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1. Introduction

4h)
A. Piwinski has shown that there 1is an invariant that is
useful in understanding the effects of intra-beam scattering on
betatron oscillations and the energy spread. After some

mathematical manipulations, the invariant can be written as
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where P,AP are the momentum and momentum deviation, Té&y and W&y

are the betatron emittances for horizontal and vertical
directions, respectively, p, and @’ are the horizontal and

vertical betatron amplitude functions, Y 1is the particle energy

in units of its rest energy, o is the momentum compaction
factor (=’('/B:which is considered by Piwinski as a good
approximation), 7 is the momentum dispersion function, ¢ A S
is the mean value of a quantity A over all particles, K is the

mean value of a quantity A in the orbit, and the integer n is 2

for an unbunched beam.
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If we asume that betatron oscillations and energy oscillations are
harmonic oscillators and that intra-beam scattering is a 1local

elastic collision, we can derive the expression for this invariant
more easily with the aid of the energy conservation law.
2. System of N three-dimensional harmonic oscillators

According to the above assumption, we can regard a beam as an
isolated svstem of N three-dimensional harmonic oscillators which
experience many random c¢ollisions among themselves. Here the
longitudinal oscillation 1is taken as a free motion because we
consider the case of an unbunched beam,

Consider the behavior of g gingle particle before and after a

collision, Its behavior can be described by the Hamiltonian
H (X B Y, Py ,5;0) = 2R 3+ DO R+ YY) ~AxS + Y52
sV 2Vysrv,0, -2 X 2 Y ) + 2 (.2 - 1)

where W, Vy,Vs are the horizontal and vertical betatron tunes ,and

longitudinal frequency, X.Px. Y. 1P P & are the canonical

variables for horizontal, vertical sand longitudinal
motions ( § §¢p/p) . A is a coupling coefficient,
and 8 = s/R where R is the mean machine radius and s is the

distance along the orbit.

We can separate the horizontal excursion of Eq. (2-1) into two
parts, the equilibrium orbit and the homogenecus harmonic
oscillation around the equilibrium orbit, This homogeneous
harmonic oscillation corresponds to a pure betatron oscillation

and the equilibrium orbit corresponds to the well-known closed



orbit which varies linearly with § ,

the 1longitudinal momentum

deviation. The equation of motion obtained from the Hamiltonian

(2-1) is then
X = —=ViX + AW%S ( ) (2 - 2)
Therefore, the equilibrium orbit ( X'F'Pet } is written as
Xeg = D&
Peg. = O

Transforming into
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(2 - 3)

a new canonical variable (% , Px ).,
L = X =Xeq
p& = Px-Pev

we find, from the generating function,

the new Hamiltonian
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In terms of action-angle variables, we can write

the Hamiltonian
in the form

G = Wl + W + 3 =% (2 - 6)

Next, consider the behavior of _the gvstem before and after a
collision. This behavior is described by the Hamiltonian Hyyel
N

| 2
HWl = & [\)xj‘x + vyj" + i(ﬂs-vuo)js]i' (2 - 7)



Since we have assumed that the Coulomb interaction between

paticles is a local elastic collision, the Hamiltonian Hypal must

be an invariant of the motion. We therefore obtain easily the

invariant expression
|
Vel Tud + V< Tyd> + 3 (Vs= VD )<Tsd=const (2 - 8)

where { A > is the mean value of A over all particles.

Finally, Wwe can rewrite this expression in terms of betatron
parameters. Relations between the parameters used above and the
orbit parameters of a real machine are )
’?CS)/JQ(S) because X (s)= E&s) X —919‘6)2 Jf}x(s) Xo‘—b 7[5)-.-.-'“9 D

where XG),xqu are the horizontal excursion and

D

the equilibrium orbit in a real ring,

RG)is the momentum dispersion functien.

\):r,wr= R/(a—""i (smooth approximation)
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because in the rest frame (independent variable:s)
the momentum deviation takes the term AB/r(See Appendix)
and in the @ frame (independent variable: §)

the longitudinal energy must be multiplied by R.

Thus Eq. (2-8) becomes

(Ted. (Jyd R (1 ’m
R=— + R= + == - < =const (2 -9
Using the approximate expression for the momentum compaction
factorcz) 713)
ol =

Bx (<



we obtain, from Eq., (2-9),

<€Ef> + <jz?)>

P By

which is identical with the original form, Eq.(1-1), derived by

\
-+ a.(-;:-o{)()',)z wnst (2 - 10)

Piwinski.
3. Conclusion

Although particles in the beam undergo many collisions, the

invariant Eq. (2-10) is valid if the 1interaction 1is elastic and

this is simply a consequence of the conservation of energy.
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Appendix

K is the laboratory systegfand K* is the system at rest with
the synchronous particle which has the velocity ve (=cf,) in K.

The space~time coordinates of a test particle are (x,y,z,ict) in K

and (x,y,Z,icf) in K. The four momenta (3‘,py,p,,iE/c) in K are

wie W WAV W,V wel
z —m—— Pz —i - = el A-1
e Vi8> , Y \‘I-ﬁ" ’ Pe * J\-ﬁi ’ E Ji—ﬁ" ( )
with B = v/c (v is the velocity in K) and vg = V. Similar

relations hold for the four-momenta (QL%}Q?iE?c) measured in K~
In K the longitudinal momentum deviation from the design

value is

(aB) = Pe - Pro

8 8. 1 |
= “""[ oY Ju_-—@-:]. (a - 2)
Transformed into KZ the momentum p;is written in the form
o P + LB - LE/C

we C {9"’60

J;;p: ‘Jl—p‘ .

Therefore the longitudinal momentum deviation in K is written as
’ -

(AP‘) = WOC- . ﬁ £.

ﬁ"ﬁ: J\"' P;

We define a small parameter & ,

63 - fao (A - 4)

(A - 3)
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We expand the right-hand sides of Eq, (A-2) and (A-3) in & and

retain only the lowest order terms. We then get the

_ for the longitudinal momentum deviation

(AP:) - WoC €

(APQ), - W €

s0 that

(a Ps'), =

expressions
(A - 5)
(A - 6)
(a - 7)



