.3
-38.9
~225.

S AU
"1,"7,:.;':‘: R l2m= M

o
<
H

e

Lav
(mm-rrad)
0.0153091
C.OL52007
0.0153019
0.01 53008
0,0153u30
0.0153003
0.01 53014
0.01 52990
0.0152976
0.01 52950
0.0L 5294
0.01 52957
0.01 52961
0.01 52958
0.01 52968
0.01 52969
C.OL52973
0.0152975
0.0152977
0.0152580
0.01 52982
0,01 52989
0.0152985
0.0152993
0.0152986
0.01 52995
0.01 52992
0.0152996
0,01 52936
0.01 52988

Doubling

Time
(days)

0.137
~1.73
-26,0
“10,7
4.96
~4.59
~30.9
.30
~3.57
~2.46
i, 61
4,83
~7.30
-7 E4
-2l A
-23.0
~85.3
1200,
110,
51 o4
43.2
2.1
39.7
19,2
h3.5
2l.1
29.9
2L,z
120,
71.2

= (.1720

Hav
(mmerirad)
0.0263579
0.0263528
0.0263625
0.0263615
0.0263681
0.0263635
0.0263684
0.0263576
0.0263568
0.0263529
0.0263557
0,0263552
0.0263573
0.0263571
0.0263580
0.0263571
0.0263559
0.0263562
0.0263555
0.0263567
0.0263563
0.0263586
0.0263575
0.026355¢
00263570
0.0263578
0.0L62562
0,0263573
0026356+
0.0263574

TABLE 3.

, OV = 0,010

Doubling
Time
(days)

0.203
Ly, 73
0.890
3.26
1.38
8.20
7.58
-3.66
-, 24
~2 490
-6.63
=749
-31.,0
-31.9
-1410,
42,1
-18.9
-28.3
-20.6
-83.9
=490
32,7
242,
3i.0
~126.
123.
48,2
-17310,
~69.1
714,



Figure 1. Repeatability errors; Case Bt vx = 0,245; v_ = 0.,120; Av =0,010
Initial Conditions: X;) = Y(') =0

X, = Y = Ac, wbere A = 0,5, 1.0 and 2.0; @ = 0,08165 mm
MILLION TUWURNS (20 MiIn.)
o 15 3 §HE &0
o ! 4 ' r

/—O-7q 'fojmzcr

-1 T —1i,09 =£°1|a¢

v

™~ .39 =209, 0.5
-‘_—*“_‘H\/__—-—\/(

e

|
£

LoG,, —1/(4&)()1 + (p’xdx')z

mall §

—18
roj
|.-l¢
:



Repeatatility errors; Case E: Ve = 0.245; vy = 0,120; Av= 0.010

Initial Conditiones: XO = YO = 1,5¢ = 0.1225 mm; Xé = Yg =0

Figure 2 a
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THoUusSAND TURNES

Ea
L

Figure 3

Figure 3. Comparison (single precision vs., double precision} of the number
of turns required for the error to reach the cutoff value -2, for
the 20 particles that fail in the first 100 generated for Case Bi
V= 0.245; ‘vy = 0,120; AV = 0,010, The single precision results
show a loss of about 12 decimals of accuracy while the double
precision results show a loss of about 26 decimals of accuracy.

~

]

. )

v 200

Q

‘-

B

U

2

3

~ 50 1

i

v

Iy

N

'“ojoe t -+

~ -

[ T

B

a +
HEs

o1 F
+++
++
o t { # o
@] SO 1CC 1sC 260

THCUSARND TLIRKNS
SINGLE PRIECISION CcuTtorF= -2



s Figure &

e ATt . . T b . K 2, . E p. a »
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Figure 48,

initial

Case B:

b

Figure

(X,X') and (Y,Y') phase plane plots of the 127 particle

X
values out of 500 which lose aceurzcy by about 200,000 turns,

YVx
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Figure 6

Figure 6. Comparison of cumulative doubling times with statistically significant

Case B: v = 0.245; vy = 0.120; Av= 0,010

doubling times,
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2? Figure 7A & 7B

W
"w
[ Figme TA. Conpatisen of T-ealttenss cumslative doubling Vimes with atatletioally sigilfiount doudling tises,
3 Case By y_w 0.265, v 0,120, 4v = 0,010
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Figure 7B. Compiriscn of Yesmittance cumulative doubling times with statistically eignificant doubling times.
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ot

101 Figure 7C, Comparison of R-emititance cumulative doubling times with statistically significant doubling times.
5 Cage B: Vx =2 0-245. Vy = 0-120, Ay = 0,010
o T 21 new particles ‘
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