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It is shown that, of all nonlinear coupled resonances of the 

form 
m \Jl +nv =k 

2 

where ... , n and k are positive integers and m + n > 2, those with 

m or n = 1 exhibit a different property compared to others in their 

stable regions of phase space. The difference explains the para

doxical result obtained by Sturrock1 and Guignard 2 that there are 

points of arbitrarily small amplitudes which lie outside the stable 

region. 
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Consider a coupled resonance of the form 

(2p)v
1 

+ (2q)v
2 

= n + E (l l 

where (22), (2q) ana n are positive integers. It is further assumed 

t~at p < q so that 2 = 1/2, 1, 3/2, .... and q = 1, 3/2, 2, ..... 

In the tune diagram, it is convenient to define the point on the reso

nance line that is nearest to the point (v
1

, v 2 ), 

(2p)v 10 + (2q)v
20 

= n, ( 2) 

(3) 

2 2 
El = E (2p)/[ (2p) + (2q) ] 1 E2 = El (q/p) • (4) 

'I'he distance from the point (v
1

, v
2

) to the resonance line is 

( 5) 

Wnen one retains only the resonance-driving term, the Hamiltonian 

in terms of the action-angle variables (I, a) can ne written in the 

form 

wnere ¢ = (2p) a
1 

+ (2q) a 2 + 6. ( 7) 

The amplitude D and the phase 6 of the driving term can be expressed 

in terms of the machine parameters and the parameters of the nonlinear 

force which is driving the resonance. By writing equations of motion 

for I 1 and I
2

, one can easily verify that the quantity 

is an invariant, that is, dC/d6 = 0 

able e. 
with the independent vari-
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Analogous to the concept of fixed points in the two-dimentional 

phase space, one can define "fixed lines" in the four-dimentional 

space (1
1

, a
1

, 1
2

, a
2

) from the following three conditions: 

= o. ( 9) 

Conditions for 11 and 1 2 are satisfied (excluding the trivial solution 

r 1 = 1 2 = 0) by taking sin(<j>) = O. If one defines the quantity w, 

w = [E/IE!Jcos(¢) (10) 

it must be +l or -1. The condition for ¢ is then 

£ = -[s/is!Jw·D· (2I
1
)p-l(2I

2
)q-l 

2 2 
x [ (2p) (212) + (2q) (211)]. (11) 

Since D is positive by definition, this is satisfied only for w = -1. 

Action variables 1
1 

and 1 2 are related to the emittance of the beam 

E1 and ;:.
2

, 

(12) 

and one finds the expression for the "bandwidth" given by Guignard, 2 

6e =: 21£1 = 2D (E
1
/n)p-l(E

2
/n)q-l 

x [(2p)
2

(E 2 /rr) + (2q) 2
(E

1
/rr)]. (13) 

A peculiar feature of this expression is that, for p = 1/2, the width 

increases indefinitely as E1 approaches zero while E2 is fixed. This 

is contrary to the meaning of resonance width as it is generally under

stood. This peculiar feature is related to the (erroneous) statement 

made by Sturrock in connection with the resonance 'J + 2v = n: 1 2 

"The most surprising feature of the stability diagram of Fig. 28 
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is that there are points of arbitrarily small amplitudes u, v, which 

lie outside the stable region." 1 

The purpose of this note is to examine in detail why resonances of 

the form v
1 

+ (2q)v
2 

= n are di££erent from others. The special 

property of these resonances has been pointed out by Lysenko3 but 

his argument is qualitative. The.discussion given below is intended 

to delineate the point and also to show how to find the resonance 

width which is different from the one given by Guignard. 

Since the Hamiltonian, Eq. (6), is independent of the variable e, 
it is an invariant. From two invariants Hand C, Eq. (8), one can 

construct two invariant expressions ~l and ~ 2 , 

~l = H + (E:/2) ·C. (2q) 2 I [ (2p) 2+ (2q) 2 J 

= (E:/2) (2I
1

)/(2p) + D·cos (<j>) • (2I
1

JP(2I 2 )q, (14) 

~ 2 = H - (E/2)·C·(2p)~[(2p) 2+(2q) 2 J 

= (E/2) (2I2)/(2q) + D·cos(¢). (2Il)p(2I2)q (15) 

One can further simplify the form of two invariants by the normali

zation 

(16) 

where 
A - (2/I E: I) (2D/I EI) l/s (2p)p/s (2q) q/s, ( 17) 

s - p + q - 1. (18) 

The corresponding normalization 0£ two action variables is 

(19) 

v2 - (2!2). (2D/ IE: I) l/s (2p) p/s (2q) p' /s' (2 0) 
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where p' - 1 - p and q' - 1 - q. The £in al £orm of two invari-

ants is 

A 
2 

+ u2Pv2q·w, (21) = u 

2 
+ u 2Pv2q·w. (22) µ = v 

For physically meaningful solutions, both u and v must be positive 

(or zero) and lwl must be less than or equal to unity. One can 

eliminate the variable v using the relation 

2 = u (A - µ) I 

and the problem is reduced to finding the amplitude u such that 

the absolute value of 

w = 

( 2 3) 

(2 4) 

is less than or equal to unity. 

tion restricts the value of u 

The motion is stable if this condi-

within a finite range. In the (A, µ) 

space, there are three regions with different characteristics: 

(1) First quadrant, A > 0 and µ > O. See Fig. lA. 

The function w(u) has one minimum point. If the mini-

mum point is below -1, the motion is stable (curve S). If 

the point is above -1 (curve U), u can take any value and 

the motion is unstable. The limiting case is the curve L. 

(2) A = 0 and µ >O. See Fig. lB for p = 1/2. There is no 

stable motion for other values 0£ p. 

(3) Second, third and fourth quadrants, (:\<0,µ>0), (A<O,µ<O) 

and (:\>0,µ<0). Note thatµ= 0 is excluded. The function 

w(u) can have one maximum and one minimum points. See Fig. 

lC. It will be shown below that there is no stable motion 

of this class unless p = 1/2 
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The maximum or minimum points are solutions of the condition 

dw(u)/du = 0 

which takes the form, with x = 2 
u ' 

2 (2s) ·x - 2 [ (s+p) >.+ (1-p) µJ ·x + (2p) )\(;>.-µ) = 0 

and the solutions are 

1\12 
= 1/ (2s) · [ (s+p) :>.+ (1-p) µ ± IMJ , 

The corresponding values of v 2 are 

Since 

v 2 = u 2 - (A - µ) M M 

= (l/2s)· [-(s-p)?.+(2s-p+l)µ +IM]. 

2 
uM must be real, 

1) p = 1. 

2) p f 1. 

M must be either 0 or positive. 

(s-1) 2 

4s 
·A] > 0 

M = (1-p) 2 
(µ + t;A) (µ + llA) > 0. 

( 2 5) 

(2 6) 

(27) 

( 2 8) 

(2 9) 

( 30) 

Comparing this expression with Eq. (27), one sees that both 

t; and 11 are non-negative. 

In (;>., µ) space, conditions (29) and (30) exclude the shaded areas 

as shown in Figs. 2A - 2D. 
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Fig. 2B 

p=l, s;il 

Fig. 2D 

p=l/2, q=l 

s=p 

µ 

From Eq. (26), it is obvious that there are at most two values of 

uM . At the same time, from Eq. (24) for w(u), it is already known 

that there is one minimum point when both A and µ are positive. 

The remaining problem is then to find the conditions for two values 

of ~ to exist in the second, third and fourth quadrants of (?., µ) 

space. 

From Eq. (28), in order to have two real values of vM, it is 

necessary to satisfy the condition 

µ > 
s - p 

(31) 
2s - p + 1 
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Since s 7 p, the coefficient in front of A. in Eq. (31) is non-nega

tive. This condition excludes the fourth quadrant A. > 0 and µ < O. 

Two values of ~ are possible if and only if the following two condi

tions are satisfied !see Eq. (26)J, 

(s+p)J. + (1-p)µ > O, 

I(s+p)A.+(l-p)µJ
2 ~ M 

(32) 

(33) 

The condition (33) is equivalent to µ > A. in the second and third 

quadrants of (A., µ) space. However, this is automatically satisfied 

because of the condition (31). The coefficient in front of A. is 

always less than unity, 

s - p 
< 1 . (34) 

2s - p + 1 

As for the condition (32) , 

(1) p = 1, A. > 0 (fourth quadrant) which is already excluded. 

(2) p > 1, µ < [ (s+p)/(p-1) J ·\ 

The coefficient in front of A. is always larger than 3 and 

the condition is in contradiction with the condition (31). 

(3)p=l/2, 

µ > - 2q·\ ( 35) 

This condition as well as the condition (31) are satisfied 

in the second quadrant A < 0 and µ > O. 

By evaluating i; and n in Eq. (30) for p = 1/2, 

(i;, n) = (6s + 1) + 4ls (2s + 1), (36) 

one can see that 

n < (2q) < C (37) 
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In conclusion, stable motions are possible if 

1) ). > 0 and µ > 0 for p 'I 1/2. 

2) ). >,. 0 ana )1 > 0 or A < 0 and µ > -I6s+l + 4/s (2s+l)J •A 

for p = 1/2. 

The resonance studied by Sturrock1 corresponds to p = 1/2 and q = 1. 

He missed the region A < 0 and J1 >. -8). 

If A is limited to positive values, one 

w = - 1, 
2(p-l) 2q < 1 u v • 

which is shown in Fig. lC. 

finds from Eq. (21) with 

( 3 8) 

For p = 1/2, this leads to the exclusion of points near the origin as 

stated by Sturrock. In order to find the stable region in the phase 

space or, equivalently, in (u, v) space, one must solve [dw(u)/du] 

= 0 together with w(u) =-1 for u = uM, the maximum possible stable 

amplitude. Analytical solutions are possible for (p=l/2, q=l) 1 and 

for (p=q=l). 4 For v1 + 2 v 2 = n, the limiting values (uM, vM) of 

Figs. lA and lB satisfy the relation 

(39) 

which is equivalent to the expression of bandwidth, Eq. (13), found 

by Guignard. 2 If the case represented by Fig. lC is included, one 

finds that the stable motion is confined in the region bounded by 

u = O , v = O , Eq. ( 3 9) and 

v = (1 + u)/2 ( 4 0) 

as shown in Fig. 3. 

Finally, it is perhaps important to include at least the lowest

order, phase-independent terros of the form 

in the expressions (21) and (22). The analysis will then become much 

more complicated. 
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