
A v Fermi National Accelerator Laboratory 

FN-336 
0402. 000 

On an Invariant of a System affected by Intra-Beam Scattering 

Ken TAKAYAMA 

Fermilab, March , 81 

1. Introduction 

en 
A. Piwinski has shown that there is an invariant that is 

useful in understanding the effects of intra-beam scattering on 

betatron oscillations and the energy spread. After some 

mathematical manipulations, the invariant can be written as 

I I + - <~,.) +- (E:y) = c.o~s't p,. ~'4 
( 1 - 1) 

where Pr.ti. p are the momentum and momentum deviation, l:f-..r and'lfE-y 

are the betatron emittances for 

directions, respectively, fl• and 

vertical betatron amplitude functions, 

in units of its rest energy, ol 
-

horizontal and vertical 

~~ are the horizontal and · 

'l" is the particle energy 

is the momentum compaction 

factor ( = 'f/~a. which is considered by Piwinski as a good 

approximation) , I'( is the momentum dispersion function, < A ") 

is the mean value of a quantity A over all particles, A is the 

mean value of a quantity A in the orbit, and the integer n is 2 

for an unbunched beam. 
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If we asume that betatron oscillations and energy oscillations are 

harmonic oscillators and that intra-beam scattering is a local 

elastic collision, we can derive the expression for this invariant 

more easily with the aid of the energy conservation law. 

2. System of N three-dimensional harmonic oscillators 

According to the above assumption, we can regard a beam as an 

isolated system of N three-dimensional harmonic oscillators which 

experience many random collisions among themselves. Here the 

longitudinal oscillation is taken as a free motion because we 

consider the case of an unbunched beam. 

Consider the behavior of a single P.article before and after a 

collision. Its behavior can be described by the Hamiltonian 

H(. p, ·y p. ~.) v,,( .a. '") \)y 2 • c- \l•t".a. 
)(, IV , y,~,o,9 =i" Px +x +y(Py+Y )-A.Xd + zO (2 - 1) 

where \lic,Yy, \)$ are the horizontal and vertical betatron tunes , and 

longitudinal frequency, >C.Px~Y,fy; o+,f are the canonical 

variables for horizontal, vertical ,and longitudinal 

motions is a coupling coefficient, 

and 9 = s/R where R is the mean machine radius and s is the 

distance along the orbit. 

we can separate the horizontal excursion of Eq. (2-1) into two 

parts, the equilibrium orbit and the homogeneous harmonic 

oscillation around the equilibrium orbit. This homogeneous 

harmonic oscillation corresponds to a pure betatron oscillation 

and the equilibrium orbit corresponds to the well-known closed 
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orbit which varies linearly with ~ , the longitudinal momentum 

deviation. The equation of motion obtained from the Hamiltonian 

(2-1) is then 

• • .. 
i\. ""$ ( . d ) x = - Vic X + =di 

Therefore, the equilibrium orbit ( Xf1. ,P•i ) is written 

x~ = Df ( D :~v .. ) 
p~ - 0 -

Transforming into a new canonical variable ( '%- , P'lC ) , 

-;;t. = x -x~ 
Px. = Px - Pe~ 

we find, from the generating function, 

the new Hamiltonian 

K = H + U t>e 

(2 - 2) 

as 

( 2 - 3) 

( 2 - 4) 

= ~ [ P: + (.~ + Db'f]- ~ ( 'X + DE)b'+ ¥ 61..+~ [p'r'i.-tl .. ] 

=~[Px~ + x:a.] +~(p'r':a.+Y2 ) -t-i:C~,-\,l,.o)f2. ( 2 - 5) 

In terms of action-angle variables, we can write the Hamiltonian 

in the form 

( 2 - 6) 

Next, consider the behavior of the system before and after a 

collision. This behavior is described by the Hamiltonian Ht1n:11I 

N I a J 
H--1 = Z ( \),. J:t -+ Vy Jy -t- 2 (I.ls -V.I) ) Js ~ 

..... ~·1 

( 2 - 7) 
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Since we have assumed that the Coulomb interaction between 

paticles is a local elastic collision, the Hamiltonian Htutal must 

be an invariant of the motion. We therefore obtain easily the 

invariant expression 

( 2 - 8) 

where ( A) is the mean value of A over all particles. 

Finally, we can rewrite this expression in terms of betatron 

parameters. Relations between the parameters used above and the 

orbit parameters of a real machine are 
(2) 

D ='(csyJ,cs> because "XCs>=ijjs>)( ~'::i~($)::J~s))("i-">7Cs):rJpJs.)0 
where x{$) ,x.,.<s) are the horizontal excursion 

the equilibrium orbit in a real ring, 

q~)is the momentum dispersion function. 

and 

V,.,y = R/ (3:.,,. (smooth approximation) 

Vs = R/ ¥"2 because in the rest frame (independent variable: s) 

the momentum deviation takes the term~rcsee Appendix) 

and in the 9 frame (independent variable: e) 
the longitudinal energy must be multiplied by R. 

Thus Eq. (2-8) becomes 

(~) .. 
R:-. 

~Using the 

factor(.Z> 

+ R <_!v) 
~, 

approximate 

_E ( ..L _ 71cs) ) _ 
+ 2 )"... (i; (9..<s) < )s )- co11s"t < 2 - 9 l 

expression for the momentum compaction 

--
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we obtain, from Eq. (2-9), 

+ ( 2 - 10) 

which is identical with the original form, Eq. (1-1), derived by 

Piwinski. 

3. Conclusion 

Although particles in the beam undergo many collisions, the 

invariant Eq. (2-10) is valid if the interaction is elastic and 

this is simply a consequence of the conservation of energy. 
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y , 
K is the laboratory system and K is the system at rest with 

the synchronous particle which has the velocity v0 (=c ~0 ) in K, 

The space-time coordinates of a test particle are (x,y,z,ict) in K 

and (x',y', i, icl!) • I The four (P,, •Py rPs, iE/c) in in K. momenta K are 

W'o'\Jox P, _ IMoVJ w.. "4t. ~ 

p,, = IMoC: 

Jl-/!a. Pa .. F- (A - 1) 
, y - 41- /S" I J 1-,e" I - J,-~a. 

with ,. = v/c (V is the velocity in K) and VI Q: V. Simflar 

relations hold for the four-momenta <Ji,~1 1'-iEfc) measured in K; 

In K the longitudinal momentum deviation from the design 

value is 

(J. 1 
I .ca•& 
v ·- ·- • 

, '· Transformed into K, the momentum psis written in the form 

' _ Pa +~p .. ~-e/c 
Pa - J 

I - fJ• a 

- WloC. (S- @1> 
J , .:.. (St • J I - {J a. • 

(A - 2) 

Therefore the longitudinal momentum deviation '· in K is written as 

We define a 

, 
( .APa) -- Wlo C. 

~ 1-~ .... 
. ;::(3=-=~=-· 
J 1- (i& 

small parameter E , 

(J - fl• 

(A - 3) 

(A - 4) 
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We expand the right-hand sides of Eq. (A-2) and (A-3) in E: and 

retain only the lowest order terms. We then get the expressions 

for the longitudinal momentum deviation 

(APE) - IMoC. € -
(\ - (J."~ (A - 5) 

, 
W\oC. E I 

(AP1) -- ( \ - [J.2) 
so that 

(A - 6) 

, (AP1) 
(Apil) -- r • 

(A - 7) 


