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ntroduction

In this paper, we derive a general formula for the luminos-
ity ‘rom two colliding beams. The two beams are assumed to
cross at some small angle with unequal cross secticns. Also,
Joth beams are taken to be not necessarily round. Zaussian
distribution is asgsumed in any directicn. The following cases:
(a) bunched beam vs. unbunched beam, and (b) two unbunched beams,
are given special consideration.

An application is made to the case where the cross section
of the beams increases guadratically with the distance. The
effect of the dispersion is alsc taken intc account for one
special case. The behavior of the luminosity is finally discussed.
The main parameters 1n the discussion are: the interaction length,
the crossing angle and the ellipticity of the interaction cross

sectlion.

General Analysis

. o , : . L1
The bkasic feormula for the luminosity per crossing is

L = N N_{F (1)

where F 1s the overlapping integral

i
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-V l%+(P,V+,t)g_(r,V_,t). (2)

o o > -
: =ujdtdxdydz dv_av_|v_ -v_
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dt 1s the element of time, dxdydz is the element of volume, ; and
v are the pocsition and veloelty vectors of a particle. The signs
+ and - are used tc distinguish between the two beams. The dis-

tribution functiocns are normalized tc unity, i.e.

lg, (¥,v,,t)drav, = 1.
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We nave three cases:

\

(a2’ Both beams are unbunched. The tctal number of particies

in sach beam is M,. The frecuency of enccunter f is the lowest

revolution frequency.

(b} Cne beam is unbunched (+) and one bunched (-). N+ ig
the totzl number of particles in the unbunched beam, N the
number <f rartlicles in each bunch of the bunched beam. £ is the

Fyl

frequency of encounters between the unbunched beam and the bunches

of the other besanm.
(¢) RBoth beams are bunched. The number of particles in each

bunch Zz I,. f is the frequency cf encounters between bunches.

Each beam (%) 1s moving in the direction s, (see Fig. 1).

The angle between the two directions 1s a<<l. All the particles

are assumed to have the speed of light c. The transverse coor-
dinates are x, and z_. We chose x = X, = X to be the direction
perpendicular tc the nlane of crossing. It 1s also assumed that

around the crossing point there is a space of total length L free

of any magnet.

Let us take gaussian distributions of the particles In the

transverse planes, l.e. in x,, ¢, , X, and 2,. We have
) Bxiﬁzié(éi¥0) t (s o)
Sr T 0T T2 LA BT CL)
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(3)

where tne ¢, 's are the standarc deviations of the gaussian distri-

cutions. They are functions of s_.
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The relation between x, , z,, 3, and the main reference frame

coordinates x, z and y are

X+ = X_ = X
6] . O
s = vV C0O8%= * = Nn=
£ 00 2 513
o . O
Z = Z OS= 1 & -
+ [ 52 F ¥ Sln2

In the follewing, since we are assuming the crossing anegle o

is very small, we shall approximate cos% ~1 and sin% ~%.

H+

is the longitudinal distribution function. We have two
cases.:

(a) Unbunched beam, for which we take a uniform distribution.
Ht is a constant equal to the inverse of the main orbit circum-

ference 2ﬂR+.

{b) Bunched beam. We take a gaussian distribution

B 1 (si;ct)2
€Xb | - 37 T

o+

H,(s,%¥ct) = T

(2ﬂ)2 Tos

where Tps is, cbviously, taken to ke a constant.
At this point, the following approximatiocon, valid in the limit

0of small crossing angle, 1is made

[v,-v_| = 2c.

+

. . > -
This approximation allowed the integration over v, angd v . We obtain

; H+(s+—ct)H_(s +et)

C —
I = , dtdxdydz
2W2 - Ox+9%-92+4%z -
r r x2 x2 Z2 Z2 =
-1 + - -
eXp<t—§ i 5 5 + 5 + 5 >
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The integraticn over x is also easily done
1
2
2¢ J (O§+ * Oi-)
F = = H, (s _-ct)H (s_+ect)dtdydsz
3 ¢ a a +0 7+ -
‘2‘ Z + Z—-
(2m)*= -
) réz 22 a0
ex . _.:].'4 !.....:.E.-_..._ + e :
BRI - g2 1
L Loz+ Z—

When we are performing the integration over the time t, we
again have to consider the three cases.
(a) Two unbunched beams. The integration is rather trivial.

We obtain

2 2
1ol
(02 + 02 ) 2 02 02
_ 2 X+ X— z+ 7 -
F = g ‘ = S e dydz (4)
—2- ’ Z+ Z—-
(21) Ro .

where RO is smallest between R+ and R_.

{b) One bunched beam and one unbunched beam. Also in this
case, the integraticon is obvicus. In the 1limit the bunch length
ch_is very small compared to the circumference 2WB+, we have the

same result shown by (4) with Ro = R

+e
(c) Two bunched beams. The integration can be done alsc in
this case, though it is more complicated. We leave this case out

of the present analysis since 1t has already received enough
.1
attention
We shall concentrate on the first two cases (a) and (b),
which, as we have seen, have the same overlapping integral which is
given by (4). Observe that the dependence of oy and G, ony and =z

prevents further integraticn in general. Nevertheless, in fhe limit
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¢ very small angle crossing, we can assume theyv depend cnly

on ¥. In this case the integration over z can be done =23 shown
ir “fprpendix A,
We have
2 2
oV
+8/2 - 2 2
! oy 4(0Z++UZ_)
F = —3 5 ‘ ] T (5]
= : = 53 =
e "o - (dz++oz_)2 (OX +UXE)C
-R/2
A Zrecial Case
et us apply (5) to the following special case. Introduce
the beta-function £(y) and the dispersion function 2(y) znd let
us write
2 2
¢ = % B{y) + [&8:D(y)]
which applies for either x or z and Tor either + or -. m7e 1s the

emittance which includes 95% of all the beam (see Avpendix B),
and § 1s the standard deviation of the relative momentum (Ap/p)
distribution, which is assumed tc be gaussian.

Take the following expressions for B(y) and D{y)

g¥ 4 L

g

o
1]

*

D:D'y

where B¥ is the value at the crossing point and D' is a constant.

Introcduce the average beam current, I = Nec/27R, and the integral
n2u2
; By
K(E,n,0) = | —Fmr - (6)
© (14022 (1402u?)2



-6 FN-271
1500

then, “inally, we have for the luminosity, from (1),

I,1
[ o= ot - K(E,n,w) (7)

Wegc )
Xz

where
/2
=g
-/
/B_A
o = ¥z
// A B
Xz
X/ z
© 2 vV A
Z
and
% %
A - €efy 4 BB
- 6
/et w e /8" 2 >
£ £
B= -t ST 4D +D_)s°.

Observe that A 1s the aquadratic sum of the beam sizes at the

crossing polnt, i.e.

t
Also, in the case D+ =D = 0, B is the quadratic sum of the
divergences 3 (see Appendix B) at the crossing point, i.e.

Y
B = v tou_

In the case bhoth beams are round buf not necessarily with the
same c¢ross section, then w = 1. If, in addition, the two beams
have also the same cross sectlon and there 1s no dispersion

t
(D = 0), then
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¥ g
T1=OtEg: F) ‘E:—*_
g 28
and
S— 22 %
/AXBZ = 20 /8 = e/3.

In this very special case, cur expression for the luminosity
reduces to the one obtalined by E. Keilg.

Cbserve also that with our notaticon the interacticon length 2
enters the expression cof the luminosity (7} only at the upper
limit of the nermalized overlapping integral (6), and that the
crossing angle a enters the same expression at the shoulder of
the exponential inside the normalized overlapping integral.

We have already seen that, in the case of round &nd equal
beams, the quantity JK;E; at the demominator of the right hand
side of (7) is the beam emittance and, henceforth, an invariant.
This is closely true also for unequal and nct-round bheams. Thus
the behavior ¢f the luminosity is entirely described by the nor-
malized overlapping integral (6) with the three normalized param-
eters £,n and w. The {irst of these parameters, £, is the nor-
malized distance from the crossing point; the second one, n, is
the normalized crossing angle, and w is a measurs of the "ellip-
ticity" of the interaction. We have seen that w = 1 for round
beams; also w > 1 when the crcss section of the interaction is
wider on the plane of crossing than it is on the mid-plene, and
vice versa.

The "saturated" luminosity is obtained by setting £ = =, Let
us call

K = K(E = °°,TI,UJ)-

s}
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This parameter is shown 1in Fig. 2, versus n for scme values
of w. The luminesity decreases monotonically with n and w.

The ration K/K_ is shown in Figs. 3, 4 and 5, versus £ and
for some values of w.

From the experimental apraratus point of view, an important
parameter is the actual length where almost all the lumincsity
1s concentrated. We define Ec to be the normalized full length
around the crossing point including 99.0% of all the luminosity.
£ is shown in Fig. 6, versus n and again for socme values of w.

c

The actual interacticn length decreases monotonically with n and w.
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Appendix A

We assume that G, and o, depend cnly on y. VWe want to

perform the integration over z at the right hand side of (U4)

1 (z—ya/2)2 + (z+ya/2)2
2 2 2
| O‘Z+ 9,
=v)e - dz
-% (AZ+B};)2 + 02y2
=-Je dz
where 1
1 1 \2
A= ;—§ + ;—5
Z+ Z -
o[ 1
ST S - )
Z- z+ |
¢ = a 7
2 2,2
(Uz+ + Gz—)

as it is easy to verify.

The same integral then becomes

12,2
yam T v Y
R C

which leads to (5).
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Appendilix B

Cenzlider a particle wnich has an upright =21lipse describeaq
by the =zguation
e 2
Rx +X——=g
)
]
as tra’sctory in the (x,x J)-phase plane. ¢ 1s a constant,
actually the invariant action of the trajectory. The trajectory
iz eclosed and the arez of the =1lipse is 7e.
Consider a beam which has gaussian distribution in elther
1 1
direction % and x , centered to x = x = 0. The distribution in
the Invariant £ then must be
e«E/EO
f(e) T —

€
O

where‘Jf(e}ds = 1 and €, ig 2 measure of the width of the distri-

bution.
We want to define the emitfance TE ok which Includes only
*he frezction 1 - o, (o < 1), of the beam. We have
Emax
1 —s/ao
= e de = 1 - p
£
o)
0
from which
€nax = "o logp.

1
The distribution in % and x 1is
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1
Perform the integration over x to gest distributicn over

X cnly, and vice versa

2

ECT IR JLozpl 2=
f(X') _ llogp c “max J e “max B

e

|
dx&.
max E

J
From the above distributions we derive the relaticonships
between the standard deviation of the distribution in x, o, the

L
standard deviation of the distribution in x , ¢, the fraction

of excluded beam, p, and the ccorresponding beam emittance w € max

2
2%; |logp| =

3
Il

£
max

2w25 |logp| = .

H

The relation between o and ¥ 1is

g = B

Por instance, the emittance which includes 95% of the beam

(p = 0.05) is
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