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A procedure is developed for constructing the Moore-Penrose 

pseudoinverse of a large, almost block tridiagonal system whose 

null space is.known. The system was motivated by a particular 

survey 1.Jroblem on a large ring of sites, and the application to 

its solution, including construction of the appropriate null 

space, is presented in detail. An analytic singular value 

decomposition is carried out for the case of a maximally symmetric 

ring. 
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SECTION ONE: THE PROBLEM 

The focal point of this memo is the development of an effective 

procedure for solving large, singular, linear systems defined by a 

particular class of sparse matrices --- those that are "almost block 

tridiagonal." The work was motivated originally by the need to process 

and interpret data from a survey carried out on the Fermilab Main Ring, 

but the procedure that evolved is sufficiently general to be used in a 

wider class of applications. We will begin with an overview of the 

original survey problem in order to motivate the direction of the 

mathematics that follows.t 

A survey is carried out on a set of markers, its objective being 

to discover where they are. The position of each marker possesses three 

degrees of freedom. However, using (constant, local) gravity as a 

pointer, it is possible to decouple the "vertical" dimension from the 

"horizontal" ones and handle it separately, which is advantageous, 

since the vertical problem is a much easier one. (See Appendix A.) 

In the body of this memo we shall assume that this has been done 

and constrain the markers to lie in a (horizontal) plane. This is not 

a real restriction; the formalism can be generalized without difficulty 

to any number of dimensions. 

''Ring" will refer to the· t f 11 · se o a markers being surveyed, its 

"state" to the ordered set of their positions, and ''state space" to the 

set of all possible states. The positions will be labelled Pk 

Some of the material in the first two sections has been repeated from 

a previous internal memo for completeness. [l) 
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k = 1 ... N for a ring of N markers. The markers lie on th~ vertices 

of a polygon, which we shall take to be convex and, roughly, not much 

different from a circle. (These assumptions are not crucial.) 

Orientation does not matter, but to be specific, assume that k increases 

clockwise. In our problem, both the ring and the survey data have a 

cyclic character, so it will be convenient to assume that the index set 

for the markers obeys a mod N arithmetic. As a consequence, 

pk±N = pk. 

The global state of the ring is to be estimated by patching 

together data from a number of local, relative measurements. The 

particular survey variables that were used sagittal offsets, Dk' 

and next-nearest neighbor (NNN) chords, ak are illustrated in Fig. 1 

along with their indicial labelling. A survey sample consists of a 

list 

of 2N real numbers. Sagittal 

offsets were deemed attractive as survey variables because they give 

direct information about transverse displacements, which have the 

greatest influence on closed orbits in the accelerator. NNN chords 

are logically their complementary variables, as they are orthogonal to 

the sagittas. Nonetheless, there is nothing sacred about this choice; 

these variables could be replaced or supplemented by alternatives such 

as nearest neighbor (NN) chords, xk, or angles, ~k' between lines of 

sight. A critique of the survey process is not our concern here; 

rather, the question we address is, given these particular data, what 

can one do with them? We seek a procedure that will accept a data 

sample as input and write the state of the ring corresponding to it as 

output. 
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The first and obvious point to be made is that because all the 

measurements are internal to the ring, any states that can be trans-

formed into one another by rigidly rotating and translating the ring 

in its plane produce identical survey data. States that can be 

connected by such isometric transformations, or isometries, clearly 

form an equivalence class, which will be called a configuration. Each 

configuration is a three dimensional submanifold of state space 

generated by rotations of the ring about some point and translations 

in two orthogonal directions. A state therefore possesses three 

degrees of freedom unobservable to the data, which means that con-

figurations can be specified by 2N-3 numbers. 

Let us consider a naive, straightforward approach for constructing 

the configuration associated with a data sample, if only to point out 

that it does not work. Begin by placing P 1 {arbitrarily) at the origin. 

To keep things simple, assume that the NN chord x 1 has been appended 

to the data and place P2 at (0, x 1 ). With P 1 and P 2 in place, knowledge 

of (D 2 , a2) enables P 3 to be positioned to within a reflection about 

the y-axis, which is taken care of provided we know the orientation of 

the ring. And so forth: the procedure is iterated around the ring, 

each Pk being placed by using its two predecessors and (Dk-l' ak-l). 

When the last point, PN, is laid, the job is finished. 

This scheme would work if measurements could be carried out with 

infinite accuracy and precision. The problem is that the presence of 

errors will prevent the configuration from closing. This is observed 

as a discrepancy between values of the final, unused numbers (DN, aN) 

and {D 1 , a 1 ) as measured and as predicted from the construction. The 
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discrepancy is not small; errors of about 0.1" in survey data will 

induce positional errors of meters in the placement of the last site, 

t even in rings with only moderately large N. Were it not for the 

requirement of closing the ring even in the presence of such errors, 

the procedure described above would be adequate. Because of it, we 

must try something else. 

In starting the "naive" solution, a NN chord was added to the 

data sample in order to lay P 2 • This was not done merely to expedite 

the proceedings. Neglecting closure amounts to deleting two succes-

sive sagittas and NNN chords from the data set --- in our example 

these were (DN, aN) and (D 1 , a 1 ). This leaves only 2N-4 numbers, which 

is one fewer than required to specify a configuration. This implies 

that without the NN chord and without closure there is a new continu-

ous symmetry transformation, a way of deforming the ring without 

altering data. As illustrated in Fig. 2, it goes like this. (a) Con-

sider P 1 and P 3 fixed. (b) Move P2 parallel to P 1 P 3 , so that (D2,a2) 

does not change. Of course, this changes the other variables, but we 

will correct for that. (c) Using P 2 as a center, move P 4 in a circle 

of radius a3 until D3 is correct. (d) Then, using P 3 as center, move 

P 5 in a circle of radius a 4 until o. is correct. (e) And so forth: 

continue adjusting the ring one marker at a time until all the survey 

data have been reproduced. The addition of a single NN chord breaks 

this symmetry, since sliding the points past one another would change 

its value. Closure provides the extra constraint, and a strong one at 

that, that allows one to solve for a configuration using only sagittas 

+ 
'Partially, such a large effect is due to the survey's not being a 

redundant triangulation. 
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and NNN chords. 

1.1 Conceptual Overview. 

Before going into mathematical details, it will be useful to 

create a conceptual framework in which to visualize essential features 

of our problem. This will make it easier to separate its various 

levels; especially, we want {a) to draw clear distinctions between 

those processes which require human judgment and the purely mechanical 

ones and {b) to trace the connections between its linear and nonlinear 

computational aspects. In doing this, much of what will be said may 

seem pedantic, but this problem possesses characteristics which should 

be pointed out, as they significantly affect what one accepts as a 

"solution." Besides, since we ultimately want to write a procedure 

that is, an algorithm --- all the "obvious" things must eventually be 

spelled out in great detail anyway. It will be helpful to refer 

liberally to Fig. 3 during the discussion. 

To begin with, we are dealing with two "spaces:" the first, call 

it W, is the state s~~ of the ring; the second, call it M, is 

identical to R2N, the space of all 2N-tuples of real numbers. Both 

spaces are manifestly 2N dimensional --- W is so because there are N 

markers in the ring, and by fiat, each is constrained to lie in a plane. 

An ideal survey can be thought of as mapping ¢:W->M which assigns to 

each state the data that the survey would produce if the ring were in 

that state. Now, it is trivial but nonetheless important that the 

dimension of the data manifold, defined as the image of W under ¢, 

¢{W) = {¢{s), SEW}, is smaller than 2N, because¢ is not a one-to-one 

mapping. More exactly, because configurations are three dimensional, 
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the data manifold is 2N-3 dimensional --- equal to the number of 

parameters req~ired to fix a configuration.t 

A procedure for processing survey data must essentially invert 

all of this: given some Mon the data manifold, it must find a con-

figuration, the class of states $- 1 (M) that map into it under $. Of 

course, only a single member of this class need be presented explicitly, 

the others being obtainable from it via the isometries. The chosen 

element is thus a representative of its equivalence class, and the 

solution can be written formally: s = rep ($- 1 (M)), Since all members 

of $- 1 (~J) are equi val en t, any one of them can be chosen as its rep re-

sentative. To facilitate this decision, it is useful to single out 

one state, s*, as "special" --- call it the design state. It serves 

as a zeroth order estimate of the state of the ring. If we now impose 

a metric, p , on w, then rep ($- 1 (Ml) w ~-
can be taken to be that member 

that is closest to s*. The metric Pw can be chosen arbi-

trarily; generally, the choice reflects one's assessment of "penalties" 

or "costs" associated with interpreting markers as having moved from 

their design positions. The important point here is that it really 

does not matter what metric is used. All representatives of a class 

contain the same information; the solutions presented via different 

metrics will be equivalent. 

+Note that W can be naturally given a vector space structure, but 

$(W) cannot. For example, although $(W) contains the point (0, O, 0, 

... 0), corresponding to a degenerate ring in which all points have 

coalesced into one, it does not contain points with negative coordinates. 
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It is not sufficient to have a procedure that correctly maps the 

data manifold back into state space. Because of measurement errors, 

it is probable that the actual data one has to work with does not even 

lie in ¢(w). Thus, we must enlarge the domain of the inversion to 

include these "off-shell" points as well. Because the problem no 

longer admits a legitimate solution, the analyst is free to choose any 

approach that makes sense, but the one that is (almost) invariably 

preferred follows the familiar "least squared error" strategy. First, 

one endows R2N with a metric structure, say pM; then, given some 

MsR2N one finds that point M' on the data manifold that is closest to 

it;t finally, one defines w =reps* (¢- 1 (M')) where the s* subscript on 

rep makes explicit its dependence on the design. The usual "weighted 

least squares" metric, in which measurements variables are weighted 

according to their variances, is a natural one to use. It is usually 

adequate provided that measurement errors are unbiassed and uncorre-

lated. However, unlike the situation in state space, different metrics 

here give rise to inequivalent solutions, so its choice has a real 

significance. 

This complete the specification of a solution procedure, at least 

on the descriptive level. To recapitulate quickly, the survey problem 

is formally stated thusly: given MeR2N, find M' ~¢(W) and ssW such that 

tin principle there may be more than one; in practice, this is 

extremely improbable. 



PM (M' ,M) = inf 
M" cp (W) 

PM (M" ,M) 

s =reps* ($- 1 (M')). 

A solution is presented as the pair (s, M'). 
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We must now consider how to go about computing (s, M') in a 

practical way. As with a great many other nonlinear problems, the 

first step is to linearize it, in this case by expanding $ to first 

order about the design state. Symbolically, if we think of $ as 

~ritten in a Taylor series abouts*, 

$: data= data*+~(~~:~~) I* o (state) + •.. , 

then d$ is the first term, mapping differential variations &(state) 

into differential variations o(data>, 

d~ .• '(data) o(data) 1· '(state) 
~ u - o(state) u • 

This is shown graphically in Fig. 3. d<P is a linear mapping from the 

state space onto the tangent space over the data manifold at M* = $(s*). 

In contemporary notation, 

By introducing local coordinates, o(data), o(state), and d<P are repre­

sented as 2Nxl, 2Nxl, and 2Nx2N matrices, m,w, and n, and this mapping 

gives rise to the local equation 

m = nw. (1) 

We shall call n the geodetic matrix of the design, 

The linear problem has the same structure as the nonlinear one but . 

a different realization. The equivalence classes are now. (hyper) planes 
-J 

parallel to T5•$ (M~}, a.nd the representative of each class is the 

point of its closest approach to s*. As before, and for the same 

reasons, Eq. (1) will usually have no solution for w. Differential 

isometries imply that all vectors in Ts•$- 1 (M*) are annihilated by n. 
In matrix terminology, the subspace of states satisfying nw = O is 

called the null space of n, written ~(Q). It is obvious that null(Q) 
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is itself a sub~vector space of W --- that is, it is closed under the 

usual vector space operations.t Its orthogonal space in W, D(Q) = 

(null(Q)}~, is called the domain of Q. To complete. the terminology, 

the range of Q is identified with TM*~(W}, 

(We are not being purists and 

will not make clear distinctions between equality and morphism. They 

are unimportant here. The notation could be cleaned up if need be.) 

The linear problem statement is essentially unchanged from the non-

linear one: given m, find wcD(Q} and m'cR(Q} such that 

Jm'-m[ = inf 
m"E:R(Q} 

[m"-ml 

The big difference is that this is now a linear problem, and its 

solution is hopefully more amenable to computation. 

The condition (2) can be written algebraically 

QTQw = QTm. 

In addition, the condition "wED (Q} " can be written alge:Qraically, 

VeE null (Q} : 
T e w =.O. 

(2) 

(3a} 

(3b} 

The state w that solves the system (3) is the image of a linear mapping 

of M back into W. It can be represented by a matrix equation w = n·m. 

The matrix Q~ is called the Moore-Penrose pseudoinverse of Q. [2] .tt In 

particular, if basis states are chosen in such a way that Q is parti-

tioned 

Q = (~I~) (4) 

tin algebraic terms, thinking of Q as a morphism between vector spaces, 

null(Q} is identified with its kernel. 

ttThis notation is not standard. Mathematicians indicate a pseudoinverse 

as nt, but to a physicist this means a Hermitian conjugate --- which 

mathematicians symbolize as QH. 



where A is non-singular, then ~· is given by 

~· = (A~1/~) 
as can be checked by substitution into (3). 
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(5) 

By solving the linearized survey problem, we can derive a state, 

say s 0 = s* + w, that is an approximate solution to the original, non-

linear problem, but one that is usually not good enough. Suppose that 

~:sa-rM;. It would be fortunate indeed if M; = M', but this is not to 

be expected. Nonetheless, it is possible to obtain the complete non-

linear solution (s, M') by employing a variant of Newton's method for 

finding zeroes of an arbitrary, differential function, that is, 

iterating the linear algorithm. At each interation, the pseudoinverse 

solution of the previous one is used to specify a new "design" state, 

which is then used to set up the next linear problem. The sequence of 

linear solutions generated by these iterations will converge to (s, M') 

--- provided that it converges at all, which is normally the case ---

because it is a fixed point of the iterative scheme. Iterations are 

stopped when changes in the state from one to the next are small enough 

to be considered negligible or become comparable to computational 

error. 

1.2 Frames and Coordinates. 

To do calculations a coordinate grid must be introduced over W. 

The obvious approach would be to use a global Euclidean frame in the 

plane of the ring, but this would turn out to be a little awkward for 

calculations. Instead, we use the design state, s*, as a reference. 

Hereafter, the term "site" shall refer to the position of a marker for 

a ring in the design state. At each site place a local (u, v) frame Fk 
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Th Other the U axl's i's orthogonal to it and points out-e ' • ' 

ward, as shown in Fig. 4. An arbitrary state of the ring is then 

coordinatized as the vector 

where (uk, vk) represents 

the (local) Euclidean coordinates of Pk relative to F k. Note thE; 

vector space structure over the reals. Any real linear combination of 

two of these represents another legitimate state. The point 

(0, 0, 0, ... 0) represents s*, the design. 

It will be useful to introduce a block notation for vectors and 

matrices. We shall use a subscripted semicolon to separate "outer" 

from "inner" indices: outer indices will refer to the sites; inner, to 

the coordinates. This induces a partitioning of the 2N dimensional 

state vector into N two dimensional blocks w1 ;k = uk, w2 ;k = vk. 

If an index (normally the inner one) is suppressed, then the 

corresponding sub-array is represented. Suppression is done either by 

blanking or inserting 

w;k = w. ;k =(uk\= col 
vk) 

a dot in to .. an index's lo ca ti on. Thus, 

(Here "col'' serves as a reminder that 

w is a 2Nxl column matrix, although it is written as a row matrix,) 

Matrices are partitioned in the naturally induced manner: 

llij;kl' i,j = 1 ... 2, k,l = 1 ... N. Thus, ();kl represents a 2x2 block,. 

n•jjk~ a 2xl array, and ni•;k~ a lx2 array. 

Evaluation of the geodetic matrix relative to the local frames 

{Fk} was carried out in UPC-140 [l]; here we shall content ourselves 

with quoting the result. 



w 

n; ik = w < i l 0 i-1 k + Q < i l 0 ik + w < i l 0i+1 k 

( k} 
=(cosek+l 

sinek+l 

-sinek+l) , 

cosek+l 

:) . 
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( 6} 

The variables ek and ak are defined in Fig. 5: ek is the (absolute 

value of the) angle through which Fk-l must be turned in order to 

align it parallel to Fk; ak is a dimensionless ratio of distances, 

and ak = 1 - ak. Note that w(k) is a rotation matrix that takes Fk 

into Fk+l· Let us introduce 2x2 frame arrays 

( 7) 

where ~k and ~k represent the local frame vectors relative to some 

global frame. Then, 

F;k+l = F;k w(k} (8) 

is the connection between two successive frame arrays. 

The linear system (1) written in block form becomes 

Note that the 

This was 

m = w~(k) w + Q(k) + (k) 
;k ;k-1 w;k w w;k+l ' 

sagittal differentials have been rescaled according to 

done to make ;;,(k) orthogonal for symmetric rings 
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(ak = ak = 1/2). Note also that the only length scale to appear comes 

from the measurement differentials themselves. 

The matrix D has been set up so that its pseudoinverse is correct 

for the Euclidean metrics 

lm-m' I = 
2N kc 

( l: ( m -m' ) 2) ' 
k=l k k 

lw-w' I 
2N k 

- ( l: ( w -w' ) 2 ) 2 

k=l k k 

If one wants to change pM to another quadratic metric re~resented by a 

metric tensor g, then the condition min IDw-ml goes over to 

min 
w 

kc 
lg 2 (Dw-m) I =min 

w 

w 

If g~ is block diagonal, then the 

structure of D is unchanged, and the problem is essentially the same 

k k 
as before. One merely replaces D+g 2 D, m+g 2 m. The metric over W has 

no effect on the content of the final results, as was already noted. 

Changing it will not alter ¢
7

(M), but it can alter d¢
7

(M); 

that is, different sequences of linear solutions may be generated, but 

they should converge to the same limit. 

1.3 Singular Value Decomposition. 

One method frequently employed for calculating the pseudoinverse 

of a matrix is singular value decomposition (SVD). Although this 

approach is not particularly efficient when N is large --- primarily 

because of such things as size and efficiency of the algorithm ---

the basic ideas involved will be important later for suppressing 

undesirable features introduced into the solution by random noise 

in the data. Because SVD is not commonly used by physicists, it is 

worthwhile to go through it in some detail. To begin with, we must 
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define what is meant by the singular values and singular vectors of 

an operator. 

Definition: Let E and F be vector spaces, D:E+F be a linear map 

(operator), and nt its adjoint. Then, uEE and VEF are singular 

vectors of n with singular value AER+ if and only if nu ; AV and 

ntv ; Au. 
A 

We will denote this association as n: ul-+v. The language of the 

definition was employed so as to make it as general as possible. 

Note that singular values are real and non-negative. The basic 

theorem on SVD, whose very simple proof is offered below, is an 

extension to arbitrary matrices of the principal axis theorem, familiar 

from quantum mechanics, which states that any (finite) Hermitian matrix 

can be diagonalized by a unitary transformation.13]t Essentially, it 

states that all operators possess singular vectors and that they can 

be chosen to form complete orthonormal bases in E and F. In this way, 

the action of any operator can be decomposed into a direct sum of real 

one-dimensional actions. The proof is motiviated 

that if il:u_.:v, then it follows that Qt(lu; A2 u. 

by the observation 

The trick is to take 

the converse. We will treat only the finite dimensional case. 

THEOREM: (Singular value decomposition.) Let E and F be finite 

dimensional vector spaces, with dim(E) ; n and dim(F) ; m, and let 

D:E+F be a linear mapping. There exist complete orthonormal bases 

tMore generally, any normal matrix --- one that commutes with its 

adjoint --- is unitary equivalent to a diagonal matrix. 
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BF= {vii i = l ... m} ~F, such that, for 
Ai + 

each i = l ... n, either u.£ l. 
null (fl) or fl:u. H- v., for some A.ER . -- l. l. l. 

PROOF: Because E is finite dimensional, the Hermitian operator 

ntn:E+E possesses a complete (in E) orthonormal set of eigenvectors 

whose eigenvalues are real. Further, since ntn is positive semi-

definite, the eigenvalues must 

complete set, and define Ai by 

be non-negative. Define BE to be 

the relation ntnu. = >.';u., A.ER+. 
l. l. l. l. 

If>.. = 0, then u .E:null (fl). l. l. --
For each u.£null(f2) define l. --

this 

v. = (l/>..)flu .. Then ntv. l. l. l. l. 
Ai 

= ( l/ A . ) n t nu . = A . u. I so that Q: ul.. t-+ vl. .. l. l. l. l. 

Finally, the scalar products (vk, vm) are given by 

= Qkm I 

proving.that {vkl k = l ... p}, p = dim(E) - dim(null(Q)), forms an 

orthonormal set, By itself, this set already spans a subspace, 

nE = range(fl) ~F. If necessary, it can be completed to form BF by 

appending a set of orthonormal vectors spanning the orthogonal comple­

ment {QE)...1... -QED-

Note that the only reason for making E finite dimensional was to 

assure that the eigenvectors cf ntn spanned E. If this is added as 

an extra condition in the hypothesis of the theorem, then E can be 

an infinite dimensional space. 

There are two simple corollaries to this theorem: 

Corollary 1: In terms of representations, if n is a mxn complex 

matrix, then there exist mxm and nxn unitary matrices V and U which 
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satisfy Q = VQDUt , where (a) all off-diagonal elements of QD are 

zero, and (b) all diagonal elements are non-negative. 

Proof: Simply fill the columns of U and V with the appropriate 

representation of the singular vectors, U . := u., V . := v.. Uni tari ty 
•] J •J J 

follows from their orthonormality and completeness. Of course, the 

non-zero elements of QD are the singular values Ai' and 

Qu. = A.V. +->- QU = VQD. -QED-
1. 1. 1. 

Corollary 2: If Q is real, then its singular vectors can also be taken 

to be real. 

Proof: It is easily seen that since A = A*, 
A 

(0:u r+v) implies 
A 

(Q:u* 1-+v*) when Q* = 0. Thus, since the mapping is linear, 
A 

0:Re(u) f.+Re(v) and 
A 

0:Im(u) 1-+Im(v). At least one of this pair must be 

non-trivial, so that we can use it (or them) as the real singular 

vector(s) associated with A. -QED-

The content of the SVD theorem is appealing. To employ a 

descriptive, physical terminology, we can think of the singular vectors 

as modes and the associated singular values as excitation factors. 

Then each mode in E uniquely excites a single mode in F with a 

"strength" A. Further, because the modes are real, they can be 

associated in our problem with real, infinitesimal displacements of the 

ring. 

By inverting the one dimensional relations, SVD can be used to 

calculate the pseudoinverse of a mapping. Clearly, 0~ is easy to 

construct, using Eqs. ( 4) and ( 5) . Then 0
7 = u0

7 vt as can be verified 
D 

by using the defining relations (3). As a procedure for getting a', 
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this is not very efficient: one usually does not diagonalize a matrix 

in order to invert it. However, it does provide useful insights into 

the effects of measurement errors on the solution. Note that 

-1 
:\. 

l 

v.f+.u .. 
l l 

The fact that the reciprocal of the singular values 

appear means that random noise uniformly distributed in data space 

will preferentially excite those modes in state space corresponding 

to the smallest singular values of n. This turns out to be an 

important consideration. In our particular problem a few such "low 

order" modes are excited very strongly. The solutions thus tend to 

contain substantial coherent displacements which reflect nothing more 

than random noise in the data. These also represent modes of displace-

ment to which the beam is least sensitive, and so it is not necessary 

to have detailed information about them. It is usually desirable to 

decrease their influence on the solution by either eliminating or 

suppressing them. 

The difficulty with applying SVD, or any other "library" 

algorithm, to our problem is that the geodetic matrix tends to be large: 

in the Fermilab Main Ring, there are 204 survey markers which means 

that n contains 166,464 elements even if we confine our attention to 

the horizontal plane alone. In addition, with matrices that large 

one can legitimately begin to worry about the accuracy of any general 

purpose algorithm, as well as the time involved. (Think of it in 

this way: we are essentially trying to invert a 408x408 singular 

matrix!) 



FN-338 
1739.000 

18 

There are two saving features which enable us to carry out compu-

tations in a civilized manner. First, Q is sparse: of its (2N) 2 

elements, only 9N are not zero. The pseudoinverse is itself not sparse, 

of course, but we are not interested in it so much as in the pseudo-

inverse solution, w. (This is analogous to routines for solving non-

singular linear systems, like the Gauss-Seidel algorithm. in which one 

does not explicitly compute the inverse of the coefficient matrix.) 

The question then is whether any particular algorithm conserves 

sparseness in its intermediate steps. The difficulty with general 

purpose SVD procedures --- the Golub-Reinsch[4] algorithm, for example 

--- is that they do not; intermediate steps require O(N
2

l storage 

locations. The second saving feature is that we can explicitly 

construct null(Q): it is spanned by vectors representing translations 

and rotations of the ring. This gives us an enormous advantage over 

the general case, and it would be wasteful not to take advantage of it. 

Suppression of low order modes is a separate problem. In order 

to suppress these modes we must first compute them. The same diffi-

culties regarding size aggravate the calculations in the large N limit. 

We are also somewhat hampered by the need to compute singular vectors 

with smallest, rather than largest, singular values. Only a few modes 

are required, however, and it seems reasonable to try a perturbation 

theoretic approach, starting from the solutions for symmetric rings to 

be developed in Sec. 2. Restricted eigenvalue problems for sparse 

matrices have been studied elsewhere. I7] Although we shall not address 

the question here, it is an important one which cannot be ignored in 

arriving at sensible answers from the data. 
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The major part of this memo deals with an algorithm that was 

developed to pseudoinvert the system (1) in a way that conserves 

sparseness in its intermediate steps, so that storage requirements grow 

like N rather than N2
• It turns out that there are two or three ways 

of actually doing this,t but subsidiary objectives of accuracy and 

speed dictated the choice that is presented here. Of course, we also 

require the algorithm to be completely general so that no a priori 

assumptions are made concerning the configuration of the ring. (This 

precludes being satisfied with the solution presented in the next 

section.) 

tFor example, an iterative refinement[2] beginning from i;it~nt. It con-

verged too slowly to be useful. Faster versions exist, but they are 

not sparse. 
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There is a class of designs for which the linear problem is 
~ 

exactly solvable in closed form' via singular value decomposition, 

those consisting of a number, N, of sites symmetrically placed on a 

circle. We will denote these designs as CN' just to give them a 

name. That they are so easy to handle, not surprisingly, has nothing 

to do with details of the problem; rather, it is a direct consequence 

of their high degree of symmetry. Before attacking the more general 

case, we will pause to go through this exercise. (Some of this section 

has already been presented, but from a different perspective, in 

UPC-140. [l]) 

It is easily checked from the explicit representation in Eq. (6) 

that the geodetic matrix Q of a CN ring is block circulant,tt that is, 

Vk , i , j : n ,· ~ +k J. +k = n .. .... ;l.J. 

It turns out that any such matrix can be 

tThe words "closed form" are ambiguous. The position that the procedure 

to be outlined in Sec. 4 is a "closed form" solution is certainly 

defensible: it is finite; it is exact;. it includes no functions more 

complicated than sines and cosines. Yet, probably for psychological 

reasons, one thinks of it as a "numerical" rather than an "analytic" 

solution. 

ttNotice the usefulness here of representing n relative to local frames. 

If an overall, global frame had been employed, this frame would 

itself break the sywmetry, n would not be a block circulant matrix 

--- although it would be unitarily equivalent to one --- and the 

analyses here and in Sec. 3 would be less transparent. 
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block diagonalized by a discrete Fourier transform. [5] 1'o see this, 

define the unitary matrix S in block form, S k = N-!2 1 nkm ; 
; m 

n = exp(2ni/N), 1 = (~~) , It then follows that 

[S+QS] ;km i; ( .!_ * ik) Q 1 njm) = . IN n ;ij <1-
i,J 

N (9) 

= l E n-ik Q njm 
N i,j ;O j-i 

l E n-ik Q n(q+i)m = N ;Oq i,q 

= .!_. ( E ni (m-k)) (E Q nqm) 
N R, q ;Oq 

:; omk 2W(m) 

The last line serves to define the matrix W(m); the factor of 2 has 

been introduced for convenience later. 

tion on site indices means that Q;Oq = 

evaluated with ak = 1/2 and ek = 2n/N 

explicitly, 

W(m) 

(Of course, the modular conven-

Q;Nq.) Using Eq. (6) for Q;Oq, 

for all k, W(m) can be written 

C = cos (2TI/N) 1 s = sin(2n/Nl 

cm= cos(inm/N) , sm = sin(2nm/N) 

According to the discussion in the previous section, singular values 

of Q are to be identified with eigenvalues of Q+Q. Using Eq. (9) it is 

possible to decompose 

where $ signifies a matrix direct sum, It thus suffices to calculate 

·• 

the eigenvalues of w+(m).W(m) for all m = O ... N-1, which is done easily 

enough. Let A
2 

signify an eigenvalue of w+w. We then have the development 



c2 - 2cc t 
W (m)W(m) =( 

m 

;\! (m) 

T m 

- iss 

= .l;-[T ± I T2 -m m 

= Tr [Wt ( m) W ( m) l 

= 2(1-cc ) , 
m 

m 

m 

D = det[Wt(m)W(m)] 
m 

= ldet W(m) I 2 

+ 1 

4D m 

issm) 

s~ 
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With a little simplification the result is written 

;\
2 (m) = (1-Cc ) ± /s 2 s 2 + c 2 (c -c) 2 
± m m m m ( 10) 

The corresponding singular values of Qare 2/ ;\!(m). We note in passing 

that 

;\ 
2 (m) = ;\ 2 (-m) • (11) 

The expression (10) simplifies considerably in the limit N~:No, 

m~.8'0 , m/N fixed. t 

A2 ~ )sin 2 (2nm/N) 
j 4 sin 4 (nm/N) 

21;\ 2 ~ J2lsin(2nm/N) 
~4 sin 2 (nm/N) 

These are sketched in Fig. 6. There is a small region around m/N = 0 

in which these approximations are not valid, and that has been shaded 

.c 
1 This notation heralds an unprecedented achievement in hairsplitting. 

Aleph-null (.~0 ) represents the cardinality of the set of integers, 

and it always seemed clear to me that if an integer variable 

''approached infinity" it should approach aleph-null. A similar 

comment can be made about upper limits of infinite sums. 
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as a reminder. This limiting behavior means that all large CN rings 

are basically the same, in a scaled way, except for very low harmonics. 

The null space of n is non-trivial provided that at least one of 

the singular values is zero. From Eq. (10), 

A (0) = A_(l) = A (-1) = A (N/2) = 0, the last value occurring only 

when N is even. The first three --- vanishing at harmonic numbers 0 and 

±1 --- are related to the isometries, as was shown explicitly in 

UPC-140. (l] The last one is not; it represents an accidental, differential 

symmetry. Its corresponding singular vector (see below) represents 

alternating azimuthal displacements of the markers --- effectively 

looking as though a sub-ring consisting of every other site were 

rigidly rotated through an infinitesimal angle. {See Fig. 7.) 

Finally, let us write out the singular vectors, which clearly 

+ will be associated with the eigenvectors of W w. First define two 

dimensional vectors f±{m) according to 

Wt (m) W (m) f ± (ml = A~ (m) f ± (m) , 

.or more explicitly 

f±(m) N (A~(m) i:s~cm - c)2 -
-iss m 

{We will ignore normalization here; once a singular vector is obtained, 

normalizing is a trivial step.) Now define g±(m) to be the 2N dimen­

sional vector obtained by putting f±(m) in the "correct" block. 

g±(m);k = omk f±(m) 

The singular vectors of n are then given by e±(m) = Sg±(m), as can be 

confirmed easily: Q+Q(Sg±(m)) = S[em 4Wt(m)W(m))g±m 

= 4 A~ (m) (Sg± (m)) 

Explicitly writing e±(m) in block form, 



( ckm 

-s SS 
km 

Re[e± (m)] ;k ,.., [A! ( m) - (c -
m 

(skm 

ckm ssm 

Im[e±(m)];k,., [A~ (m) - (c -m 

s 2 l ) 

m 

C) 2 -

c) 2 - 52]) 
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(12) 

The real and imaginary parts are offered as the singular vectors in 

accordance with Corollary 2 of Sec. 1.3. Of course, any linear 

combination would also serve. 

At this point we shall drop the analysis of symmetric rings, 

although there are a good many more details that could be worked out, 

and return to the main theme, the construction of solutions for large, 

arbitrarily configured designs. 
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An important part of the procedure to be developed in Sec. 4 is 

the specification of a basis over null(n) by constructing a maximal set 

of linearly independent vectors satisfying the null space condition, 

ne = o (13) 

If e is partitioned conformably to n, then this can be written in block 

form 

w(k)e;k-1 + Q(k)e;k + w(k)e;k+l = 0 (14) 

There must be at least three such vectors: two corresponding to 

translations in orthogonal directions, and the third to a rotation of 

the ring about some center. From consideration of c2N designs we know 

that at least in these special cases there is one more, associated 

with alternating azimuthal displacements around the ring. The first 

thing that must be done is to convince ourselves that this exhausts the 

possibilities, that the dimensions of ~(nJ never exceeds four. 

Fortunately, that is not difficult. 

THEOREM: For all matrices fl given by Eq.(6), dim(null(fl)) is either 

three or four. 

PROOF: Let D symbolize dim(null(fl)). As noted above, D~3 is obvious, 

since null(Q) must contain the isometries. Now, reverting to the block 

format of Eq. (14), 

e;k = -w- 1 (k-1) [~(k-l)e 1 k_ 2 +. Q(k-l)e;k-ll 

It is easy to see that the set of states which satisfy this equation 

fork= 3 ••• N is a vector space of dimension four, since e. 1 and e. 2 
' ' 

are arbitrary. But, it must contain null(Q), which means that D can be 

at most four. -QED-

The key question that remains is whether other designs besides 

c
2

n possess four dimensional null spaces. Numerical experiments 
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support the idea that none do, but as yet there is no satisfactory 

proof. For now, we shall adopt this as a conjecture and continue. 

CONJECTURE: If dim{null{S"l) = 4, then the design is c
2
n' for some n. 

Our next objective is to construct the basis states that 

correspond to isometries. Consider translations first. For a rigid 

translation of the ring, the displacements 6Pk are identical, but the 

coordinates e;k will differ because each 6Pk is referenced to its own 

local frame. Since e;k contains the coordinates of 6Pk relative to 

Fk' e;k+l is related to e;k simply by the rotation that takes Fk into 

Fk+l {see Eq. (8)): 

(15) 

There are two linearly independent translations in the horizontal plane, 

so we are free to choose e;l = {~) and {~), to construct a basis over 

the translation sector of null(S"l). 

It now can be demonstrated formally that e satisfies Eq. (13). 

Substitute Eq. (15) into the block form (14) to get 

T S"le] ;k = [w{k)w(k-1) + Q{k) + w{k)w {k) ]e;k (16) 

Now, w{k) is orthogonal, and Q(k) is given by (6), which allows us to 

write 

Q(k) + w(k)wT(k) = Q(k) + 1 

= (1 - l/o.k : ) . 0 

Further, 

['Ci/o.)c (i'i/o.)s] (: 
-s 

)(k) 

w(k)w(k-1) = 
s -c (k) c 

= ((Ci~o.) (k) _:) 



Therefore, the rhs of (16) must be identically zero, 

[w{k)w ... wT(k)J ["' + Cl.k - l 
= 

Cl.k 

0 :J 
= 0 ' 

which completes the demonstration. 
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{ l 7) 

Now consider rotations. To construct the corresponding basis 

vector it is necessary to select some global frame whose origin will 

be used as the center of rotation. Let {Pl,k' P 2 ;k) be the position 

coordinates of Pk relative to this frame. Under an infinitesimal 

rotation, the coordinates of the displacement oPk will be given by 

where 08 is the 

differential rotation angle. To ge't e; k, oPk must be referenced to 

Fk. To do this, it is convenient to use the frame matrix defined in 

(7) 

e;k = 
where the unimportant 68 has been 

FT J 
;k P;k 

dropped from consideration. 

The formal proof of Eq. (13) is similar to the one that was 

(18) 

given for translations, although a little more involved. First note 

that w{k) is the rotation matrix connecting frames Fk and Fk+l" 

Combine Eq. (8) with Eq. (18) to get the.development 



>le] ·k 
' 

= w(k)w(k-1) FT 
Jp·k-1 ;k , 

+ Q (k) FT 
;k Jp;k 

T FT 
Jp;k+l + w(k)w (k) ;k 

= (-Q(k) - l) FT 
Jp;k-1 ;k 

+ Q(k) FT 
;k Jp;k 

+ FT 
;k Jp;k+l 

T 
= F;k J(p;k+l - P;k-1) 

+ Q(k) F~k J(p;k - P;k-1) 

=[~:] J(p;k+l - p;k-1) 
;k 
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[Eq. ( 17) was us ea in going from the second to the third line. J Consider 

the bottom row first. By definition of the frame Fk, P;k+l - p;k-l '"'v;k' 

Therefore, v~k J(p;k+l - P;k-l) - V~k Jv
1
k = 0. 

To evaluate the first row, we use (see Fig. 5) 

(p;k - P;k-1) - ak(ppk+l - P;k-1) - u;k' 

to get 

'· = o. 
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This completes the demonstration that 0e];k = 0, and since k is 

arbitrary, Eq. (13) is verified. 

29 

Equations (15) and (18) amount to procedures for constructing a 

basis over null(0) for all designs except CZN' if our conjecture 

regarding this matter is correct. (To handle c2N' simply adjoin the 

extra null vector.) 
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SECTION FOUR: EXACT SOLUTION FOR SPARSE MATRICES 

The solution procedure written below takes advantage of sparseness 

so that its memory requirements grow linearly with N, rather than 

quadratically. The context of the problem is no longer important; 

that is, the specific definitions of Eq. (6) can be forgotten; only 

the structure of n need be assumed. The matrices w, Q, and w are 

square but can be of arbitrary size. It is necessary to assume that 

w and w are not singular. 

Our strategy follows from the idea that the pseudoinverse 

solution can be identified with the least squared error fit to data 

that contains no component in null(n). These conditions were 

expressed algebraically in Eqs. (3), repeated here. 

nTnw = nTm = b, 

T 
'le E: B: e w = 0 • 

( 19a) 

(19b) 

Rules for computing B, a basis over null(n), have been detailed in 

Sec. 3. 

The first observation to be made is that nTn is itself sparse, 

although it contains five block columns in each block row, as opposed 

to only three inn. Define the set of 2x2 matrices Z(i,r), i - l •.. N, 

r = -2 ... +2, so that 

T n n .k = 
; l. 

+2 
l: Z(i,r) oi+r k" 

r = -2 

Because nTn is symmetric, Z(i,-r) = ZT(i-r,r), so that only those 

matrices for non-negative r need be computed and stored. Using 

Eq. (6) it is easy to develop the expressions for Z(i,0, •. 2). 



Z(i,O) = &?(i+1iw<i+1i 

Z(i,l) = wT(i+l)Q(i+l) 

Z(i,2) = wT (i+l) w (i+l). 

+ QT(i)Q(i} + 

+ QT(i)w(i}, 

wT(i-l)w(i-1), 
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Now, the obvious thing to do is to recast Eq's. (19a) in terms 

of these Z's. Partitioning the arrays b and w into block form, this 

+2 
is written l: 

r=-2 
Z(i,r)w ·+ = b .. ;1 r ;1 

By rearranging terms a little, 

using the assumption that w and w are not singular, we can further 

express this as 
+l 

- l: z ( k-2 , r) w. k- 2 +r l . 
r=-2 I 

To ease the notation slightly, let us define the new arrays 

z(k,j) -1 - -z (k-2,2) Z(k-2,2-j) j = 1 ... 4 , 

so that Eq.(20) takes on the form 

w = f + 
:k :k 

4 
l: 
j=l 

z(k,j)w k .• 
: -J 

(20) 

( 21) 

This represents progress: Eq. (21) is transparently a fourth order 

recursion for the w:k's. All that remains is to solve for the "seeds" 

w;l ... 4 : the rest of the solution can then be generated from them.t 

In order to develop a linear system for the seeds alone, we will 

construct a set of 2xl arrays d;k and 2x2 matrices x;ki' k=l .•• N, 

+of course, any four consecutive w's could serve as the seeds, because 

of the cyclic conditions. Choosing w;l ••• 4 is arbitrary. 



£=1 •.• 4, such that 

'efk=l ••• N: w;k = d;k + 
4 
I 
£=1 
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(22) 

(The key point here is not that such matrices exist but that one can 

define them constructively. For example, it would be possible to set 

all x;k£ = 0 and d;k = w;k' but that would not be a constructive 

algorithm, and therefore not useful.) To begin, for k=l •.• 4 set 

d = 0 ;k 

x;k£ = 1 ok£' £=1 ••• 4. 

The rest are defined so as to assure the validity of Eq. (21) for 

k=S ... N. Substituting from Eq. (22) into Eq. (21), 

d ;k 

4 
+ I x ; kt w 

; Q, £=1 

4 
= f ;k + I z(k,j) w ;k-j j=l 

4 
= f + I z(k,j) (d k . ;k j=l ; -J 

4 
= [f;k + I z (k' j) d k . l 

j=l ; -J 

4 
+ I 

,Q,=l 
r~ z(k,j) 
Lj=l 

which provides the rules 

4 
= I 

j=l 

z(k,j) d k . 
; -J 

z(k,j) x k . 0 • 

; -J "' 

4 
+ I x ;k-j w. 9,) 

Q,=l 
9, 

' 

( 2 3) 

( 24) 
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To be formally complete, this development should be traversed back-

wards, beginning from Eq's. (23) and (24), to prove inductively that 

Eq. (22) is indeed satisfied. 

A linear system for the seeds is now obtained by demanding that 

Eq. (21) be satisfied for k=l. .. 4. Substitute from Eq. (22) into 

Eq. (21) for wk ., transfer all terms containing w's to the lhs, 
; -J 

absorb w;k into the sum over t, and interchange the double sums. The 

result is 

\lk=l. .. 4: 

= f + ;k 

4 
i:: 
j=l 

4 
- i:: 

j=l 
z(k,j) x k . 

; -J 

z (k' J
0

) d k . ; -J 

This is a system of eight equations in eight unknowns. However, the 

null space conditions (19b) have not yet been taken into account, so 

the system is singular: it possesses multiple solutions. To select 

the one that we desire, it is expedient to substitute from (22) into 

(19b) to obtain 

4 
i:: 
t=l (

N T ) i:: e x w 
k=l ;k ;kt ;t 

N 
= -i:: 

k=l 

According to the conjecture of the previous section, there will usually 

be only three such equations yielding a system of eleven cons~st~nt 

equations in eight unknowns. To solve this last system one can delete 

three equations and invert an eight dimensional subsystem or find the 

pseudoinverse solution of the full set, using standard algorithms --- a 

procedure that is more symmetric than the other in that it does not 

single out equations for deletion. Because the eleven equations are 
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consistent, there is one and only one solution, and it is equal to 

their pseudoinverse solution. In fact, if we write the seed system 

symbolically as 

lhs·w = rhs, -- -;l ... 4 
{ 2 5) 

then its {unique) solution can be written 

~; 1. •. 4 

in accordance with the usual way of calculating least-squared-error 

fits. 

This completes the description of the procedure. If computer 

memory were all that one had to be concerned with, our task would be 

finished, apart from programming. Unfortunately, the accuracy of the 

solutions constructed by the above procedure degrades rather quickly 

with N. This is undoubtedly connected with the observation that the 
e 

condition number of the system (25) tends to be large, typically zlO 

Interestingly, this is much larger than the condition number of the 

original system (19), which is typically zlO 6 • 

(Here, the condition number is taken to be the ratio of maximum to 

minimum non-zero singular values. Obviously, the actual condition 

number of a singular system is infinite, but that reflects degrees of 

freedom that we are not interested in.) This is an interesting 

phenomenon in its own right, but for our purposes it is primarily a 

nuisance. For NZ200, the procedure as outlined calculates the pseudo­

inverse only to about ten percent accuracy on a 60 bit machine. 

Fortunately, it is not difficult to improve accuracy without 

losing sparseness. This can be done analogously to a collll\On 

method for iteratively refining the solutions of non-singular systems. 

First we show that corrections can be made to obey the original system 

(19). Let w represent the true solution and wan approximate solution 
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obtained by numerical procedure, or whatever; let ow be the difference: 

w = w + ow. Neither w nor ow are known, but it is possible to compute 

ob, according to 

( 26) 

and we clearly must have QTQ ow = ob. It is not a priori true that 

ow will be orthogonal to null(Q), but this condition can be forced by 

projection: that is, we replace w with its projection on D(Q), 

w := w ( 2 7) 

(This requires an orthonormal basis, B.) The combined equations (26) 

and (27) are equivalent to the original system, so the same procedure 

can be used to solve for the correction. By iterating, the solution 

can be computed to machine accuracy of computing ob. 

A schema for doing all of this is easily written. Let prog[w,Q,b] 

be the procedure described in this section, or any other procedure for 

solving (19). Then iterative refinement is accomplished as follows. 

a: w := w - i: (eTw) e ; 
esB 

lib ·- QTQw - b . .- ' 
prog(6w, n, obJ .. 

I 

w := w - ow 

goto a. 

Iterations are stopped when lob I is small enough; about five or six are 

usually sufficient. 

This memo is not meant to be a programming note, but it is worth 

mentioning that, according to Eq. (24), only five of the x's and d's 
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need be stored at any one time: the four "previous" ones and the 

"current" one. This suggests that pushdown stacks and recursive con-

struction of the matrix "lhs" in (25) might be an efficient programming 

approach, and the program written to implement this procedure was 

indeed developed along those lines. 
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Fig. 1 Survey variables. (Only part of a ring is illustrated.) 
Sagittal offset D" and next-nearest neighbor chord ak are indexed 
to correspond with site k. Other variables, such as nearest 
neighbor chords x k or angles ¢k. also may be measured and used as 
checks on the primary data, but they are not considered to be part 
of the survey data set. 

Fig. 2 Non-isometric symmetry of ~ cut ring. A ring can be 
"cut'' by removing two sagitta and chord measurements from the data 
set. Doing so creates a new symmetry transformation, one that is 
not an isometry. Without a closure condition, the remaining 2N-4 
measurements are not sufficient to fix a configuration. 

Fig. 3 State estimation viewed as ~ geometry problem. (a) The 
complete, non-linear problem. An ideal measurement is modelled as 
a mapping ¢ of 1.t./', the state space, into 11( =R •"' , the space of 
real 2N-tuples. An actual set of measurement data, M, generally 
will not lie on the data manifold, ¢( 1.J'), because of errors. 
(b) The linear problem. As a computational method, the problem is 
linearized about a design state, s*, and solved using the tangent 
spaces TM~ cf><1J'l and T$.., ¢"'(OJ'). The solutions of a sequence of 
such linear problems converge quickly to the solution of the 
original, nonlinear one. 

Fig. 4 Local frames and the state of the ring. (a) A frame, 
F , is placed at each site of the design state in such a way that 
i\s axes are aligned along the directions of the (orthogonal) 
survey variables. (b) Positions of the markers that were surveyed 
are assigned coordinates relative to these local frames. 

Fig. 5 Defining the variables~ and ~ <Xi.. is a ratio of 
two lengths and must satisfy 0 ~ 01,. ~ 1; usually O(k gl/2. e k is the 
(unsigned) angle through which Fi, must be rotated in order to 
align with Fk-t. (F ~-• is Fi.. parallel translated to site k-1.) 

Fig. 6 Large ~ limit of singular values for ~ symmetric ring. 
The limiting form is not a good approximation for m/N ~ O. 

Fig. 7 Accidental symmetry. Ci~ rings possess an accidental 
differential symmetry corresponding to alternating longitudinal 
displacements of the sites. Variations in the data are of second 
order in the displacements. 
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Appendix A. 

The following one-dimensional problem serves as a simple yet 
enlightening example of employing singular value decom­
position on a circulant matrix to pseudoinvert a singular 
system. Consider a collection of N points on the real axis, 
say xk, k = O ... N-1. Suppose one is given as data the 
differences 

x - x 
"'+ f k 

) k = 0 ... N- 1 

(Assume the usual cyclic condition on the index set. In the 
absence of measurement errors the solution would be trivial, 
of course: 

)( 
k.~1 - )<\ .. +- hi. ' k = 0, .. N-2 J 

)<' 0 • -;;irb;f-r'drJ ) 
Write this as a matrix equation 

h = D x 
) 

• 
) 

We seek the pseudoinverse solution, 

• x• 

Because .ll is qirculant it can be diagonalized by a discrete 
Fourier transform. Define the unitary matrix S, 
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" - e-rf ( 2-rri. k'™/N J '.::J k rn 
.. -/1/N . , k '/VI-= O ..• N-1. 

' 

It is easy to verify that 

( s+ n s )k.,, = 6km 
( e 1TI1., Y'fl /N 

• 

In this representation, 



so that the singular values of n are given by 

n-i=- 0 ... N-i 
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The null space of{')_ is one dimensional; it corresponds to 
the m=O singular value and therefore is svanned by the 
vector 

(111 ... 1') 
T 

Of course, the motion associated with e is a uniform 
translation of all points along the real axis . 

• 
The solution 2i-:- is then found by using 

~(Stx+) 

- s ( stn+ s) sth 
where 

> 

This can also be written in a crudely algorithmic form as 
follows. 

h ·- s+h • ho 0 . 
I > 

. - I 

~ ..... M -= 1 N-1 h...., . - (Q. 2 '"'r./l-I - 1) h..,.... ' > 

~· Sh 
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ERRATUM for FN-338 

"Pseudoinverting a Large, Almost 
Block Tridiagonal System," 

by Leo Michelotti 

page 8 (middle of page) : 

This is shown graphically in Fig. 3. d~ is 
a linear mapping from the state space onto 
the tangent space over the data manifold at 
M* = ~(s*). In contemporary notation, 

By introducing local coordinates, 


